1
|
Ali A, Azmat U, Ji Z, Khatoon A, Murtaza B, Akbar K, Irshad U, Raza R, Su Z. Beyond Genes: Epiregulomes as Molecular Commanders in Innate Immunity. Int Immunopharmacol 2024; 142:113149. [PMID: 39278059 DOI: 10.1016/j.intimp.2024.113149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/09/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
The natural fastest way to deal with pathogens or danger signals is the innate immune system. This system prevents too much inflammation and tissue damage and efficiently eliminates pathogens. The epiregulome is the chromatin structure influenced by epigenetic factors and linked to cis-regulatory elements (CREs). The epiregulome helps to end the inflammatory response and also assists innate immune cells to show specific action by making cell-specific gene expression patterns. This inspection unfolds two concepts: (1) how epiregulomes are shaped by switching the expression levels of genes, manoeuvre enzyme activity and earmark of chromatin modifiers on specific genes; during and after the infection, and (2) how the expression of specific genes (aids in prompt management of innate cell growth, or the reaction to aggravation and illness) command by epiregulomes that formed during the above process. In this review, the consequences of intrinsic immuno-metabolic remodelling on epiregulomes and potential difficulties in identifying the master epiregulome that regulates innate immunity and inflammation have been discussed.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, China.
| | - Urooj Azmat
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Ziyi Ji
- Department of Histology and Embryology, Shantou University Medical College, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Science and Technology, Dalian, China
| | - Kaynaat Akbar
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Urooj Irshad
- Department Biological Sciences, Faculty of Sciences, Superior University Lahore, Punjab, Pakistan
| | - Rameen Raza
- Department of Pathology, University of Agriculture Faisalabad, Pakistan
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, China.
| |
Collapse
|
2
|
Qi LJ, Gao S, Ning YH, Chen XJ, Wang RZ, Feng X. Bimin Kang ameliorates the minimal persistent inflammation in allergic rhinitis by reducing BCL11B expression and regulating ILC2 plasticity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118454. [PMID: 38852638 DOI: 10.1016/j.jep.2024.118454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Minimal persistent inflammation (MPI) is a major contributor to the recurrence of allergic rhinitis (AR). The traditional Chinese herbal medicine known as Bimin Kang Mixture (BMK) have been used in clinics for decades to treat AR, which can relieve AR symptoms, reduce inflammatory response and improve immune function. However, its mechanism in controlling MPI is still unclear. AIM OF THE STUDY This study aims to assess the therapeutic effect of BMK on MPI, and elaborate the mechanism involved in BMK intervention in BCL11B regulation of type 2 innate lymphoid cell (ILC2) plasticity in the treatment of MPI. MATERIAL AND METHODS The effect of BMK (9.1 ml/kg) and Loratadine (15.15 mg/kg) on MPI was evaluated based on symptoms, pathological staining, and ELISA assays. RT-qPCR and flow cytometry were also employed to assess the expression of BCL11B, IL-12/IL-12Rβ2, and IL-18/IL-18Rα signaling pathways associated with ILC2 plasticity in the airway tissues of MPI mice following BMK intervention. RESULTS BMK restored the airway epithelial barrier, and markedly reduced inflammatory cells (eosinophils, neutrophils) infiltration (P < 0.01) and goblet cells hyperplasia (P < 0.05). BCL11B expression positively correlated with the ILC2 proportion in the lungs and nasal mucosa of AR and MPI mice (P < 0.01). BMK downregulated BCL11B expression (P < 0.05) and reduced the proportion of ILC2, ILC3 and ILC3-like ILC2 subsets (P < 0.05). Moreover, BMK promoted the conversion of ILC2 into an ILC1-like phenotype through IL-12/IL-12Rβ2 and IL-18/IL-18Rα signaling pathways in MPI mice. CONCLUSION By downregulating BCL11B expression, BMK regulates ILC2 plasticity and decreases the proportion of ILC2, ILC3, and ILC3-like ILC2 subsets, promoting the conversion of ILC2 to ILC1, thus restoring balance of ILC subsets in airway tissues and control MPI.
Collapse
Affiliation(s)
- Li-Jie Qi
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, 250012, China.
| | - Shang Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Yun-Hong Ning
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Xiang-Jing Chen
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| | - Ren-Zhong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| | - Xin Feng
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Bao K, Gu X, Song Y, Zhou Y, Chen Y, Yu X, Yuan W, Shi L, Zheng J, Hong M. TCF-1 and TOX regulate the memory formation of intestinal group 2 innate lymphoid cells in asthma. Nat Commun 2024; 15:7850. [PMID: 39245681 PMCID: PMC11381517 DOI: 10.1038/s41467-024-52252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
Immune memory has been expanded to group 2 innate lymphoid cells (ILC2s), but the cellular and molecular bases remain incompletely understood. Based on house dust mite (HDM)-induced mice asthma models and human samples, we applied flow cytometry, parabiosis, in vivo imaging and adoptive transplantation to confirm the persistence, migration and function of CD45+lineage-CD90.2+NK1.1-NKp46-ST2-KLRG1+IL-17RB+ memory-like ILC2s (ml-ILC2s). Regulated by CCR9/CCL25 and S1P signaling, ml-ILC2s reside in the lamina propria of small intestines (siLP) in asthma remission, and subsequently move to airway upon re-encountering antigens or alarmins. Furthermore, ml-ILC2s possess properties of longevity, potential of rapid proliferation and producing IL-13, and display transcriptional characteristics with up-regulation of Tox and Tcf-7. ml-ILC2s transplantation restore the asthmatic changes abrogated by Tox and Tcf7 knockdown. Our data identify siLP ml-ILC2s as a memory-like subset, which promotes asthma relapse. Targeting TCF-1 and TOX might be promising for preventing asthma recurrence.
