1
|
Belal AA, Santos Jr AH, Kazory A, Koratala A. Providing care for kidney transplant recipients: An overview for generalists. World J Nephrol 2025; 14:99555. [DOI: 10.5527/wjn.v14.i1.99555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Kidney transplantation is the preferred treatment for patients with advanced chronic kidney disease and end-stage kidney disease, offering superior quality of life and survival compared to dialysis. This manuscript provides an updated overview of post-transplant care, highlighting recent advancements and current practices to assist generalists in managing these patients. It covers key areas such as immunosuppression strategies, drug interactions, and the management of transplant-specific acute kidney injury. The focus includes the use of sodium-glucose cotransporter-2 inhibitors and cell-free DNA monitoring for evaluating allograft health and immune-mediated injury. The manuscript reviews the fundamentals of immunosuppression, including both induction and maintenance therapies, and underscores the importance of monitoring kidney function, as well as addressing hypertension, diabetes, and infections. It also provides recommendations for vaccinations and cancer screening tailored to kidney transplant recipients and emphasizes lifestyle management strategies, such as exercise and sodium intake, to reduce post-transplant complications.
Collapse
Affiliation(s)
- Amer A Belal
- Department of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States
| | - Alfonso H Santos Jr
- Department of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States
| | - Amir Kazory
- Department of Nephrology, Hypertension and Renal Transplantation, University of Florida, Gainesville, FL 32610, United States
| | - Abhilash Koratala
- Department of Nephrology, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
2
|
Yang SN, Shi Y, Berggren PO. The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. Physiol Rev 2024; 104:881-929. [PMID: 38206586 PMCID: PMC11381035 DOI: 10.1152/physrev.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Lasorsa F, Rutigliano M, Milella M, d’Amati A, Crocetto F, Pandolfo SD, Barone B, Ferro M, Spilotros M, Battaglia M, Ditonno P, Lucarelli G. Ischemia-Reperfusion Injury in Kidney Transplantation: Mechanisms and Potential Therapeutic Targets. Int J Mol Sci 2024; 25:4332. [PMID: 38673917 PMCID: PMC11050495 DOI: 10.3390/ijms25084332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Kidney transplantation offers a longer life expectancy and a better quality of life than dialysis to patients with end-stage kidney disease. Ischemia-reperfusion injury (IRI) is thought to be a cornerstone in delayed or reduced graft function and increases the risk of rejection by triggering the immunogenicity of the organ. IRI is an unavoidable event that happens when the blood supply is temporarily reduced and then restored to an organ. IRI is the result of several biological pathways, such as transcriptional reprogramming, apoptosis and necrosis, innate and adaptive immune responses, and endothelial dysfunction. Tubular cells mostly depend on fatty acid (FA) β-oxidation for energy production since more ATP molecules are yielded per substrate molecule than glucose oxidation. Upon ischemia-reperfusion damage, the innate and adaptive immune system activates to achieve tissue clearance and repair. Several cells, cytokines, enzymes, receptors, and ligands are known to take part in these events. The complement cascade might start even before organ procurement in deceased donors. However, additional experimental and clinical data are required to better understand the pathogenic events that take place during this complex process.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio d’Amati
- Department of Precision and Regenerative Medicine and Ionian Area-Pathology Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Felice Crocetto
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
- Department of Urology, University of L’Aquila, 67010 L’Aquila, Italy
| | - Biagio Barone
- Division of Urology, Department of Surgical Sciences, AORN Sant’Anna e San Sebastiano, 81100 Caserta, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Marco Spilotros
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
4
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Simone S, Gesualdo L, Battaglia M, Ditonno P, Lucarelli G. Complement System and the Kidney: Its Role in Renal Diseases, Kidney Transplantation and Renal Cell Carcinoma. Int J Mol Sci 2023; 24:16515. [PMID: 38003705 PMCID: PMC10671650 DOI: 10.3390/ijms242216515] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
The crosstalk among the complement system, immune cells, and mediators of inflammation provides an efficient mechanism to protect the organism against infections and support the repair of damaged tissues. Alterations in this complex machinery play a role in the pathogenesis of different diseases. Core complement proteins C3 and C5, their activation fragments, their receptors, and their regulators have been shown to be active intracellularly as the complosome. The kidney is particularly vulnerable to complement-induced damage, and emerging findings have revealed the role of complement system dysregulation in a wide range of kidney disorders, including glomerulopathies and ischemia-reperfusion injury during kidney transplantation. Different studies have shown that activation of the complement system is an important component of tumorigenesis and its elements have been proved to be present in the TME of various human malignancies. The role of the complement system in renal cell carcinoma (RCC) has been recently explored. Clear cell and papillary RCC upregulate most of the complement genes relative to normal kidney tissue. The aim of this narrative review is to provide novel insights into the role of complement in kidney disorders.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simona Simone
- Department of Precision and Regenerative Medicine and Ionian Area-Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area-Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
5
|
Heydari Z, Peshkova M, Gonen ZB, Coretchi I, Eken A, Yay AH, Dogan ME, Gokce N, Akalin H, Kosheleva N, Galea-Abdusa D, Ulinici M, Vorojbit V, Shpichka A, Groppa S, Vosough M, Todiras M, Butnaru D, Ozkul Y, Timashev P. EVs vs. EVs: MSCs and Tregs as a source of invisible possibilities. J Mol Med (Berl) 2023; 101:51-63. [PMID: 36527475 PMCID: PMC9759062 DOI: 10.1007/s00109-022-02276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are produced by various cells and exist in most biological fluids. They play an important role in cell-cell signaling, immune response, and tumor metastasis, and also have theranostic potential. They deliver many functional biomolecules, including DNA, microRNAs (miRNA), messenger RNA (mRNA), long non-coding RNA (lncRNA), lipids, and proteins, thus affecting different physiological processes in target cells. Decreased immunogenicity compared to liposomes or viral vectors and the ability to cross through physiological barriers such as the blood-brain barrier make them an attractive and innovative option as diagnostic biomarkers and therapeutic carriers. Here, we highlighted two types of cells that can produce functional EVs, namely, mesenchymal stem/stromal cells (MSCs) and regulatory T cells (Tregs), discussing MSC/Treg-derived EV-based therapies for some specific diseases including acute respiratory distress syndrome (ARDS), autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Zahra Heydari
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | | | - Ianos Coretchi
- Department of Pharmacology and Clinical Pharmacology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Ahmet Eken
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.,Department of Medical Biology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Arzu Hanım Yay
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.,Department of Histology and Embryology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Muhammet Ensar Dogan
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Nuriye Gokce
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Hilal Akalin
- Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Daniela Galea-Abdusa
- Genetics Laboratory, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Mariana Ulinici
- Department of Microbiology and Immunology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Valentina Vorojbit
- Department of Microbiology and Immunology, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Stanislav Groppa
- Department of Neurology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova.,Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova.,Department of Neurology, Institute of Emergency Medicine, Chisinau, Moldova
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| | - Mihail Todiras
- Drug Research Center, Nicolae Testemitanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | | | - Yusuf Ozkul
- Betül-Ziya Eren Genome and Stem Cell Center (GENKOK), Kayseri, Turkey. .,Department of Medical Genetic, Erciyes University School of Medicine, Kayseri, Turkey.
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
6
|
Salminen A. Clinical perspectives on the age-related increase of immunosuppressive activity. J Mol Med (Berl) 2022; 100:697-712. [PMID: 35384505 PMCID: PMC8985067 DOI: 10.1007/s00109-022-02193-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
The aging process is associated with a remodeling of the immune system involving chronic low-grade inflammation and a gradual decline in the function of the immune system. These processes are also called inflammaging and immunosenescence. The age-related immune remodeling is associated with many clinical changes, e.g., risk for cancers and chronic infections increases, whereas the efficiency of vaccination and immunotherapy declines with aging. On the other hand, there is convincing evidence that chronic inflammatory states promote the premature aging process. The inflammation associated with aging or chronic inflammatory conditions stimulates a counteracting immunosuppression which protects tissues from excessive inflammatory injuries but promotes immunosenescence. Immunosuppression is a driving force in tumors and chronic infections and it also induces the tolerance to vaccination and immunotherapies. Immunosuppressive cells, e.g., myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and type M2 macrophages, have a crucial role in tumorigenesis and chronic infections as well as in the tolerance to vaccination and immunotherapies. Interestingly, there is substantial evidence that inflammaging is also associated with an increased immunosuppressive activity, e.g., upregulation of immunosuppressive cells and anti-inflammatory cytokines. Given that both the aging and chronic inflammatory states involve the activation of immunosuppression and immunosenescence, this might explain why aging is a risk factor for tumorigenesis and chronic inflammatory states and conversely, chronic inflammatory insults promote the premature aging process in humans.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
7
|
Parga-Vidal L, van Aalderen MC, Stark R, van Gisbergen KPJM. Tissue-resident memory T cells in the urogenital tract. Nat Rev Nephrol 2022; 18:209-223. [PMID: 35079143 DOI: 10.1038/s41581-021-00525-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 02/06/2023]
Abstract
Our understanding of T cell memory responses changed drastically with the discovery that specialized T cell memory populations reside within peripheral tissues at key pathogen entry sites. These tissue-resident memory T (TRM) cells can respond promptly to an infection without the need for migration, proliferation or differentiation. This rapid and local deployment of effector functions maximizes the ability of TRM cells to eliminate pathogens. TRM cells do not circulate through peripheral tissues but instead form isolated populations in the skin, gut, liver, kidneys, the reproductive tract and other organs. This long-term retention in the periphery might allow TRM cells to fully adapt to the local conditions of their environment and mount customized responses to counter infection and tumour growth in a tissue-specific manner. In the urogenital tract, TRM cells must adapt to a unique microenvironment to confer protection against potential threats, including cancer and infection, while preventing the onset of auto-inflammatory disease. In this Review, we discuss insights into the diversification of TRM cells from other memory T cell lineages, the adaptations of TRM cells to their local environment, and their enhanced capacity to counter infection and tumour growth compared with other memory T cell populations, especially in the urogenital tract.
