1
|
Mandal RN, Ke J, Kanika NH, Wang F, Wang J, Wang C. Regulatory gene network for coffee-like color morph of TYRP1 mutant of oujiang color common carp. BMC Genomics 2024; 25:659. [PMID: 38956500 PMCID: PMC11218255 DOI: 10.1186/s12864-024-10550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Neither a TYRP1-mediated highly conserved genetic network underlying skin color towards optimum defense nor the pathological tendency of its mutation is well understood. The Oujiang Color Common Carp (Cyprinus carpio var. color) as a model organism, offering valuable insights into genetics, coloration, aquaculture practices, and environmental health. Here, we performed a comparative skin transcriptome analysis on TYRP1 mutant and wild fishes by applying a conservative categorical approach considering different color phenotypes. RESULTS Our results reveal that an unusual color phenotype may be sensitized with TYRP1 mutation as a result of upregulating several genes related to an anti-inflammatory autoimmune system in response to the COMT-mediated catecholamine neurotransmitters in the skin. Particularly, catecholamines-derived red/brown, red with blue colored membrane attack complex, and brown/grey colored reduced eumelanin are expected to be aggregated in the regenerated cells. CONCLUSIONS It is, thus, concluded that the regenerated cells with catecholamines, membrane attack complex, and eumelanin altogether may contribute to the formation of the unusual (coffee-like) color phenotype in TYRP1 mutant.
Collapse
Affiliation(s)
- Roland Nathan Mandal
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fuyan Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999, Huchenghuan Road, Shanghai, 201306, China.
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999, Huchenghuan Road, Shanghai, 201306, China.
| |
Collapse
|
2
|
Visser N, Nelemans LC, He Y, Lourens HJ, Corrales MG, Huls G, Wiersma VR, Schuringa JJ, Bremer E. Signal regulatory protein beta 2 is a novel positive regulator of innate anticancer immunity. Front Immunol 2023; 14:1287256. [PMID: 38116002 PMCID: PMC10729450 DOI: 10.3389/fimmu.2023.1287256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
In recent years, the therapeutic (re)activation of innate anticancer immunity has gained prominence, with therapeutic blocking of the interaction of Signal Regulatory Protein (SIRP)-α with its ligand CD47 yielding complete responses in refractory and relapsed B cell lymphoma patients. SIRP-α has as crucial inhibitory role on phagocytes, with e.g., its aberrant activation enabling the escape of cancer cells from immune surveillance. SIRP-α belongs to a family of paired receptors comprised of not only immune-inhibitory, but also putative immune-stimulatory receptors. Here, we report that an as yet uninvestigated SIRP family member, SIRP-beta 2 (SIRP-ß2), is strongly expressed under normal physiological conditions in macrophages and granulocytes at protein level. Endogenous expression of SIRP-ß2 on granulocytes correlated with trogocytosis of cancer cells. Further, ectopic expression of SIRP-ß2 stimulated macrophage adhesion, differentiation and cancer cell phagocytosis as well as potentiated macrophage-mediated activation of T cell Receptor-specific T cell activation. SIRP-ß2 recruited the immune activating adaptor protein DAP12 to positively regulate innate immunity, with the charged lysine 202 of SIRP-ß2 being responsible for interaction with DAP12. Mutation of lysine 202 to leucine lead to a complete loss of the increased adhesion and phagocytosis. In conclusion, SIRP-ß2 is a novel positive regulator of innate anticancer immunity and a potential costimulatory target for innate immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, Netherlands
| |
Collapse
|
3
|
Tang M, Chen B, Xia H, Pan M, Zhao R, Zhou J, Yin Q, Wan F, Yan Y, Fu C, Zhong L, Zhang Q, Wang Y. pH-gated nanoparticles selectively regulate lysosomal function of tumour-associated macrophages for cancer immunotherapy. Nat Commun 2023; 14:5888. [PMID: 37735462 PMCID: PMC10514266 DOI: 10.1038/s41467-023-41592-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Tumour-associated macrophages (TAMs), as one of the most abundant tumour-infiltrating immune cells, play a pivotal role in tumour antigen clearance and immune suppression. M2-like TAMs present a heightened lysosomal acidity and protease activity, limiting an effective antigen cross-presentation. How to selectively reprogram M2-like TAMs to reinvigorate anti-tumour immune responses is challenging. Here, we report a pH-gated nanoadjuvant (PGN) that selectively targets the lysosomes of M2-like TAMs in tumours rather than the corresponding organelles from macrophages in healthy tissues. Enabled by the PGN nanotechnology, M2-like TAMs are specifically switched to a M1-like phenotype with attenuated lysosomal acidity and cathepsin activity for improved antigen cross-presentation, thus eliciting adaptive immune response and sustained tumour regression in tumour-bearing female mice. Our findings provide insights into how to specifically regulate lysosomal function of TAMs for efficient cancer immunotherapy.
Collapse
Affiliation(s)
- Mingmei Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meijie Pan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ruiyang Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiayi Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qingqing Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fangjie Wan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chuanxun Fu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lijun Zhong
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
4
|
Wang W, Zhu Q, Jin Y, Gao J, Li J, Zheng X, Gao W, Saeed M, Sheng W, Yu H. Self-Immolated Nanoadjuvant for In Situ Vaccination Immunotherapy of Colorectal Cancer. Adv Healthc Mater 2023; 12:e2300524. [PMID: 37269141 DOI: 10.1002/adhm.202300524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Vaccination immunotherapy has revolutionized cancer treatment modalities. Although the immunomodulatory adjuvant generally employs for potentiating vaccine response, systemic administration may drive immune-related side effects, even immune tolerance. Therefore, tunable immunoadjuvants are highly desirable to simultaneously stimulate the immune response and mitigate systemic toxicity. Self-immolated nanoadjuvants are herein reported to potentiate vaccination immunotherapy of cancer. The nanoadjuvants are engineered by co-assembling an intracellular acidity-ionizable polymeric agonist of toll-like receptor 7/8 resiquimod (R848) and polymeric photosensitizer pyropheophorbide a (PPa). The resultant nanoadjuvants specifically accumulate at the tumor site via passive targeting and are dissociated in the acidic endosome versicles to activate PPa via protonation of the polymer backbone. Upon 671 nm laser irradiation, PPa performed photodynamic therapy to induce immunogenic cell death of tumor cells and subsequently releases R848 in a customized manner, which synergistically activates dendritic cells (DCs), promotes antigen cross-presentation, and eventually recruits cytotoxic T lymphocytes for tumor regression. Furthermore, the synergistic in situ vaccination immunotherapy with immune checkpoint blockade induce sustained immunological memory to suppress tumor recurrence in the rechallenged colorectal tumor model.
Collapse
Affiliation(s)
- Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qiwen Zhu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Gao
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jianan Li
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Weidong Gao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Madiha Saeed
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Interdisciplinary Research Center in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Weizhong Sheng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haijun Yu
- Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
5
|
Liu Y, Feng Y, Yang X, Lv Z, Li P, Zhang M, Wei F, Jin X, Hu Y, Guo Y, Liu D. Mining chicken ileal microbiota for immunomodulatory microorganisms. THE ISME JOURNAL 2023; 17:758-774. [PMID: 36849630 PMCID: PMC10119185 DOI: 10.1038/s41396-023-01387-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
The gut microbiota makes important contributions to host immune system development and resistance to pathogen infections, especially during early life. However, studies addressing the immunomodulatory functions of gut microbial individuals or populations are limited. In this study, we explore the systemic impact of the ileal microbiota on immune cell development and function of chickens and identify the members of the microbiota involved in immune system modulation. We initially used a time-series design with six time points to prove that ileal microbiota at different succession stages is intimately connected to immune cell maturation. Antibiotics perturbed the microbiota succession and negatively affected immune development, whereas early exposure to the ileal commensal microbiota from more mature birds promoted immune cell development and facilitated pathogen elimination after Salmonella Typhimurium infection, illustrating that early colonization of gut microbiota is an important driver of immune development. Five bacterial strains, Blautia coccoides, Bacteroides xylanisolvens, Fournierella sp002159185, Romboutsia lituseburensis, and Megamonas funiformis, which are closely related to the immune system development of broiler chickens, were then screened out and validated for their immunomodulatory properties. Our results provide insight into poultry immune system-microbiota interactions and also establish a foundation for targeted immunological interventions aiming to combat infectious diseases and promote poultry health and production.
