1
|
Winnicki AC, Dietrich MH, Yeoh LM, Carias LL, Roobsoong W, Drago CL, Malachin AN, Redinger KR, Feufack-Donfack LB, Baldor L, Jung NC, McLaine OS, Skomorovska-Prokvolit Y, Orban A, Opi DH, Kirtley P, Nielson K, Aleshnick M, Zanghi G, Rezakhani N, Vaughan AM, Wilder BK, Sattabongkot J, Tham WH, Popovici J, Beeson JG, Bosch J, King CL. Potent AMA1-specific human monoclonal antibody against Plasmodium vivax Pre-erythrocytic and Blood Stages. Nat Commun 2024; 15:10556. [PMID: 39632799 PMCID: PMC11618605 DOI: 10.1038/s41467-024-53848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. In this manuscript we characterize 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv-exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target. We show that humAb 826827 blocks the invasion of human reticulocytes using Pv clinical isolates and inhibits sporozoite invasion of human hepatocytes in vitro (IC50 of 0.3 - 3.7 µg/mL). Inoculation of human liver transgenic (FRG-humHep) female mice with humAb 826827 significantly reduces liver infection in vivo. The crystal structure of rPvAMA1 bound to 826827 shows that 826827 partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. We have isolated a potent humAb that is isolate-transcendent, blocks both pre-erythrocytic and blood stage infection, and could be a potential therapy for Pv.
Collapse
MESH Headings
- Plasmodium vivax/immunology
- Animals
- Humans
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Malaria, Vivax/immunology
- Malaria, Vivax/parasitology
- Malaria, Vivax/drug therapy
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Female
- Membrane Proteins/immunology
- Membrane Proteins/metabolism
- Mice
- Mice, Transgenic
- Hepatocytes/parasitology
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Antibodies, Protozoan/immunology
- Sporozoites/immunology
- Reticulocytes/parasitology
- Reticulocytes/metabolism
- Reticulocytes/immunology
- Erythrocytes/parasitology
- Erythrocytes/immunology
- Leukocytes, Mononuclear/immunology
- Liver/parasitology
Collapse
Affiliation(s)
- Anna C Winnicki
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Melanie H Dietrich
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Lee M Yeoh
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Lenore L Carias
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chiara L Drago
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Alyssa N Malachin
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Karli R Redinger
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | | | - Lea Baldor
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Nicolai C Jung
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Olivia S McLaine
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Yelenna Skomorovska-Prokvolit
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Agnes Orban
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - D Herbert Opi
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Payton Kirtley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kiersey Nielson
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Maya Aleshnick
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Gigliola Zanghi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nastaran Rezakhani
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Brandon K Wilder
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jean Popovici
- Malaria Research Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, The University of Melbourne, Parkville, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jürgen Bosch
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA.
- InterRayBio LLC, Cleveland, USA.
| | - Christopher L King
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, USA.
- Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
2
|
Duffy PE, Gorres JP, Healy SA, Fried M. Malaria vaccines: a new era of prevention and control. Nat Rev Microbiol 2024; 22:756-772. [PMID: 39025972 DOI: 10.1038/s41579-024-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/20/2024]
Abstract
Malaria killed over 600,000 people in 2022, a death toll that has not improved since 2015. Additionally, parasites and mosquitoes resistant to existing interventions are spreading across Africa and other regions. Vaccines offer hope to reduce the mortality burden: the first licensed malaria vaccines, RTS,S and R21, will be widely deployed in 2024 and should substantially reduce childhood deaths. In this Review, we provide an overview of the malaria problem and the Plasmodium parasite, then describe the RTS,S and R21 vaccines (the first vaccines for any human parasitic disease), summarizing their benefits and limitations. We explore next-generation vaccines designed using new knowledge of malaria pathogenesis and protective immunity, which incorporate antigens and platforms to elicit effective immune responses against different parasite stages in human or mosquito hosts. We describe a decision-making process that prioritizes malaria vaccine candidates for development in a resource-constrained environment. Future vaccines might improve upon the protective efficacy of RTS,S or R21 for children, or address the wider malaria scourge by preventing pregnancy malaria, reducing the burden of Plasmodium vivax or accelerating malaria elimination.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - J Patrick Gorres
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sara A Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Malik JA, Zafar MA, Singh S, Nanda S, Bashir H, Das DK, Lamba T, Khan MA, Kaur G, Agrewala JN. From defense to dysfunction: Autophagy's dual role in disease pathophysiology. Eur J Pharmacol 2024; 981:176856. [PMID: 39068979 DOI: 10.1016/j.ejphar.2024.176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Autophagy is a fundamental pillar of cellular resilience, indispensable for maintaining cellular health and vitality. It coordinates the meticulous breakdown of cytoplasmic macromolecules as a guardian of cell metabolism, genomic integrity, and survival. In the complex play of biological warfare, autophagy emerges as a firm defender, bravely confronting various pathogenic, infectious, and cancerous adversaries. Nevertheless, its role transcends mere defense, wielding both protective and harmful effects in the complex landscape of disease pathogenesis. From the onslaught of infectious outbreaks to the devious progression of chronic lifestyle disorders, autophagy emerges as a central protagonist, convolutedly shaping the trajectory of cellular health and disease progression. In this article, we embark on a journey into the complicated web of molecular and immunological mechanisms that govern autophagy's profound influence over disease. Our focus sharpens on dissecting the impact of various autophagy-associated proteins on the kaleidoscope of immune responses, spanning the spectrum from infectious outbreaks to chronic lifestyle ailments. Through this voyage of discovery, we unveil the vast potential of autophagy as a therapeutic linchpin, offering tantalizing prospects for targeted interventions and innovative treatment modalities that promise to transform the landscape of disease management.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India; Division of Immunology, Boston Children's Hospital Harvard Medical School Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School Boston, MA, 02115, USA
| | - Sanpreet Singh
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Hilal Bashir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Deepjyoti Kumar Das
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Gurpreet Kaur
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
4
|
Garcia Castillo SS, Abanto Alvarez C, Rosas-Aguirre Á, Acosta C, Corder RM, Gómez J, Guzmán M, Speybroeck N, Llanos-Cuentas A, Castro MC, Rosanas-Urgell A, Ferreira MU, Vinetz JM, Gamboa D, Torres K. Recurrence patterns and evolution of submicroscopic and asymptomatic Plasmodium vivax infections in malaria-endemic areas of the Peruvian Amazon. PLoS Negl Trop Dis 2024; 18:e0012566. [PMID: 39480785 PMCID: PMC11527163 DOI: 10.1371/journal.pntd.0012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND In the Peruvian Amazon, Plasmodium vivax malaria transmission is maintained due to the high frequency of recurrences. By understanding the recurrence rates of submicroscopic and asymptomatic cases, we can develop informed strategies to prevent transmission more efficiently and disrupt the silent transmission cycle. METHODS A three-year, population-based cohort study was conducted in two sites, Cahuide and Lupuna, within the Loreto region in Peru from 2013 to 2015. The study included 385 individuals and aimed to examine the temporal dynamics of malaria recurrences and their impact on transmission and control. RESULTS Individuals from Lupuna presented a higher risk of P. vivax infections compared to Cahuide, where most recurrences were asymptomatic and submicroscopic. It is estimated that a great proportion of these recurrences were due to relapses in both communities. The application of molecular diagnostic method proved to be significantly more effective, detecting 2.3 times more episodes during the follow-up (PCR, 1068; microscopy, 467). PCR identified recurrences significantly earlier, at 151 days after an initial infection, compared to microscopy, which detected them on average after 365 days. Community, occupation and previous malaria infections were factors associated with recurrences. Finally, potential infection evolution scenarios were described where one frequent scenario involved the transition from symptomatic to asymptomatic infections with a mean evolution time of 240 days. CONCLUSIONS This study explores the contrast in malaria recurrence risk among individuals from two endemic settings, a consequence of prolonged exposure to the parasite. Through the analysis of the evolution scenarios of P. vivax recurrences, it is possible to have a more complete vision of how the transmission pattern changes over time and is conditioned by different factors.
Collapse
Affiliation(s)
- Stefano S. Garcia Castillo
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Caroline Abanto Alvarez
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Ángel Rosas-Aguirre
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Carlos Acosta
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rodrigo M. Corder
- Division of Epidemiology and Biostatistics, University of California, Berkeley School of Public Health, Berkeley, California, United States of America
- Department of Parasitology, Instituto of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Joaquín Gómez
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mitchel Guzmán
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C. Castro
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, United States of America
| | | | - Marcelo U. Ferreira
- Department of Parasitology, Instituto of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Joseph M. Vinetz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Dionicia Gamboa
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Katherine Torres
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
5
|
Winnicki AC, King CL, Bosch J, Malachin AN, Carias LL, Skomorovska-Prokvolit Y, Tham WH, Dietrich MH, Popovici J, Roobsoong W, Beeson JG, Sattabongkot J, Yeoh LM, Opi DH, Feufack-Donfack LB, Orban A, Drago CL, McLaine OS, Redinger KR, Jung NC, Baldor L, Kirtley P, Neilsen K, Aleshnick M, Zanghi G, Rezakhani N, Vaughan AM, Wilder BK. Potent AMA1-specific human monoclonal antibody against P. vivax Pre-erythrocytic and Blood Stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579302. [PMID: 38370683 PMCID: PMC10871283 DOI: 10.1101/2024.02.07.579302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
New therapeutics are necessary for preventing Plasmodium vivax malaria due to easy transmissibility and dormancy in the liver that increases the clinical burden due to recurrent relapse. We isolated 12 Pv Apical Membrane Antigen 1 (PvAMA1) specific human monoclonal antibodies from Peripheral Blood Mononuclear Cells of a Pv exposed individual. PvAMA1 is essential for sporozoite and merozoite invasion, making it a unique therapeutic target. HumAb 826827 blocked the invasion of human erythrocytes using Pv clinical isolates and inhibited sporozoite invasion of human hepatocytes in vitro (IC50 of 0.3 to 3.7 ug/mL). It also significantly reduced liver infection of chimeric FRG humHep mice in vivo. The crystal structure of rPvAMA1 bound to 826827 shows that 826827 partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. We have isolated a potent humAb that is isolate transcendent, blocks both pre erythrocytic and blood stage infection, and could be a new therapy for Pv.