Collapse
Affiliation(s)
- Loreto Parga-Vidal
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel C van Aalderen
- Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Internal Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Klaas P J M van Gisbergen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Experimental Immunology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Salminen A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J Mol Med (Berl) 2021; 99:1553-1569. [PMID: 34432073 PMCID: PMC8384586 DOI: 10.1007/s00109-021-02123-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
The functional competence of the immune system gradually declines with aging, a process called immunosenescence. The age-related remodelling of the immune system affects both adaptive and innate immunity. In particular, a chronic low-grade inflammation, termed inflammaging, is associated with the aging process. Immunosenescence not only is present in inflammaging state, but it also occurs in several pathological conditions in conjunction with chronic inflammation. It is known that persistent inflammation stimulates a counteracting compensatory immunosuppression intended to protect host tissues. Inflammatory mediators enhance myelopoiesis and induce the generation of immature myeloid-derived suppressor cells (MDSC) which in mutual cooperation stimulates the immunosuppressive network. Immunosuppressive cells, especially MDSCs, regulatory T cells (Treg), and M2 macrophages produce immunosuppressive factors, e.g., TGF-β, IL-10, ROS, arginase-1 (ARG1), and indoleamine 2,3-dioxygenase (IDO), which suppress the functions of CD4/CD8T and B cells as well as macrophages, natural killer (NK) cells, and dendritic cells. The immunosuppressive armament (i) inhibits the development and proliferation of immune cells, (ii) decreases the cytotoxic activity of CD8T and NK cells, (iii) prevents antigen presentation and antibody production, and (iv) suppresses responsiveness to inflammatory mediators. These phenotypes are the hallmarks of immunosenescence. Immunosuppressive factors are able to control the chromatin landscape, and thus, it seems that the immunosenescence state is epigenetically regulated.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
10
|
Van Zeebroeck L, Arroyo Hornero R, Côrte-Real BF, Hamad I, Meissner TB, Kleinewietfeld M. Fast and Efficient Genome Editing of Human FOXP3 + Regulatory T Cells. Front Immunol 2021; 12:655122. [PMID: 34408743 PMCID: PMC8365355 DOI: 10.3389/fimmu.2021.655122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
FOXP3+ regulatory T cells (Tregs) are central for maintaining peripheral tolerance and immune homeostasis. Because of their immunosuppressive characteristics, Tregs are a potential therapeutic target in various diseases such as autoimmunity, transplantation and infectious diseases like COVID-19. Numerous studies are currently exploring the potential of adoptive Treg therapy in different disease settings and novel genome editing techniques like CRISPR/Cas will likely widen possibilities to strengthen its efficacy. However, robust and expeditious protocols for genome editing of human Tregs are limited. Here, we describe a rapid and effective protocol for reaching high genome editing efficiencies in human Tregs without compromising cell integrity, suitable for potential therapeutic applications. By deletion of IL2RA encoding for IL-2 receptor α-chain (CD25) in Tregs, we demonstrated the applicability of the method for downstream functional assays and highlighted the importance for CD25 for in vitro suppressive function of human Tregs. Moreover, deletion of IL6RA (CD126) in human Tregs elicits cytokine unresponsiveness and thus may prevent IL-6-mediated instability of Tregs, making it an attractive target to potentially boost functionality in settings of adoptive Treg therapies to contain overreaching inflammation or autoimmunity. Thus, our rapid and efficient protocol for genome editing in human Tregs may advance possibilities for Treg-based cellular therapies.
Collapse
Affiliation(s)
- Lauren Van Zeebroeck
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Rebeca Arroyo Hornero
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Beatriz F. Côrte-Real
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ibrahim Hamad
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Torsten B. Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Markus Kleinewietfeld
- Vlaams Instituut voor Biotechnologie (VIB) Laboratory of Translational Immunomodulation, Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
11
|
Novel Insights into the Molecular Mechanisms of Ischemia/Reperfusion Injury in Kidney Transplantation. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is one of the most important mechanisms involved in delayed or reduced graft function after kidney transplantation. It is a complex pathophysiological process, followed by a pro-inflammatory response that enhances the immunogenicity of the graft and the risk of acute rejection. Many biologic processes are involved in its development, such as transcriptional reprogramming, the activation of apoptosis and cell death, endothelial dysfunction and the activation of the innate and adaptive immune response. Recent evidence has highlighted the importance of complement activation in IRI cascade, which expresses a pleiotropic action on tubular cells, on vascular cells (pericytes and endothelial cells) and on immune system cells. The effects of IRI in the long term lead to interstitial fibrosis and tubular atrophy, which contribute to chronic graft dysfunction and subsequently graft failure. Furthermore, several metabolic alterations occur upon IRI. Metabolomic analyses of IRI detected a “metabolic profile” of this process, in order to identify novel biomarkers that may potentially be useful for both early diagnosis and monitoring the therapeutic response. The aim of this review is to update the most relevant molecular mechanisms underlying IRI, and also to discuss potential therapeutic targets in future clinical practice.
Collapse
|
12
|
Nieuwenhuijs-Moeke GJ, Bosch DJ, Leuvenink HG. Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation. Int J Mol Sci 2021; 22:ijms22052727. [PMID: 33800423 PMCID: PMC7962839 DOI: 10.3390/ijms22052727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is inevitable in kidney transplantation and negatively impacts graft and patient outcome. Reperfusion takes place in the recipient and most of the injury following ischemia and reperfusion occurs during this reperfusion phase; therefore, the intra-operative period seems an attractive window of opportunity to modulate IRI and improve short- and potentially long-term graft outcome. Commonly used volatile anesthetics such as sevoflurane and isoflurane have been shown to interfere with many of the pathophysiological processes involved in the injurious cascade of IRI. Therefore, volatile anesthetic (VA) agents might be the preferred anesthetics used during the transplantation procedure. This review highlights the molecular and cellular protective points of engagement of VA shown in in vitro studies and in vivo animal experiments, and the potential translation of these results to the clinical setting of kidney transplantation.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Dirk J. Bosch
- Department of Anesthesiology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Henri G.D. Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
13
|
Zhang F, Zhang J, Cao P, Sun Z, Wang W. The characteristics of regulatory macrophages and their roles in transplantation. Int Immunopharmacol 2021; 91:107322. [PMID: 33418238 DOI: 10.1016/j.intimp.2020.107322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Regulatory macrophages (Mregs) are a subtype of macrophages that are involved in regulating immune responses and inhibiting activated T lymphocyte proliferation. With advances in our basic understanding of Mregs and the revelation of their biological characteristics, Mregs have become a focus of research. In addition to promoting malignant tumor progression, Mregs also play an immunosuppressive role in inflammatory diseases and transplantation. Recent studies have shown that Mregs are closely associated with the induction of transplantation immune tolerance. Immune regulatory cell treatment as an adjunct immunosuppressive therapy offers new insights into the mechanism by which transplantation immune tolerance is established. The application of Mreg-based cellular immunotherapy has shown promise in clinical solid organ transplantation. Here, we provide a comprehensive overview of Mreg morphology, phenotype, induction and negative immunoregulatory function and discuss the role of Mregs in different transplantation models as well as their potential application value in clinical organ transplantation.
Collapse
Affiliation(s)
- Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Peng Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
14
|
Du Y, Fang Q, Zheng SG. Regulatory T Cells: Concept, Classification, Phenotype, and Biological Characteristics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:1-31. [PMID: 33523440 DOI: 10.1007/978-981-15-6407-9_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Treg) play an indispensable role in maintaining the body's immune nonresponse to self-antigens and suppressing the body's unwarranted and potentially harmful immune responses. Their absence, reduction, dysfunction, transformation, and instability can lead to numerous autoimmune diseases. There are several distinct subtypes of the Treg cells, although they share certain biological characteristics and have unique phenotypes with different regulatory functions, as well as mechanistic abilities. In this book chapter, we introduce the latest advances in Treg cell subtypes pertaining to classification, phenotype, biological characteristics, and mechanisms. We also highlight the relationship between Treg cells and various diseases, including autoimmune, infectious, as well as tumors and organ transplants.