Collapse
Affiliation(s)
- Kaifan Bao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoqun Gu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yajun Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yijing Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanyan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi Yu
- Nanjing Haikerui Pharmaceutical Technology Co., LTD, Nanjing, 210023, China
| | - Weiyuan Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
4
|
Wilson GE, Gautam S, Chupp GL. Does Eosinophil Heterogeneity Translate into Functional Diversity? A Review of the Evolving Paradigm of Eosinophil Heterogeneity in Asthma. Biomedicines 2024; 12:2011. [PMID: 39335525 PMCID: PMC11428232 DOI: 10.3390/biomedicines12092011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
This review provides an overview of evidence supporting the existence of distinct homeostatic and inflammatory eosinophil subpopulations in health and disease. Particular emphasis is placed on describing the phenotypic and functional roles of these eosinophil subtypes in asthma, as well as the phenotypic changes induced by clinical therapy with the anti-IL-5 biologic agent, mepolizumab. Improved understanding of distinct eosinophil phenotypes may enable targeting of select subpopulations in the treatment of patients with type 2 inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Gabriella E Wilson
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Samir Gautam
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Geoffrey L Chupp
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Ortega-Rodriguez AC, Guerra de Blas PDC, Ramírez-Torres R, Martínez-Shio EB, Monsiváis-Urenda AE. Quantitative Analysis of Innate Lymphoid Cells in Patients with ST-Segment Elevation Myocardial Infarction. Immunol Invest 2024; 53:586-603. [PMID: 38700235 DOI: 10.1080/08820139.2024.2316052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is one of the principal causes of death in Mexico and worldwide. AMI triggers an acute inflammatory process that induces the activation of different populations of the innate immune system. Innate lymphoid cells (ILCs) are an innate immunity, highly pleiotropic population, which have been observed to participate in tissue repair and polarization of the adaptive immune response. OBJECTIVE We aimed to analyze the levels of subsets of ILCs in patients with ST-segment elevation myocardial infarction (STEMI), immediately 3 and 6 months post-AMI, and analyze their correlation with clinical parameters. RESULTS We evaluated 29 STEMI patients and 15 healthy controls and analyzed the different subsets of circulating ILCs, immediately 3 and 6 months post-AMI. We observed higher levels of circulating ILCs in STEMI patients compared to control subjects and a significant correlation between ILC levels and cardiac function. We also found increased production of the cytokines interleukin 5 (IL-5) and interleukin 17A (IL-17A), produced by ILC2 cells and by ILC3 cells, respectively, in the STEMI patients. CONCLUSION This study shows new evidence of the role of ILCs in the pathophysiology of AMI and their possible involvement in the maintenance of cardiac function.
Collapse
Affiliation(s)
- Alma Celeste Ortega-Rodriguez
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Paola Del Carmen Guerra de Blas
- Coordinating Center, The Mexican Emerging Infectious Diseases Clinical Research Network (LaRed), Mexico City, Mexico
- Departamento de Infectología, Hospital Infantil de México Federico Gómez, Instituto Nacional de Salud, Mexico City, Mexico
| | - Ricardo Ramírez-Torres
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Elena B Martínez-Shio
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Adriana E Monsiváis-Urenda
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
6
|
Uddin MJ, Thompson B, Leslie JL, Fishman C, Sol-church K, Kumar P, Petri WA. Investigating the impact of antibiotic-induced dysbiosis on protection from Clostridium difficile colitis by mouse colonic innate lymphoid cells. mBio 2024; 15:e0333823. [PMID: 38376154 PMCID: PMC11209775 DOI: 10.1128/mbio.03338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Innate lymphoid cells (ILCs) play a critical role in maintaining intestinal health in homeostatic and diseased conditions. During Clostridium difficile infection (CDI), IL-33 activates ILC2 to protect from colonic damage and mortality. The function of IL-33 and ILC is tightly regulated by the intestinal microbiota. We set out to determine the impact of antibiotic-induced disruption of the microbiome on ILC function. Our goal was to understand antibiotic-induced changes in ILC function on susceptibility to C. difficile colitis in a mouse model. We utilized high-throughput single-cell RNAseq to investigate the phenotypic features of colonic ILC at baseline, after antibiotic administration with or without IL-33 treatment. We identified a heterogeneous landscape of colonic ILCs with gene signatures of inflammatory, anti-inflammatory, migratory, progenitor, plastic, and antigen-presenting ILCs. Antibiotic treatment decreased ILC2 while coordinately increasing ILC1 and ILC3 phenotypes. Notably, Ifng+, Ccl5+, and Il23r+ ILC increased after antibiotics. IL-33 treatment counteracted the antibiotic effect by downregulating ILC1 and ILC3 and activating ILC2. In addition, IL-33 treatment markedly induced the expression of type 2 genes, including Areg and Il5. Finally, we identified amphiregulin, produced by ILC2, as protective during C. difficile infection. Together, our data expand our understanding of how antibiotics induce susceptibility to C. difficile colitis through their impact on ILC subsets and function.IMPORTANCEClostridium difficile infection (CDI) accounts for around 500,000 symptomatic cases and over 20,000 deaths annually in the United States alone. A major risk factor of CDI is antibiotic-induced dysbiosis of the gut. Microbiota-regulated IL-33 and innate lymphoid cells (ILCs) are important in determining the outcomes of C. difficile infection. Understanding how antibiotic and IL-33 treatment alter the phenotype of colon ILCs is important to identify potential therapeutics. Here, we performed single-cell RNAseq of mouse colon ILCs collected at baseline, after antibiotic treatment, and after IL-33 treatment. We identified heterogeneous subpopulations of all three ILC subtypes in the mouse colon. Our analysis revealed several potential pathways of antibiotic-mediated increased susceptibility to intestinal infection. Our discovery that Areg is abundantly expressed by ILCs, and the protection of mice from CDI by amphiregulin treatment, suggests that the amphiregulin-epidermal growth factor receptor pathway is a potential therapeutic target for treating intestinal colitis.
Collapse
Affiliation(s)
- Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brandon Thompson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jhansi L. Leslie
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Arcus Biosciences, Hayward, California, USA
| | - Casey Fishman
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Katia Sol-church
- Genome Analysis and Technology Core, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Kim HY, Jeong D, Kim JH, Chung DH. Innate Type-2 Cytokines: From Immune Regulation to Therapeutic Targets. Immune Netw 2024; 24:e6. [PMID: 38455467 PMCID: PMC10917574 DOI: 10.4110/in.2024.24.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 03/09/2024] Open
Abstract
The intricate role of innate type-2 cytokines in immune responses is increasingly acknowledged for its dual nature, encompassing both protective and pathogenic dimensions. Ranging from defense against parasitic infections to contributing to inflammatory diseases like asthma, fibrosis, and obesity, these cytokines intricately engage with various innate immune cells. This review meticulously explores the cellular origins of innate type-2 cytokines and their intricate interactions, shedding light on factors that amplify the innate type-2 response, including TSLP, IL-25, and IL-33. Recent advancements in therapeutic strategies, specifically the utilization of biologics targeting pivotal cytokines (IL-4, IL-5, and IL-13), are discussed, offering insights into both challenges and opportunities. Acknowledging the pivotal role of innate type-2 cytokines in orchestrating immune responses positions them as promising therapeutic targets. The evolving landscape of research and development in this field not only propels immunological knowledge forward but also holds the promise of more effective treatments in the future.