Collapse
|
6
|
Amaral PST, Garcia KKS, Suárez-Mutis MC, Coelho RR, Galardo AK, Murta F, Moresco GG, Siqueira AM, Gurgel-Gonçalves R. Malaria in areas under mining activity in the Amazon: A review. Rev Soc Bras Med Trop 2024; 57:e002002024. [PMID: 38922216 PMCID: PMC11210384 DOI: 10.1590/0037-8682-0551-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/09/2024] [Indexed: 06/27/2024] Open
Abstract
Deforestation and high human mobility due to mining activities have been key to the increase in malaria cases in the Americas. Here, we review the epidemiological and control aspects of malaria in the Amazon mining areas. Epidemiological evidence shows: 1) a positive correlation between illegal mining activity and malaria incidence, mostly in the Amazon region; 2) most Brazilian miners are males aged 15-29 years who move between states and even countries; 3) miners do not fear the disease and rely on medical care, diagnosis, and medication when they become ill; 4) illegal mining has emerged as the most reported anthropogenic activity within indigenous lands and is identified as a major cause of malaria outbreaks among indigenous people in the Amazon; and 5) because mining is largely illegal, most areas are not covered by any healthcare facilities or activities, leading to little assistance in the diagnosis and treatment of malaria. Our review identified five strategies for reducing the malaria incidence in areas with mining activities: 1) reviewing legislation to control deforestation and mining expansion, particularly in indigenous lands; 2) strengthening malaria surveillance by expanding the network of community health agents to support rapid diagnosis and treatment; 3) reinforcing vector control strategies, such as the use of insecticide-treated nets; 4) integrating deforestation alerts into the national malaria control program; and 5) implementing multi-sectoral activities and providing prompt assistance to indigenous populations. With this roadmap, we can expect a decrease in malaria incidence in the Amazonian mining areas in the future.
Collapse
Affiliation(s)
- Pablo Sebastian Tavares Amaral
- Universidade de Brasília, Faculdade de Medicina, Programa de Pós-graduação em Medicina Tropical, Brasília, DF, Brasil
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, DF, Brasil
| | - Klauss Kleydmann Sabino Garcia
- Universidade de Brasília, Faculdade de Medicina, Programa de Pós-graduação em Medicina Tropical, Brasília, DF, Brasil
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, DF, Brasil
- Universidade de Brasília, Faculdade de Ciências da Saúde, Brasília, DF, Brasil
| | | | - Ronan Rocha Coelho
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, DF, Brasil
| | - Allan Kardec Galardo
- Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Macapá, AP, Brasil
| | - Felipe Murta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Departamento de Ensino e Pesquisa, Manaus, AM, Brasil
| | - Gilberto Gilmar Moresco
- Secretaria de Vigilância em Saúde e Ambiente, Ministério da Saúde, Brasília, DF, Brasil
- Universidade de Brasília, Faculdade de Ciências da Saúde, Programa de Pós-graduação em Saúde Coletiva, Brasília, DF, Brasil
| | - André Machado Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Rodrigo Gurgel-Gonçalves
- Universidade de Brasília, Faculdade de Medicina, Laboratório de Parasitologia Médica e Biologia Vetores, Brasília, DF, Brasil
| |
Collapse
|
7
|
Mehra S, Taylor PG, McCaw JM, Flegg JA. A hybrid transmission model for Plasmodium vivax accounting for superinfection, immunity and the hypnozoite reservoir. J Math Biol 2024; 89:7. [PMID: 38772937 PMCID: PMC11108905 DOI: 10.1007/s00285-024-02088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2023] [Accepted: 03/25/2024] [Indexed: 05/23/2024]
Abstract
Malaria is a vector-borne disease that exacts a grave toll in the Global South. The epidemiology of Plasmodium vivax, the most geographically expansive agent of human malaria, is characterised by the accrual of a reservoir of dormant parasites known as hypnozoites. Relapses, arising from hypnozoite activation events, comprise the majority of the blood-stage infection burden, with implications for the acquisition of immunity and the distribution of superinfection. Here, we construct a novel model for the transmission of P. vivax that concurrently accounts for the accrual of the hypnozoite reservoir, (blood-stage) superinfection and the acquisition of immunity. We begin by using an infinite-server queueing network model to characterise the within-host dynamics as a function of mosquito-to-human transmission intensity, extending our previous model to capture a discretised immunity level. To model transmission-blocking and antidisease immunity, we allow for geometric decay in the respective probabilities of successful human-to-mosquito transmission and symptomatic blood-stage infection as a function of this immunity level. Under a hybrid approximation-whereby probabilistic within-host distributions are cast as expected population-level proportions-we couple host and vector dynamics to recover a deterministic compartmental model in line with Ross-Macdonald theory. We then perform a steady-state analysis for this compartmental model, informed by the (analytic) distributions derived at the within-host level. To characterise transient dynamics, we derive a reduced system of integrodifferential equations, likewise informed by our within-host queueing network, allowing us to recover population-level distributions for various quantities of epidemiological interest. In capturing the interplay between hypnozoite accrual, superinfection and acquired immunity-and providing, to the best of our knowledge, the most complete population-level distributions for a range of epidemiological values-our model provides insights into important, but poorly understood, epidemiological features of P. vivax.
Collapse
Affiliation(s)
- Somya Mehra
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia.
| | - Peter G Taylor
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| | - James M McCaw
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and The University of Melbourne, Parkville, Australia
| | - Jennifer A Flegg
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
8
|
Münz C. Modulation of Epstein-Barr-Virus (EBV)-Associated Cancers by Co-Infections. Cancers (Basel) 2023; 15:5739. [PMID: 38136285 PMCID: PMC10741436 DOI: 10.3390/cancers15245739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The oncogenic and persistent Epstein Barr virus (EBV) is carried by more than 95% of the human adult population. While asymptomatic in most of these, EBV can cause a wide variety of malignancies of lymphoid or epithelial cell origin. Some of these are also associated with co-infections that either increase EBV-induced tumorigenesis or weaken its immune control. The respective pathogens include Kaposi-sarcoma-associated herpesvirus (KSHV), Plasmodium falciparum and human immunodeficiency virus (HIV). In this review, I will discuss the respective tumor entities and possible mechanisms by which co-infections increase the EBV-associated cancer burden. A better understanding of the underlying mechanisms could allow us to identify crucial features of EBV-associated malignancies and defects in their immune control. These could then be explored to develop therapies against the respective cancers by targeting EBV and/or the respective co-infections with pathogen-specific therapies or vaccinations.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
9
|
Akgöllü E, Demirkazık M, Bilgin R. The effect of HLA-DP gene polymorphisms in Plasmodium Vivax-induced malaria susceptibility. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:572-584. [PMID: 37980631 DOI: 10.1080/15257770.2023.2283620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Plasmodium vivax is the second most common Plasmodium parasite causing clinically serious symptoms and death from malaria. It is an important cause of morbidity and mortality, especially in Asia, the Middle East, and South America. Human leukocyte antigen molecules are responsible for presenting foreign antigens to T cells. Polymorphisms in HLA genes affect antigen presentation. HLA alleles involved in the presentation of P. vivax antigens affect the antibody response. The present study aimed to reveal the relationship of rs3077 and rs9277535 polymorphisms in HLA-DP genes with malaria caused by P. vivax for the first time in the worldwide. In the present research, rs3077 and rs9277535 polymorphisms were investigated in a case-control study of 124 patients with P. vivax-induced malaria and 211 healthy persons by using a real-time polymerase chain reaction (RT-PCR). The results showed that the G alleles of rs3077 and rs9277535 polymorphisms were detected as protective alleles, while the A alleles of both polymorphisms increase the risk of susceptibility to malaria disease. The results of the present study showed that both polymorphisms have a major effect on the susceptibility to malaria caused by P. vivax. We recommend that this study should be conducted in a different population with a larger sample size to confirm our results.
