1
|
Kumar K, Honda-Okubo Y, Sakala IG, Singh KN, Petrovsky N, Salunke DB. Modulation of the Adjuvant Potential of Imidazoquinoline-Based TLR7/8 Agonists via Alum Adsorption. ACS Med Chem Lett 2024; 15:1677-1684. [PMID: 39411538 PMCID: PMC11472459 DOI: 10.1021/acsmedchemlett.4c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 10/19/2024] Open
Abstract
Toll-like receptor (TLR)-7/8 agonists are promising candidates for the development of new-generation vaccine adjuvants. Adsorption of TLR7/8 agonists on aluminum salts (alum) may further enhance vaccine immunogenicity. Evaluation of the adjuvanticity of the most active dual TLR7/8 agonists, 1-(3-(aminomethyl)benzyl)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (m-AM-BBIQ, 10) and its para derivative p-AM-BBIQ (11), along with their gallic acid and protocatechuic acid amides in a recombinant-protein-based COVID-19 vaccine platform confirmed the importance of vic-polyphenolic functionality in TLR7/8 agonists for the alum adsorption, thereby resulting in a balanced Th1/Th2 immune response. A novel 7,8-dihydroxy-IMDQ derivative (dh-p-AM-BBIQ, 21) was designed wherein the vic-diphenolic functionality was introduced in the quinoline ring of the imidazo[4,5-c]quinoline scaffold. Compound 21 not only retained the TLR7 agonistic activity (EC50 = 3.72 μM) but also showed high adsorption to alum and induced a potent antibody response to SARS-CoV-2 spike protein and hepatitis B surface antigen immunized mice. The combination adjuvant comprising compound 21 adsorbed to alum represents a promising candidate for further development as a human and veterinary vaccine adjuvant.
Collapse
Affiliation(s)
- Kushvinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Yoshikazu Honda-Okubo
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- Australian
Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia
| | - Isaac G. Sakala
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- Australian
Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia
| | - Kamal Nain Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- Australian
Respiratory and Sleep Medicine Institute, Bedford Park, South Australia 5042, Australia
- National
Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials
(NICOVIA), Panjab University, Chandigarh 160014, India
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National
Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials
(NICOVIA), Panjab University, Chandigarh 160014, India
| |
Collapse
|
2
|
Qureshi M, Viegas C, Duarte SOD, Girardi M, Shehzad A, Fonte P. Camptothecin-loaded mesoporous silica nanoparticles functionalized with CpG oligodeoxynucleotide as a new approach for skin cancer treatment. Int J Pharm 2024; 660:124340. [PMID: 38878838 DOI: 10.1016/j.ijpharm.2024.124340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/22/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
The therapeutic efficacy of camptothecin (CPT), a potent antitumor alkaloid, is hindered by its hydrophobic nature and instability, limiting its clinical use in treating cutaneous squamous cell carcinoma (SCC). This study introduces a novel nano drug delivery system (NDDS) utilizing functionalized mesoporous silica nanoparticles (FMSNs) for efficient CPT delivery. The FMSNs were loaded with CPT and subsequently coated with chitosan (CS) for enhanced stability and bioadhesion. Importantly, CpG oligodeoxynucleotide (CpG ODN) was attached onto the CS-coated FMSNs to leverage the immunostimulatory properties of CpG ODN, augmenting the chemotherapy's efficacy. The final formulation FMSN-CPT-CS-CpG displayed an average size of 241 nm and PDI of 0.316 with an encapsulation efficiency of 95 %. Comprehensive in vitro and in vivo analyses, including B16F10 cells and DMBA/TPA-induced SCC murine model, demonstrated that the FMSN-CPT-CS-CpG formulation significantly enhanced cytotoxicity against B16F10 cells and induced complete regression in 40 % of the in vivo subjects, surpassing the efficacy of standard CPT and FMSN-CPT treatments. This study highlights the potential of combining chemotherapeutic and immunotherapeutic agents in an NDDS for targeted, efficient skin cancer treatment.