Collapse
Affiliation(s)
- Yang Du
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi, China.,Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China
| | - Qiannan Fang
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song-Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
15
|
Arroyo Hornero R, Georgiadis C, Hua P, Trzupek D, He LZ, Qasim W, Todd JA, Ferreira RC, Wood KJ, Issa F, Hester J. CD70 expression determines the therapeutic efficacy of expanded human regulatory T cells. Commun Biol 2020; 3:375. [PMID: 32665635 PMCID: PMC7360768 DOI: 10.1038/s42003-020-1097-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/17/2020] [Indexed: 12/27/2022] Open
Abstract
Regulatory T cells (Tregs) are critical mediators of immune homeostasis. The co-stimulatory molecule CD27 is a marker of highly suppressive Tregs, although the role of the CD27-CD70 receptor-ligand interaction in Tregs is not clear. Here we show that after prolonged in vitro stimulation, a significant proportion of human Tregs gain stable CD70 expression while losing CD27. The expression of CD70 in expanded Tregs is associated with a profound loss of regulatory function and an unusual ability to provide CD70-directed co-stimulation to TCR-activated conventional T cells. Genetic deletion of CD70 or its blockade prevents Tregs from delivering this co-stimulatory signal, thus maintaining their regulatory activity. High resolution targeted single-cell RNA sequencing of human peripheral blood confirms the presence of CD27-CD70+ Treg cells. These findings have important implications for Treg-based clinical studies where cells are expanded over extended periods in order to achieve sufficient treatment doses.
Collapse
Affiliation(s)
- Rebeca Arroyo Hornero
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Christos Georgiadis
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Peng Hua
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Dominik Trzupek
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Li-Zhen He
- Celldex Therapeutics, Inc., Hampton, NJ, 08827, USA
| | - Waseem Qasim
- Molecular and Cellular Immunology Unit, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Ricardo C Ferreira
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Kathryn J Wood
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
16
|
Abstract
The present review discusses current developments in tolerance induction for solid organ transplantation with a particular emphasis on chimerism-based approaches. It explains the basic mechanisms of chimerism-based tolerance and provides an update on ongoing clinical tolerance trials. The concept of "delayed tolerance" is presented, and ongoing preclinical studies in the nonhuman primate setting-including current limitations and hurdles regarding this approach-are illustrated. In addition, a brief overview and update on cell-based tolerogenic clinical trials is provided. In a critical approach, advantages, limitations, and potential implications for the future of these different regimens are discussed.
Collapse
|
17
|
Sasaki K, Wang YC, Lu L, Hughes J, Vujevich V, Thomson AW, Ezzelarab MB. Combined GM-CSF and G-CSF administration mobilizes CD4 + CD25 hi Foxp3 hi Treg in leukapheresis products of rhesus monkeys. Am J Transplant 2020; 20:1691-1702. [PMID: 31883190 PMCID: PMC7768825 DOI: 10.1111/ajt.15761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 01/25/2023]
Abstract
Early phase clinical trials are evaluating the feasibility, safety, and therapeutic potential of ex vivo expanded regulatory T cells (Treg) in transplantation. A limitation is the paucity of naturally occurring Treg numbers in peripheral blood. Hence, protracted ex vivo expansion is required to obtain sufficient Treg in order to meet target cell doses. Because cytokine administration has been used successfully to mobilize immune cells to the peripheral blood in experimental and clinical studies, we hypothesized that granulocyte macrophage-colony-stimulating factor (GM-CSF) and granulocyte-CSF (G-CSF) administration would enhance Treg percentages in leukapheresis products of rhesus monkeys. Following combined GM-CSF and G-CSF administration, the incidence of Treg in peripheral blood and leukapheresis products was elevated significantly, where approximately 3.7 × 106 /kg CD4+ CD25hi Foxp3hi or 6.8 × 106 /kg CD4+ CD25hi CD127lo Treg can be collected from individual products. Mobilized Treg expressed a comparable repertoire of surface markers, chemokine receptors, and transcription factors to naïve monkey peripheral blood Treg. Furthermore, when expanded ex vivo, mobilized leukapheresis product and peripheral blood Treg exhibited similar ability to suppress autologous CD4+ and CD8+ T cell proliferation. These observations indicate that leukapheresis products from combined GM-CSF- and G-CSF-mobilized individuals are a comparatively rich source of Treg and may circumvent long-term ex vivo expansion required for therapeutic application.
Collapse
Affiliation(s)
- Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yu-Chao Wang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Julia Hughes
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Veronica Vujevich
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mohamed B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Snyder ME, Finlayson MO, Connors TJ, Dogra P, Senda T, Bush E, Carpenter D, Marboe C, Benvenuto L, Shah L, Robbins H, Hook JL, Sykes M, D'Ovidio F, Bacchetta M, Sonett JR, Lederer DJ, Arcasoy S, Sims PA, Farber DL. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci Immunol 2020; 4:4/33/eaav5581. [PMID: 30850393 DOI: 10.1126/sciimmunol.aav5581] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022]
Abstract
Tissue-resident memory T cells (TRM) maintain immunity in diverse sites as determined in mouse models, whereas their establishment and role in human tissues have been difficult to assess. Here, we investigated human lung TRM generation, maintenance, and function in airway samples obtained longitudinally from human leukocyte antigen (HLA)-disparate lung transplant recipients, where donor and recipient T cells could be localized and tracked over time. Donor T cells persist specifically in the lungs (and not blood) of transplant recipients and express high levels of TRM signature markers including CD69, CD103, and CD49a, whereas lung-infiltrating recipient T cells gradually acquire TRM phenotypes over months in vivo. Single-cell transcriptome profiling of airway T cells reveals that donor T cells comprise two TRM-like subsets with varying levels of expression of TRM-associated genes, whereas recipient T cells comprised non-TRM and similar TRM-like subpopulations, suggesting de novo TRM generation. Transplant recipients exhibiting higher frequencies of persisting donor TRM experienced fewer adverse clinical events such as primary graft dysfunction and acute cellular rejection compared with recipients with low donor TRM persistence, suggesting that monitoring TRM dynamics could be clinically informative. Together, our results provide spatial and temporal insights into how human TRM develop, function, persist, and affect tissue integrity within the complexities of lung transplantation.
Collapse
Affiliation(s)
- Mark E Snyder
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael O Finlayson
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Thomas J Connors
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Pranay Dogra
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Takashi Senda
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Erin Bush
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Dustin Carpenter
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles Marboe
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | - Luke Benvenuto
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Lori Shah
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hilary Robbins
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaime L Hook
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Megan Sykes
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Frank D'Ovidio
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthew Bacchetta
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Joshua R Sonett
- Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - David J Lederer
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Selim Arcasoy
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA.,Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA.,Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
19
|
Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF, Ploeg RJ, Leuvenink HGD. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J Clin Med 2020; 9:jcm9010253. [PMID: 31963521 PMCID: PMC7019324 DOI: 10.3390/jcm9010253] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Correspondence: ; Tel.: +31-631623075
| | - Søren E. Pischke
- Clinic for Emergencies and Critical Care, Department of Anesthesiology, Department of Immunology, Oslo University Hospital, 4950 Nydalen, 0424 Oslo, Norway;
| | - Stefan P. Berger
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (S.P.B.); (J.S.F.S.)
| | - Jan Stephan F. Sanders
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (S.P.B.); (J.S.F.S.)
| | - Robert A. Pol
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
- Department of Basic and Applied Medical Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Rutger J. Ploeg
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford OX3 9DU, UK
| | - Henri G. D. Leuvenink
- Department of Surgery, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (R.A.P.); (R.J.P.); (H.G.D.L.)