Collapse
Affiliation(s)
- Ersin Akgöllü
- Patnos Vocational School, Department of Pharmacy, Ağrı İbrahim Çeçen University, Merkez/Ağrı, Turkey
| | - Mehtap Demirkazık
- Faculty of Medicine, Department of Parasitology, Çukurova University, Adana, Turkey
| | - Ramazan Bilgin
- Faculty of Science, Department of Chemistry, Çukurova University, Adana, Turkey
| |
Collapse
|
10
|
Kojom Foko LP, Singh V. Malaria in pregnancy in India: a 50-year bird's eye. Front Public Health 2023; 11:1150466. [PMID: 37927870 PMCID: PMC10620810 DOI: 10.3389/fpubh.2023.1150466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction In 2021, India contributed for ~79% of malaria cases and ~ 83% of deaths in the South East Asia region. Here, we systematically and critically analyzed data published on malaria in pregnancy (MiP) in India. Methods Epidemiological, clinical, parasitological, preventive and therapeutic aspects of MiP and its consequences on both mother and child were reviewed and critically analyzed. Knowledge gaps and solution ways are also presented and discussed. Several electronic databases including Google scholar, Google, PubMed, Scopus, Wiley Online library, the Malaria in Pregnancy Consortium library, the World Malaria Report, The WHO regional websites, and ClinicalTrials.gov were used to identify articles dealing with MiP in India. The archives of local scientific associations/journals and website of national programs were also consulted. Results Malaria in pregnancy is mainly due to Plasmodium falciparum (Pf) and P. vivax (Pv), and on rare occasions to P. ovale spp. and P. malariae too. The overall prevalence of MiP is ~0.1-57.7% for peripheral malaria and ~ 0-29.3% for placental malaria. Peripheral Pf infection at antenatal care (ANC) visits decreased from ~13% in 1991 to ~7% in 1995-1996 in Madhya Pradesh, while placental Pf infection at delivery unit slightly decreased from ~1.5% in 2006-2007 to ~1% in 2012-2015 in Jharkhand. In contrast, the prevalence of peripheral Pv infection at ANC increased from ~1% in 2006-2007 to ~5% in 2015 in Jharkhand, and from ~0.5% in 1984-1985 to ~1.5% in 2007-2008 in Chhattisgarh. Clinical presentation of MiP is diverse ranging from asymptomatic carriage of parasites to severe malaria, and associated with comorbidities and concurrent infections such as malnutrition, COVID-19, dengue, and cardiovascular disorders. Severe anemia, cerebral malaria, severe thrombocytopenia, and hypoglycemia are commonly seen in severe MiP, and are strongly associated with tragic consequences such as abortion and stillbirth. Congenital malaria is seen at prevalence of ~0-12.9%. Infected babies are generally small-for-gestational age, premature with low birthweight, and suffer mainly from anemia, thrombocytopenia, leucopenia and clinical jaundice. Main challenges and knowledge gaps to MiP control included diagnosis, relapsing malaria, mixed Plasmodium infection treatment, self-medication, low density infections and utility of artemisinin-based combination therapies. Conclusion All taken together, the findings could be immensely helpful to control MiP in malaria endemic areas.
Collapse
|
11
|
Bach FA, Muñoz Sandoval D, Mazurczyk M, Themistocleous Y, Rawlinson TA, Harding AC, Kemp A, Silk SE, Barrett JR, Edwards NJ, Ivens A, Rayner JC, Minassian AM, Napolitani G, Draper SJ, Spence PJ. A systematic analysis of the human immune response to Plasmodium vivax. J Clin Invest 2023; 133:e152463. [PMID: 37616070 PMCID: PMC10575735 DOI: 10.1172/jci152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUNDThe biology of Plasmodium vivax is markedly different from that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we inoculated human volunteers with a clonal field isolate of P. vivax and tracked their response through infection and convalescence.METHODSParticipants were injected intravenously with blood-stage parasites and infection dynamics were tracked in real time by quantitative PCR. Whole blood samples were used for high dimensional protein analysis, RNA sequencing, and cytometry by time of flight, and temporal changes in the host response to P. vivax were quantified by linear regression. Comparative analyses with P. falciparum were then undertaken using analogous data sets derived from prior controlled human malaria infection studies.RESULTSP. vivax rapidly induced a type I inflammatory response that coincided with hallmark features of clinical malaria. This acute-phase response shared remarkable overlap with that induced by P. falciparum but was significantly elevated (at RNA and protein levels), leading to an increased incidence of pyrexia. In contrast, T cell activation and terminal differentiation were significantly increased in volunteers infected with P. falciparum. Heterogeneous CD4+ T cells were found to dominate this adaptive response and phenotypic analysis revealed unexpected features normally associated with cytotoxicity and autoinflammatory disease.CONCLUSIONP. vivax triggers increased systemic interferon signaling (cf P. falciparum), which likely explains its reduced pyrogenic threshold. In contrast, P. falciparum drives T cell activation far in excess of P. vivax, which may partially explain why falciparum malaria more frequently causes severe disease.TRIAL REGISTRATIONClinicalTrials.gov NCT03797989.FUNDINGThe European Union's Horizon 2020 Research and Innovation programme, the Wellcome Trust, and the Royal Society.
Collapse
Affiliation(s)
- Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Insitute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | | | | | | | - Adam C. Harding
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jordan R. Barrett
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Angela M. Minassian
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, and
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Ferreira NS, Lima NF, Sulczewski FB, Soares IS, Ferreira MU, Boscardin SB. Plasmodium vivax infection alters the peripheral immunoregulatory network of CD4 T follicular cells and B cells. Eur J Immunol 2023; 53:e2350372. [PMID: 37160134 DOI: 10.1002/eji.202350372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/10/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023]
Abstract
Regulatory and effector cell responses to Plasmodium vivax, the most common human malaria parasite outside Africa, remain understudied in naturally infected populations. Here, we describe peripheral CD4+ T- and B-cell populations during and shortly after an uncomplicated P. vivax infection in 38 continuously exposed adult Amazonians. Consistent with previous observations, we found an increased frequency in CD4+ CD45RA- CD25+ FoxP3+ T regulatory cells that express the inhibitory molecule CTLA-4 during the acute infection, with a sustained expansion of CD21- CD27- atypical memory cells within the CD19+ B-cell compartment. Both Th1- and Th2-type subsets of CXCR5+ ICOShi PD-1+ circulating T follicular helper (cTfh) cells, which are thought to contribute to antibody production, were induced during P. vivax infection, with a positive correlation between overall cTfh cell frequency and IgG antibody titers to the P. vivax blood-stage antigen MSP119 . We identified significant changes in cell populations that had not been described in human malaria, such as an increased frequency of CTLA-4+ T follicular regulatory cells that antagonize Tfh cells, and a decreased frequency of circulating CD24hi CD27+ B regulatory cells in response to acute infection. In conclusion, we disclose a complex immunoregulatory network that is critical to understand how naturally acquired immunity develops in P. vivax malaria.
Collapse
Affiliation(s)
- Natália S Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathália F Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando B Sulczewski
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Lisbon, Portugal
| | - Silvia B Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Matos ADS, Soares IF, Baptista BDO, de Souza HADS, Chaves LB, Perce-da-Silva DDS, Riccio EKP, Albrecht L, Totino PRR, Rodrigues-da-Silva RN, Daniel-Ribeiro CT, Pratt-Riccio LR, Lima-Junior JDC. Construction, Expression, and Evaluation of the Naturally Acquired Humoral Immune Response against Plasmodium vivax RMC-1, a Multistage Chimeric Protein. Int J Mol Sci 2023; 24:11571. [PMID: 37511330 PMCID: PMC10380678 DOI: 10.3390/ijms241411571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The PvCelTOS, PvCyRPA, and Pvs25 proteins play important roles during the three stages of the P. vivax lifecycle. In this study, we designed and expressed a P. vivax recombinant modular chimeric protein (PvRMC-1) composed of the main antigenic regions of these vaccine candidates. After structure modelling by prediction, the chimeric protein was expressed, and the antigenicity was assessed by IgM and IgG (total and subclass) ELISA in 301 naturally exposed individuals from the Brazilian Amazon. The recombinant protein was recognized by IgG (54%) and IgM (40%) antibodies in the studied individuals, confirming the natural immunogenicity of the epitopes that composed PvRMC-1 as its maintenance in the chimeric structure. Among responders, a predominant cytophilic response mediated by IgG1 (70%) and IgG3 (69%) was observed. IgM levels were inversely correlated with age and time of residence in endemic areas (p < 0.01). By contrast, the IgG and IgM reactivity indexes were positively correlated with each other, and both were inversely correlated with the time of the last malaria episode. Conclusions: The study demonstrates that PvRMC-1 was successfully expressed and targeted by natural antibodies, providing important insights into the construction of a multistage chimeric recombinant protein and the use of naturally acquired antibodies to validate the construction.
Collapse
Affiliation(s)
- Ada da Silva Matos
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Isabela Ferreira Soares
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Barbara de Oliveira Baptista
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Hugo Amorim Dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Lana Bitencourt Chaves
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Daiana de Souza Perce-da-Silva
- Laboratório de Imunologia Básica e Aplicada, Centro Universitário Arthur Sá Earp Neto/Faculdade de Medicina de Petrópolis (UNIFASE/FMP), Petrópolis 25680-120, RJ, Brazil
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Evelyn Kety Pratt Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Curitiba 81350-010, PR, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| | - Rodrigo Nunes Rodrigues-da-Silva
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz e Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro 21040-900, RJ, Brazil
| | - Josué da Costa Lima-Junior
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
14
|
Vyas VK, Shukla T, Sharma M. Medicinal chemistry approaches for the discovery of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. Future Med Chem 2023; 15:1295-1321. [PMID: 37551689 DOI: 10.4155/fmc-2023-0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Malaria is a severe human disease and a global health problem because of drug-resistant strains. Drugs reported to prevent the growth of Plasmodium parasites target various phases of the parasites' life cycle. Antimalarial drugs can inhibit key enzymes that are responsible for the cellular growth and development of parasites. Plasmodium falciparum dihydroorotate dehydrogenase is one such enzyme that is necessary for de novo pyrimidine biosynthesis. This review focuses on various medicinal chemistry approaches used for the discovery and identification of selective P. falciparum dihydroorotate dehydrogenase inhibitors as antimalarial agents. This comprehensive review discusses recent advances in the selective therapeutic activity of distinct chemical classes of compounds as P. falciparum dihydroorotate dehydrogenase inhibitors and antimalarial drugs.