Collapse
Affiliation(s)
- Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Zhengtian Lv
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Peng Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
6
|
Yee Mon KJ, Blander JM. TAP-ing into the cross-presentation secrets of dendritic cells. Curr Opin Immunol 2023; 83:102327. [PMID: 37116384 DOI: 10.1016/j.coi.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/30/2023]
Abstract
Viral blockade of the transporter associated with antigen processing (TAP) diminishes surface and endosomal recycling compartment levels of major histocompatibility complex class-I (MHC-I) in dendritic cells (DCs), and compromises both classical MHC-I presentation and canonical cross-presentation during infection to impair CD8 T-cell immunity. Virus-specific CD8 T cells are thought to be cross-primed mostly by uninfected TAP-sufficient DCs through cross-presentation of viral peptides from internalized virus-infected dying cells. The dilemma is that CD8 T cells primed to TAP-dependent viral peptides are mismatched to the TAP-independent epitopes presented on tissues infected with immune-evasive viruses. Noncanonical cross-presentation in DCs overcomes cell-intrinsic TAP blockade to nevertheless prime protective TAP-independent CD8 T cells best-matched against the infection. Exploitation of noncanonical cross-presentation may prevent chronic infections with immune-evasive viruses. It may also control immune-evasive cancers that have downmodulated TAP expression.
Collapse
Affiliation(s)
- Kristel Joy Yee Mon
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, USA; Department of Microbiology and Immunology, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
7
|
Blander JM. Different routes of MHC-I delivery to phagosomes and their consequences to CD8 T cell immunity. Semin Immunol 2023; 66:101713. [PMID: 36706521 PMCID: PMC10023361 DOI: 10.1016/j.smim.2023.101713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/27/2023]
Abstract
Dendritic cells (DCs) present internalized antigens to CD8 T cells through cross-presentation by major histocompatibility complex class I (MHC-I) molecules. While conventional cDC1 excel at cross-presentation, cDC2 can be licensed to cross-present during infection by signals from inflammatory receptors, most prominently Toll-like receptors (TLRs). At the core of the regulation of cross-presentation by TLRs is the control of subcellular MHC-I traffic. Within DCs, MHC-I are enriched within endosomal recycling compartments (ERC) and traffic to microbe-carrying phagosomes under the control of phagosome-compartmentalized TLR signals to favor CD8 T cell cross-priming to microbial antigens. Viral blockade of the transporter associated with antigen processing (TAP), known to inhibit the classic MHC-I presentation of cytoplasmic protein-derived peptides, depletes the ERC stores of MHC-I to simultaneously also block TLR-regulated cross-presentation. DCs counter this impairment in the two major pathways of MHC-I presentation to CD8 T cells by mobilizing noncanonical cross-presentation, which delivers MHC-I to phagosomes from a new location in the ER-Golgi intermediate compartment (ERGIC) where MHC-I abnormally accumulate upon TAP blockade. Noncanonical cross-presentation thus rescues MHC-I presentation and cross-primes TAP-independent CD8 T cells best-matched against target cells infected with immune evasive viruses. Because noncanonical cross-presentation relies on a phagosome delivery route of MHC-I that is not under TLR control, it risks potential cross-presentation of self-antigens during infection. Here I review these findings to illustrate how the subcellular route of MHC-I to phagosomes critically impacts the regulation of cross-presentation and the nature of the CD8 T cell response to infection and cancer. I highlight important and novel implications to CD8 T cell vaccines and immunotherapy.
Collapse
Affiliation(s)
- J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, USA; Joan and Sanford I. Weill Department of Medicine, USA; Department of Microbiology and Immunology, USA; Sandra and Edward Meyer Cancer Center, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
8
|
Nanoscale organization of the MHC I peptide-loading complex in human dendritic cells. Cell Mol Life Sci 2022; 79:477. [PMID: 35947215 PMCID: PMC9365725 DOI: 10.1007/s00018-022-04472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Dendritic cells (DCs) translate local innate immune responses into long-lasting adaptive immunity by priming antigen-specific T cells. Accordingly, there is an ample interest in exploiting DCs for therapeutic purposes, e.g., in personalized immunotherapies. Despite recent advances in elucidating molecular pathways of antigen processing, in DCs the exact spatial organization of the underlying processes is largely unknown. Here, we unraveled the nanoscale organization of the transporter associated with antigen processing (TAP)-dependent peptide-loading machinery in human monocyte-derived DCs (moDC). We detected an unexpected accumulation of MHC I peptide-loading complexes (PLCs) and TAP-dependent peptide compartmentalization in protrusions of activated DCs. Using single-molecule localization microscopy we revealed that PLCs display homogeneously sized assemblies, independent of the DC activation status or cellular localization. Our data indicate that moDCs show augmentation of subcellular PLC density during DC maturation. We observed a twofold density increase in the cell body, while an even fourfold accumulation was detected in the tips of the protrusions at the mature DC stage in comparison to immature DCs. In these tip regions, PLC assemblies are found along highly compressed tubular ER networks. These findings provide novel insights into nanoscale organization of the antigen presentation machinery, and open new perspectives on the T cell stimulatory capacity of DCs.
Collapse
|
9
|
Yu B, Wang F, Wang Y. Advances in the Structural and Physiological Functions of SHARPIN. Front Immunol 2022; 13:858505. [PMID: 35547743 PMCID: PMC9084887 DOI: 10.3389/fimmu.2022.858505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
SHARPIN was initially found as a SHANK-associated protein. SHARPIN can be used as an important component to form the linear ubiquitin chain assembly complex (LUBAC) with HOIL-1L, HOIP to produce a linear ubiquitin chain connected N-terminal Met1, playing a critical role in various cellular processes including NF-κB signaling, inflammation, embryogenesis and apoptosis. SHARPIN alone can also participate in many critical physiological activities and cause various disorders such as chronic dermatitis, tumor, and Alzheimer’s disease. Mice with spontaneous autosomal recessive mutations in the SHARPIN protein mainly exhibit chronic dermatitis and immunodeficiency with elevated IgM. Additionally, SHARPIN alone also plays a key role in various cellular events, such as B cells activation and platelet aggregation. Structural studies of the SHARPIN or LUBAC have been reported continuously, advancing our understanding of it at the molecular level. However, the full-length structure of the SHARPIN or LUBAC was lagging, and the molecular mechanism underlying these physiological processes is also unclear. Herein, we summarized the currently resolved structure of SHARPIN as well as the emerging physiological role of SHARPIN alone or in LUBAC. Further structural and functional study of SHARPIN will provide insight into the role and underlying mechanism of SHARPIN in disease, as well as its potential application in therapeutic.
Collapse
Affiliation(s)
- Beiming Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Feng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanfeng Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
10
|
Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol 2022; 22:751-764. [PMID: 35418563 DOI: 10.1038/s41577-022-00707-2] [Citation(s) in RCA: 241] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Antigen processing and presentation are the cornerstones of adaptive immunity. B cells cannot generate high-affinity antibodies without T cell help. CD4+ T cells, which provide such help, use antigen-specific receptors that recognize major histocompatibility complex (MHC) molecules in complex with peptide cargo. Similarly, eradication of virus-infected cells often depends on cytotoxic CD8+ T cells, which rely on the recognition of peptide-MHC complexes for their action. The two major classes of glycoproteins entrusted with antigen presentation are the MHC class I and class II molecules, which present antigenic peptides to CD8+ T cells and CD4+ T cells, respectively. This Review describes the essentials of antigen processing and presentation. These pathways are divided into six discrete steps that allow a comparison of the various means by which antigens destined for presentation are acquired and how the source proteins for these antigens are tagged for degradation, destroyed and ultimately displayed as peptides in complex with MHC molecules for T cell recognition.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Society of Fellows, Harvard University, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
VAMP3 and VAMP8 regulate the development and functionality of parasitophorous vacuoles housing Leishmania amazonensis. Infect Immun 2022; 90:e0018321. [PMID: 35130453 DOI: 10.1128/iai.00183-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To colonize mammalian phagocytic cells, the parasite Leishmania remodels phagosomes into parasitophorous vacuoles that can be either tight-fitting individual or communal. The molecular and cellular bases underlying the biogenesis and functionality of these two types of vacuoles are poorly understood. In this study, we investigated the contribution of host cell Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor proteins to the expansion and functionality of communal vacuoles as well as on the replication of the parasite. The differential recruitment patterns of Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor to communal vacuoles harboring L. amazonensis and to individual vacuoles housing L. major led us to further investigate the roles of VAMP3 and VAMP8 in the interaction of Leishmania with its host cell. We show that whereas VAMP8 contributes to optimal expansion of communal vacuoles, VAMP3 negatively regulates L. amazonensis replication, vacuole size, as well as antigen cross-presentation. In contrast, neither proteins has an impact on the fate of L. major. Collectively, our data support a role for both VAMP3 and VAMP8 in the development and functionality of L. amazonensis-harboring communal parasitophorous vacuoles.