Collapse
Affiliation(s)
- Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul 03760, Korea
| | - Dongjin Jeong
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Doo Hyun Chung
- Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
8
|
Kral M, van der Vorst EP, Surnov A, Weber C, Döring Y. ILC2-mediated immune crosstalk in chronic (vascular) inflammation. Front Immunol 2023; 14:1326440. [PMID: 38179045 PMCID: PMC10765502 DOI: 10.3389/fimmu.2023.1326440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
Crosstalk between innate and adaptive immunity is pivotal for an efficient immune response and to maintain immune homeostasis under steady state conditions. As part of the innate immune system, type 2 innate lymphoid cells (ILC2s) have emerged as new important regulators of tissue homeostasis and repair by fine-tuning innate-adaptive immune cell crosstalk. ILC2s mediate either pro- or anti-inflammatory immune responses in a context dependent manner. Inflammation has proven to be a key driver of atherosclerosis, resembling the key underlying pathophysiology of cardiovascular disease (CVD). Notably, numerous studies point towards an atheroprotective role of ILC2s e.g., by mediating secretion of type-II cytokines (IL-5, IL-13, IL-9). Boosting these protective responses may be suitable for promising future therapy, although these protective cues are currently incompletely understood. Additionally, little is known about the mechanisms by which chemokine/chemokine receptor signaling shapes ILC2 functions in vascular inflammation and atherosclerosis. Hence, this review will focus on the latest findings regarding the protective and chemokine/chemokine receptor guided interplay between ILC2s and other immune cells like T and B cells, dendritic cells and macrophages in atherosclerosis. Further, we will elaborate on potential therapeutic implications which result or could be distilled from the dialogue of ILC2s with cells of the immune system in cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Kral
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Emiel P.C. van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), Interdisciplinary Center for Clinical Research (IZKF), Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Alexey Surnov
- Type 1 Diabetes Immunology (TDI), Helmholtz Diabetes Center (HDC), Helmholtz Center Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research (DBMR) Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Chen L, Sun R, Lei C, Xu Z, Song Y, Deng Z. Alcohol-mediated susceptibility to lung fibrosis is associated with group 2 innate lymphoid cells in mice. Front Immunol 2023; 14:1178498. [PMID: 37457733 PMCID: PMC10343460 DOI: 10.3389/fimmu.2023.1178498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Chronic alcohol ingestion promotes acute lung injury and impairs immune function. However, the mechanisms involved are incompletely understood. Here, we show that alcohol feeding enhances bleomycin-induced lung fibrosis and inflammation via the regulation of type 2 innate immune responses, especially by group 2 innate lymphoid cells (ILC2s). Neuroimmune interactions have emerged as critical modulators of lung inflammation. We found alcohol consumption induced the accumulation of ILC2 and reduced the production of the neuropeptide calcitonin gene-related peptide (CGRP), primarily released from sensory nerves and pulmonary neuroendocrine cells (PNECs). CGRP potently suppressed alcohol-driven type 2 cytokine signals in vivo. Vagal ganglia TRPV1+ afferents mediated immunosuppression occurs through the release of CGRP. Inactivation of the TRPV1 receptor enhanced bleomycin-induced fibrosis. In addition, mice lacking the CGRP receptor had the increased lung inflammation and fibrosis and type 2 cytokine production as well as exaggerated responses to alcohol feeding. Together, these data indicate that alcohol consumption regulates the interaction of CGRP and ILC2, which is a critical contributor of lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Liang Chen
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People’s Hospital, Nanjing Medical University, Huai’an, Jiangsu, China
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Rui Sun
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Chao Lei
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Zhishan Xu
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhongbin Deng
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, United States
- Brown Cancer Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
10
|
Jin M, Bang JS, Ha DL, Kim JY, Park KD, Lee WJ, Lee SJ, Choi JK, Choi YA, Jang YH, Kim SH. Dermatophagoides farinae Extract Induces Interleukin 33-Mediated Atopic Skin Inflammation via Activation of RIP1. Int J Mol Sci 2023; 24:ijms24065228. [PMID: 36982304 PMCID: PMC10049056 DOI: 10.3390/ijms24065228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Receptor-interacting protein kinase (RIP) family 1 signaling has complex effects on inflammatory processes and cell death, but little is known concerning allergic skin diseases. We examined the role of RIP1 in Dermatophagoides farinae extract (DFE)-induced atopic dermatitis (AD)-like skin inflammation. RIP1 phosphorylation was increased in HKCs treated with DFE. Nectostatin-1, a selective and potent allosteric inhibitor of RIP1, inhibited AD-like skin inflammation and the expression of histamine, total IgE, DFE-specific IgE, IL-4, IL-5, and IL-13 in an AD-like mouse model. The expression of RIP1 was increased in ear skin tissue from a DFE-induced mouse model with AD-like skin lesions and in the lesional skin of AD patients with high house dust mite sensitization. The expression of IL-33 was down-regulated after RIP1 inhibition, and the levels of IL-33 were increased by over-expression of RIP1 in keratinocytes stimulated with DFE. Nectostatin-1 reduced IL-33 expression in vitro and in the DFE-induced mouse model. These results suggest that RIP1 can be one of the mediators that regulate IL-33-mediated atopic skin inflammation by house dust mites.