Collapse
Affiliation(s)
- Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Tanvi Shukla
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| |
Collapse
|
15
|
Rocha VD, Brasil LW, Gomes EDO, Khouri R, Ferreira GDJ, Vasconcelos B, Gouveia MDS, Santos TS, Reis MG, Lacerda MVG. Malaria and COVID-19 coinfection in a non-malaria-endemic area in Brazil. Rev Soc Bras Med Trop 2023; 56:e05982022. [PMID: 37222351 DOI: 10.1590/0037-8682-0598-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 05/25/2023] Open
Abstract
Differential diagnosis of coronavirus disease 2019 (COVID-19) from other febrile diseases is one of several challenges imposed by the pandemic. We present a case of severe malaria and COVID-19 coinfection in a non-malaria-endemic region. A 44-year-old female with malaise, fever, hypotension, jaundice, and enlarged liver and spleen was admitted to the intensive care unit. Reverse transcription-quantitative PCR results for severe acute respiratory syndrome coronavirus 2 were positive. Rapid tests, microscopy, and quantitative PCR were positive for Plasmodium vivax. Cytokine storm profiles were identified. We could not determine whether the severe vivax malaria in our patient was triggered by COVID-19 coinfection.
Collapse
Affiliation(s)
| | - Larissa W Brasil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
- Instituto Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brasil
| | - Erika de Oliveira Gomes
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - Ricardo Khouri
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
- Universidade Federal da Bahia, Salvador, BA, Brasil
| | | | | | - Marcela de Sá Gouveia
- Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Salvador, BA, Brasil
| | - Thais Souza Santos
- Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Salvador, BA, Brasil
| | - Mitermayer G Reis
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brasil
- Universidade Federal da Bahia, Faculdade de Medicina, Salvador, BA, Brasil
- Yale School of Public Health, Yale University, New Haven, Connecticut, United States
| | - Marcus Vinícius Guimarães Lacerda
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil
- Instituto Leônidas & Maria Deane, Fiocruz, Manaus, AM, Brasil
- Universidade do Estado do Amazonas, Manaus, AM, Brasil
| |
Collapse
|
16
|
da Veiga GTS, Moriggi MR, Vettorazzi JF, Müller-Santos M, Albrecht L. Plasmodium vivax vaccine: What is the best way to go? Front Immunol 2023; 13:910236. [PMID: 36726991 PMCID: PMC9885200 DOI: 10.3389/fimmu.2022.910236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Malaria is one of the most devastating human infectious diseases caused by Plasmodium spp. parasites. A search for an effective and safe vaccine is the main challenge for its eradication. Plasmodium vivax is the second most prevalent Plasmodium species and the most geographically distributed parasite and has been neglected for decades. This has a massive gap in knowledge and consequently in the development of vaccines. The most significant difficulties in obtaining a vaccine against P. vivax are the high genetic diversity and the extremely complex life cycle. Due to its complexity, studies have evaluated P. vivax antigens from different stages as potential targets for an effective vaccine. Therefore, the main vaccine candidates are grouped into preerythrocytic stage vaccines, blood-stage vaccines, and transmission-blocking vaccines. This review aims to support future investigations by presenting the main findings of vivax malaria vaccines to date. There are only a few P. vivax vaccines in clinical trials, and thus far, the best protective efficacy was a vaccine formulated with synthetic peptide from a circumsporozoite protein and Montanide ISA-51 as an adjuvant with 54.5% efficacy in a phase IIa study. In addition, the majority of P. vivax antigen candidates are polymorphic, induce strain-specific and heterogeneous immunity and provide only partial protection. Nevertheless, immunization with recombinant proteins and multiantigen vaccines have shown promising results and have emerged as excellent strategies. However, more studies are necessary to assess the ideal vaccine combination and test it in clinical trials. Developing a safe and effective vaccine against vivax malaria is essential for controlling and eliminating the disease. Therefore, it is necessary to determine what is already known to propose and identify new candidates.
Collapse
Affiliation(s)
- Gisele Tatiane Soares da Veiga
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | | | | | - Marcelo Müller-Santos
- Nitrogen Fixation Laboratory, Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba, Brazil
| | - Letusa Albrecht
- Laboratory of Apicomplexan Parasites Research, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Brazil,*Correspondence: Letusa Albrecht,
| |
Collapse
|
17
|
Salazar Alvarez LC, Carneiro Barbosa V, Vera Lizcano O, Baia da Silva DC, Gonçalves Santana RA, Fabbri C, Paoluci Pimenta PF, Monteiro WM, Albrecht L, Guimarães de Lacerda MV, Trindade Maranhão Costa F, Costa Pinto Lopes S. Rosette formation by Plasmodium vivax gametocytes favors the infection in Anopheles aquasalis. Front Cell Infect Microbiol 2023; 13:1108348. [PMID: 36875524 PMCID: PMC9975573 DOI: 10.3389/fcimb.2023.1108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Plasmodium vivax is a public health problem and the most common type of malaria outside sub-Saharan Africa. The capacity of cytoadhesion, rosetting, and liver latent phase development could impact treatment and disease control. Although the ability to P. vivax gametocyte develop rosetting is known, it is not yet clear which role it plays during the infection and transmission process to the mosquito. Here, we used ex vivo approaches for evaluate the rosetting P. vivax gametocytes capacity and we have investigated the effect of this adhesive phenotype on the infection process in the vector Anopheles aquasalis mosquito. Rosette assays were performed in 107 isolates, and we have observed an elevated frequency of cytoadhesive phenomena (77,6%). The isolates with more than 10% of rosettes have presented a higher infection rate in Anopheles aquasalis (p=0.0252). Moreover, we found a positive correlation between the frequency of parasites in rosetting with the infection rate (p=0.0017) and intensity (p=0.0387) in the mosquito. The disruption of P. vivax rosette formation through mechanical rupture assay confirmed the previously findings, since the paired comparison showed that isolates with disrupted rosettes have a lower infection rate (p<0.0001) and intensity (p=0.0003) compared to the control group (no disruption). Herein we have demonstrated for the first time a potential effect of the rosette phenomenon on the infection process in the mosquito vector An. aquasalis, favoring its capacity and intensity of infection, thus allowing the perpetuation of the parasite cycle life.
Collapse
Affiliation(s)
- Luis Carlos Salazar Alvarez
- Centro Internacional de Pesquisa Clínica em Malária – CIPCliM, Fundação de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, Brazil
| | - Vanessa Carneiro Barbosa
- Centro Internacional de Pesquisa Clínica em Malária – CIPCliM, Fundação de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Instituto Leônidas & Maria Deane (ILMD/Fiocruz Amazônia), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Brazil
| | - Omaira Vera Lizcano
- Centro Internacional de Pesquisa Clínica em Malária – CIPCliM, Fundação de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, Brazil
- Grupo de investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
| | - Djane Clarys Baia da Silva
- Centro Internacional de Pesquisa Clínica em Malária – CIPCliM, Fundação de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto Leônidas & Maria Deane (ILMD/Fiocruz Amazônia), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Brazil
- Departamento de Saúde Coletiva, Universidade Federal do Amazonas, Manaus, Brazil
- Universidade Nilton Lins, Manaus, Brazil
| | - Rosa Amélia Gonçalves Santana
- Centro Internacional de Pesquisa Clínica em Malária – CIPCliM, Fundação de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto Leônidas & Maria Deane (ILMD/Fiocruz Amazônia), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Brazil
| | - Camila Fabbri
- Centro Internacional de Pesquisa Clínica em Malária – CIPCliM, Fundação de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto Leônidas & Maria Deane (ILMD/Fiocruz Amazônia), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Brazil
| | - Paulo Filemon Paoluci Pimenta
- Centro Internacional de Pesquisa Clínica em Malária – CIPCliM, Fundação de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto de Pesquisas René Rachou (IRR/ Fiocruz Minas), FIOCRUZ, Belo Horizonte, Brazil
| | - Wuelton Marcelo Monteiro
- Centro Internacional de Pesquisa Clínica em Malária – CIPCliM, Fundação de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, Brazil
- Instituto Carlos Chagas (ICC/ Fiocruz Paraná), FIOCRUZ, Curitiba, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Centro Internacional de Pesquisa Clínica em Malária – CIPCliM, Fundação de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto Leônidas & Maria Deane (ILMD/Fiocruz Amazônia), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases-Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, Brazil
- Instituto Leônidas & Maria Deane (ILMD/Fiocruz Amazônia), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Brazil
- *Correspondence: Stefanie Costa Pinto Lopes, ; Fabio Trindade Maranhão Costa,
| | - Stefanie Costa Pinto Lopes
- Centro Internacional de Pesquisa Clínica em Malária – CIPCliM, Fundação de Medicina Tropical - Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
- Instituto Leônidas & Maria Deane (ILMD/Fiocruz Amazônia), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, Brazil
- *Correspondence: Stefanie Costa Pinto Lopes, ; Fabio Trindade Maranhão Costa,
| |
Collapse
|
18
|
Drysdale M, Tan L, Martin A, Fuhrer IB, Duparc S, Sharma H. Plasmodium vivax in Children: Hidden Burden and Conspicuous Challenges, a Narrative Review. Infect Dis Ther 2023; 12:33-51. [PMID: 36378465 PMCID: PMC9868225 DOI: 10.1007/s40121-022-00713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
There has been progress towards decreasing malaria prevalence globally; however, Plasmodium vivax has been less responsive to elimination efforts compared with Plasmodium falciparum. P. vivax malaria remains a serious public health concern in regions where it is the dominant species (South and South-East Asia, the Eastern Mediterranean region, and South America) and is increasingly recognized for its contribution to overall morbidity and mortality worldwide. The incidence of P. vivax decreases with increasing age owing to rapidly acquired clinical immunity and there is a disproportionate burden of P. vivax in infants and children, who remain highly vulnerable to severe disease, recurrence, and anemia with associated developmental impacts. Diagnosis is sometimes difficult owing to the sensitivity of diagnostic tests to detect low levels of parasitemia. Additionally, the propensity of P. vivax to relapse following reactivation of dormant hypnozoites in the liver contributes to disease recurrence in infants and children, and potentiates morbidity and transmission. The 8-aminoquinolines, primaquine and tafenoquine, provide radical cure (relapse prevention). However, the risk of hemolysis in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency necessitates testing prior to administration of 8-aminoquinolines, which has limited their uptake. Additional challenges include lack of availability of pediatric dose formulations and problems with adherence to primaquine owing to the length of treatment recommended. A paucity of data and studies specific to pediatric P. vivax malaria impacts the ability to deliver targeted interventions. It is imperative that P. vivax in infants and children be the focus of future research, control initiatives, and anti-malarial drug development.