| |
Collapse
|
20
|
Yu S, Su C, Luo X. Impact of infection on transplantation tolerance. Immunol Rev 2019; 292:243-263. [PMID: 31538351 PMCID: PMC6961566 DOI: 10.1111/imr.12803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Allograft tolerance is the ultimate goal of organ transplantation. Current strategies for tolerance induction mainly focus on inhibiting alloreactive T cells while promoting regulatory immune cells. Pathogenic infections may have direct impact on both effector and regulatory cell populations, therefore can alter host susceptibility to transplantation tolerance induction as well as impair the quality and stability of tolerance once induced. In this review, we will discuss existing data demonstrating the effect of infections on transplantation tolerance, with particular emphasis on the role of the stage of infection (acute, chronic, or latent) and the stage of tolerance (induction or maintenance) in this infection-tolerance interaction. While the deleterious effect of acute infection on tolerance is mainly driven by proinflammatory cytokines induced shortly after the infection, chronic infection may generate exhausted T cells that could in fact facilitate transplantation tolerance. In addition to pathogenic infections, commensal intestinal microbiota also has numerous significant immunomodulatory effects that can shape the host alloimmunity following transplantation. A comprehensive understanding of these mechanisms is crucial for the development of therapeutic strategies for robustly inducing and stably maintaining transplantation tolerance while preserving host anti-pathogen immunity in clinically relevant scenarios.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chang Su
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
21
|
Chen L, Huang H, Zhang W, Ding F, Fan Z, Zeng Z. Exosomes Derived From T Regulatory Cells Suppress CD8+ Cytotoxic T Lymphocyte Proliferation and Prolong Liver Allograft Survival. Med Sci Monit 2019; 25:4877-4884. [PMID: 31258152 PMCID: PMC6618337 DOI: 10.12659/msm.917058] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CD8+ cytotoxic T lymphocytes (CTLs) have been proved to exert crucial roles in immunological rejection. Exosomes (EXOs) secreted by CD4+CD25+ regulatory T (Treg) cells is believed to be deeply involved in immune regulation. Nevertheless, whether immunomodulatory effect of CD4+CD25+ Treg cells on CD8+ CTL depends on EXOs remains unknown and needs to be explored. MATERIAL AND METHODS We purified CD4+CD25+ Treg cells followed by in vitro amplification. EXOs in culture supernatants of Treg cells was separated and identified. The effect of CD4+CD25+ Treg cells and CD4+CD25+ Treg cells-derived EXOs on CD8+ CTL viability, proliferation, cell cycle mRNA, intracellular cytokines, and protein expression were investigated. RESULTS We successfully obtained EXOs from CD4+CD25+ Treg cells. The inhibition effect of EXOs on CD8+ CTL was concentration-dependent. In addition, the inhibition effect of CD4+CD25+ Treg cells could be reversed by GW4869, an EXOs inhibitor. The inhibition effect was associated with the regulation of IFN-γ and perforin. Our in vivo experiments proved that natural CD4+CD25+ Treg cells-released EXOs can prolong liver allograft survival. CONCLUSIONS CD4+CD25+ Treg cells-derived EXOs could become an alternative tool for manipulating the immune system to discover novel underlying immunomodulatory mechanisms.
Collapse
Affiliation(s)
- Liang Chen
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Hanfei Huang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Weixin Zhang
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Feifan Ding
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Zhenlei Fan
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Zhong Zeng
- Department of Organ Transplantation, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| |
Collapse
|
22
|
Wang W, Zhao N, Li B, Gao H, Yan Y, Guo H. Inhibition of cardiac allograft rejection in mice using interleukin-35-modified mesenchymal stem cells. Scand J Immunol 2019; 89:e12750. [PMID: 30664805 DOI: 10.1111/sji.12750] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 02/03/2023]
Abstract
Interleukin-35 (IL-35) is a cytokine recently discovered to play a potent immunosuppressive role by intensifying the functions of regulatory T cells and inhibiting the proliferation and functions of T helper 1 and T helper 17 cells. Mesenchymal stem cells (MSCs) have recently emerged as promising candidates for cell-based immune therapy, and our previous study showed that IL-35 gene modification can effectively enhance the therapeutic effect of MSCs in vitro. In this study, we isolated adipose tissue-derived MSCs in vitro and infected them with lentiviral vectors overexpressing the IL-35 gene, thereby creating IL-35-MSCs. Subsequently, IL-35-MSCs were then injected into mice of the allogeneic heterotopic abdominal heart transplant model to determine their effect on allograft rejection. The results showed that IL-35-MSCs could continuously secrete IL-35 in vivo and in vitro, successfully alleviate allograft rejection and prolong graft survival. In addition, compared to MSCs, IL-35-MSCs showed a stronger immunosuppressive ability and further reduced the percentage of Th17 cells, increased the proportion of CD4+ Foxp3+ T cells, and regulated Th1/Th2 balance in heart transplant mice. These findings suggest that IL-35-MSCs have more advantages than MSCs in inhibiting graft rejection and may thus provide a new approach for inducing immune tolerance during transplantation.
Collapse
Affiliation(s)
- Wei Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Na Zhao
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Baozhu Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haopeng Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongjia Yan
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Guo
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
23
|
Tahvildari M, Inomata T, Amouzegar A, Dana R. Regulatory T cell modulation of cytokine and cellular networks in corneal graft rejection. CURRENT OPHTHALMOLOGY REPORTS 2018; 6:266-274. [PMID: 31807370 PMCID: PMC6894425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW Corneal allografts placed in vascularized or inflamed host beds are at increased risk of graft rejection due to the preponderance of activated immune cells in the host bed. Regulatory T cells (Tregs) are master regulators of the adaptive immune response and play a key role in the induction of immune tolerance. The aim of this review is to discuss mechanisms through which Tregs mediate tolerance in corneal transplantation and the novel therapeutic approaches that target Tregs to promote transplant survival. RECENT FINDINGS The inflammatory environment of high-risk allografts not only promotes activation of effector T cells and their infiltration to graft site, but also impairs Treg immunomodulatory function. Recent studies have shown that expansion of Tregs and enhancing their modulatory function significantly improve graft survival. SUMMARY As our understanding of the cellular and molecular pathways in corneal transplantation has deepened, novel therapeutic strategies have been developed to improve allograft survival. In this review, we discuss therapeutic approaches that focus on Tregs to promote corneal allograft survival.
Collapse
Affiliation(s)
- Maryam Tahvildari
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
- Kresge Eye Institute, Department of ophthalmology, Wayne State University, Detroit, MI
| | - Takenori Inomata
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
- Juntendo University Faculty of Medicine, Department of Ophthalmology, Tokyo, Japan
- Juntendo University Faculty of Medicine, Department of Strategic Operative Room, Management and Improvement, Tokyo, Japan
| | - Afsaneh Amouzegar
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA
| |
Collapse
|
24
|
Tahvildari M, Inomata T, Amouzegar A, Dana R. Regulatory T Cell Modulation of Cytokine and Cellular Networks in Corneal Graft Rejection. CURRENT OPHTHALMOLOGY REPORTS 2018. [DOI: 10.1007/s40135-018-0191-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Garg G, Nikolouli E, Hardtke-Wolenski M, Toker A, Ohkura N, Beckstette M, Miyao T, Geffers R, Floess S, Gerdes N, Lutgens E, Osterloh A, Hori S, Sakaguchi S, Jaeckel E, Huehn J. Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells. Oncotarget 2018; 8:35542-35557. [PMID: 28415767 PMCID: PMC5482597 DOI: 10.18632/oncotarget.16221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are potential immunotherapeutic candidates to induce transplantation tolerance. However, stability of Tregs still remains contentious and may potentially restrict their clinical use. Recent work suggested that epigenetic imprinting of Foxp3 and other Treg-specific signature genes is crucial for stabilization of immunosuppressive properties of Foxp3+ Tregs, and that these events are initiated already during early stages of thymic Treg development. However, the mechanisms governing this process remain largely unknown. Here we demonstrate that thymic antigen-presenting cells (APCs), including thymic dendritic cells (t-DCs) and medullary thymic epithelial cells (mTECs), can induce a more pronounced demethylation of Foxp3 and other Treg-specific epigenetic signature genes in developing Tregs when compared to splenic DCs (sp-DCs). Transcriptomic profiling of APCs revealed differential expression of secreted factors and costimulatory molecules, however neither addition of conditioned media nor interference with costimulatory signals affected Foxp3 induction by thymic APCs in vitro. Importantly, when tested in vivo both mTEC- and t-DC-generated alloantigen-specific Tregs displayed significantly higher efficacy in prolonging skin allograft acceptance when compared to Tregs generated by sp-DCs. Our results draw attention to unique properties of thymic APCs in initiating commitment towards stable and functional Tregs, a finding that could be highly beneficial in clinical immunotherapy.
Collapse
Affiliation(s)
- Garima Garg
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eirini Nikolouli
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Hannover, Germany
| | - Aras Toker
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Naganari Ohkura
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Michael Beckstette
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Norbert Gerdes
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,Division of Cardiology, Pulmonology, and Vascular Medicine Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Esther Lutgens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany.,Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, AZ, Amsterdam, The Netherlands
| | - Anke Osterloh
- Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Shohei Hori
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Shimon Sakaguchi
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan.,Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
26
|
Aiello S, Rocchetta F, Longaretti L, Faravelli S, Todeschini M, Cassis L, Pezzuto F, Tomasoni S, Azzollini N, Mister M, Mele C, Conti S, Breno M, Remuzzi G, Noris M, Benigni A. Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival. Sci Rep 2017; 7:11518. [PMID: 28912528 PMCID: PMC5599553 DOI: 10.1038/s41598-017-08617-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
We have previously shown that rat allogeneic DC, made immature by adenoviral gene transfer of the dominant negative form of IKK2, gave rise in-vitro to a unique population of CD4+CD25− regulatory T cells (dnIKK2-Treg). These cells inhibited Tcell response in-vitro, without needing cell-to-cell contact, and induced kidney allograft survival prolongation in-vivo. Deep insight into the mechanisms behind dnIKK2-Treg-induced suppression of Tcell proliferation remained elusive. Here we document that dnIKK2-Treg release extracellular vesicles (EV) riched in exosomes, fully accounting for the cell-contact independent immunosuppressive activity of parent cells. DnIKK2-Treg-EV contain a unique molecular cargo of specific miRNAs and iNOS, which, once delivered into target cells, blocked cell cycle progression and induced apoptosis. DnIKK2-Treg-EV-exposed T cells were in turn converted into regulatory cells. Notably, when administered in-vivo, dnIKK2-Treg-EV prolonged kidney allograft survival. DnIKK2-Treg-derived EV could be a tool for manipulating the immune system and for discovering novel potential immunosuppressive molecules in the context of allotransplantation.