Collapse
|
12
|
Teymurazov MG, Petrova NV, Karelina EA, Ganina KK, Tarasov SA, Epstein OI. Nonclinical study of the new immunotropic drug effectiveness in salmonella infection treatment. BULLETIN OF SIBERIAN MEDICINE 2021. [DOI: 10.20538/1682-0363-2021-2-95-101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. G. Teymurazov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB)
| | - N. V. Petrova
- Institute of General Pathology and Pathophysiology (IGPP);
MATERIA MEDICA HOLDING LLC, Research and Production Company
| | - E. A. Karelina
- MATERIA MEDICA HOLDING LLC, Research and Production Company
| | - K. K. Ganina
- MATERIA MEDICA HOLDING LLC, Research and Production Company
| | - S. A. Tarasov
- Institute of General Pathology and Pathophysiology (IGPP);
MATERIA MEDICA HOLDING LLC, Research and Production Company
| | - O. I. Epstein
- Institute of General Pathology and Pathophysiology (IGPP);
MATERIA MEDICA HOLDING LLC, Research and Production Company
| |
Collapse
|
13
|
Namusamba M, Li Z, Zhang Q, Wang C, Wang T, Wang B. Biological roles of the B cell receptor-associated protein 31: Functional Implication in Cancer. Mol Biol Rep 2021; 48:773-786. [PMID: 33439410 DOI: 10.1007/s11033-020-06123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
BAP31 is a ubiquitously expressed integral membrane protein of the endoplasmic reticulum. BAP31 is involved in various biological and molecular processes, including protein transport, viral processing, apoptosis signaling, MHC 1 antigen processing and presentation, mitochondria and ER calcium regulation, and proteasomal protein degradation. We employed a BAP31 interaction search using STRING and inBioMap™ protein-protein interaction networks, and the Metabolic Atlas, which revealed molecular and metabolic interactors involved in various pathways essential for cell growth, cell survival, and disease development. BAP31, as a chaperone and resident protein of the ER, was reported in the development of some central nervous system disorders and metabolic diseases about AD, ALS, and Liver disease. In addition, BAP31 is overexpressed in many cancers. Furthermore, research around BAP31 involvement in cancer has taken up a shape, focusing on its roles in cancer cell survival, disease prognosis, and targeted treatment. Here, we address published data on the Biological roles of BAP31 in both health and disease. We present an analytical description of BAP31 expression and functional implication in some human cancers and the impact of its expression and regulation while it models as a potential target in cancer therapy. Besides, a profound understanding of BAP31 is insightful of the gap between cancer development and neurodegeneration, thus generating novel ideas surrounding the link between the two different cell phenomena.
Collapse
Affiliation(s)
- Mwichie Namusamba
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Zhi Li
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Qi Zhang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China.
| | - Bing Wang
- College of Life Science and Health, Northeastern University, 195 Chuangxin Road, Hunnan District, Shenyang, Liaoning Province, 110819, People's Republic of China.
| |
Collapse
|
14
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Sadiq BA, Mantel I, Blander JM. A Comprehensive Experimental Guide to Studying Cross-Presentation in Dendritic Cells In Vitro. CURRENT PROTOCOLS IN IMMUNOLOGY 2020; 131:e115. [PMID: 33316130 PMCID: PMC9060150 DOI: 10.1002/cpim.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cross-presentation was first observed serendipitously in the 1970s. The importance of it was quickly realized and subsequently attracted great attention from immunologists. Since then, our knowledge of the ability of certain antigen presenting cells to internalize, process, and load exogenous antigens onto MHC-I molecules to cross-prime CD8+ T cells has increased significantly. Dendritic cells (DCs) are exceptional cross-presenters, thus making them a great tool to study cross-presentation but the relative rarity of DCs in circulation and in tissues makes it challenging to isolate sufficient numbers of cells to study this process in vitro. In this paper, we describe in detail two methods to culture DCs from bone-marrow progenitors and a method to expand the numbers of DCs present in vivo as a source of endogenous bona-fide cross-presenting DCs. We also describe methods to assess cross-presentation by DCs using the activation of primary CD8+ T cells as a readout. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Isolation of bone marrow progenitor cells Basic Protocol 2: In vitro differentiation of dendritic cells with GM-CSF Support Protocol 1: Preparation of conditioned medium from GM-CSF producing J558L cells Basic Protocol 3: In vitro differentiation of dendritic cells with Flt3L Support Protocol 2: Preparation of Flt3L containing medium from B16-Flt3L cells Basic Protocol 4: Expansion of cDC1s in vivo for use in ex vivo experiments Basic Protocol 5: Characterizing resting and activated dendritic cells Basic Protocol 6: Dendritic cell stimulation, antigenic cargo, and fixation Support Protocol 3: Preparation of model antigen coated microbeads Support Protocol 4: Preparation of apoptotic cells Support Protocol 5: Preparation of recombinant bacteria Basic Protocol 7: Immunocytochemistry immunofluorescence (ICC/IF) Support Protocol 6: Preparation of Alcian blue-coated coverslips Basic Protocol 8: CD8+ T cell activation to assess cross-presentation Support Protocol 7: Isolation and labeling of CD8+ T cells with CFSE.
Collapse
Affiliation(s)
- Barzan A. Sadiq
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York
| | - Ian Mantel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, New York
| | - J. Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, New York
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, New York
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, New York
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, New York
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
16
|
Peng X, Yang L, Ma Y, Li Y, Li H. Focus on the morphogenesis, fate and the role in tumor progression of multivesicular bodies. Cell Commun Signal 2020; 18:122. [PMID: 32771015 PMCID: PMC7414566 DOI: 10.1186/s12964-020-00619-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/27/2020] [Indexed: 12/11/2022] Open
Abstract
Multivesicular bodies (MVBs) are endosome organelles that are gradually attracting research attention. Initially, MVBs were considered as important components of the endosomal-lysosomal degradation pathway. In recent years, with an increase in extracellular vesicle (EV) research, the biogenesis, fate, and pathological effects of MVBs have been increasingly studied. However, the mechanisms by which MVBs are sorted to the lysosome and plasma membrane remain unclear. In addition, whether the trafficking of MVBs can determine whether exosomes are released from cells, the factors are involved in cargo loading and regulating the fate of MVBs, and the roles that MVBs play in the development of disease are unknown. Consequently, this review focuses on the mechanism of MVB biogenesis, intraluminal vesicle formation, sorting of different cargoes, and regulation of their fate. We also discuss the mechanisms of emerging amphisome-dependent secretion and degradation. In addition, we highlight the contributions of MVBs to the heterogeneity of EVs, and their important roles in cancer. Thus, we attempt to unravel the various functions of MVBs in the cell and their multiple roles in tumor progression. Video Abstract
Collapse
Affiliation(s)
- Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
17
|
Engineering nanoparticulate vaccines for enhancing antigen cross-presentation. Curr Opin Biotechnol 2020; 66:113-122. [PMID: 32745889 DOI: 10.1016/j.copbio.2020.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022]
Abstract
Efficient cross-presentation is pivotal for vaccination against cancer and infection by intracellular virus and bacteria. Recently, various types of nanoparticle vaccines have been developed and investigated for efficiently and specifically improving cross-presentation and CD8+ T cell priming. In this review, we will summarize the known intracellular pathways involved in cross-presentation, and focus on several nanoparticle strategies that have been reported for enhancing cross-presentation, including designing multifunctional nano-vaccines for increasing endosomal escape, designing nano-vaccines that can target lymph nodes to improve antigen uptake by lymph node resident CD8α+ dendritic cells, and co-delivering immune modulators for upregulating cross-presentation related intracellular components. We will also briefly discuss the future prospects of cross-presentation based nano-vaccine strategy for curing diseases.