Collapse
Affiliation(s)
| | - Lionel Tan
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| | - Ana Martin
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| | | | | | - Hema Sharma
- GSK, 980 Great West Road, Brentford, TW8 9GS Middlesex UK
| |
Collapse
|
19
|
Tashi T, Upadhye A, Kundu P, Wu C, Menant S, Soares RR, Ferreira MU, Longley RJ, Mueller I, Hoang QQ, Tham WH, Rayner JC, Scopel KKG, Lima-Junior JC, Tran TM. Longitudinal IgG antibody responses to Plasmodium vivax blood-stage antigens during and after acute vivax malaria in individuals living in the Brazilian Amazon. PLoS Negl Trop Dis 2022; 16:e0010773. [PMID: 36417454 PMCID: PMC9728838 DOI: 10.1371/journal.pntd.0010773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/07/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To make progress towards malaria elimination, a highly effective vaccine targeting Plasmodium vivax is urgently needed. Evaluating the kinetics of natural antibody responses to vaccine candidate antigens after acute vivax malaria can inform the design of serological markers of exposure and vaccines. METHODOLOGY/PRINCIPAL FINDINGS The responses of IgG antibodies to 9 P. vivax vaccine candidate antigens were evaluated in longitudinal serum samples from Brazilian individuals collected at the time of acute vivax malaria and 30, 60, and 180 days afterwards. Antigen-specific IgG correlations, seroprevalence, and half-lives were determined for each antigen using the longitudinal data. Antibody reactivities against Pv41 and PVX_081550 strongly correlated with each other at each of the four time points. The analysis identified robust responses in terms of magnitude and seroprevalence against Pv41 and PvGAMA at 30 and 60 days. Among the 8 P. vivax antigens demonstrating >50% seropositivity across all individuals, antibodies specific to PVX_081550 had the longest half-life (100 days; 95% CI, 83-130 days), followed by PvRBP2b (91 days; 95% CI, 76-110 days) and Pv12 (82 days; 95% CI, 64-110 days). CONCLUSION/SIGNIFICANCE This study provides an in-depth assessment of the kinetics of antibody responses to key vaccine candidate antigens in Brazilians with acute vivax malaria. Follow-up studies are needed to determine whether the longer-lived antibody responses induced by natural infection are effective in controlling blood-stage infection and mediating clinical protection.
Collapse
Affiliation(s)
- Tenzin Tashi
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Aditi Upadhye
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Prasun Kundu
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Chunxiang Wu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sébastien Menant
- Infectious Diseases and Immune Defence Division, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Roberta Reis Soares
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
| | - Rhea J. Longley
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ivo Mueller
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Quyen Q. Hoang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Wai-Hong Tham
- Infectious Diseases and Immune Defence Division, Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kézia KG Scopel
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Josué C. Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Tuan M. Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Microbiology and Immunology, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
20
|
Torres K, Ferreira MU, Castro MC, Escalante AA, Conn JE, Villasis E, da Silva Araujo M, Almeida G, Rodrigues PT, Corder RM, Fernandes ARJ, Calil PR, Ladeia WA, Garcia-Castillo SS, Gomez J, do Valle Antonelli LR, Gazzinelli RT, Golenbock DT, Llanos-Cuentas A, Gamboa D, Vinetz JM. Malaria Resilience in South America: Epidemiology, Vector Biology, and Immunology Insights from the Amazonian International Center of Excellence in Malaria Research Network in Peru and Brazil. Am J Trop Med Hyg 2022; 107:168-181. [PMID: 36228921 PMCID: PMC9662219 DOI: 10.4269/ajtmh.22-0127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.
Collapse
Affiliation(s)
- Katherine Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marcia C. Castro
- Department of Global Health and Population, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Ananias A. Escalante
- Department of Biology and Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jan E. Conn
- Department of Biomedical Sciences, School of Public Health, University at Albany, State University of New York, Albany, New York
- Wadsworth Center, New York State Department of Health, Albany, New York
| | - Elizabeth Villasis
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Gregorio Almeida
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Anderson R. J. Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Priscila R. Calil
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Winni A. Ladeia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Stefano S. Garcia-Castillo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquin Gomez
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ricardo T. Gazzinelli
- Instituto de Pesquisas Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Douglas T. Golenbock
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M. Vinetz
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
- Address correspondence to Joseph M. Vinetz, Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, 25 York St., Winchester 403D, PO Box 802022, New Haven, CT 06520. E-mail:
| |
Collapse
|
21
|
Tovar Acero C, Ramírez-Montoya J, Velasco MC, Avilés-Vergara PA, Ricardo-Caldera D, Duran-Frigola M, Quintero G, Cantero ME, Rivera-Correa J, Rodriguez A, Fernanda Yasnot-Acosta M. IL-4, IL-10, CCL2 and TGF-β as potential biomarkers for severity in Plasmodium vivax malaria. PLoS Negl Trop Dis 2022; 16:e0010798. [PMID: 36178979 PMCID: PMC9555658 DOI: 10.1371/journal.pntd.0010798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/12/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules is thought to contribute to pathogenesis and has been proposed as a possible predictor for disease complications. The objective of this study was to evaluate the cytokine profile of P. vivax malaria patients with different clinical outcomes to identify possible immune biomarkers for severe P. vivax malaria. The study included patients with non-severe (n = 56), or severe (n = 50) P. vivax malaria and healthy controls (n = 50). Patient plasma concentrations of IL-4, IL-2, CXCL10, IL-1β, TNF-α, CCL2, IL-17A, IL-6, IL-10, IFN-γ, IL-12p70, CXCL8 and active TGF-β1 were determined through flow cytometry. The levels of several cytokines and chemokines, CXCL10, IL-10, IL-6, IL-4, CCL2 and IFN-γ were found to be significantly higher in severe, compared to non-severe P. vivax malaria patients. Severe thrombocytopenia was positively correlated with IL-4, CXCL10, IL-6, IL-10 and IFN-γ levels, renal dysfunction was related to an increase in IL-2, IL-1β, IL-17A and IL-8, and hepatic impairment with CXCL10, MCP-1, IL-6 and IFN-γ. A Lasso regression model suggests that IL-4, IL-10, CCL2 and TGF-β might be developed as biomarkers for severity in P. vivax malaria. Severe P. vivax malaria patients present specific cytokine and chemokine profiles that are different from non-severe patients and that could potentially be developed as biomarkers for disease severity. Plasmodium vivax is one of the main species responsible for malaria in the world. The pathogenic mechanisms leading to the development of severe P. vivax malaria are not yet fully understood. Immune system molecules such as cytokines and chemokines actively participate in the control of the infection, however, their uncontrolled production can influence alterations in organs such as the liver, kidneys, among others. In this study we show that there is a differential concentration of some cytokines and chemokines between patients with non-severe malaria and severe P. vivax malaria; and that there are associations between these molecules with manifestations that occur in severe malaria. Four molecules with potential to become biomarkers of severity were identified.