Collapse
Affiliation(s)
- Sistiana Aiello
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Federica Rocchetta
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Lorena Longaretti
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Silvia Faravelli
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Marta Todeschini
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Linda Cassis
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Francesca Pezzuto
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Susanna Tomasoni
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Nadia Azzollini
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Marilena Mister
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Caterina Mele
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Sara Conti
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Matteo Breno
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy.,Unit of Nephrology and Dialyisis Azienda Socio Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy.,Unit of Nephrology and Dialyisis, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Marina Noris
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy.
| | - Ariela Benigni
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Centro Ricerche Trapianti Chiara Cucchi de Alessandri e Gilberto Crespi Ranica, Bergamo, Italy
| |
Collapse
|
27
|
Nelsen MK, Beard KS, Plenter RJ, Kedl RM, Clambey ET, Gill RG. Disruption of Transplant Tolerance by an "Incognito" Form of CD8 T Cell-Dependent Memory. Am J Transplant 2017; 17:1742-1753. [PMID: 28066981 PMCID: PMC5489385 DOI: 10.1111/ajt.14194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 01/25/2023]
Abstract
Several approaches successfully achieve allograft tolerance in preclinical models but are challenging to translate into clinical practice. Many clinically relevant factors can attenuate allograft tolerance induction, including intrinsic genetic resistance, peritransplant infection, inflammation, and preexisting antidonor immunity. The prevailing view for immune memory as a tolerance barrier is that the host harbors memory cells that spontaneously cross-react to donor MHC antigens. Such preexisting "heterologous" memory cells have direct reactivity to donor cells and resist most tolerance regimens. In this study, we developed a model system to determine if an alternative form of immune memory could also block tolerance. We posited that host memory T cells could potentially respond to donor-derived non-MHC antigens, such as latent viral antigens or autoantigens, to which the host is immune. Results show that immunity to a model nonself antigen, ovalbumin (OVA), can dramatically disrupt tolerance despite undetectable initial reactivity to donor MHC antigens. Importantly, this blockade of tolerance was CD8+ T cell-dependent and required linked antigen presentation of alloantigens with the test OVA antigen. As such, this pathway represents an unapparent, or "incognito," form of immunity that is sufficient to prevent tolerance and that can be an unforeseen additional immune barrier to clinical transplant tolerance.
Collapse
Affiliation(s)
- M. K. Nelsen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - K. S. Beard
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R. J. Plenter
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R. M. Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - E. T. Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R. G. Gill
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
28
|
Nikolouli E, Hardtke-Wolenski M, Hapke M, Beckstette M, Geffers R, Floess S, Jaeckel E, Huehn J. Alloantigen-Induced Regulatory T Cells Generated in Presence of Vitamin C Display Enhanced Stability of Foxp3 Expression and Promote Skin Allograft Acceptance. Front Immunol 2017; 8:748. [PMID: 28702031 PMCID: PMC5487376 DOI: 10.3389/fimmu.2017.00748] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Regulatory T cells (Tregs) are critical for the maintenance of immune homeostasis and self-tolerance and can be therapeutically used for prevention of unwanted immune responses such as allotransplant rejection. Tregs are characterized by expression of the transcription factor Foxp3, and recent work suggests that epigenetic imprinting of Foxp3 and other Treg-specific epigenetic signatures genes is crucial for the stabilization of both Foxp3 expression and immunosuppressive properties within Tregs. Lately, vitamin C was reported to enhance the activity of enzymes of the ten-eleven translocation family, thereby fostering the demethylation of Foxp3 and other Treg-specific epigenetic signatures genes in developing Tregs. Here, we in vitro generated alloantigen-induced Foxp3+ Tregs (allo-iTregs) in presence of vitamin C. Although vitamin C hardly influenced the transcriptome of allo-iTregs as revealed by RNA-seq, those vitamin C-treated allo-iTregs showed a more pronounced demethylation of Foxp3 and other Treg-specific epigenetic signatures genes accompanied with an enhanced stability of Foxp3 expression. Accordingly, when being tested in vivo in an allogeneic skin transplantation model, vitamin C-treated allo-iTregs showed a superior suppressive capacity. Together, our results pave the way for the establishment of novel protocols for the in vitro generation of alloantigen-induced Foxp3+ Tregs for therapeutic use in transplantation medicine.
Collapse
Affiliation(s)
- Eirini Nikolouli
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Martin Hapke
- Department Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Hannover, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Floess
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Elmar Jaeckel
- Department Gastroenterology, Hepatology, Endocrinology, Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
29
|
Korczak-Kowalska G, Stelmaszczyk-Emmel A, Bocian K, Kiernozek E, Drela N, Domagała-Kulawik J. Expanding Diversity and Common Goal of Regulatory T and B Cells. II: In Allergy, Malignancy, and Transplantation. Arch Immunol Ther Exp (Warsz) 2017; 65:523-535. [PMID: 28470464 PMCID: PMC5688211 DOI: 10.1007/s00005-017-0471-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/19/2017] [Indexed: 01/03/2023]
Abstract
Regulation of immune response was found to play an important role in the course of many diseases such as autoimmune diseases, allergy, malignancy, organ transplantation. The studies on immune regulation focus on the role of regulatory cells (Tregs, Bregs, regulatory myeloid cells) in these disorders. The number and function of Tregs may serve as a marker of disease activity. As in allergy, the depletion of Tregs is observed and the results of allergen-specific immunotherapy could be measured by an increase in the population of IL-10+ regulatory cells. On the basis of the knowledge of anti-cancer immune response regulation, new directions in therapy of tumors are introduced. As the proportion of regulatory cells is increased in the course of neoplasm, the therapeutic action is directed at their inhibition. The depletion of Tregs may be also achieved by an anti-check-point blockade, anti-CD25 agents, and inhibition of regulatory cell recruitment to the tumor site by affecting chemokine pathways. However, the possible favorable role of Tregs in cancer development is considered and the plasticity of immune regulation should be taken into account. The new promising direction of the treatment based on regulatory cells is the prevention of transplant rejection. A different way of production and implementation of classic Tregs as well as other cell types such as double-negative cells, Bregs, CD4+ Tr1 cells are tested in ongoing trials. On the basis of the results of current studies, we could show in this review the significance of therapies based on regulatory cells in different disorders.