Collapse
Affiliation(s)
- Munibah Qureshi
- Department of Biomedical Engineering and Sciences, SMME, NUST, Islamabad, Pakistan
| | - Cláudia Viegas
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal; Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Sofia O D Duarte
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal
| | - Michael Girardi
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Adeeb Shehzad
- Department of Biomedical Engineering and Sciences, SMME, NUST, Islamabad, Pakistan.
| | - Pedro Fonte
- Centre of Marine Sciences (CCMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal; Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, Universidade do Algarve, Gambelas Campus, 8005-139 Faro, Portugal.
| |
Collapse
|
3
|
Kumar K, Sihag B, Patil MT, Singh R, Sakala IG, Honda-Okubo Y, Singh KN, Petrovsky N, Salunke DB. Design and Synthesis of Polyphenolic Imidazo[4,5- c]quinoline Derivatives to Modulate Toll Like Receptor-7 Agonistic Activity and Adjuvanticity. ACS Pharmacol Transl Sci 2024; 7:2063-2079. [PMID: 39022355 PMCID: PMC11249636 DOI: 10.1021/acsptsci.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/20/2024]
Abstract
TLR-7/8 agonists are a well-known class of vaccine adjuvants, with a leading example now included in Covaxin, a licensed human COVID-19 vaccine. This thereby provides the opportunity to develop newer, more potent adjuvants based on structure-function studies of these classes of compounds. Imidazoquinoline-based TLR7/8 agonists are the most potent, but when used as a vaccine adjuvant side effects can arise due to diffusion from the injection site into a systemic circulation. In this work, we sought to address this issue through structural modifications in the agonists to enhance their adsorption capacity to the classic adjuvant alum. We selected a potent TLR7-selective agonist, BBIQ (EC50 = 0.85 μM), and synthesized polyphenolic derivatives to assess their TLR7 agonistic activity and adjuvant potential alone or in combination with alum. Most of the phenolic derivatives were more active than BBIQ and, except for 12b, all were TLR7 specific. Although the synthesized compounds were less active than resiquimod, the immunization data on combination with alum, specifically the IgG1, IgG2b and IgG2c responses, were superior in comparison to BBIQ as well as the reference standard resiquimod. Compound 12b was 5-fold more potent (EC50 = 0.15 μM in TLR7) than BBIQ and induced double the IgG response to SARS-CoV-2 and hepatitis antigens. Similarly, compound 12c (EC50 = 0.31 μM in TLR7) was about 3-fold more potent than BBIQ and doubled the IgG levels. Even though compound 12d exhibited low TLR7 activity (EC50 = 5.13 μM in TLR7), it demonstrated superior adjuvant results, which may be attributed to its enhanced alum adsorption capability as compared with BBIQ and resiquimod. Alum-adsorbed polyphenolic TLR7 agonists thereby represent promising combination adjuvants resulting in a balanced Th1/Th2 immune response.
Collapse
Affiliation(s)
- Kushvinder Kumar
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Binita Sihag
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Madhuri T. Patil
- Mehr
Chand Mahajan DAV College for Women, Sector 36A, Chandigarh 160 036, India
| | - Rahul Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Isaac G. Sakala
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Kamal Nain Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine
Pty Ltd, 11 Walkley Avenue, Warradale, South Australia 5046, Australia
- College
of Medicine and Public Health, Flinders
University, Bedford Park, South Australia 5042, Australia
| | - Deepak B. Salunke
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
- National
Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials
(NICOVIA), Panjab University, Chandigarh 160 014, India
| |
Collapse
|
4
|
Pal R, Ferrari MG, Honda-Okubo Y, Wattay L, Caple J, Navarrete J, Andersen H, Petrovsky N. Study of immunogenicity and efficacy against Omicron BA.5 of recombinant protein-based COVID-19 vaccine delivered by intramuscular and mucosal routes in nonhuman primates. Vaccine 2024; 42:1122-1135. [PMID: 38262808 DOI: 10.1016/j.vaccine.2024.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND With SARS-CoV-2 continuing to evolve, there is a need to adapt COVID-19 vaccines to enhance mucosal immunity and better address immune-evasive variants. This pilot study was performed in mice and rhesus macaques to compare Advax-adjuvanted monovalent and bivalent recombinant spike protein vaccines, including when delivered via a combination of intramuscular (IM) and intrapulmonary (IPM) or oral routes. METHODS Mice were first used to compare the immunogenicity of monovalent and bivalent vaccines containing a variety of spike protein variants. Then, rhesus macaques (n = 23) were divided into 5 groups to receive COVID-19 vaccines via different routes. Clinical signs, local vaccination site reactions, body weight, food consumption, serum, alveolar lavage, nasal and oral antibody levels, and nasal and alveolar lavage virus loads were assessed in response to a heterologous Omicron BA.5 virus challenge. RESULTS The Wuhan + Mu bivalent vaccine gave the most broadly cross-neutralizing antibody responses. Robust serum neutralizing antibodies against Wuhan, Delta and Lambda variants were obtained, but BA.5 neutralizing antibodies were not detectable pre-challenge. Overall, the IM x3 and the IM x2 plus oral x2 vaccines delivered the best protection, with reduced lung virus load versus unimmunized controls across Days 2, 4 and 7. CONCLUSIONS Advax-adjuvanted monovalent or bivalent recombinant spike protein vaccines given via parenteral and/or mucosal routes protected against a heterologous BA.5 challenge, despite absent serum BA.5 neutralizing antibody, pre-challenge. The possibility of using an oral Advax-adjuvanted protein booster to provide broad protection against newer SARS-CoV-2 variants warrants further investigation.