Collapse
Affiliation(s)
- Catalina Tovar Acero
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba, Montería, Córdoba, Colombia
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
- Doctorado de Medicina Tropical, SUE Caribe, Universidad de Cartagena, Bolívar, Colombia
- * E-mail: (CTA); (MFYA)
| | - Javier Ramírez-Montoya
- Grupo de Investigación en Estadística, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - María Camila Velasco
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Paula A. Avilés-Vergara
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | - Dina Ricardo-Caldera
- Grupo de Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Córdoba, Colombia
| | | | - Gustavo Quintero
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Myriam Elena Cantero
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Juan Rivera-Correa
- New York University School of Medicine, New York, New York, United States of America
| | - Ana Rodriguez
- New York University School of Medicine, New York, New York, United States of America
| | - María Fernanda Yasnot-Acosta
- Grupo Investigaciones Microbiológicas y Biomédicas de Córdoba, GIMBIC, Universidad de Córdoba, Montería, Córdoba, Colombia
- * E-mail: (CTA); (MFYA)
| |
Collapse
|
22
|
de Jesus MCS, Barbosa JHR, Menezes RADO, Gomes MDSM, Bomfim LGS, Pimenta TS, Baptista ARDS, Machado RLD, de Moura TR, Storti-Melo LM. Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) and other inflammatory mediators in malaria by Plasmodium vivax during enteroparasites coinfection. PLoS One 2022; 17:e0270007. [PMID: 35749690 PMCID: PMC9232225 DOI: 10.1371/journal.pone.0270007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/01/2022] [Indexed: 11/19/2022] Open
Abstract
Malaria is a major health issue with more than 200 million cases occurring annually. Moreover, in Malaria endemic area are frequently observed Malaria-enteroparasite co-infections associated with the modulation of inflammatory response. In this aspect, biomarkers play an important role in the disease prognosis. This study aimed to evaluate inflammatory mediators in malaria during coinfection with enteroparasites. A subset of serum samples already collected was analyzed and divided into four groups: Malaria (n = 34), Co-infected (n = 116), Enteroparasite (n = 120) and Control (n = 95). The serum levels of sTREM-1 and IL-6 were measured by ELISA. TNF-α, and IL-10 levels were previously carried out by flow cytometry. Higher serum levels of sTREM-1 and IL-6 were showed in malaria patients compared to healthy controls. In co-infected malarial patients sTREM-1 serum levels were similar to control group. Interestingly, co-infected malaria patients showed IL-6 serum levels decreased compared to individuals only infected with P. vivax. However, in Malaria patients and co-infected there was a positive correlation between the IL-6 and IL-10 levels (P < 0.0001). This is the first report of sTREM-1 levels in P. vivax infected. Moreover, the results revealing a divergent effect of co-infection with the increased balance between pro-and anti-inflammatory cytokines and reduced IL-6 levels but increases the anemia occurrence. The results also highlight the potential use of IL-6 as a biomarker for P. vivax and enteroparasites coinfection.
Collapse
Affiliation(s)
- Myrela Conceição Santos de Jesus
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - José Hugo Romão Barbosa
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| | | | | | | | - Tamirys Simão Pimenta
- Instituto Evandro Chagas / Secretaria de Vigilância em Saúde / Ministério da Saúde, Ananindeua, Pará, Brasil
| | - Andrea Regina de Souza Baptista
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Ricardo Luiz Dantas Machado
- Programa de Pós-Graduação em Microbiologia e Parasitologia Aplicadas, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| | - Tatiana Rodrigues de Moura
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
- Health Sciences Graduate Program, Federal University of Sergipe, São Cristóvão, Brazil
- Departamento de Morfologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
- * E-mail:
| | - Luciane Moreno Storti-Melo
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
- Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brasil
| |
Collapse
|
23
|
Abstract
"The Primate Malarias" book has been a uniquely important resource for multiple generations of scientists, since its debut in 1971, and remains pertinent to the present day. Indeed, nonhuman primates (NHPs) have been instrumental for major breakthroughs in basic and pre-clinical research on malaria for over 50 years. Research involving NHPs have provided critical insights and data that have been essential for malaria research on many parasite species, drugs, vaccines, pathogenesis, and transmission, leading to improved clinical care and advancing research goals for malaria control, elimination, and eradication. Whilst most malaria scientists over the decades have been studying Plasmodium falciparum, with NHP infections, in clinical studies with humans, or using in vitro culture or rodent model systems, others have been dedicated to advancing research on Plasmodium vivax, as well as on phylogenetically related simian species, including Plasmodium cynomolgi, Plasmodium coatneyi, and Plasmodium knowlesi. In-depth study of these four phylogenetically related species over the years has spawned the design of NHP longitudinal infection strategies for gathering information about ongoing infections, which can be related to human infections. These Plasmodium-NHP infection model systems are reviewed here, with emphasis on modern systems biological approaches to studying longitudinal infections, pathogenesis, immunity, and vaccines. Recent discoveries capitalizing on NHP longitudinal infections include an advanced understanding of chronic infections, relapses, anaemia, and immune memory. With quickly emerging new technological advances, more in-depth research and mechanistic discoveries can be anticipated on these and additional critical topics, including hypnozoite biology, antigenic variation, gametocyte transmission, bone marrow dysfunction, and loss of uninfected RBCs. New strategies and insights published by the Malaria Host-Pathogen Interaction Center (MaHPIC) are recapped here along with a vision that stresses the importance of educating future experts well trained in utilizing NHP infection model systems for the pursuit of innovative, effective interventions against malaria.
Collapse
Affiliation(s)
- Mary R Galinski
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center (Yerkes National Primate Research Center), Emory University, Atlanta, GA, USA.
| |
Collapse
|
24
|
HIV infection increases the risk of acquiring Plasmodium vivax malaria: a 4-year cohort study in the Brazilian Amazon HIV and risk of vivax malaria. Sci Rep 2022; 12:9076. [PMID: 35641592 PMCID: PMC9156757 DOI: 10.1038/s41598-022-13256-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Globally, malaria and human immunodeficiency virus (HIV) are both independently associated with a massive burden of disease and death. While their co-infection has been well studied for Plasmodium falciparum, scarce data exist regarding the association of P. vivax and HIV. In this cohort study, we assessed the effect of HIV on the risk of vivax malaria infection and recurrence during a 4-year follow-up period in an endemic area of the Brazilian Amazon. For the purpose of this study, we obtained clinical information from January 2012 to December 2016 from two databases. HIV screening data were acquired from the clinical information system at the tropical hospital Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD). The National Malaria Surveillance database (SIVEP malaria) was utilized to identify malaria infections during a 4-year follow-up period after diagnosis of HIV. Both datasets were combined via data linkage. Between 2012 and 2016, a total of 42,121 people were screened for HIV, with 1569 testing positive (3.7%). Out of all the patients diagnosed with HIV, 198 had at least one episode of P. vivax malaria in the follow-up. In the HIV-negative group, 711 participants had at least one P. vivax malaria episode. When comparing both groups, HIV patients had a 6.48 [(5.37–7.83); P < 0.0001] (adjusted relative risk) greater chance of acquiring P. vivax malaria. Moreover, being of the male gender [ARR = 1.41 (1.17–1.71); P < 0.0001], Amerindian ethnicity [ARR = 2.77 (1.46–5.28); P < 0.0001], and a resident in a municipality of the Metropolitan region of Manaus [ARR = 1.48 (1.02–2.15); P = 0.038] were independent risk factors associated with an increased risk of clinical malaria. Education ≥ 8 years [ARR = 0.41 (0.26–0.64); P < 0.0001] and living in the urban area [ARR = 0.44 (0.24–0.80); P = 0.007] were associated to a lower risk of P. vivax malaria. A total of 28 (14.1%) and 180 (25.3%) recurrences (at least a second clinical malaria episode) were reported in the HIV-positive and HIV-negative groups, respectively. After adjusting for sex and education, HIV-positive status was associated with a tendency towards protection from P. vivax malaria recurrences [ARR = 0.55 (0.27–1.10); P = 0.090]. HIV status was not associated with hospitalizations due to P. vivax malaria. CD4 + counts and viral load were not associated with recurrences of P. vivax malaria. No significant differences were found in the distribution of parasitemia between HIV-negative and HIV-positive P. vivax malaria patients. Our results suggest that HIV-positive status is a risk factor for vivax malaria infection, which represents an additional challenge that should be addressed during elimination efforts.
Collapse
|
25
|
Synthesis and antiplasmodial activity of regioisomers and epimers of second-generation dual acting ivermectin hybrids. Sci Rep 2022; 12:564. [PMID: 35022455 PMCID: PMC8755717 DOI: 10.1038/s41598-021-04532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
With its strong effect on vector-borne diseases, and insecticidal effect on mosquito vectors of malaria, inhibition of sporogonic and blood-stage development of Plasmodium falciparum, as well as in vitro and in vivo impairment of the P. berghei development inside hepatocytes, ivermectin (IVM) continues to represent an antimalarial therapeutic worthy of investigation. The in vitro activity of the first-generation IVM hybrids synthesized by appending the IVM macrolide with heterocyclic and organometallic antimalarial pharmacophores, against the blood-stage and liver-stage infections by Plasmodium parasites prompted us to design second-generation molecular hybrids of IVM. Here, a structural modification of IVM to produce novel molecular hybrids by using sub-structures of 4- and 8-aminoquinolines, the time-tested antiplasmodial agents used for treating the blood and hepatic stage of Plasmodium infections, respectively, is presented. Successful isolation of regioisomers and epimers has been demonstrated, and the evaluation of their in vitro antiplasmodial activity against both the blood stages of P. falciparum and the hepatic stages of P. berghei have been undertaken. These compounds displayed structure-dependent antiplasmodial activity, in the nM range, which was more potent than that of IVM, its aglycon or primaquine, highlighting the superiority of this hybridization strategy in designing new antiplasmodial agents.