Collapse
Affiliation(s)
- Meiling Jin
- Department of Pharmacology, School of Medicine, Yanbian National University, Yanji 133002, China
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jin Seon Bang
- Department of Dermatology, School of Medicine, Bio-Medical Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dae-Lyong Ha
- Department of Dermatology, School of Medicine, Bio-Medical Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jun Young Kim
- Department of Dermatology, School of Medicine, Bio-Medical Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Kyung Duck Park
- Department of Dermatology, School of Medicine, Bio-Medical Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Weon Ju Lee
- Department of Dermatology, School of Medicine, Bio-Medical Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seok-Jong Lee
- Department of Dermatology, School of Medicine, Bio-Medical Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jin Kyeong Choi
- Department of Immunology, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Young-Ae Choi
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yong Hyun Jang
- Department of Dermatology, School of Medicine, Bio-Medical Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- Correspondence: (Y.H.J.); (S.-H.K.); Tel.: +82-53-200-5838 (Y.H.J.); +82-53-420-4838 (S.-H.K.)
| | - Sang-Hyun Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Correspondence: (Y.H.J.); (S.-H.K.); Tel.: +82-53-200-5838 (Y.H.J.); +82-53-420-4838 (S.-H.K.)
| |
Collapse
|
11
|
Puttur F, Lloyd CM. Breathing easy: Dopamine quenches the ILC2 flame. Immunity 2023; 56:229-231. [PMID: 36792567 DOI: 10.1016/j.immuni.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Communication between nerves and group 2 innate lymphoid cells (ILC2s) is thought to regulate allergic airway inflammation, but the molecular mechanisms are unclear. In this issue of Immunity, Cao et al. uncover an essential role for dopamine in inhibiting ILC2 function via metabolic restriction, thereby ameliorating key features of asthma pathogenesis.
Collapse
Affiliation(s)
- Franz Puttur
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
12
|
Critical Players and Therapeutic Targets in Chronic Itch. Int J Mol Sci 2022; 23:ijms23179935. [PMID: 36077340 PMCID: PMC9456029 DOI: 10.3390/ijms23179935] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic itch is one of the most prominent clinical characteristics of diverse systematic diseases. It is a devastating sensation in pathological diseases. Despite its importance, there are no FDA-labelled drugs specifically geared toward chronic itch. The associated complex pathogenesis and diverse causes escalate chronic itch to being one of the top challenges in healthcare. Humanized antibodies against IL-13, IL-4, and IL-31 proved effective in treatment of itch-associated atopic dermatitis but remain to be validated in chronic itch. There are still no satisfactory anti-itch therapeutics available toward itch-related neuropeptides including GRP, BNP, SST, CGRP, and SP. The newly identified potential itch targets including OSM, NMB, glutamate, periostin, and Serpin E1 have opened new avenues for therapeutic development. Proof-of-principle studies have been successfully performed on antagonists against these proteins and their receptors in itch treatment in animal models. Their translational interventions in humans need to be evaluated. It is of great importance to summarize and compare the newly emerging knowledge on chronic itch and its pathways to promote the development of novel anti-itch therapeutics. The goal of this review is to analyze the different physiologies and pathophysiologies of itch mediators, whilst assessing their suitability as new targets and discussing future therapeutic development.
Collapse
|
13
|
Rippon MG, Rogers AA, Ousey K, Atkin L, Williams K. The importance of periwound skin in wound healing: an overview of the evidence. J Wound Care 2022; 31:648-659. [PMID: 36001708 DOI: 10.12968/jowc.2022.31.8.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DECLARATION OF INTEREST The authors have no conflicts of interest.
Collapse
Affiliation(s)
| | | | - Karen Ousey
- Institute of Skin Integrity and Infection Prevention, Department of Nursing and Midwifery, University of Huddersfield.,Adjunct Professor, School of Nursing, Faculty of Health at the Queensland University of Technology, Australia.,Visiting Professor, RCSI, Dublin, Ireland
| | | | - Kate Williams
- Department of Nursing and Midwifery, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
14
|
Shankar A, McAlees JW, Lewkowich IP. Modulation of IL-4/IL-13 cytokine signaling in the context of allergic disease. J Allergy Clin Immunol 2022; 150:266-276. [PMID: 35934680 PMCID: PMC9371363 DOI: 10.1016/j.jaci.2022.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Aberrant activation of CD4 TH2 cells and excessive production of TH2 cytokines such as IL-4 and IL-13 have been implicated in the pathogenesis of allergic diseases. Generally, IL-4 and IL-13 utilize Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways for induction of inflammatory gene expression and the effector functions associated with disease pathology in many allergic diseases. However, it is increasingly clear that JAK/STAT pathways activated by IL-4/IL-13 can themselves be modulated in the presence of other intracellular signaling programs, thereby changing the overall tone and/or magnitude of IL-4/IL-13 signaling. Apart from direct activation of the canonic JAK/STAT pathways, IL-4 and IL-13 also induce proinflammatory gene expression and effector functions through activation of additional signaling cascades. These alternative signaling cascades contribute to several specific aspects of IL-4/IL-13-associated cellular and molecular responses. A more complete understanding of IL-4/IL-13 signaling pathways, including the precise conditions under which noncanonic signaling pathways are activated, and the impact of these pathways on cellular- and host-level responses, will better allow us to design agents that target specific pathologic outcomes or tailor therapies for the treatment of uncommon disease endotypes.
Collapse
|
15
|
Yamamoto Y, Yoshizawa K, Takamoto M, Soejima Y, Sanjo H, Taki S. Circulating T cells and resident non-T cells restrict type 2 innate lymphoid cell expansion in the small intestine. Biochem Biophys Res Commun 2022; 618:93-99. [PMID: 35716601 DOI: 10.1016/j.bbrc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 11/02/2022]
Abstract
Interaction among various adaptive, circulating cells and tissue-resident cells including innate lymphocytes during the establishment and maintenance of the barrier-tissue immune system has only recently started to be explored. Here, we show that the cellular crosstalk with circulating T cells and other resident cells regulated the population size of type 2 innate lymphoid cells (ILC2s) in the small intestine lamina propria. Rag1-/- mice had excessive numbers of both ILC2s and ILC3s, and such an over-expansion was corrected by establishing parabiosis with wild type mice or by adoptively transferring wild type CD4+ T cells. In contrast, anti-CD3 antibody-mediated T cell depletion in wild type mice increased ILC2 but not ILC3 numbers. Unconventional CD4-CD8- αβ T and γδ T cells could also restrict ILC2 expansion as the numbers of ILC2s were not altered even in mice treated with anti-CD4/anti-CD8 antibodies. ILC3 restriction seemed to be through the control of proliferation, but that for ILC2s did not. In addition, elevation in ILC2 numbers seen in mice lacking the transcription factors RORγt and STAT6 was found to be T cell-independent. Our current findings altogether uncovered the homeostatic 'quota' restriction imposed on intestinal ILC2s in the steady state by resident non-T cells via RORγt- and STAT6-dependent mechanisms as well as by conventional and nonconventional T cells.