Collapse
Affiliation(s)
- Grażyna Korczak-Kowalska
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Anna Stelmaszczyk-Emmel
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewelina Kiernozek
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nadzieja Drela
- Department of Immunology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
30
|
The exciting “bench to bedside” journey of cell therapies for acute kidney injury and renal transplantation. J Nephrol 2017; 30:319-336. [DOI: 10.1007/s40620-017-0384-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/20/2017] [Indexed: 12/15/2022]
|
31
|
Sommer W, Buechler G, Jansson K, Avsar M, Knöfel AK, Salman J, Hoeffler K, Siemeni T, Gottlieb J, Karstens JH, Jonigk D, Reising A, Haverich A, Strüber M, Warnecke G. Irradiation before and donor splenocyte infusion immediately after transplantation induce tolerance to lung, but not heart allografts in miniature swine. Transpl Int 2017; 30:420-431. [DOI: 10.1111/tri.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/07/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Wiebke Sommer
- Department of Cardiac-, Thoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
- German Centre for Lung Research; Hannover Medical School; Hannover Germany
| | - Gwen Buechler
- Department of Cardiac-, Thoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
- German Centre for Lung Research; Hannover Medical School; Hannover Germany
| | - Katharina Jansson
- Department of Cardiac-, Thoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
- German Centre for Lung Research; Hannover Medical School; Hannover Germany
| | - Murat Avsar
- Department of Cardiac-, Thoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Ann-Kathrin Knöfel
- Department of Cardiac-, Thoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Jawad Salman
- Department of Cardiac-, Thoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Klaus Hoeffler
- Department of Cardiac-, Thoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Thierry Siemeni
- Department of Cardiac-, Thoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
| | - Jens Gottlieb
- German Centre for Lung Research; Hannover Medical School; Hannover Germany
- Department of Respiratory Medicine; Hannover Medical School; Hannover Germany
| | - Johann H. Karstens
- Department of Nuclear Medicine and Radiation Oncology; Hannover Medical School; Hannover Germany
| | - Danny Jonigk
- German Centre for Lung Research; Hannover Medical School; Hannover Germany
- Institute for Pathology; Hannover Medical School; Hannover Germany
| | - Ansgar Reising
- Department of Nephrology; Hannover Medical School; Hannover Germany
| | - Axel Haverich
- Department of Cardiac-, Thoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
- German Centre for Lung Research; Hannover Medical School; Hannover Germany
| | - Martin Strüber
- Richard DeVos Heart & Lung Transplant Program; Frederik Meijer Heart & Vascular Institute; Grand Rapids MI USA
| | - Gregor Warnecke
- Department of Cardiac-, Thoracic-, Transplantation- and Vascular Surgery; Hannover Medical School; Hannover Germany
- German Centre for Lung Research; Hannover Medical School; Hannover Germany
| |
Collapse
|
32
|
Chemoattractant Signals and Adhesion Molecules Promoting Human Regulatory T Cell Recruitment to Porcine Endothelium. Transplantation 2016; 100:753-62. [PMID: 26720299 DOI: 10.1097/tp.0000000000001034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human CD4+CD25+Foxp3+ T regulatory cells (huTreg) suppress CD4+ T cell-mediated antipig xenogeneic responses in vitro and might therefore be used to induce xenograft tolerance. The present study investigated the role of the adhesion molecules, their porcine ligands, and the chemoattractant factors that may promote the recruitment of huTreg to porcine aortic endothelial cells (PAEC) and their capacity to regulate antiporcine natural killer (NK) cell responses. METHODS Interactions between ex vivo expanded huTreg and PAEC were studied by static chemotaxis assays and flow-based adhesion and transmigration assays. In addition, the suppressive function of huTreg on human antiporcine NK cell responses was analyzed. RESULTS The TNFα-activated PAEC released factors that induce huTreg chemotaxis, partially inhibited by antihuman CXCR3 blocking antibodies. Coating of PAEC with human CCL17 significantly increased the transmigration of CCR4+ huTreg under physiological shear stress. Under static conditions, transendothelial Treg migration was inhibited by blocking integrin sub-units (CD18, CD49d) on huTreg, or their respective porcine ligands intercellular adhesion molecule 2 (CD102) and vascular cell adhesion molecule 1 (CD106). Finally, huTreg partially suppressed xenogeneic human NK cell adhesion, NK cytotoxicity and degranulation (CD107 expression) against PAEC; however, this inhibition was modest, and there was no significant change in the production of IFNγ. CONCLUSIONS Recruitment of huTreg to porcine endothelium depends on particular chemokine receptors (CXCR3, CCR4) and integrins (CD18 and CD49d) and was increased by CCL17 coating. These results will help to develop new strategies to enhance the recruitment of host huTreg to xenogeneic grafts to regulate cell-mediated xenograft rejection including NK cell responses.
Collapse
|
33
|
Lei M, Liu L, Wu D. [Progress of chronic graft-versus-host disease]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:79-82. [PMID: 26876262 PMCID: PMC7342310 DOI: 10.3760/cma.j.issn.0253-2727.2016.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Menasché P, Vanneaux V. Stem cells for the treatment of heart failure. Curr Res Transl Med 2016; 64:97-106. [PMID: 27316393 DOI: 10.1016/j.retram.2016.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/02/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022]
Abstract
Stem cell-based therapy is currently tested in several trials of chronic heart failure. The main question is to determine how its implementation could be extended to standard clinical practice. To answer this question, it is helpful to capitalize on the three main lessons drawn from the accumulated experience, both in the laboratory and in the clinics. Regarding the cell type, the best outcomes seem to be achieved by cells the phenotype of which closely matches that of the target tissue. This argues in favor of the use of cardiac-committed cells among which the pluripotent stem cell-derived cardiac progeny is particularly attractive. Regarding the mechanism of action, there has been a major paradigm shift whereby cells are no longer expected to structurally integrate within the recipient myocardium but rather to release biomolecules that foster endogenous repair processes. This implies to focus on early cell retention, rather than on sustained cell survival, so that the cells reside in the target tissue long enough and in sufficient amounts to deliver the factors underpinning their action. Biomaterials are here critical adjuncts to optimize this residency time. Furthermore, the paracrine hypothesis gives more flexibility for using allogeneic cells in that targeting an only transient engraftment requires to delay, and no longer to avoid, rejection, which, in turn, should simplify immunomodulation regimens. Regarding manufacturing, a broad dissemination of cardiac cell therapy requires the development of automated systems allowing to yield highly reproducible cell products. This further emphasizes the interest of allogeneic cells because of their suitability for industrially-relevant and cost-effective scale-up and quality control procedures. At the end, definite confirmation that the effects of cells can be recapitulated by the factors they secrete could lead to acellular therapies whereby factors alone (possibly clustered in extracellular vesicles) would be delivered to the patient. The production process of these cell-derived biologics would then be closer to that of a pharmaceutical compound, which could streamline the manufacturing and regulatory paths and thereby facilitate an expended clinical use.
Collapse
Affiliation(s)
- P Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75010 Paris, France; INSERM U 970, 75010 Paris, France.
| | - V Vanneaux
- INSERM UMR1160, Institut Universitaire d'Hématologie, 75475 Paris cedex 10, France; Assistance publique-Hôpitaux de Paris, Unité de thérapie cellulaire et CIC de Biothérapies, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| |
Collapse
|
35
|
Ebrahimnezhad S, Amirghofran Z, Karimi MH. Decline in Immunological Responses Mediated by Dendritic Cells in Mice Treated with 18α-Glycyrrhetinic Acid. Immunol Invest 2016; 45:191-204. [DOI: 10.3109/08820139.2015.1113425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Sicard A, Koenig A, Graff-Dubois S, Dussurgey S, Rouers A, Dubois V, Blanc P, Chartoire D, Errazuriz-Cerda E, Paidassi H, Taillardet M, Morelon E, Moris A, Defrance T, Thaunat O. B Cells Loaded with Synthetic Particulate Antigens: A Versatile Platform To Generate Antigen-Specific Helper T Cells for Cell Therapy. NANO LETTERS 2016; 16:297-308. [PMID: 26650819 DOI: 10.1021/acs.nanolett.5b03801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adoptive cell therapy represents a promising approach for several chronic diseases. This study describes an innovative strategy for biofunctionalization of nanoparticles, allowing the generation of synthetic particulate antigens (SPAg). SPAg activate polyclonal B cells and vectorize noncognate proteins into their endosomes, generating highly efficient stimulators for ex vivo expansion of antigen-specific CD4+ T cells. This method also allows harnessing the ability of B cells to polarize CD4+ T cells into effectors or regulators.
Collapse
Affiliation(s)
- Antoine Sicard
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| | - Alice Koenig
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| | - Stéphanie Graff-Dubois
- Sorbonne University , UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, F-75013, Paris, France
| | - Sébastien Dussurgey
- SFR Biosciences, UMS344/US8, Inserm, CNRS, Claude Bernard Lyon-1 University, Ecole Normale Supérieure , 69007 Lyon, France
| | - Angéline Rouers
- Sorbonne University , UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, F-75013, Paris, France
| | - Valérie Dubois
- French National Blood Service (EFS) , 69007 Lyon, France
| | - Pascal Blanc
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Dimitri Chartoire
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | | | - Helena Paidassi
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Morgan Taillardet
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Emmanuel Morelon
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| | - Arnaud Moris
- Sorbonne University , UPMC Univ Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections - CIMI-Paris, F-75013, Paris, France
| | - Thierry Defrance
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
| | - Olivier Thaunat
- International Center for Infectiology Research (CIRI); French National Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard Lyon 1 University; Ecole Normale Supérieure de Lyon, CNRS, UMR 5308 , 69007 Lyon, France
- Edouard Herriot Hospital , Transplantation, Nephrology and Clinical Immunology Department, 69003 Lyon, France
| |
Collapse
|
37
|
Riquelme SA, Pogu J, Anegon I, Bueno SM, Kalergis AM. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol 2015; 45:3269-88. [DOI: 10.1002/eji.201545671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 08/18/2015] [Accepted: 09/24/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Sebastián A. Riquelme
- Millennium Institute on Immunology and Immunotherapy; Departamento de Genética Molecular y Microbiología; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile; Santiago Chile
- INSERM; UMR 1064; CHU Nantes; ITUN; Université de Nantes; Faculté de Médecine; Nantes France
| | - Julien Pogu
- INSERM; UMR 1064; CHU Nantes; ITUN; Université de Nantes; Faculté de Médecine; Nantes France
| | - Ignacio Anegon
- INSERM; UMR 1064; CHU Nantes; ITUN; Université de Nantes; Faculté de Médecine; Nantes France
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy; Departamento de Genética Molecular y Microbiología; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile; Santiago Chile
- INSERM; UMR 1064; CHU Nantes; ITUN; Université de Nantes; Faculté de Médecine; Nantes France
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy; Departamento de Genética Molecular y Microbiología; Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile; Santiago Chile
- INSERM; UMR 1064; CHU Nantes; ITUN; Université de Nantes; Faculté de Médecine; Nantes France
- Departamento de Inmunología Clínica y Reumatología; Facultad de Medicina, Pontificia Universidad Católica de Chile; Santiago Chile
| |
Collapse
|
38
|
Tolerogenic Dendritic Cells on Transplantation: Immunotherapy Based on Second Signal Blockage. J Immunol Res 2015; 2015:856707. [PMID: 26543876 PMCID: PMC4620289 DOI: 10.1155/2015/856707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs), the most important professional antigen-presenting cells (APC), play crucial role in both immunity and tolerance. It is well known that DCs are able to mount immune responses against foreign antigens and simultaneously tolerate self-antigens. Since DCs can be modulated depending on the surrounding microenvironment, they can act as a bridge between innate and adaptive immunity. However, the mechanisms that support this dual role are not entirely clear. Recent studies have shown that DCs can be manipulated ex vivo in order to trigger their tolerogenic profile, what can be a tool to be used in clinical trials aiming the treatment of various diseases and the prevention of transplant rejection. In this sense, the blockage of costimulatory molecules on DC, in the attempt of inhibiting the second signal in the immunological synapse, can be considered as one of the main strategies under development. This review brings an update on current therapies using tolerogenic dendritic cells modulated with costimulatory blockers with the aim of reducing transplant rejection. However, although there are current clinical trials using tolerogenic DC to treat allograft rejection, the actual challenge is to modulate these cells in order to maintain a permanent tolerogenic profile.