Collapse
|
26
|
Budiningsih I, Dachlan YP, Hadi U, Middeldorp JM. Quantitative cytokine level of TNF-α, IFN-γ, IL-10, TGF-β and circulating Epstein-Barr virus DNA load in individuals with acute Malaria due to P. falciparum or P. vivax or double infection in a Malaria endemic region in Indonesia. PLoS One 2021; 16:e0261923. [PMID: 34962938 PMCID: PMC8714090 DOI: 10.1371/journal.pone.0261923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/13/2021] [Indexed: 01/15/2023] Open
Abstract
Plasmodium falciparum Malaria and Epstein-Barr Virus (EBV) infection are risk factors in the development of Burkitt’s lymphoma. In Indonesia, 100% of the population is persistently infected with EBV early in life and at risk of developing EBV-linked cancers. Currently, 10.7 million people in Indonesia are living in Malaria-endemic areas. This cross-sectional study was initiated to investigate how acute Malaria dysregulates immune control over latent EBV infection. Using blood and plasma samples of 68 patients with acute Malaria and 27 healthy controls, we measured the level of parasitemia for each plasmodium type (P. falciparum, P. vivax, and mixed) by microscopy and rapid test. The level of 4 regulatory cytokines was determined by quantitative ELISA and the level of circulating EBV genome by real-time PCR targeting the single copy EBNA-1 sequence. All Plasmodium-infected cases had high-level parasitemia (>1000 parasites/ul blood) except for one case. EBV-DNA levels were significantly more elevated in P. falciparum and P. vivax infections (P<0.05) compared to controls. EBV-DNA levels were not related to age, gender, Malaria symptoms, or plasmodium type. TNF-α and IL-10 levels were increased in Malaria cases versus controls, but IFN-γ and TGF- β levels were comparable between the groups. Only TNF-α levels in P. falciparum cases showed a clear correlation with elevated EBV DNA levels (R2 = 0.8915). This is the first study addressing the relation between EBV (re)activation and cytokine responses during acute Malaria, revealing a clear correlation between pro-inflammatory cytokine TNF-α and EBV-DNA levels, specifically in P. falciparum cases, suggesting this cytokine to be key in dysregulating EBV homeostasis during acute P. falciparum Malaria.
Collapse
Affiliation(s)
- Insani Budiningsih
- Post Graduate Doctoral Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yoes Prijatna Dachlan
- Department of Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Usman Hadi
- Department of Internal Medicine, Dr. Soetomo Hospital-School of Medicine, Universitas Airlangga, Surabaya, Indonesia
- * E-mail: (UH); (JMM)
| | - Jaap Michiel Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail: (UH); (JMM)
| |
Collapse
|
27
|
Baird JK. Basic Research of Plasmodium vivax Biology Enabling Its Management as a Clinical and Public Health Problem. Front Cell Infect Microbiol 2021; 11:696598. [PMID: 34540716 PMCID: PMC8447957 DOI: 10.3389/fcimb.2021.696598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022] Open
Abstract
The emerging understanding of Plasmodium vivax as an infection seated in extravascular spaces of its human host carries fundamentally important implications for its management as a complex clinical and public health problem. This progress begins to reverse decades of neglected research borne of the false dogma of P. vivax as an intrinsically benign and inconsequential parasite. This Review provides real world context for the on-going laboratory explorations of the molecular and cellular events in the life of this parasite. Chemotherapies against the latent reservoir impose extraordinarily complex and difficult problems of science and medicine, but great strides in studies of the biology of hepatic P. vivax promise solutions. Fundamental assumptions regarding the interpretation of parasitaemia in epidemiology, clinical medicine, and public health are being revisited and reassessed in light of new studies of P. vivax cellular/molecular biology and pathogenesis. By examining these long overlooked complexities of P. vivax malaria, we open multiple new avenues to vaccination, chemoprevention, countermeasures against transmission, epidemiology, diagnosis, chemotherapy, and clinical management. This Review expresses how clarity of vision of biology and pathogenesis may rationally and radically transform the multiple means by which we may combat this insidiously harmful infection.
Collapse
Affiliation(s)
- J Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
28
|
Tocilizumab Induces IL-10-Mediated Immune Tolerance in Invasive Candidiasis. J Fungi (Basel) 2021; 7:jof7080656. [PMID: 34436195 PMCID: PMC8398010 DOI: 10.3390/jof7080656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022] Open
Abstract
The existence of a hyperinflammatory state has been observed in patients with invasive fungal infections (IFI). It is being postulated whether morbidity from IFI may, in part, be a consequence of an unnecessarily prolonged or exaggerated proinflammatory immune response including interleukin 6 (IL-6) post-infection, in a host with dysregulated or compromised immunity. This, in turn, induces collateral host injury at the tissue and organ level, leading to adverse outcomes. Tocilizumab has become widely used as an immunomodulator in the treatment of inflammatory conditions. Here, we evaluated the use of tocilizumab to curb post-infective inflammatory flare in the setting of an in-vivo mouse model for invasive candidiasis. Following Candida infection, the tocilizumab-treated mice showed improved short-term survival compared with the saline-treated control mice. There was a reduced inflammatory response mounted by the host, coupled with reduced IL-6 but increased IL-10 levels. TNF-α and IFN-γ responses were not affected. Tocilizumab facilitated immune tolerance by selectively inducing IL-10, producing CD8α+ conventional dendritic cells (DCs) and peripheral T-regulatory cells, over CD11b+ conventional DCs and plasmacytoid DCs. We demonstrate here the sequelae from immunomodulatory manipulation and the basis whereby the use of monoclonal antibodies may be further explored in IFI.
Collapse
|
29
|
Gimenez AM, Marques RF, Regiart M, Bargieri DY. Diagnostic Methods for Non-Falciparum Malaria. Front Cell Infect Microbiol 2021; 11:681063. [PMID: 34222049 PMCID: PMC8248680 DOI: 10.3389/fcimb.2021.681063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Malaria is a serious public health problem that affects mostly the poorest countries in the world, killing more than 400,000 people per year, mainly children under 5 years old. Among the control and prevention strategies, the differential diagnosis of the Plasmodium-infecting species is an important factor for selecting a treatment and, consequently, for preventing the spread of the disease. One of the main difficulties for the detection of a specific Plasmodium sp is that most of the existing methods for malaria diagnosis focus on detecting P. falciparum. Thus, in many cases, the diagnostic methods neglect the other non-falciparum species and underestimate their prevalence and severity. Traditional methods for diagnosing malaria may present low specificity or sensitivity to non-falciparum spp. Therefore, there is high demand for new alternative methods able to differentiate Plasmodium species in a faster, cheaper and easier manner to execute. This review details the classical procedures and new perspectives of diagnostic methods for malaria non-falciparum differential detection and the possibilities of their application in different circumstances.
Collapse
Affiliation(s)
- Alba Marina Gimenez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo F. Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Matías Regiart
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
De-Oliveira ACAX, Paumgartten FJR. Malaria-induced Alterations of Drug Kinetics and Metabolism in Rodents and Humans. Curr Drug Metab 2021; 22:127-138. [PMID: 33397251 DOI: 10.2174/1389200221999210101232057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infections and inflammation lead to a downregulation of drug metabolism and kinetics in experimental animals. These changes in the expression and activities of drug-metabolizing enzymes may affect the effectiveness and safety of pharmacotherapy of infections and inflammatory conditions. OBJECTIVE In this review, we addressed the available evidence on the effects of malaria on drug metabolism activity and kinetics in rodents and humans. RESULTS An extensive literature review indicated that infection by Plasmodium spp consistently decreased the activity of hepatic Cytochrome P450s and phase-2 enzymes as well as the clearance of a variety of drugs in mice (lethal and non-lethal) and rat models of malaria. Malaria-induced CYP2A5 activity in the mouse liver was an exception. Except for paracetamol, pharmacokinetic trials in patients during acute malaria and in convalescence corroborated rodent findings. Trials showed that, in acute malaria, clearance of quinine, primaquine, caffeine, metoprolol, omeprazole, and antipyrine is slower and that AUCs are greater than in convalescent individuals. CONCLUSION Notwithstanding the differences between rodent models and human malaria, studies in P. falciparum and P. vivax patients confirmed rodent data showing that CYP-mediated clearance of antimalarials and other drugs is depressed during the symptomatic disease when rises in levels of acute-phase proteins and inflammatory cytokines occur. Evidence suggests that inflammatory cytokines and the interplay between malaria-activated NF-kB-signaling and cell pathways controlling phase 1/2 enzyme genes transcription mediate drug metabolism changes. The malaria-induced decrease in drug clearance may exacerbate drug-drug interactions, and the occurrence of adverse drug events, particularly when patients are treated with narrow-margin-of-safety medicines.
Collapse
Affiliation(s)
- Ana C A X De-Oliveira
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Francisco J R Paumgartten
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
31
|
França ACB, Françoso KS, Marques RF, Trossini GHG, Gomes RA, Póvoa MM, Cunha MG, Silveira ELV, Soares IS. Antibodies Against the Plasmodium vivax Apical Membrane Antigen 1 From the Belem Strain Share Common Epitopes Among Other Worldwide Variants. Front Cell Infect Microbiol 2021; 11:616230. [PMID: 33796476 PMCID: PMC8009186 DOI: 10.3389/fcimb.2021.616230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
Malaria is a human parasitic disease distributed in many tropical countries and caused by various Plasmodium species. Plasmodium vivax has the largest geographical distribution of the Plasmodium species and is predominant in the Americas, including Brazil. Only a small number of P. vivax vaccine formulations have successfully reached clinical trials relative to their P. falciparum counterparts. One of the candidate antigens for a blood-stage P. vivax vaccine is apical membrane antigen 1 (PvAMA-1). Due to the worldwide distribution of Plasmodium parasites, a high degree of variability has been detected in this antigen sequence, representing a considerable challenge to the development of a universal vaccine against malaria. In this study, we evaluated how PvAMA-1 polymorphisms influence vaccine-derived immune responses in P. vivax malaria. To this end, we expressed 9 recombinant protein representatives of different PvAMA-1 allelic variants in the yeast Pichia pastoris: Belem, Chesson I, Sal-1, Indonesia XIX, SK0814, TC103, PNG_05_ESP, PNG_62_MU, and PNG_68_MAS. After protein expression and purification, we evaluated the breadth of the immune responses derived from malaria-exposed individuals from the Amazon region. From 611 serum samples of malaria-exposed individuals, 53.68% of them reacted against the PvAMA-1 Belem through ELISA. Positive samples were further tested against recombinant proteins representing the other PvAMA-1 allelic variants. Whereas Sal-1, Chesson I and SK0814 variants were highly recognized by tested serum samples, Indonesia XIX, TC103, PNG_05_ESP, PNG_62_MU, and PNG_68_MAS were only slightly recognized. Moreover, polyclonal sera derived from C57BL/6 mice immunized with the PvAMA-1 Belem protein predominantly recognized Belem, Sal-1, Chesson I, SK0814, and Indonesia XIX through ELISA. Last, ELISA-based competition assays demonstrated that a previous interaction between anti-Belem polyclonal serum and Sal-1, Chesson I, SK0814, or Indonesia XIX proteins could further inhibit antibody binding to the Belem variant. Our human and mouse data suggest the presence of common epitopes or cross-reactivity between Belem, Sal-1, Chesson I, and SK0814 variants. Although the PvAMA-1 Belem variant induces strain-transcendent antibodies, PvAMA-1 variants from Thailand and Papua New Guinea may need to be included in a universal vaccine formulation to achieve protection against P. vivax malaria.