Collapse
Affiliation(s)
- Yuta Yamamoto
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Kazuki Yoshizawa
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Masaya Takamoto
- Department of Infection and Host Defense, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yuji Soejima
- Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hideki Sanjo
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shinsuke Taki
- Department of Molecular and Cellular Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| |
Collapse
|
16
|
Abstract
Internal organs, including the airway, are innervated by neurons of the autonomic and sensory nervous systems. The airway-innervating sensory neurons primarily originate from the vagus nerve, whose cell bodies are found, in rodents, in the jugular and nodose ganglia complex (JNC). About half of these sensory neurons expressed the heat-sensing ion channel TRPV1 and evolved to limit tissue damage by detecting chemical, mechanical, or thermal threats and to initiate protective airway reflexes such as coughing and bronchoconstriction. They also help monitor the host homeostasis by sensing nutrients, pressure, and O2 levels and help mount airway defenses by controlling immune and goblet cell activity. To better appreciate the scope of the physiological role and pathological contributions of these neurons, we will review gain and loss-of-function approaches geared at controlling the activity of these neurons. We will also present a method to study transcriptomic changes in airway-innervating neurons and a co-culture approach designed to understand how nociceptors modulate immune responses.
Collapse
Affiliation(s)
- Jo-Chiao Wang
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Theo Crosson
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
17
|
Nishikawa Y, Fukaya T, Fukui T, Uto T, Takagi H, Nasu J, Miyanaga N, Riethmacher D, Choijookhuu N, Hishikawa Y, Amano M, Sato K. Congenital Deficiency of Conventional Dendritic Cells Promotes the Development of Atopic Dermatitis-Like Inflammation. Front Immunol 2021; 12:712676. [PMID: 34394115 PMCID: PMC8356667 DOI: 10.3389/fimmu.2021.712676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common pruritic inflammatory skin disease characterized by impaired epidermal barrier function and dysregulation of Thelper-2 (TH2)-biased immune responses. While the lineage of conventional dendritic cells (cDCs) are implicated to play decisive roles in T-cell immune responses, their requirement for the development of AD remains elusive. Here, we describe the impact of the constitutive loss of cDCs on the progression of AD-like inflammation by using binary transgenic (Tg) mice that constitutively lacked CD11chi cDCs. Unexpectedly, the congenital deficiency of cDCs not only exacerbates the pathogenesis of AD-like inflammation but also elicits immune abnormalities with the increased composition and function of granulocytes and group 2 innate lymphoid cells (ILC2) as well as B cells possibly mediated through the breakdown of the Fms-related tyrosine kinase 3 ligand (Flt3L)-mediated homeostatic feedback loop. Furthermore, the constitutive loss of cDCs accelerates skin colonization of Staphylococcus aureus (S. aureus), that associated with disease flare. Thus, cDCs maintains immune homeostasis to prevent the occurrence of immune abnormalities to maintain the functional skin barrier for mitigating AD flare.
Collapse
Affiliation(s)
- Yotaro Nishikawa
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Dermatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomohiro Fukaya
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Takehito Fukui
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomofumi Uto
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Hideaki Takagi
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Junta Nasu
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Noriaki Miyanaga
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Dieter Riethmacher
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Narantsog Choijookhuu
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshitaka Hishikawa
- Division of Histochemistry and Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Masahiro Amano
- Department of Dermatology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| |
Collapse
|
18
|
Saez A, Gomez-Bris R, Herrero-Fernandez B, Mingorance C, Rius C, Gonzalez-Granado JM. Innate Lymphoid Cells in Intestinal Homeostasis and Inflammatory Bowel Disease. Int J Mol Sci 2021; 22:ijms22147618. [PMID: 34299236 PMCID: PMC8307624 DOI: 10.3390/ijms22147618] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous state of chronic intestinal inflammation of unknown cause encompassing Crohn’s disease (CD) and ulcerative colitis (UC). IBD has been linked to genetic and environmental factors, microbiota dysbiosis, exacerbated innate and adaptive immunity and epithelial intestinal barrier dysfunction. IBD is classically associated with gut accumulation of proinflammatory Th1 and Th17 cells accompanied by insufficient Treg numbers and Tr1 immune suppression. Inflammatory T cells guide innate cells to perpetuate a constant hypersensitivity to microbial antigens, tissue injury and chronic intestinal inflammation. Recent studies of intestinal mucosal homeostasis and IBD suggest involvement of innate lymphoid cells (ILCs). These lymphoid-origin cells are innate counterparts of T cells but lack the antigen receptors expressed on B and T cells. ILCs play important roles in the first line of antimicrobial defense and contribute to organ development, tissue protection and regeneration, and mucosal homeostasis by maintaining the balance between antipathogen immunity and commensal tolerance. Intestinal homeostasis requires strict regulation of the quantity and activity of local ILC subpopulations. Recent studies demonstrated that changes to ILCs during IBD contribute to disease development. A better understanding of ILC behavior in gastrointestinal homeostasis and inflammation will provide valuable insights into new approaches to IBD treatment. This review summarizes recent research into ILCs in intestinal homeostasis and the latest advances in the understanding of the role of ILCs in IBD, with particular emphasis on the interaction between microbiota and ILC populations and functions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Claudia Mingorance
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
| | - Cristina Rius
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, 28670 Madrid, Spain;
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (A.S.); (R.G.-B.); (B.H.-F.); (C.M.)
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
19
|
Jiang M, Cai R, Wang J, Li Z, Xu D, Jing J, Zhang F, Li F, Ding J. ILC2 Cells Promote Th2 Cell Differentiation in AECOPD Through Activated Notch-GATA3 Signaling Pathway. Front Immunol 2021; 12:685400. [PMID: 34354706 PMCID: PMC8329850 DOI: 10.3389/fimmu.2021.685400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
This study is to investigate the capacity of type 2 innate lymphoid cells (ILC2s) in regulating the Th2 type adaptive immune response of acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The study enrolled healthy people, stable chronic obstructive pulmonary disease (COPD) patients, and AECOPD patients. Flow cytometry was used to detect Th2 and ILC2 cells in the peripheral blood. In addition, ILC2s from the peripheral blood of AECOPD patients were stimulated with PBS, IL-33, Jagged1, DAPT, IL-33+Jagged1, IL-33+DAPT, and IL-33+Jagged-1+DAP in vitro. The levels of cytokines in the culture supernatant were detected by ELISA and the culture supernatant was used to culture CD4 + T cells. The mRNA and protein levels of Notch1, hes1, GATA3, RORα, and NF-κB of ILC2s were detected by real-time PCR and Western blot. The proportion of Th2 and ILC2s was significantly increased in the peripheral blood of AECOPD patients, alone with the increased Notch1, hes1, and GATA3 mRNA levels. In vitro results showed that the mRNA and protein levels of Notch1, hes1, GATA3 and NF-κB were significantly increased after stimulation with Notch agonist, meanwhile, the level of type 2 cytokines were increased in the supernatant of cells stimulated with Notch agonist, and significantly promoted differentiation of Th2 cells in vitro. Disruption of Notch pathway weakened GATA3 expression and cytokine production, and ultimately affected the differentiation of Th2 cells. In conclusion, our results suggest that ILC2s can promote Th2 cell differentiation in AECOPD via activated Notch-GATA3 signal pathway.