Collapse
|
18
|
Muntjewerff EM, Meesters LD, van den Bogaart G. Antigen Cross-Presentation by Macrophages. Front Immunol 2020; 11:1276. [PMID: 32733446 PMCID: PMC7360722 DOI: 10.3389/fimmu.2020.01276] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
The contribution of dendritic cell (DC) antigen cross-presentation to the activation of CD8+ T lymphocytes for immune defense against tumors, viruses, and intracellular pathogens has been recognized widely. Although originally thought to be an exclusive characteristic of DCs, recently also other immune cells, particularly macrophages, have been shown capable of cross-presentation. Here we provide an overview of in vitro and in vivo evidence on cross-presentation by macrophages. As we discuss, it is now firmly established that various types of tissue-resident macrophages are able to cross-present via similar cellular pathways as DCs. This is based on a wide range of antigens in macrophages from many different tissue origins such as blood, tumors, and lymphoid tissue. However, the physiological relevance of macrophage cross-presentation with potential contributions to activation of CD8+ T lymphocytes is still mostly unknown. While cross-presentation by various types of proinflammatory macrophages might be involved in cross-priming of naive CD8+ T lymphocytes, it might also be involved in local reactivation of memory and/or effector CD8+ T lymphocytes. Moreover, cross-presentation by anti-inflammatory macrophages could be related to immune tolerance. Because cross-presentation promotes the initiation and potentiation of antigen-specific CD8+ T lymphocyte responses, stimulating macrophages to cross-present antigen might be a promising strategy for antitumor or antiviral therapies.
Collapse
Affiliation(s)
- Elke M Muntjewerff
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luca D Meesters
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Molecular Microbiology and Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
19
|
Olson E, Geng J, Raghavan M. Polymorphisms of HLA-B: influences on assembly and immunity. Curr Opin Immunol 2020; 64:137-145. [PMID: 32619904 PMCID: PMC7772265 DOI: 10.1016/j.coi.2020.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/22/2020] [Indexed: 01/07/2023]
Abstract
The major histocompatibility class I (MHC-I) complex functions in innate and adaptive immunity, mediating surveillance of the subcellular environment. In humans, MHC-I heavy chains are encoded by three genes: the human leukocyte antigen (HLA)-A, HLA-B, and HLA-C. These genes are highly polymorphic, which results in the expression, typically, of six different HLA class I (HLA-I) proteins on the cell surface, and the presentation of diverse peptide antigens to CD8+ T cells for broad surveillance against many pathogenic conditions. Recent studies of HLA-B allotypes show that the polymorphisms, not surprisingly, also significantly impact protein folding and assembly pathways. The use of non-canonical assembly routes and the generation of non-canonical HLA-B conformers has consequences for immune receptor interactions and disease therapies.
Collapse
Affiliation(s)
- Eli Olson
- Graduate Program in Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Geng
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Silva Z, Ferro T, Almeida D, Soares H, Ferreira JA, Deschepper FM, Hensbergen PJ, Pirro M, van Vliet SJ, Springer S, Videira PA. MHC Class I Stability is Modulated by Cell Surface Sialylation in Human Dendritic Cells. Pharmaceutics 2020; 12:pharmaceutics12030249. [PMID: 32164343 PMCID: PMC7150992 DOI: 10.3390/pharmaceutics12030249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Maturation of human Dendritic Cells (DCs) is characterized by increased expression of antigen presentation molecules, and overall decreased levels of sialic acid at cell surface. Here, we aimed to identify sialylated proteins at DC surface and comprehend their role and modulation. Mass spectrometry analysis of DC’s proteins, pulled down by a sialic acid binding lectin, identified molecules of the major human histocompatibility complex class I (MHC-I), known as human leucocyte antigen (HLA). After desialylation, DCs showed significantly higher reactivity with antibodies specific for properly folded MHC-I-β2-microglobulin complex and for β2-microglobulin but showed significant lower reactivity with an antibody specific for free MHC-I heavy chain. Similar results for antibody reactivities were observed for TAP2-deficient lymphoblastoid T2 cells, which express HLA-A*02:01. Using fluorescent peptide specifically fitting the groove of HLA-A*02:01, instead of antibody staining, also showed higher peptide binding on desialylated cells, confirming higher surface expression of MHC-I complex. A decay assay showed that desialylation doubled the half-life of MHC-I molecules at cell surface in both DCs and T2 cells. The biological impact of DC´s desialylation was evaluated in co-cultures with autologous T cells, showing higher number and earlier immunological synapses, and consequent significantly increased production of IFN-γ by T cells. In summary, sialic acid content modulates the expression and stability of complex MHC-I, which may account for the improved DC-T synapses.
Collapse
Affiliation(s)
- Zélia Silva
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Z.S.); (T.F.); (D.A.); (F.M.D.)
| | - Tiago Ferro
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Z.S.); (T.F.); (D.A.); (F.M.D.)
- CDG & Allies – PPAIN- Congenital Disorders of Glycosylation & Allies - Professionals and Patient Associations International Network, 2829-516 Caparica, Portugal
| | - Danielle Almeida
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Z.S.); (T.F.); (D.A.); (F.M.D.)
| | - Helena Soares
- Human Immunobiology and Pathogenesis, CEDOC-Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal;
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, 4200-162 Porto, Portugal;
- Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
| | - Fanny M. Deschepper
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Z.S.); (T.F.); (D.A.); (F.M.D.)
| | - Paul J. Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (P.J.H.); (M.P.)
| | - Martina Pirro
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (P.J.H.); (M.P.)
| | - Sandra J. van Vliet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, De Boelelaan 1117, 1081 HzAmsterdam, The Netherlands;
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, 28759 Bremen, Germany;
| | - Paula A. Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (Z.S.); (T.F.); (D.A.); (F.M.D.)
- CDG & Allies – PPAIN- Congenital Disorders of Glycosylation & Allies - Professionals and Patient Associations International Network, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +351-212948530
| |
Collapse
|
21
|
Green DR. The Coming Decade of Cell Death Research: Five Riddles. Cell 2020; 177:1094-1107. [PMID: 31100266 DOI: 10.1016/j.cell.2019.04.024] [Citation(s) in RCA: 357] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/10/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022]
Abstract
Active cell death, in its many forms, is a fundamental biological process. Studies over the past several decades have explored the functions and consequences of cellular demise and elucidated several of the key cell death pathways. Here, I pose five questions, or riddles, that might provide a guide to the next decade of cell death research. Focusing mainly on four types of active cell death (apoptosis, necroptosis, pyroptosis, and ferroptosis) mainly in mammals, this Perspective explores the possible research directions that might answer these riddles, or at least prompt new ones.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
22
|
Miura R, Sawada SI, Mukai SA, Sasaki Y, Akiyoshi K. Antigen Delivery to Antigen-Presenting Cells for Adaptive Immune Response by Self-Assembled Anionic Polysaccharide Nanogel Vaccines. Biomacromolecules 2019; 21:621-629. [PMID: 31800235 DOI: 10.1021/acs.biomac.9b01351] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although current vaccine technology induces sufficient antibody responses to prophylactically ward off viral infections, an anticancer vaccine that directs the patient's immune system to directly fight extant malignant cells will require inducing Th1 and cytotoxic T lymphocyte responses in addition to antibody-mediated activities. Thus, new mechanisms are necessary to deliver antigen to cells in the lymphatic system that will induce these responses. To this end, we have developed a cholesterol-bearing pullulan (CHP) self-assembly nanogel of less than 100 nm, which we have now further modified to be anionic by carboxyl group substitution. Overall, the nanogel-protected antigens during transport to the lymphatic system and converting the vehicle to an anionic charge improved interactions with antigen-presenting cells. We further show that these modified nanogels are a more efficient system for delivering antigen to antigen-presenting cells, particularly langerin-expressing cells, and that this induced significant adaptive immunity. Therefore, we think that this technology could be used to improve anticancer immunotherapies.
Collapse
Affiliation(s)
- Risako Miura
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Sada-Atsu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Kyoto 615-8510 , Japan
| |
Collapse
|
23
|
Abstract
The accessory protein Nef of human immunodeficiency virus (HIV) is a primary determinant of viral pathogenesis. Nef is abundantly expressed during infection and reroutes a variety of cell surface proteins to disrupt host immunity and promote the viral replication cycle. Nef counteracts host defenses by sequestering and/or degrading its targets via the endocytic and secretory pathways. Nef does this by physically engaging a number of host trafficking proteins. Substantial progress has been achieved in identifying the targets of Nef, and a structural and mechanistic understanding of Nef's ability to command the protein trafficking machinery has recently started to coalesce. Comparative analysis of HIV and simian immunodeficiency virus (SIV) Nef proteins in the context of recent structural advances sheds further light on both viral evolution and the mechanisms whereby trafficking is hijacked. This review describes how advances in cell and structural biology are uncovering in growing detail how Nef subverts the host immune system, facilitates virus release, and enhances viral infectivity.