Collapse
Affiliation(s)
- Ranajit Pal
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, MD 20850-3336, USA.
| | | | | | - Lauren Wattay
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, MD 20850-3336, USA.
| | - Jesica Caple
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, MD 20850-3336, USA.
| | - Jennifer Navarrete
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, MD 20850-3336, USA.
| | - Hanne Andersen
- BIOQUAL, Inc., 9600 Medical Center Drive, Rockville, MD 20850-3336, USA.
| | - Nikolai Petrovsky
- Vaxine Pty Ltd., 11-13 Walkley Avenue, Warradale, SA 5046, Australia.
| |
Collapse
|
5
|
Tabarsi P, Mamishi S, Anjidani N, Shahpari R, Kafi H, Fallah N, Yazdani B, Ebrahimi A, Roshanzamir K, Ebrahimi H, Oveisi S, Soltani A, Petrovsky N, Barati S. Comparative immunogenicity and safety of SpikoGen®, a recombinant SARS-CoV-2 spike protein vaccine in children and young adults: An immuno-bridging clinical trial. Int Immunopharmacol 2024; 127:111436. [PMID: 38147778 DOI: 10.1016/j.intimp.2023.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND SpikoGen® is a recombinant subunit spike protein ectodomain vaccine manufactured in insect cells and formulated with the novel polysaccharide-based Advax-CpG55.2 adjuvant. This study aimed to compare the immunogenicity and safety of SpikoGen® vaccine in children, adolescents and young adults. METHODS This was a non-randomized, three-arm, open-label, parallel-group, immuno-bridging, non-inferiority trial to compare the immunogenicity and safety of a primary course of two intramuscular doses of SpikoGen® vaccine in children aged 5 to < 12 years, adolescents aged 12 to < 18 years and young adults aged 18 to 40 years. Children 5-12 years received a half dose of 12.5 μg spike protein, whereas the other groups received the full vaccine dose. Vaccine immunogenicity was evaluated via assessment of serum anti-spike and neutralizing antibodies 14 days after the second dose. Solicited adverse events were recorded for 7 days after each vaccination. Safety assessments including serious adverse events were continued through six months after the second dose in children and adolescents. RESULTS Two weeks after the second dose, seroconversion rates for neutralizing antibody levels were not significantly different for children (59.50 %), adolescents (52.06 %) and adults (56.01 %). The 95 % confidence interval of the difference in seroconversion rates between children and adults was within the prespecified non-inferiority margin of 10 % (-12 % to 5 %). SpikoGen® vaccine was well tolerated in all age groups with the most common solicited adverse events being injection site pain and fatigue which were generally transient and mild. CONCLUSION SpikoGen® vaccine was shown to be safe, well tolerated and immunogenic in children as young as 5 years of age, with non-inferior responses to those seen in adults. The Iranian FDA authorisation of SpikoGen® vaccine is now extended down to 5 years of age.