Collapse
|
39
|
Bagley J, Yuan J, Chandrakar A, Iacomini J. Hyperlipidemia Alters Regulatory T Cell Function and Promotes Resistance to Tolerance Induction Through Costimulatory Molecule Blockade. Am J Transplant 2015; 15:2324-35. [PMID: 26079467 PMCID: PMC5125018 DOI: 10.1111/ajt.13351] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 01/25/2023]
Abstract
Recent work from our laboratory has shown that hyperlipidemia promotes accelerated rejection of vascularized cardiac allografts in mice by inducing anti-donor Th17 reactivity and production of IL-17. Here, we show that hyperlipidemia also affects FoxP3(+) regulatory T cells (Tregs). Hyperlipidemia promotes the development of Tregs that express low levels of CD25. Hyperlipidemia also promotes a decrease in central Tregs and an increase in effector Tregs that appears to account for the increase in the frequency of CD25(low) Tregs. Alterations in Treg subsets also appear to lead to alterations in Treg function. The ability of FoxP3(+) , CD25(high) , CD4(+) Tregs from hyperlipidemic mice to inhibit proliferation of effector T cells stimulated with anti-CD3 and CD28 was reduced when compared with Tregs from control mice. Regulatory T cells isolated from hyperlipidemic recipients exhibit increased activation of Akt, and a reduction in Bim levels that permits the expansion of FoxP3(+) CD25(low) CD4(+) T cells. Hyperlipidemic mice were also resistant to tolerance induction using costimulatory molecule blockade consisting of anti-CD154 and CTLA4Ig, a strategy that requires Tregs. Together, our data suggest that hyperlipidemia profoundly affects Treg subsets and function as well as the ability to induce tolerance.
Collapse
Affiliation(s)
- J. Bagley
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Tufts University School of Medicine, Boston, MA
| | - J. Yuan
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Tufts University School of Medicine, Boston, MA
| | - A. Chandrakar
- Schuster Family Transplantation Research Center Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - J. Iacomini
- Department of Developmental, Molecular and Chemical Biology, Sackler School of Biomedical Sciences Programs in Immunology and Genetics, Tufts University School of Medicine, Boston, MA,Corresponding author: John Iacomini,
| |
Collapse
|
40
|
Braza F, Durand M, Degauque N, Brouard S. Regulatory T Cells in Kidney Transplantation: New Directions? Am J Transplant 2015; 15:2288-300. [PMID: 26234373 DOI: 10.1111/ajt.13395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/03/2015] [Accepted: 05/24/2015] [Indexed: 01/25/2023]
Abstract
The contribution of regulatory T cells in the maintenance of kidney graft survival is of major interest. Although many experimental models suggest a role in the induction of graft tolerance, reproducing these findings in clinic is less clear. While modulation of the regulatory T cell response is a promising therapeutic concept in transplantation, a better understanding of function, phenotype and biology is needed to be able to optimally exploit these cells in order to induce graft tolerance. With this in mind, we review here the current understanding of the phenotypic-functional delineation of Tregs and how Tregs can contribute to graft survival. We highlight their potential role in long-term graft survival and kidney operational tolerance. We also discuss the mechanisms needed for the molecular development of regulatory T cells: A combination of FOXP3 molecular partners, epigenetic, metabolic, and posttranslational modifications are necessary to generate well-functioning regulatory T cells and maintain their core identify. We discuss how an improved understanding of these mechanisms will permit the identification of new potent therapeutic strategies to improve kidney graft survival.
Collapse
Affiliation(s)
- F Braza
- Université, de Nantes, Faculté de Médecine, Nantes, F-44035, France.,INSERM, UMR 1064, Nantes, F-44093, France.,CHU de Nantes, ITUN, Nantes, F-44093, France
| | - M Durand
- Université, de Nantes, Faculté de Médecine, Nantes, F-44035, France.,INSERM, UMR 1064, Nantes, F-44093, France.,CHU de Nantes, ITUN, Nantes, F-44093, France
| | - N Degauque
- INSERM, UMR 1064, Nantes, F-44093, France.,CHU de Nantes, ITUN, Nantes, F-44093, France
| | - S Brouard
- INSERM, UMR 1064, Nantes, F-44093, France.,CHU de Nantes, ITUN, Nantes, F-44093, France
| |
Collapse
|
41
|
Fryer M, Grahammer J, Khalifian S, Furtmüller GJ, Lee WPA, Raimondi G, Brandacher G. Exploring cell-based tolerance strategies for hand and face transplantation. Expert Rev Clin Immunol 2015; 11:1189-204. [DOI: 10.1586/1744666x.2015.1078729] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Meyer C, Walker J, Dewane J, Engelmann F, Laub W, Pillai S, Thomas CR, Messaoudi I. Impact of irradiation and immunosuppressive agents on immune system homeostasis in rhesus macaques. Clin Exp Immunol 2015; 181:491-510. [PMID: 25902927 DOI: 10.1111/cei.12646] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2015] [Indexed: 12/30/2022] Open
Abstract
In this study we examined the effects of non-myeloablative total body irradiation (TBI) in combination with immunosuppressive chemotherapy on immune homeostasis in rhesus macaques. Our results show that the administration of cyclosporin A or tacrolimus without radiotherapy did not result in lymphopenia. The addition of TBI to the regimen resulted in lymphopenia as well as alterations in the memory/naive ratio following reconstitution of lymphocyte populations. Dendritic cell (DC) numbers in whole blood were largely unaffected, while the monocyte population was altered by immunosuppressive treatment. Irradiation also resulted in increased levels of circulating cytokines and chemokines that correlated with T cell proliferative bursts and with the shift towards memory T cells. We also report that anti-thymocyte globulin (ATG) treatment and CD3 immunotoxin administration resulted in a selective and rapid depletion of naive CD4 and CD8 T cells and increased frequency of memory T cells. We also examined the impact of these treatments on reactivation of latent simian varicella virus (SVV) infection as a model of varicella zoster virus (VZV) infection of humans. None of the treatments resulted in overt SVV reactivation; however, select animals had transient increases in SVV-specific T cell responses following immunosuppression, suggestive of subclinical reactivation. Overall, we provide detailed observations into immune modulation by TBI and chemotherapeutic agents in rhesus macaques, an important research model of human disease.
Collapse
Affiliation(s)
- C Meyer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA
| | - J Walker
- Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - J Dewane
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA
| | - F Engelmann
- Division of Biomedical Sciences, University of California-Riverside, Riverside, CA, USA
| | - W Laub
- Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - S Pillai
- Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - I Messaoudi
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA.,Division of Biomedical Sciences, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
43
|
Morath C, Schmitt A, Zeier M, Schmitt M, Sandra-Petrescu F, Opelz G, Terness P, Schaier M, Kleist C. Cell therapy for immunosuppression after kidney transplantation. Langenbecks Arch Surg 2015; 400:541-50. [PMID: 26077202 DOI: 10.1007/s00423-015-1313-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 01/03/2023]
Abstract
PURPOSE To give an overview over cell therapeutic approaches to immunosuppression in clinical kidney transplantation. A focus is on myeloid suppressor cell therapy by mitomycin C-induced cells (MICs). METHODS Literature review with an emphasis on already existing therapies. RESULTS Several cell therapeutic approaches to immunosuppression and donor-specific unresponsiveness are now being tested in early phase I and phase II trials in clinical kidney transplantation. Cell products such as regulatory T cells or regulatory macrophages, or other myeloid suppressor cell therapies, may either consist of donor-specific, third-party, or autologous cell preparations. Major problems are the identification of the suppressive cell populations and their expansion to have sufficient amount of cells to achieve donor unresponsiveness (e.g., with regulatory T cells). We show a simple and safe way to establish donor unresponsiveness in living-donor kidney transplantation by MIC therapy. A phase I clinical trial is now under way to test the safety and efficacy of this cell therapeutic approach. CONCLUSIONS Cell therapeutic approaches to immunosuppression after kidney transplantation may revolutionize clinical transplantation in the future.