Collapse
|
24
|
Liu J, Jaijyan DK, Tang Q, Zhu H. Promising Cytomegalovirus-Based Vaccine Vector Induces Robust CD8 + T-Cell Response. Int J Mol Sci 2019; 20:E4457. [PMID: 31510028 PMCID: PMC6770317 DOI: 10.3390/ijms20184457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 02/08/2023] Open
Abstract
Vaccination has had great success in combating diseases, especially infectious diseases. However, traditional vaccination strategies are ineffective for several life-threatening diseases, including acquired immunodeficiency syndrome (AIDS), tuberculosis, malaria, and cancer. Viral vaccine vectors represent a promising strategy because they can efficiently deliver foreign genes and enhance antigen presentation in vivo. However, several limitations, including pre-existing immunity and packaging capacity, block the application of viral vectors. Cytomegalovirus (CMV) has been demonstrated as a new type of viral vector with additional advantages. CMV could systematically elicit and maintain high frequencies of effector memory T cells through the "memory inflation" mechanism. Studies have shown that CMV can be genetically modified to induce distinct patterns of CD8+ T-cell responses, while some unconventional CD8+ T-cell responses are rarely induced through conventional vaccine strategies. CMV has been used as a vaccine vector to deliver many disease-specific antigens, and the efficacy of these vaccines was tested in different animal models. Promising results demonstrated that the robust and unconventional T-cell responses elicited by the CMV-based vaccine vector are essential to control these diseases. These accumulated data and evidence strongly suggest that a CMV-based vaccine vector represents a promising approach to develop novel prophylactic and therapeutic vaccines against some epidemic pathogens and tumors.
Collapse
Affiliation(s)
- Jian Liu
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou 363000, China.
- College of Life Sciences, Jinan University, Guangzhou 510632, China.
| | - Dabbu Kumar Jaijyan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA.
| | - Hua Zhu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA.
- College of Life Sciences, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
26
|
Hahn J, Euler M, Kilgus E, Kienhöfer D, Stoof J, Knopf J, Hahn M, Harrer T, Hultqvist M, Olofsson P, Mokhir A, Holmdahl R, Herrmann M, Schett G, Muñoz LE, Hoffmann MH. NOX2 mediates quiescent handling of dead cell remnants in phagocytes. Redox Biol 2019; 26:101279. [PMID: 31349119 PMCID: PMC6669319 DOI: 10.1016/j.redox.2019.101279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
The phagocyte NADPH oxidase (the NOX2 complex) generates superoxide, the precursor to reactive oxygen species (ROS). ROS possess both antimicrobial and immunoregulatory function. Inactivating mutations in alleles of the NOX2 complex cause chronic granulomatous disease (CGD), characterized by an enhanced susceptibility to infections and autoimmune diseases such as Systemic lupus erythematosus (SLE). The latter is characterized by insufficient removal of dead cells, resulting in an autoimmune response against components of the cell's nucleus when non-cleared apoptotic cells lose their membrane integrity and present autoantigenic molecules in an inflammatory context. Here we aimed to shed light on the role of the NOX2 complex in handling of secondary necrotic cells (SNECs) and associated consequences for inflammation and autoimmunity during lupus. We show that individuals with SLE and CGD display accumulation of SNECs in blood monocytes and neutrophils. In a CGD phenotypic mouse strain (Ncf1** mice) build-up of SNECs in Ly6CHI blood monocytes was connected with a delayed degradation of the phagosomal cargo and accompanied by production of inflammatory mediators. Treatment with H2O2 or activators of ROS-formation reconstituted phagosomal abundance of SNECs to normal levels. Induction of experimental lupus further induced increased antibody-dependent uptake of SNECs into neutrophils. Lupus-primed Ncf1** neutrophils took up more SNECs than wild type neutrophils, whereas SNEC-accumulation in regulatory Ly6C−/LO monocytes was lower in Ncf1**mice. We deduce that the inflammatory rerouting of immune-stimulatory necrotic material into inflammatory phagocyte subsets contributes to the connection between low ROS production by the NOX2 complex and SLE.
Collapse
Affiliation(s)
- Jonas Hahn
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maximilien Euler
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Emelie Kilgus
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Deborah Kienhöfer
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Julia Stoof
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jasmin Knopf
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Madelaine Hahn
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thomas Harrer
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Peter Olofsson
- Redoxis/Pronoxis AB, Medicon Village Lund, Sweden; Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rikard Holmdahl
- Section of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Herrmann
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Luis E Muñoz
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Markus H Hoffmann
- Department of Medicine 3, Rheumatology and Immunology, Friedrich Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
27
|
Corridoni D, Shiraishi S, Chapman T, Steevels T, Muraro D, Thézénas ML, Prota G, Chen JL, Gileadi U, Ternette N, Cerundolo V, Simmons A. NOD2 and TLR2 Signal via TBK1 and PI31 to Direct Cross-Presentation and CD8 T Cell Responses. Front Immunol 2019; 10:958. [PMID: 31114588 PMCID: PMC6503738 DOI: 10.3389/fimmu.2019.00958] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
NOD2 and TLR2 recognize components of bacterial cell wall peptidoglycan and direct defense against enteric pathogens. CD8+ T cells are important for immunity to such pathogens but how NOD2 and TLR2 induce antigen specific CD8+ T cell responses is unknown. Here, we define how these pattern recognition receptors (PRRs) signal in primary dendritic cells (DCs) to influence MHC class I antigen presentation. We show NOD2 and TLR2 phosphorylate PI31 via TBK1 following activation in DCs. PI31 interacts with TBK1 and Sec16A at endoplasmic reticulum exit sites (ERES), which positively regulates MHC class I peptide loading and immunoproteasome stability. Following NOD2 and TLR2 stimulation, depletion of PI31 or inhibition of TBK1 activity in vivo impairs DC cross-presentation and CD8+ T cell activation. DCs from Crohn's patients expressing NOD2 polymorphisms show dysregulated cross-presentation and CD8+ T cell responses. Our findings reveal unidentified mechanisms that underlie CD8+ T cell responses to bacteria in health and in Crohn's.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Seiji Shiraishi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tessa Steevels
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Daniele Muraro
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Marie-Laëtitia Thézénas
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Gennaro Prota
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Ji-Li Chen
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicola Ternette
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Karamooz E, Harriff MJ, Narayanan GA, Worley A, Lewinsohn DM. MR1 recycling and blockade of endosomal trafficking reveal distinguishable antigen presentation pathways between Mycobacterium tuberculosis infection and exogenously delivered antigens. Sci Rep 2019; 9:4797. [PMID: 30886396 PMCID: PMC6423294 DOI: 10.1038/s41598-019-41402-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/05/2019] [Indexed: 01/01/2023] Open
Abstract
The MHC-Ib molecule MR1 presents microbial metabolites to MR1-restricted T cells (MR1Ts). Given the ubiquitous expression of MR1 and the high prevalence of human MR1Ts, it is important to understand the mechanisms of MR1-dependent antigen presentation. Here, we show that MR1-dependent antigen presentation can be distinguished between intracellular Mycobacterium tuberculosis (Mtb) infection and exogenously added antigens. Although both Mtb infection and exogenously added antigens are presented by preformed MR1, only exogenously added antigens are capable of reusing MR1 that had been bound to the folic acid metabolite 6-formylpterin (6-FP). In addition, we identify an endosomal trafficking protein, Syntaxin 4, which is specifically involved in the presentation of exogenously delivered antigens but not Mtb-dependent antigen presentation. These data reveal there are multiple ways that MR1 can sample antigens and that MR1-mediated sampling of intracellular Mtb infection is distinguishable from the sampling of exogenously added antigens.
Collapse
Affiliation(s)
- Elham Karamooz
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA.
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA.
| | - Melanie J Harriff
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Gitanjali A Narayanan
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Aneta Worley
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA
| | - David M Lewinsohn
- VA Portland Health Care System, Research and Development, 3710 SW US Veterans Hospital Road, Portland, 97239, Oregon, USA.