Collapse
Affiliation(s)
- Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute for Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Setareh Mamishi
- Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Pediatric Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ramin Shahpari
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Hamidreza Kafi
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Newsha Fallah
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Babak Yazdani
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Ali Ebrahimi
- Medical Department, Orchid Pharmed Company, Tehran, Iran
| | - Khashayar Roshanzamir
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamidreza Ebrahimi
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudabeh Oveisi
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Adele Soltani
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Saghar Barati
- Medical Department, Orchid Pharmed Company, Tehran, Iran.
| |
Collapse
|
6
|
Honda-Okubo Y, Bowen R, Barker M, Bielefeldt-Ohmann H, Petrovsky N. Advax-CpG55.2-adjuvanted monovalent or trivalent SARS-CoV-2 recombinant spike protein vaccine protects hamsters against heterologous infection with Beta or Delta variants. Vaccine 2023; 41:7116-7128. [PMID: 37863669 PMCID: PMC10873063 DOI: 10.1016/j.vaccine.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The ongoing evolution of SARS-CoV-2 variants emphasizes the need for vaccines providing broad cross-protective immunity. This study was undertaken to assess the ability of Advax-CpG55.2 adjuvanted monovalent recombinant spike protein (Wuhan, Beta, Gamma) vaccines or a trivalent formulation to protect hamsters againstBeta or Delta virus infection. The ability of vaccines to block virus transmission to naïve co-housed animals was also assessed. In naïve hosts, the Beta variant induced higher virus loads than the Delta variant, and conversely the Delta variant caused more severe disease and was more likely to be associated with virus transmission. The trivalent vaccine formulation provided the best protection against both Beta and Delta infection and also completely prevented virus transmission. The next best performing vaccine was the original monovalent Wuhan-based vaccine. Notably, hamsters that received the monovalent Gamma spike vaccine had the highest viral loads and clinical disease of all the vaccine groups, a potential signal of antibody dependent-enhancement (ADE). These hamsters were also the most likely to transmit Delta virus to naïve recipients. In murine studies, the Gamma spike vaccine induced the highest total spike protein to RBD IgG ratio and the lowest levels of neutralizing antibody, a context that could predispose to ADE. Overall, the study results confirmed that the current SpikoGen® vaccine based on Wuhan spike protein was still able to protect against clinical disease caused by either the Beta or Delta virus variants but suggested additional protection may be obtained by combining it with extra variant spike proteins to make a multivalent formulation. This study highlights the complexity of optimizing vaccine protection against multiple SARS-CoV-2 variants and stresses the need to continue to pursue new and improved COVID-19 vaccines able to provide robust, long-lasting, and broadly cross-protective immunity against constantly evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mckinzee Barker
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Helle Bielefeldt-Ohmann
- School of Chemistry & Molecular Biosciences, The University of Queensland, St. Lucia, Qld 4072, Australia
| | | |
Collapse
|
7
|
Sakala IG, Honda-Okubo Y, Petrovsky N. Developmental and reproductive safety of Advax-CpG55.2™ adjuvanted COVID-19 and influenza vaccines in mice. Vaccine 2023; 41:6093-6104. [PMID: 37659896 DOI: 10.1016/j.vaccine.2023.08.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
SpikoGen® is a recombinant spike protein vaccine against COVID-19 that obtained marketing authorization in the Middle East on October 6th, 2021, becoming the first adjuvanted protein-based COVID-19 vaccine of its type to achieve approval. SpikoGen® vaccine utilizes a unique adjuvant Advax-CpG55.2, which comprises delta inulin and CpG55.2 oligonucleotide, a synthetic human toll-like receptor (TLR)-9 agonist. As part of a safety assessment, developmental and reproductive toxicity (DART) studies were undertaken in mice of Advax-CpG55.2 adjuvanted formulations including SpikoGen®, a H7 hemagglutinin influenza vaccine (rH7HA), the bivalent combination of SpikoGen® and rH7HA, and a next-generation quadrivalent spike protein vaccine. In the first study, vaccines were administered intramuscularly to pregnant dams on gestation days (GD) 6.5 and 12.5, and in the second two doses were given in the pre-mating period with a further two doses during gestation. The doses used in the pregnant mice were 250-1000 times the usual human doses on a weight for weight basis. Strong serum antibody responses with neutralizing activity against the relevant virus were seen in the immunized dams and also at the time of weaning in the sera of their pups, consistent with robust maternal antibody transfer. No adverse effects of any of the vaccine formulations were observed in the immunized dams or their pups. Notably, there were no adverse effects of any of the Advax-CpG55.2 adjuvanted vaccines on female mating performance, fertility, ovarian or uterine parameters, embryo-fetal or postnatal survival, fetal growth, or neurofunctional development. No evidence of antigen interference was observed when SpikoGen® vaccine was mixed and co-administered with influenza hemagglutinin vaccine to pregnant dams. Together with the strong safety profile of SpikoGen® vaccine seen in adults and children in human trials, this DART study data supports the safety of Advax-CpG55.2 adjuvanted COVID-19 and influenza vaccine in women of childbearing potential including during pregnancy.