Collapse
Affiliation(s)
- Christian Morath
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Novel biomarkers and functional assays to monitor cell-therapy-induced tolerance in organ transplantation. Curr Opin Organ Transplant 2015; 20:64-71. [PMID: 25563993 DOI: 10.1097/mot.0000000000000154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Cell-based immunotherapy offers a novel approach to minimize the need for immunosuppressive drugs and to promote a state of immunological tolerance to a transplanted organ. We review the most promising biomarkers and functional assays able to identify patients tolerant to their graft. Such a signature of tolerance is essential in the assessment of the efficacy with which trials of cellular therapies promote immunoregulation and minimize graft rejection. RECENT FINDINGS A multitude of novel cellular therapies have entered early-phase clinical trials in solid-organ transplant patients. Recent multicentre collaborations have enabled the determination of distinct tolerance profiles for both liver and kidney transplant recipients. These have been shown to be highly predictive of tolerance in certain settings and show utility in identifying patients in whom immunosuppressive drugs can be weaned or discontinued. SUMMARY In order to become a viable treatment option in solid-organ transplantation, the latest large, multicentre clinical trials of cellular therapies must utilize, validate and discover the biomarkers with the capacity to reliably identify a signature of immune tolerance.
Collapse
|
45
|
Sicard A, Koenig A, Morelon E, Defrance T, Thaunat O. Cell therapy to induce allograft tolerance: time to switch to plan B? Front Immunol 2015; 6:149. [PMID: 25904913 PMCID: PMC4387960 DOI: 10.3389/fimmu.2015.00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022] Open
Abstract
Organ transplantation is widely acknowledged as the best option for end stage failure of vital organs. Long-term graft survival is however limited by graft rejection, a destructive process resulting from the response of recipient’s immune system against donor-specific alloantigens. Prevention of rejection currently relies exclusively on immunosuppressive drugs that lack antigen specificity and therefore increase the risk for infections and cancers. Induction of donor-specific tolerance would provide indefinite graft survival without morbidity and therefore represents the grail of transplant immunologists. Progresses in the comprehension of immunoregulatory mechanisms over the last decades have paved the way for cell therapies to induce allograft tolerance. The first part of the present article reviews the promising results obtained in experimental models with adoptive transfer of ex vivo-expanded regulatory CD4+ T cells (CD4+ Tregs) and discuss which source and specificity should be preferred for transferred CD4+ Tregs. Interestingly, B cells have recently emerged as potent regulatory cells, able to establish a privileged crosstalk with CD4+ T cells. The second part of the present article reviews the evidences demonstrating the crucial role of regulatory B cells in transplantation tolerance. We propose the possibility to harness B cell regulatory functions to improve cell-based therapies aiming at inducing allograft tolerance.
Collapse
Affiliation(s)
| | - Alice Koenig
- U1111, INSERM , Lyon , France ; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique , Lyon , France
| | - Emmanuel Morelon
- U1111, INSERM , Lyon , France ; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique , Lyon , France ; Université de Lyon , Lyon , France
| | | | - Olivier Thaunat
- U1111, INSERM , Lyon , France ; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique , Lyon , France ; Université de Lyon , Lyon , France
| |
Collapse
|
46
|
Cardiac endothelial cell-derived exosomes induce specific regulatory B cells. Sci Rep 2014; 4:7583. [PMID: 25533220 PMCID: PMC4274510 DOI: 10.1038/srep07583] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/18/2014] [Indexed: 01/02/2023] Open
Abstract
The mechanism of immune tolerance is to be further understood. The present study aims to investigate the role of the Cardiac endothelial cell (CEC)-derived exosomes in the induction of regulatory B cells. In this study, CECs were isolated from the mouse heart. Exosomes were purified from the culture supernatant of the primary endothelial cells. The suppressor functions of the regulatory B cells were determined by flow cytometry. The results showed that the CEC-derived exosomes carried integrin αvβ6. Exposure to lipopolysaccharide (LPS) induced B cells to express the latent transforming growth factor (TGF)-β, the latter was converted to the active form, TGF-β, by the exosome-derived αvβ6. The B cells released TGF-β in response to re-exposure to the exosomes in the culture, which suppressed the effector T cell proliferation. We conclude that CEC-derived exosomes have the capacity to induce B cells with immune suppressor functions.
Collapse
|
47
|
Gasparoto TH, de Oliveira CE, de Freitas LT, Pinheiro CR, Hori JI, Garlet GP, Cavassani KA, Schillaci R, da Silva JS, Zamboni DS, Campanelli AP. Inflammasome activation is critical to the protective immune response during chemically induced squamous cell carcinoma. PLoS One 2014; 9:e107170. [PMID: 25268644 PMCID: PMC4182037 DOI: 10.1371/journal.pone.0107170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/07/2014] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation affects most stages of tumorigenesis, including initiation, promotion, malignant differentiation, invasion and metastasis. Inflammasomes have been described as involved with persistent inflammation and are known to exert both pro and antitumour effects. We evaluated the influence of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase (CASP)-1 in the antitumor immune response using a multistage model of squamous cell carcinoma (SCC) development. Absence of ASC and CASP-1 resulted in an earlier incidence and increased number of papilloma. Loss of inflammassome function in mice resulted in decreased presence of natural killer (NK), dendritic (DC), CD4+, CD8+ and CD45RB+ T cells in the tumor lesions as well as in lymph nodes (LN) compared with WT mice. Increased percentage of CD4+CD25+Foxp3+ T cells was associated with association with inflammasome loss of function. Moreover, significant differences were also found with neutrophils and macrophage infiltrating the lesions. Myeloperoxidase (MPO), but not elastase (ELA), activity oscillated among the groups during the SCC development. Levels of proinflammatory cytokines IL-1β, IL-18, Tumor Necrosis Factor (TNF)-α and Interferon (IFN)-γ were decreased in the tumor microenvironment in the absence of inflammasome proteins. These observations suggest a link between inflammasome function and SCC tumorigenesis, indicating an important role for inflammasome activation in the control of SCC development.
Collapse
Affiliation(s)
- Thais Helena Gasparoto
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Carine Ervolino de Oliveira
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- Department of Stomatology - Oral Pathology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Luisa Thomazini de Freitas
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Claudia Ramos Pinheiro
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Juliana Issa Hori
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Karen Angélica Cavassani
- Departament of Pathology, Medical School, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Roxana Schillaci
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Buenos Aires, Argentina
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dario Simões Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences - Microbiology and Immunology, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
- * E-mail:
| |
Collapse
|
48
|
Managh AJ, Hutchinson RW, Riquelme P, Broichhausen C, Wege AK, Ritter U, Ahrens N, Koehl GE, Walter L, Florian C, Schlitt HJ, Reid HJ, Geissler EK, Sharp BL, Hutchinson JA. Laser Ablation–Inductively Coupled Plasma Mass Spectrometry: An Emerging Technology for Detecting Rare Cells in Tissue Sections. THE JOURNAL OF IMMUNOLOGY 2014; 193:2600-8. [DOI: 10.4049/jimmunol.1400869] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
49
|
In question: the scientific value of preclinical safety pharmacology and toxicology studies with cell-based therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14026. [PMID: 26015968 PMCID: PMC4362366 DOI: 10.1038/mtm.2014.26] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/26/2022]
Abstract
A new cell-based medicinal product containing human regulatory macrophages, known as Mreg_UKR, has been developed and conforms to expectations of a therapeutic drug. Here, Mreg_UKR was subjected to pharmacokinetic, safety pharmacology, and toxicological testing, which identified no adverse reactions. These results would normally be interpreted as evidence of the probable clinical safety of Mreg_UKR; however, we contend that, owing to their uncertain biological relevance, our data do not fully support this conclusion. This leads us to question whether there is adequate scientific justification for preclinical safety testing of similar novel cell-based medicinal products using animal models. In earlier work, two patients were treated with regulatory macrophages prior to kidney transplantation. In our opinion, the absence of acute or chronic adverse effects in these cases is the most convincing available evidence of the likely safety of Mreg_UKR in future recipients. On this basis, we consider that safety information from previous clinical investigations of related cell products should carry greater weight than preclinical data when evaluating the safety profile of novel cell-based medicinal products. By extension, we argue that omitting extensive preclinical safety studies before conducting small-scale exploratory clinical investigations of novel cell-based medicinal products data may be justifiable in some instances.
Collapse
|
50
|
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032 USA, (212) 304-5696;
| |
Collapse
|