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA.
| |
Collapse
|
29
|
Eckert F, Zwirner K, Boeke S, Thorwarth D, Zips D, Huber SM. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors. Front Immunol 2019; 10:407. [PMID: 30930892 PMCID: PMC6423917 DOI: 10.3389/fimmu.2019.00407] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
In order to compensate for the increased oxygen consumption in growing tumors, tumors need angiogenesis and vasculogenesis to increase the supply. Insufficiency in this process or in the microcirculation leads to hypoxic tumor areas with a significantly reduced pO2, which in turn leads to alterations in the biology of cancer cells as well as in the tumor microenvironment. Cancer cells develop more aggressive phenotypes, stem cell features and are more prone to metastasis formation and migration. In addition, intratumoral hypoxia confers therapy resistance, specifically radioresistance. Reactive oxygen species are crucial in fixing DNA breaks after ionizing radiation. Thus, hypoxic tumor cells show a two- to threefold increase in radioresistance. The microenvironment is enriched with chemokines (e.g., SDF-1) and growth factors (e.g., TGFβ) additionally reducing radiosensitivity. During recent years hypoxia has also been identified as a major factor for immune suppression in the tumor microenvironment. Hypoxic tumors show increased numbers of myeloid derived suppressor cells (MDSCs) as well as regulatory T cells (Tregs) and decreased infiltration and activation of cytotoxic T cells. The combination of radiotherapy with immune checkpoint inhibition is on the rise in the treatment of metastatic cancer patients, but is also tested in multiple curative treatment settings. There is a strong rationale for synergistic effects, such as increased T cell infiltration in irradiated tumors and mitigation of radiation-induced immunosuppressive mechanisms such as PD-L1 upregulation by immune checkpoint inhibition. Given the worse prognosis of patients with hypoxic tumors due to local therapy resistance but also increased rate of distant metastases and the strong immune suppression induced by hypoxia, we hypothesize that the subgroup of patients with hypoxic tumors might be of special interest for combining immune checkpoint inhibition with radiotherapy.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Zwirner
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniela Thorwarth
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK) Partnersite Tuebingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan M. Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
30
|
SHARPIN at the nexus of integrin, immune, and inflammatory signaling in human platelets. Proc Natl Acad Sci U S A 2019; 116:4983-4988. [PMID: 30804189 DOI: 10.1073/pnas.1819156116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Platelets mediate primary hemostasis, and recent work has emphasized platelet participation in immunity and inflammation. The function of the platelet-specific integrin αIIbβ3 as a fibrinogen receptor in hemostasis is well defined, but the roles of αIIbβ3 or integrin-associated proteins in nonhemostatic platelet functions are poorly understood. Here we show that human platelets express the integrin-associated protein SHARPIN with functional consequences. In leukocytes, SHARPIN interacts with integrin α cytoplasmic tails, and it is also an obligate member of the linear ubiquitin chain assembly complex (LUBAC), which mediates Met1 linear ubiquitination of proteins leading to canonical NF-κB activation. SHARPIN interacted with αIIb in pull-down and coimmunoprecipitation assays. SHARPIN was partially localized, as was αIIbβ3, at platelet edges, and thrombin stimulation induced more central SHARPIN localization. SHARPIN also coimmunoprecipitated from platelets with the two other proteins comprising LUBAC, the E3 ligase HOIP and HOIL-1. Platelet stimulation with thrombin or inflammatory agonists, including lipopolysaccharide or soluble CD40 ligand (sCD40L), induced Met1 linear ubiquitination of the NF-κB pathway protein NEMO and serine-536 phosphorylation of the p65 RelA subunit of NF-κB. In human megakaryocytes and/or platelets derived from induced pluripotent stem (iPS) cells, SHARPIN knockdown caused increased basal and agonist-induced fibrinogen binding to αIIbβ3 as well as reduced Met1 ubiquitination and RelA phosphorylation. Moreover, these SHARPIN knockdown cells exhibited increased surface expression of MHC class I molecules and increased release of sCD40L. These results establish that SHARPIN functions in the human megakaryocyte/platelet lineage through protein interactions at the nexus of integrin and immune/inflammatory signaling.
Collapse
|
31
|
Ma W, Stroobant V, Heirman C, Sun Z, Thielemans K, Mulder A, van der Bruggen P, Van den Eynde BJ. The Vacuolar Pathway of Long Peptide Cross-Presentation Can Be TAP Dependent. THE JOURNAL OF IMMUNOLOGY 2018; 202:451-459. [PMID: 30559321 DOI: 10.4049/jimmunol.1800353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022]
Abstract
The intracellular pathway of cross-presentation, which allows MHC class I-restricted presentation of peptides derived from exogenous Ags, remains poorly defined and may vary with the nature of the exogenous Ag and the type of APC. It can be cytosolic, characterized by proteasome and TAP dependency, or vacuolar, usually believed to be proteasome and TAP independent. Cross-presentation is particularly effective with long synthetic peptides, and we previously reported that the HLA-A2-restricted cross-presentation of a long peptide derived from melanoma Ag gp100 by human monocyte-derived immature dendritic cells occurred in a vacuolar pathway, making use of newly synthesized HLA-A2 molecules that follow a nonclassical secretion route. In this article, we show that the HLA-A1-restricted cross-presentation of a long peptide derived from tumor Ag MAGE-A3 by human monocyte-derived immature dendritic cells also follows a vacuolar pathway. However, as opposed to the HLA-A2-restricted peptide, cross-presentation of the HLA-A1-restricted peptide is TAP dependent. We show that this paradoxical TAP-dependency is indirect and reflects the need for TAP to load HLA-A1 molecules with peptides in the endoplasmic reticulum, to allow them to escape the endoplasmic reticulum and reach the vacuole, where peptide exchange with the cross-presented peptide likely occurs. Our results confirm and extend the involvement of the vacuolar pathway in the cross-presentation of long peptides, and indicate that TAP-dependency can no longer be used as a key criterion to distinguish the cytosolic from the vacuolar pathway of cross-presentation. They also stress the existence of an alternative secretory route for MHC class I, which will be worthy of further studies.
Collapse
Affiliation(s)
- Wenbin Ma
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels B-1090, Belgium; and
| | - Zhaojun Sun
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Vrije Universiteit Brussel, Brussels B-1090, Belgium; and
| | - Arend Mulder
- Laboratory for Transplantation Immunology, Department of Immunohaematology and Bloodtransfusion, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Pierre van der Bruggen
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Benoît J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium; .,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium.,de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| |
Collapse
|
32
|
Nunes-Hasler P. Oxidized lipids keep heat shock chaperones busy: new insights on the deficiencies of tumour-associated dendritic cells. J Immunother Cancer 2018; 6:60. [PMID: 29921314 PMCID: PMC6008926 DOI: 10.1186/s40425-018-0373-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022] Open
Abstract
In a recent publication in Nature Communications the group of Dr. Dmitry Gabrilovich takes us one step closer to understanding why lipid accumulation impairs the function of tumour-associated dendritic cells (DCs). In this study, the authors present two surprising and significant findings. First, they show that in mouse DCs oxidized lipids function as a sink that traps the heat shock chaperone HSP70, a molecular target of emerging anti-cancer strategies. Secondly, they find that HSP70 in turn regulates the trafficking of peptide-loaded major histocompatibility complex class I (pMHC-I) molecules, a complex that triggers the proliferation of cancer-killing T cells. These observations are discussed briefly in the context of lipid droplet function and pMHC-I trafficking in tumour-associated DCs, as well as HSP70's pleiotropic and incompletely understood roles - and what they mean for future cancer therapy designs.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Faculty of Medicine, Rue Michel-Servet 1, 1211, Geneva, Switzerland.
| |
Collapse
|
33
|
Wennerberg E, Vanpouille-Box C, Bornstein S, Yamazaki T, Demaria S, Galluzzi L. Immune recognition of irradiated cancer cells. Immunol Rev 2018; 280:220-230. [PMID: 29027232 DOI: 10.1111/imr.12568] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ionizing irradiation has been extensively employed for the clinical management of solid tumors, with therapeutic or palliative intents, for decades. Until recently, radiation therapy (RT) was believed to mediate antineoplastic activity mostly (if not only) as a consequence of cancer cell-intrinsic effects. Indeed, the macromolecular damage imposed to malignant cells by RT initiates one or multiple signal transduction cascades that drive a permanent proliferative arrest (cellular senescence) or regulated cell death. Both these phenomena show a rather linear dose-response correlation. However, RT also mediates consistent immunological activity, not only as an "on-target effect" originating within irradiated cancer cells, but also as an "off-target effect" depending on the interaction between RT and stromal, endothelial, and immune components of the tumor microenvironment. Interestingly, the immunological activity of RT does not exhibit linear dose-response correlation. Here, we discuss the mechanisms whereby RT alters the capacity of the immune system to recognize and eliminate irradiated cancer cells, either as an "on-target" or as on "off-target" effect. In particular, we discuss the antagonism between the immunostimulatory and immunosuppressive effects of RT as we delineate combinatorial strategies to boost the former at the expenses of the latter.