Collapse
Affiliation(s)
- Min Jiang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Ren Cai
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jing Wang
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Zheng Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Dan Xu
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Jing Jing
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fengsen Li
- Xinjiang Laboratory of Respiratory Disease Research, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
20
|
Abstract
Innate lymphoid cells (ILCs) are a large family of cells of the immune system that performs various functions in immune defense, inflammation, and tissue remodeling. As a part of the innate immune system, ILCs are a distinct form of lymphocytes different from T and B cells. ILCs can provide host defense against the source of infection and initiate the repair and remodeling processes to restore and maintain host body homeostasis. The number of patients with Crohn’s disease (CD) worldwide has continued to increase in recent years and this disease has brought sickness and death to many families. Numerous studies have found that ILCs also undergo a series of alternations during the development of CD and contribute to this disease. Despite this, the pathogenesis of CD is still not fully explained. So, we keep researching and exploring. In this review, we have closely linked the latest progress on ILCs and CD, and introduced, in detail, the specific roles of four different types of ILCs in CD. We also describe new progress in the pathogenesis of CD, with particular emphasis on the plasticity of ILC3s in this disease. These new studies and findings may provide new insights and breakthrough points for the treatment of CD.
Collapse
Affiliation(s)
- Ying Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Hirose S, Jahani PS, Wang S, Jaggi U, Tormanen K, Yu J, Kato M, Akbari O, Ghiasi H. Type 2 Innate Lymphoid Cells Induce CNS Demyelination in an HSV-IL-2 Mouse Model of Multiple Sclerosis. iScience 2020; 23:101549. [PMID: 33083718 PMCID: PMC7522755 DOI: 10.1016/j.isci.2020.101549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
We previously reported that infection of different mouse strains with a recombinant HSV-1 expressing IL-2 (HSV-IL-2) caused CNS demyelination. Histologic examination of infected IL-2rα-/-, IL-2rβ-/-, and IL-2rγ-/- mice showed demyelination in the CNS of IL-2rα-/- and IL-2rβ-/- mice but not in the CNS of IL-2rγ-/--infected mice. No demyelination was detected in mice infected with control virus. IL-2rγ-/- mice that lack type 2 innate lymphoid cells (ILC2s) and ILCs, play important roles in host defense and inflammation. We next infected ILC1-/-, ILC2-/-, and ILC3-/- mice with HSV-IL-2 or wild-type (WT) HSV-1. In contrast to ILC1-/- and ILC3-/- mice, no demyelination was detected in the CNS of ILC2-/--sinfected mice. However, transfer of ILC2s from WT mice to ILC2-/- mice restored demyelination in infected recipient mice. CNS demyelination correlated with downregulation of CCL5 and CXCL10. This study demonstrates that ILC2s contribute to HSV-IL-2-induced CNS demyelination in a mouse model of multiple sclerosis.
Collapse
Affiliation(s)
- Satoshi Hirose
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Medical Center, SSB3, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Pedram Shafiei Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shaohui Wang
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Medical Center, SSB3, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Ujjaldeep Jaggi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Medical Center, SSB3, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Kati Tormanen
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Medical Center, SSB3, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Jack Yu
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Medical Center, SSB3, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | - Mihoko Kato
- Department of Biology, Pomona College, Claremont, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Medical Center, SSB3, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| |
Collapse
|
22
|
Ciprandi G, Licari A, Marseglia GL. To prevent the allergic disease: the dream of the allergist. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020073. [PMID: 32921768 PMCID: PMC7717006 DOI: 10.23750/abm.v91i3.10551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/20/2020] [Indexed: 11/23/2022]
Abstract
Allergen avoidance, allergen immunotherapy, IgE antagonists, biological medications, prevention and treatment of respiratory infections, probiotics, adapted formula, vitamins, and oligo-elements have been investigated as strategies in the prevention of allergic diseases. Promising findings were obtained. To prevent allergic diseases could be a dream that will be soon realized in clinical practice.
Collapse
Affiliation(s)
| | - Amelia Licari
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| | - Gian Luigi Marseglia
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy.
| |
Collapse
|
23
|
Schulz-Kuhnt A, Wirtz S, Neurath MF, Atreya I. Regulation of Human Innate Lymphoid Cells in the Context of Mucosal Inflammation. Front Immunol 2020; 11:1062. [PMID: 32655549 PMCID: PMC7324478 DOI: 10.3389/fimmu.2020.01062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Since their identification as a unique cell population, innate lymphoid cells (ILCs) have revolutionized our understanding of immune responses, leaving their impact on multiple inflammatory and fibrotic pathologies without doubt. Thus, a tightly controlled regulation of local ILC numbers and their activity is of crucial importance. Even though this has been extensively studied in murine ILCs in the last few years, our knowledge of human ILCs is still lagging behind. Our review article will therefore summarize recent insights into the function of human ILCs and will particularly focus on their regulation under inflammatory conditions. The quality and intensity of ILC involvement into local immune responses at mucosal sites of the human body can potentially be modulated via three different axes: (1) activation of tissue-resident mature ILCs, (2) plasticity and local transdifferentiation of specific ILC subsets, and (3) tissue migration and accumulation of peripheral ILCs. Despite a still ongoing scientific effort in this field, already existing data on the fate of human ILCs under different pathologic conditions clearly indicate that all three of these mechanisms are of relevance for the clinical course of chronic inflammatory and autoimmune diseases and might likewise provide new target structures for future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Imke Atreya
- Department of Medicine 1, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
24
|
Krempski JW, Kobayashi T, Iijima K, McKenzie AN, Kita H. Group 2 Innate Lymphoid Cells Promote Development of T Follicular Helper Cells and Initiate Allergic Sensitization to Peanuts. THE JOURNAL OF IMMUNOLOGY 2020; 204:3086-3096. [PMID: 32366582 DOI: 10.4049/jimmunol.2000029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Peanut allergy is a growing public concern; however, little is known about the immunological mechanism(s) that initiate the disease process. Our knowledge is also limited regarding the role of group 2 innate lymphoid cells (ILC2s) in regulating humoral immunity. To fill these major gaps in our knowledge, we investigated the immunological mechanisms involved in peanut allergen sensitization by using mouse models. To mimic environmental exposure in humans, naive BALB/c mice were exposed to peanut flour by inhalation without any exogenous adjuvants. When exposed to peanut flour, naive mice developed T follicular helper (Tfh) cells in their lung draining lymph nodes and produced IgE Abs to peanuts. Mice deficient in IL-13 showed decreased numbers of Tfh cells and germinal center B cells and produced significantly fewer IgE Abs. IL-13 was necessary and sufficient for induction of CD11c+ MHC class IIhi dendritic cells that are implicated in Tfh cell development. Importantly, lung ILC2s served as a predominant early source of IL-13 when naive mice were exposed to peanut flour. Furthermore, mice that are deficient in lung ILC2s by bone marrow transfer from Rora sg/sg mice or by genetic manipulation produced significantly fewer IgE Abs to peanuts compared with control mice. These findings suggest lung ILC2s that serve as a rapid source of IL-13 upon allergen exposure play a major role in Tfh cell development, IgE Ab production, and initiation of peanut allergy.