Collapse
Affiliation(s)
- Isaac G Sakala
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Yoshikazu Honda-Okubo
- Vaxine Pty Ltd., Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | |
Collapse
|
8
|
Honda-Okubo Y, Sakala IG, André G, Tarbet EB, Hurst BL, Petrovsky N. An Advax-CpG55.2 adjuvanted recombinant hemagglutinin vaccine provides immunity against H7N9 influenza in adult and neonatal mice. Vaccine 2023; 41:5592-5602. [PMID: 37532610 DOI: 10.1016/j.vaccine.2023.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
There is a major unmet need for strategies to improve the immunogenicity and effectiveness of pandemic influenza vaccines, particularly in poor responder populations such as neonates. Recombinant protein approaches to pandemic influenza offer advantages over more traditional inactivated virus approaches, as they are free of problems such as egg adaptation or need for high level biosecurity containment for manufacture. However, a weakness of recombinant proteins is their low immunogenicity. We asked whether the use of an inulin polysaccharide adjuvant (Advax) alone or combined with a TLR9 agonist (CpG55.2) would enhance the immunogenicity and protection of a recombinant hemagglutinin vaccine against H7N9 influenza (rH7HA), including in neonatal mice. Advax adjuvant induced predominantly IgG1 responses against H7HA, whereas Advax-CpG55.2 adjuvant also induced IgG2a, IgG2b and IgG3 responses, consistent with the TLR9 agonist component inducing a Th1 bias. Advax-CpG55.2 adjuvanted rH7HA induced high serum neutralizing antibody titers in adult mice. In newborns it similarly overcame immune hypo-responsiveness and enhanced serum anti-rH7HA IgG levels in 7-day-old BALB/C and C57BL/6 mice. Immunized adult mice were protected against a lethal H7N9 virus challenge. When formulated with Advax-CpG55.2 adjuvant, greater protection was seen with rH7HA than with inactivated H7 whole virus antigen. Advax-CpG55.2 adjuvanted rH7HA represents a promising influenza vaccine platform for further development.
Collapse
Affiliation(s)
- Yoshikazu Honda-Okubo
- Vaxine Pty Ltd, Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Isaac G Sakala
- Vaxine Pty Ltd, Bedford Park, Adelaide, SA 5042, Australia; Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | | - E Bart Tarbet
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | - Brett L Hurst
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, 5600 Old Main Hill, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
9
|
Hong Q, Liu J, Wei Y, Wei X. Application of Baculovirus Expression Vector System (BEVS) in Vaccine Development. Vaccines (Basel) 2023; 11:1218. [PMID: 37515034 PMCID: PMC10386281 DOI: 10.3390/vaccines11071218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Vaccination is one of the most effective strategies to control epidemics. With the deepening of people's awareness of vaccination, there is a high demand for vaccination. Hence, a flexible, rapid, and cost-effective vaccine platform is urgently needed. The baculovirus expression vector system (BEVS) has emerged as a promising technology for vaccine production due to its high safety, rapid production, flexible product design, and scalability. In this review, we introduced the development history of BEVS and the procedures for preparing recombinant protein vaccines using the BEVS platform and summarized the features and limitations of this platform. Furthermore, we highlighted the progress of the BEVS platform-related research, especially in the field of vaccine. Finally, we provided a new prospect for BEVS in future vaccine manufacturing, which may pave the way for future BEVS-derived vaccine development.
Collapse
Affiliation(s)
- Qiaonan Hong
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Yuquan Wei
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| | - Xiawei Wei
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China
| |
Collapse
|