Collapse
Affiliation(s)
- Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Sophia Bornstein
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Université Paris Descartes/Paris V, Paris, France
| |
Collapse
|
34
|
Wu SJ, Niknafs YS, Kim SH, Oravecz-Wilson K, Zajac C, Toubai T, Sun Y, Prasad J, Peltier D, Fujiwara H, Hedig I, Mathewson ND, Khoriaty R, Ginsburg D, Reddy P. A Critical Analysis of the Role of SNARE Protein SEC22B in Antigen Cross-Presentation. Cell Rep 2018; 19:2645-2656. [PMID: 28658614 DOI: 10.1016/j.celrep.2017.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/05/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Cross-presentation initiates immune responses against tumors and viral infections by presenting extracellular antigen on MHC I to activate CD8+ T cell-mediated cytotoxicity. In vitro studies in dendritic cells (DCs) established SNARE protein SEC22B as a specific regulator of cross-presentation. However, the in vivo contribution of SEC22B to cross-presentation has not been tested. To address this, we generated DC-specific Sec22b knockout (CD11c-Cre Sec22bfl/fl) mice. Contrary to the paradigm, SEC22B-deficient DCs efficiently cross-present both in vivo and in vitro. Although in vitro small hairpin RNA (shRNA)-mediated Sec22b silencing in bone-marrow-derived dendritic cells (BMDCs) reduced cross-presentation, treatment of SEC22B-deficient BMDCs with the same shRNA produced a similar defect, suggesting the Sec22b shRNA modulates cross-presentation through off-target effects. RNA sequencing of Sec22b shRNA-treated SEC22B-deficient BMDCs demonstrated several changes in the transcriptome. Our data demonstrate that contrary to the accepted model, SEC22B is not necessary for cross-presentation, cautioning against extrapolating phenotypes from knockdown studies alone.
Collapse
Affiliation(s)
- S Julia Wu
- Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yashar S Niknafs
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephanie H Kim
- Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katherine Oravecz-Wilson
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Cynthia Zajac
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Tomomi Toubai
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Yaping Sun
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Jayendra Prasad
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Daniel Peltier
- Division of Pediatric Hematology/Oncology, Department of Pediatrics and Communicable Diseases, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Hideaki Fujiwara
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Israel Hedig
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - Nathan D Mathewson
- Dana Farber Cancer Institute, Harvard University, Cambridge, MA 02215, USA
| | - Rami Khoriaty
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA
| | - David Ginsburg
- Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pavan Reddy
- Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Hematology/Oncology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
NADPH oxidase activation regulates apoptotic neutrophil clearance by murine macrophages. Blood 2018; 131:2367-2378. [PMID: 29618478 DOI: 10.1182/blood-2017-09-809004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/29/2018] [Indexed: 02/07/2023] Open
Abstract
The phagocyte reduced NAD phosphate (NADPH) oxidase generates superoxide, the precursor to reactive oxygen species (ROS) that has both antimicrobial and immunoregulatory functions. Inactivating mutations in NADPH oxidase alleles cause chronic granulomatous disease (CGD), characterized by enhanced susceptibility to life-threatening microbial infections and inflammatory disorders; hypomorphic NADPH oxidase alleles are associated with autoimmunity. Impaired apoptotic cell (AC) clearance is implicated as an important contributing factor in chronic inflammation and autoimmunity, but the role of NADPH oxidase-derived ROS in this process is incompletely understood. Here, we demonstrate that phagocytosis of AC (efferocytosis) potently activated NADPH oxidase in mouse peritoneal exudate macrophages (PEMs). ROS generation was dependent on macrophage CD11b, Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response 88 (MyD88), and was also regulated by phosphatidylinositol 3-phosphate binding to the p40 phox oxidase subunit. Maturation of efferosomes containing apoptotic neutrophils was significantly delayed in CGD PEMs, including acidification and acquisition of proteolytic activity, and was associated with slower digestion of apoptotic neutrophil proteins. Treatment of wild-type macrophages with the vacuolar-type H+ ATPase inhibitor bafilomycin also delayed proteolysis within efferosomes, showing that luminal acidification was essential for efficient digestion of efferosome proteins. Finally, cross-presentation of AC-associated antigens by CGD PEMs to CD8 T cells was increased. These studies unravel a key role for the NADPH oxidase in the disposal of ACs by inflammatory macrophages. The oxidants generated promote efferosome maturation and acidification that facilitate the degradation of ingested ACs.
Collapse
|
36
|
Abstract
Antigen cross-presentation is an adaptation of the cellular process of loading MHC-I molecules with endogenous peptides during their biosynthesis within the endoplasmic reticulum. Cross-presented peptides derive from internalized proteins, microbial pathogens, and transformed or dying cells. The physical separation of internalized cargo from the endoplasmic reticulum, where the machinery for assembling peptide-MHC-I complexes resides, poses a challenge. To solve this problem, deliberate rewiring of organelle communication within cells is necessary to prepare for cross-presentation, and different endocytic receptors and vesicular traffic patterns customize the emergent cross-presentation compartment to the nature of the peptide source. Three distinct pathways of vesicular traffic converge to form the ideal cross-presentation compartment, each regulated differently to supply a unique component that enables cross-presentation of a diverse repertoire of peptides. Delivery of centerpiece MHC-I molecules is the critical step regulated by microbe-sensitive Toll-like receptors. Defining the subcellular sources of MHC-I and identifying sites of peptide loading during cross-presentation remain key challenges.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; .,Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, and Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| |
Collapse
|
37
|
Corridoni D, Chapman T, Ambrose T, Simmons A. Emerging Mechanisms of Innate Immunity and Their Translational Potential in Inflammatory Bowel Disease. Front Med (Lausanne) 2018. [PMID: 29515999 PMCID: PMC5825991 DOI: 10.3389/fmed.2018.00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation.
Collapse
Affiliation(s)
- Daniele Corridoni
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Thomas Chapman
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Tim Ambrose
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
38
|
Spel L, Luteijn RD, Drijfhout JW, Nierkens S, Boes M, Wiertz EJH. Endocytosed soluble cowpox virus protein CPXV012 inhibits antigen cross-presentation in human monocyte-derived dendritic cells. Immunol Cell Biol 2018; 96:137-148. [PMID: 29363167 DOI: 10.1111/imcb.1024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022]
Abstract
Viruses may interfere with the MHC class I antigen presentation pathway in order to avoid CD8+ T cell-mediated immunity. A key target within this pathway is the peptide transporter TAP. This transporter plays a central role in MHC class I-mediated peptide presentation of endogenous antigens. In addition, TAP plays a role in antigen cross-presentation of exogenously derived antigens by dendritic cells (DCs). In this study, a soluble form of the cowpox virus TAP inhibitor CPXV012 is synthesized for exogenous delivery into the antigen cross-presentation route of human monocyte-derived (mo)DCs. We show that soluble CPXV012 localizes to TAP+ compartments that carry internalized antigen and is a potent inhibitor of antigen cross-presentation. CPXV012 stimulates the prolonged deposition of antigen fragments in storage compartments of moDCs, as a result of reduced endosomal acidification and reduced antigen proteolysis when soluble CPXV012 is present. Thus, a dual function can be proposed for CPXV012: inhibition of TAP-mediated peptide transport and inhibition of endosomal antigen degradation. We propose this second function for soluble CPXV012 can serve to interfere with antigen cross-presentation in a peptide transport-independent manner.
Collapse
Affiliation(s)
- Lotte Spel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Rutger D Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Jan W Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Marianne Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| | - Emmanuel J H Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 EA, The Netherlands
| |
Collapse
|
39
|
Affiliation(s)
- Sebastian Amigorena
- INSERM U932, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
40
|
Appenheimer MM, Evans SS. Temperature and adaptive immunity. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:397-415. [DOI: 10.1016/b978-0-444-63912-7.00024-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
41
|
Elllis JA. Another Look at the "Dismal Science" and Jenner's Experiment. Vet Clin North Am Small Anim Pract 2017; 48:243-255. [PMID: 29195925 DOI: 10.1016/j.cvsm.2017.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The follow-up to Jenner's experiment, routine vaccination, has reduced more disease and saved more vertebrate lives than any other iatrogenic procedure by orders of magnitude. The unassailability of that potentially provocative cliché has been ciphered in human medicine, even if it is more difficult in our profession. Most public relations headaches concerning vaccines are a failure to communicate, often resulting in overly great expectations. Even in the throes of a tight appointment schedule remembering and synopsizing (for clients), some details of the dismal science can make practice great again.
Collapse
Affiliation(s)
- John A Elllis
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
42
|
Innate immune receptors for cross-presentation: The expanding role of NLRs. Mol Immunol 2017; 113:6-10. [PMID: 29198621 PMCID: PMC6859786 DOI: 10.1016/j.molimm.2017.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
PRRs temporally control cross-presentation during acute vs. chronic pathogen handling. NLRs signal in close proximity to phagosomal and endosomal membranes. Current status of NLR-dependent regulation of MHC class antigen presentation.