Collapse
Affiliation(s)
| | - Takao Kobayashi
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259; and
| | - Koji Iijima
- Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259; and
| | - Andrew N McKenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic, Rochester, MN 55905; .,Division of Allergic Diseases, Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259; and
| |
Collapse
|
25
|
Marone G, Granata F, Pucino V, Pecoraro A, Heffler E, Loffredo S, Scadding GW, Varricchi G. The Intriguing Role of Interleukin 13 in the Pathophysiology of Asthma. Front Pharmacol 2019; 10:1387. [PMID: 31866859 PMCID: PMC6908970 DOI: 10.3389/fphar.2019.01387] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Approximately 5–10% of asthmatic patients worldwide suffer from severe asthma. Experimental and clinical studies have demonstrated that IL-13 is an important cytokine in chronic airways inflammation. IL-13 is involved in Th2 inflammation and has been identified as a possible therapeutic target in the treatment of asthma. Two different human monoclonal antibodies (mAbs) anti-IL-13 (tralokinumab and lebrikizumab) block binding and signaling of IL-13 to its receptors, IL-13Rα1 and IL-13Rα2. Several randomized, double-blind, placebo-controlled multicenter studies have evaluated the safety and efficacy of tralokinumab and lebrikizumab in the treatment of adult patients with severe asthma, but all have failed to meet their primary endpoints. No serious adverse events related to the treatment with these anti-IL-13 mAbs have been reported in these studies. These negative clinical results contrast with positive findings from blocking IL-13 signaling in experimental models of asthma, raising doubts about the transferrable value of some models. Interestingly, dupilumab, a mAb which blocks both IL-4 and IL-13 signaling reduces exacerbation rates and improves lung function in severe asthmatics. These results suggest that IL-4 and IL-13 share some, but not all functional activities in airway inflammation. Tralokinumab might show efficacy in a highly selected cohort of asthmatics characterized by overexpression of IL-13.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Azienda Ospedaliera Ospedali dei Colli, Monaldi Hospital Pharmacy, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Valentina Pucino
- College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Antonio Pecoraro
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Enrico Heffler
- Personalized Medicine, Asthma, and Allergy, Humanitas Clinical and Research Center, IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Guy W Scadding
- Allergy and Clinical Immunology, Imperial College, National Heart and Lung Institute, London, United Kingdom
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
26
|
Wallrapp A, Burkett PR, Riesenfeld SJ, Kim SJ, Christian E, Abdulnour REE, Thakore PI, Schnell A, Lambden C, Herbst RH, Khan P, Tsujikawa K, Xavier RJ, Chiu IM, Levy BD, Regev A, Kuchroo VK. Calcitonin Gene-Related Peptide Negatively Regulates Alarmin-Driven Type 2 Innate Lymphoid Cell Responses. Immunity 2019; 51:709-723.e6. [PMID: 31604686 PMCID: PMC7076585 DOI: 10.1016/j.immuni.2019.09.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/19/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
Neuroimmune interactions have emerged as critical modulators of allergic inflammation, and type 2 innate lymphoid cells (ILC2s) are an important cell type for mediating these interactions. Here, we show that ILC2s expressed both the neuropeptide calcitonin gene-related peptide (CGRP) and its receptor. CGRP potently inhibited alarmin-driven type 2 cytokine production and proliferation by lung ILC2s both in vitro and in vivo. CGRP induced marked changes in ILC2 expression programs in vivo and in vitro, attenuating alarmin-driven proliferative and effector responses. A distinct subset of ILCs scored highly for a CGRP-specific gene signature after in vivo alarmin stimulation, suggesting CGRP regulated this response. Finally, we observed increased ILC2 proliferation and type 2 cytokine production as well as exaggerated responses to alarmins in mice lacking the CGRP receptor. Together, these data indicate that endogenous CGRP is a critical negative regulator of ILC2 responses in vivo.