A critical role of pattern recognition receptors (PRRs) is to influence adaptive immune responses by regulating antigen presentation. Engagement of PRRs in dendritic cells (DCs) increases MHC class I antigen presentation and CD8+ T-cell activation by cross-presented peptides but the molecular mechanisms underlying these effects are not completely understood. Studies looking at the role of PRRs in cross-presentation have been largely limited to TLRs but the role of other PRRs such as cytosolic nucleotide-binding oligomerization domain-like (NOD-like) receptors remains particularly enigmatic. Here we discuss recent evidence of the role of PRRs on cross-presentation and consider how cytosolic NLR-associated pathways, such as NOD2, may integrate these signals resulting in effective adaptive CD8+ T cells responses.
Collapse
|
43
|
Lutz MB, Strobl H, Schuler G, Romani N. GM-CSF Monocyte-Derived Cells and Langerhans Cells As Part of the Dendritic Cell Family. Front Immunol 2017; 8:1388. [PMID: 29109731 PMCID: PMC5660299 DOI: 10.3389/fimmu.2017.01388] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) and macrophages (Mph) share many characteristics as components of the innate immune system. The criteria to classify the multitude of subsets within the mononuclear phagocyte system are currently phenotype, ontogeny, transcription patterns, epigenetic adaptations, and function. More recently, ontogenetic, transcriptional, and proteomic research approaches uncovered major developmental differences between Flt3L-dependent conventional DCs as compared with Mphs and monocyte-derived DCs (MoDCs), the latter mainly generated in vitro from murine bone marrow-derived DCs (BM-DCs) or human CD14+ peripheral blood monocytes. Conversely, in vitro GM-CSF-dependent monocyte-derived Mphs largely resemble MoDCs whereas tissue-resident Mphs show a common embryonic origin from yolk sac and fetal liver with Langerhans cells (LCs). The novel ontogenetic findings opened discussions on the terminology of DCs versus Mphs. Here, we bring forward arguments to facilitate definitions of BM-DCs, MoDCs, and LCs. We propose a group model of terminology for all DC subsets that attempts to encompass both ontogeny and function.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Herbert Strobl
- Institute of Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Nikolaus Romani
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
44
|
How MR1 Presents a Pathogen Metabolic Signature to Mucosal-Associated Invariant T (MAIT) Cells. Trends Immunol 2017; 38:679-689. [DOI: 10.1016/j.it.2017.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/16/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
|
45
|
Früh K, Picker L. CD8+ T cell programming by cytomegalovirus vectors: applications in prophylactic and therapeutic vaccination. Curr Opin Immunol 2017; 47:52-56. [PMID: 28734175 DOI: 10.1016/j.coi.2017.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022]
Abstract
Vectors based on cytomegalovirus (CMV) represent a novel vaccine platform that maintains high frequencies of non-exhausted effector memory T cells in both CMV sero-positive and sero-negative individuals. In non-human primate models, CMV vectored vaccines provide unprecedented protection against simian immunodeficiency virus (SIV). Moreover, CMV vectors can be genetically altered to program highly diverse CD8+ T cell responses that differ in their epitope targeting including conventional, MHC-I restricted CD8+ T cells as well as unconventional CD8+ T cells restricted by MHC class II or non-polymorphic MHC-E. By modifying cytomegaloviral determinants that control unconventional T cell priming it is possible to uniquely tailor the CD8+ T cell response for each individual disease target in order to maximize prophylactic or therapeutic protection.
Collapse
Affiliation(s)
- Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, 97006, United States.
| | - Louis Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, 97006, United States.
| |
Collapse
|
46
|
Phagocytosis: A Fundamental Process in Immunity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9042851. [PMID: 28691037 PMCID: PMC5485277 DOI: 10.1155/2017/9042851] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this he gave us the basis for our modern understanding of inflammation and the innate and acquired immune responses. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In recent years, the use of new tools of molecular biology and microscopy has provided new insights into the cellular mechanisms of phagocytosis. In this review, we present a general view of our current knowledge on phagocytosis. We emphasize novel molecular findings, particularly on phagosome formation and maturation, and discuss aspects that remain incompletely understood.
Collapse
|
47
|
Johnson DL, Wayt J, Wilson JM, Donaldson JG. Arf6 and Rab22 mediate T cell conjugate formation by regulating clathrin-independent endosomal membrane trafficking. J Cell Sci 2017; 130:2405-2415. [PMID: 28584192 DOI: 10.1242/jcs.200477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/30/2017] [Indexed: 12/16/2022] Open
Abstract
Endosomal trafficking can influence the composition of the plasma membrane and the ability of cells to polarize their membranes. Here, we examined whether trafficking through clathrin-independent endocytosis (CIE) affects the ability of T cells to form a cell-cell conjugate with antigen-presenting cells (APCs). We show that CIE occurs in both the Jurkat T cell line and primary human T cells. In Jurkat cells, the activities of two guanine nucleotide binding proteins, Arf6 and Rab22 (also known as Rab22a), influence CIE and conjugate formation. Expression of the constitutively active form of Arf6, Arf6Q67L, inhibits CIE and conjugate formation, and results in the accumulation of vacuoles containing lymphocyte function-associated antigen 1 (LFA-1) and CD4, molecules important for T cell interaction with the APC. Moreover, expression of the GTP-binding defective mutant of Rab22, Rab22S19N, inhibits CIE and conjugate formation, suggesting that Rab22 function is required for these activities. Furthermore, Jurkat cells expressing Rab22S19N were impaired in spreading onto coverslips coated with T cell receptor-activating antibodies. These observations support a role for CIE, Arf6 and Rab22 in conjugate formation between T cells and APCs.
Collapse
Affiliation(s)
- Debra L Johnson
- Cell Biology & Physiology Center, NHLBI, NIH, Bethesda, MD 20892, USA.,Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Jessica Wayt
- Cell Biology & Physiology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Jean M Wilson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Julie G Donaldson
- Cell Biology & Physiology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Nunes-Hasler P, Demaurex N. The ER phagosome connection in the era of membrane contact sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1513-1524. [PMID: 28432021 DOI: 10.1016/j.bbamcr.2017.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
Phagocytosis is an essential mechanism through which innate immune cells ingest foreign material that is either destroyed or used to generate and present antigens and initiate adaptive immune responses. While a role for the ER during phagosome biogenesis has been recognized, whether fusion with ER cisternae or vesicular derivatives occurs has been the source of much contention. Membrane contact sites (MCS) are tight appositions between ER membranes and various organelles that coordinate multiple functions including localized signalling, lipid transfer and trafficking. The discovery that MCS form between the ER and phagosomes now begs the question of whether MCS play a role in connecting the ER to phagosomes under different contexts. In this review, we consider the implications of MCS between the ER and phagosomes during cross-presentation and infection with intracellular pathogens. We also discuss the similarities between these contacts and those between the ER and plasma membrane and acidic organelles such as endosomes and lysosomes. This article is part of a Special Issue entitled: Membrane Contact Sites edited by Christian Ungermann and Benoit Kornmann.
Collapse
Affiliation(s)
- Paula Nunes-Hasler
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland.
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|
49
|
Ertl HCJ, High KA. Impact of AAV Capsid-Specific T-Cell Responses on Design and Outcome of Clinical Gene Transfer Trials with Recombinant Adeno-Associated Viral Vectors: An Evolving Controversy. Hum Gene Ther 2016; 28:328-337. [PMID: 28042943 DOI: 10.1089/hum.2016.172] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recombinant adenovirus-associated (rAAV) vectors due to their ease of construction, wide tissue tropism, and lack of pathogenicity remain at the forefront for long-term gene replacement therapy. In spite of very encouraging preclinical results, clinical trials were initially unsuccessful; expression of the rAAV vector-delivered therapeutic protein was transient. Loss of expression was linked to an expansion of AAV capsid-specific T-cell responses, leading to the hypothesis that rAAV vectors recall pre-existing memory T cells that had been induced by natural infections with AAV together with a helper virus. Although this was hotly debated at first, AAV capsid-specific T-cell responses were observed in several gene transfer trials that used high doses of rAAV vectors. Subsequent trials designed to circumvent these T-cell responses through the use of immunosuppressive drugs, rAAV vectors based on rare serotypes, or modified to allow for therapeutic levels of the transgene product at low, non-immunogenic vector doses are now successful in correcting debilitating diseases.
Collapse
|