Collapse
Affiliation(s)
- Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Patrick R Burkett
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Samantha J Riesenfeld
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Se-Jin Kim
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Christian
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Raja-Elie E Abdulnour
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Conner Lambden
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rebecca H Herbst
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pavana Khan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce D Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
27
|
Harkema JR, Wagner JG. Innate Lymphoid Cell-Dependent Airway Epithelial and Inflammatory Responses to Inhaled Ozone: A New Paradigm in Pathogenesis. Toxicol Pathol 2019; 47:993-1003. [PMID: 31537180 DOI: 10.1177/0192623319873872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidemiological associations have been made between the new onset of childhood rhinitis/asthma and exposures to elevated ambient levels of ozone, a commonly encountered gaseous air pollutant. Our laboratory was the first to find that mice repeatedly exposed to ozone develop nasal type 2 immunity and eosinophilic rhinitis with mucous cell metaplasia. More recently, we have found that these ozone-induced upper airway alterations are mediated by group 2 innate lymphoid cells (ILC2s) and not by T and B cells that are important in adaptive immune responses typically associated with allergic rhinitis and asthma. Furthermore, repeated exposures of mice to ozone cause ILC2-mediated type 2 immunity and airway pathology in the lungs, like those found in the nasal airways. Our recent findings in ozone-exposed mice complement and extend previous reports of nonallergic nasal airway disease in ozone-exposed rats and nonhuman primates. Overall, these experimental results in laboratory animals suggest a plausible ILC2-dependent paradigm for the toxicologic pathobiology that underlies the development of nonallergic rhinitis/asthma in children who live in environments with repeated occurrences of high ambient concentrations of ozone.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Barnig C, Bezema T, Calder PC, Charloux A, Frossard N, Garssen J, Haworth O, Dilevskaya K, Levi-Schaffer F, Lonsdorfer E, Wauben M, Kraneveld AD, Te Velde AA. Activation of Resolution Pathways to Prevent and Fight Chronic Inflammation: Lessons From Asthma and Inflammatory Bowel Disease. Front Immunol 2019; 10:1699. [PMID: 31396220 PMCID: PMC6664683 DOI: 10.3389/fimmu.2019.01699] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Formerly considered as a passive process, the resolution of acute inflammation is now recognized as an active host response, with a cascade of coordinated cellular and molecular events that promotes termination of the inflammatory response and initiates tissue repair and healing. In a state of immune fitness, the resolution of inflammation is contained in time and space enabling the restoration of tissue homeostasis. There is increasing evidence that poor and/or inappropriate resolution of inflammation participates in the pathogenesis of chronic inflammatory diseases, extending in time the actions of pro-inflammatory mechanisms, and responsible in the long run for excessive tissue damage and pathology. In this review, we will focus on how resolution can be the target for therapy in "Th1/Th17 cell-driven" immune diseases and "Th2 cell-driven" immune diseases, with inflammatory bowel diseases (IBD) and asthma, as relevant examples. We describe the main cells and mediators stimulating the resolution of inflammation and discuss how pharmacological and dietary interventions but also life style factors, physical and psychological conditions, might influence the resolution phase. A better understanding of the impact of endogenous and exogenous factors on the resolution of inflammation might open a whole area in the development of personalized therapies in non-resolving chronic inflammatory diseases.
Collapse
Affiliation(s)
- Cindy Barnig
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | | | - Philip C Calder
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Anne Charloux
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Nelly Frossard
- UMR 7200 CNRS/Université de Strasbourg, Laboratoire d'Innovation Thérapeutique and LabEx MEDALIS, Faculté de Pharmacie, Strasbourg, France
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Nutricia Research, Utrecht, Netherlands
| | - Oliver Haworth
- Biochemical Pharmacology, William Harvey Research Institute, Bart's School of Medicine and Queen Mary University of London, London, United Kingdom
| | - Ksenia Dilevskaya
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Faculty of Medicine, School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Evelyne Lonsdorfer
- Department of Chest Disease, Strasbourg University Hospital, Strasbourg, France.,Equipe d'accueil 3072, University of Strasbourg, Strasbourg, France
| | - Marca Wauben
- Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Anje A Te Velde
- Amsterdam UMC, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, AGEM, Amsterdam, Netherlands
| |
Collapse
|
29
|
Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, de Paulis A, Marone G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol 2019; 179:247-261. [PMID: 31137021 DOI: 10.1159/000500088] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
Mast cells are immune cells which have a widespread distribution in nearly all tissues. These cells and their mediators are canonically viewed as primary effector cells in allergic disorders. However, in the last years, mast cells have gained recognition for their involvement in several physiological and pathological conditions. They are highly heterogeneous immune cells displaying a constellation of surface receptors and producing a wide spectrum of inflammatory and immunomodulatory mediators. These features enable the cells to act as sentinels in harmful situations as well as respond to metabolic and immune changes in their microenvironment. Moreover, they communicate with many immune and nonimmune cells implicated in several immunological responses. Although mast cells contribute to host responses in experimental infections, there is no satisfactory model to study how they contribute to infection outcome in humans. Mast cells modulate physiological and pathological angiogenesis and lymphangiogenesis, but their role in tumor initiation and development is still controversial. Cardiac mast cells store and release several mediators that can exert multiple effects in the homeostatic control of different cardiometabolic functions. Although mast cells and their mediators have been simplistically associated with detrimental roles in allergic disorders, there is increasing evidence that they can also have homeostatic or protective roles in several pathophysiological processes. These findings may reflect the functional heterogeneity of different subsets of mast cells.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy, .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy, .,World Allergy Organization (WAO) Center of Excellence, Naples, Italy, .,Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy,
| |
Collapse
|
30
|
Hochdörfer T, Winkler C, Pardali K, Mjösberg J. Expression of c-Kit discriminates between two functionally distinct subsets of human type 2 innate lymphoid cells. Eur J Immunol 2019; 49:884-893. [PMID: 30892687 DOI: 10.1002/eji.201848006] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/19/2019] [Accepted: 03/18/2019] [Indexed: 01/10/2023]
Abstract
Human type 2 innate lymphoid cells (ILC2) are the only ILC subset that shows heterogeneous expression of the SCF receptor c-Kit (CD117). Despite its use as surface marker to distinguish ILC populations, its influence on ILC2 biology has not been investigated. Here, we show that c-Kit expression of peripheral blood ILC distinguishes two functionally distinct ILC2 subsets (c-Kithi and c-Kitlo ). When examined for their potential for functional plasticity we found that c-Kitlo ILC2 displayed greater potential to produce type 2 cytokines, possibly representing fully mature and lineage committed ILC2. On the other hand, c-Kithi ILC2 coexpressed the ILC3-marker and chemokine receptor CCR6 and were able to mount a significant IL-17A response under ILC3-promoting conditions. In addition, c-Kithi ILC2 produced higher levels of IFN-γ than c-Kitlo ILC2 under ILC1-conditions. Although costimulation with SCF did not further influence ILC2 plasticity, it augmented type 2 cytokine production. We conclude that c-Kit marks distinct subpopulations of ILC2, which has therapeutic implications for conditions in which ILC2 are involved, such as allergy and asthma.
Collapse
Affiliation(s)
- Thomas Hochdörfer
- Target and Translational Science, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Carla Winkler
- Target and Translational Science, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Katerina Pardali
- Target and Translational Science, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
31
|
Colonna M. Introduction: Basic and emerging concepts in ILC biology. Immunol Rev 2018; 286:4-5. [PMID: 30294967 DOI: 10.1111/imr.12711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Marco Colonna
- Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|