Collapse
Affiliation(s)
- Ana Caroline Barbosa França
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kátia Sanches Françoso
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo Ferreira Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gustavo H. G. Trossini
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renan A. Gomes
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Maristela G. Cunha
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Eduardo L. V. Silveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene S. Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Santos MLS, Coimbra RS, Sousa TN, Guimarães LFF, Gomes MS, Amaral LR, Pereira DB, Fontes CJF, Hawwari I, Franklin BS, Carvalho LH. The Interface Between Inflammatory Mediators and MicroRNAs in Plasmodium vivax Severe Thrombocytopenia. Front Cell Infect Microbiol 2021; 11:631333. [PMID: 33791239 PMCID: PMC8005714 DOI: 10.3389/fcimb.2021.631333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/17/2021] [Indexed: 11/27/2022] Open
Abstract
Severe thrombocytopenia can be a determinant factor in the morbidity of Plasmodium vivax, the most widespread human malaria parasite. Although immune mechanisms may drive P. vivax-induced severe thrombocytopenia (PvST), the current data on the cytokine landscape in PvST is scarce and often conflicting. Here, we hypothesized that the analysis of the bidirectional circuit of inflammatory mediators and their regulatory miRNAs would lead to a better understanding of the mechanisms underlying PvST. For that, we combined Luminex proteomics, NanoString miRNA quantification, and machine learning to evaluate an extensive array of plasma mediators in uncomplicated P. vivax patients with different degrees of thrombocytopenia. Unsupervised clustering analysis identified a set of PvST-linked inflammatory (CXCL10, CCL4, and IL-18) and regulatory (IL-10, IL-1Ra, HGF) mediators. Among the mediators associated with PvST, IL-6 and IL-8 were critical to discriminate P. vivax subgroups, while CCL2 and IFN-γ from healthy controls. Supervised machine learning spotlighted IL-10 in P. vivax-mediated thrombocytopenia and provided evidence for a potential signaling route involving IL-8 and HGF. Finally, we identified a set of miRNAs capable of modulating these signaling pathways. In conclusion, the results place IL-10 and IL-8/HGF in the center of PvST and propose investigating these signaling pathways across the spectrum of malaria infections.
Collapse
Affiliation(s)
| | - Roney S. Coimbra
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Tais N. Sousa
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | | | - Matheus S. Gomes
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia, Patos de Minas, Brazil
| | - Laurence R. Amaral
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia, Patos de Minas, Brazil
| | - Dhelio B. Pereira
- Dep. Pesquisa Clínica e Medicina Translacional, Centro de Pesquisas em Medicina Tropical, Porto Velho, Brazil
| | - Cor J. F. Fontes
- Departamento de Clínica Médica, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Ibrahim Hawwari
- Medical Faculty, Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Bernardo S. Franklin
- Medical Faculty, Institute of Innate Immunity, University of Bonn, Bonn, Germany
| | - Luzia H. Carvalho
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
33
|
Asali S, Raz A, Turki H, Mafakher L, Razmjou E, Solaymani-Mohammadi S. Restricted genetic heterogeneity of the Plasmodium vivax transmission-blocking vaccine (TBV) candidate Pvs48/45 in a low transmission setting: Implications for the Plasmodium vivax malaria vaccine development. INFECTION GENETICS AND EVOLUTION 2021; 89:104710. [PMID: 33421653 DOI: 10.1016/j.meegid.2021.104710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
Plasmodium vivax is the most widespread malaria species parasitizing humans outside Africa, with approximately 100 million cases reported per year. Most human cases of P. vivax are asymptomatic with low parasitemia, making active case detection-based elimination programme challenging and less effective. Despite the widespread distribution of P. vivax, no effective vaccines are currently available. Transmission blocking vaccines have recently emerged as potential vaccine candidates to reduce transmission rates to below the essential levels required for the maintenance of the parasite life cycle. Here, we demonstrated that P. vivax was the predominant species found in a malaria-endemic area, although P. vivax/P. falciparum co-infections were also common. Through genomic sequence analysis and neighbor-joining algorithms, we demonstrated limited genetic heterogeneity in the P. vivax transmission-blocking vaccine candidate Pvs48/45 among clinical isolates of P. vivax. Restricted genetic polymorphism occurred at both nucleotide and amino acid levels. The most frequent mutation was A → G at nucleotide position 77 (46.7%), whereas the least frequent was C → T at nucleotide position 1230 (3.3%). The occurrence of single nucleotide polymorphisms (SNPs) distribution at 6/8 positions (75%) led to changes in amino acid sequences in the Pvs48/45 loci, whereas 2/8 (25%) of SNPs resulted in no amino acid sequence variations. Consistently, the nucleotide diversity in the Pvs48/45 locus among the P. vivax population studied was extremely low (π = 0.000525). Changes in amino acid sequences in the Pvs48/45 protein did not result in substantial conformational modifications in the tertiary structures of these proteins. Unveiling the population genetic structure and genetic heterogeneity of vaccine target antigens are necessary for rational design of transmission-blocking antibody vaccines and to monitor the vaccine efficacy in clinical trials in endemic areas for malaria.
Collapse
Affiliation(s)
- Soheila Asali
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Habibollah Turki
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ladan Mafakher
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Razmjou
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Microbial Biotechnology Research Center (MBiRC), Iran University of Medical Sciences, Tehran, Iran.
| | - Shahram Solaymani-Mohammadi
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States.
| |
Collapse
|
34
|
Capobianco MP, Cassiano GC, Storti-Melo LM, Pimenta TS, Rodrigues APD, Arruda JEG, Pinto MR, Baptista ARDS, Pratt-Riccio LR, Bonini-Domingos CR, de Oliveira-Ferreira J, Machado RLD. Polymorphism in the IL-1β promoter is associated with IgG antibody response to circumsporozoite protein repeats of Plasmodium vivax. Trans R Soc Trop Med Hyg 2020; 114:858-865. [PMID: 32766886 DOI: 10.1093/trstmh/traa055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/18/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND It is well established that infection by Plasmodium vivax is a result of host-parasite interactions. In the present study, association with the IL1/IL2 cytokine profiles, anticircumsporozoite protein antibody levels and parasitic loads was evaluated in individuals naturally infected with P. vivax in an endemic area of the Brazilian Amazon. METHODS Molecular diagnosis of P. vivax and variants was performed using the PCR-RFLP method and IL1B -511C>T, IL2 -330T>G and IL2+114T>G polymorphisms were identified using PCR-RFLP and allele-specific PCR. IL-1β and IL-2 cytokine levels were detected by flow cytometry and circumsporozoite protein (CSP) antibodies were measured by ELISA. RESULTS Three variants of P. vivax CSP were identified and VK247 was found to be the most frequent. However, the prevalence and magnitude of IgG antibodies were higher for the VK210 variant. Furthermore, the antibody response to the CSP variants was not associated with the presence of the variant in the infection. Significant differences were observed between the single nucleotide polymorphism (SNP) -511T>C in the IL1B gene and levels of antibodies to the VK247 and P. vivax-like variants, but there were no associations between SNPs in IL1 and IL2 genes and their plasma products. CONCLUSIONS Individuals with the rs16944 CC genotype in the IL1β gene have higher antibody levels to the CSP of P. vivax of VK247 and P. vivax-like variants.
Collapse
Affiliation(s)
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine, Tropical Medicine and Hygiene Institut, Lisboa University, Portugal
| | | | - Tamirys Simão Pimenta
- Laboratory of Malaria Immunogenetics, Evandro Chagas Institute/Health Ministry, Pará, Brazil
| | - Ana Paula Drummond Rodrigues
- Electron Microscopy Laboratory, Evandro Chagas Institute/Health Ministry, University Federal do Pará, Belém, Brazil
| | - José Eduardo Gomes Arruda
- Center of Microorganisms Investigation, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro Pinto
- Center of Microorganisms Investigation, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | | | | | | | | - Ricardo Luiz Dantas Machado
- Graduate Program in Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.,Center of Microorganisms Investigation, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Almeida AC, Elias ABR, Marques MP, de Melo GC, da Costa AG, Figueiredo EFG, Brasil LW, Rodrigues-Soares F, Monteiro WM, de Lacerda MVG, Lanchote VL, Suarez-Kurtz G. Impact of Plasmodium vivax malaria and antimalarial treatment on cytochrome P450 activity in Brazilian patients. Br J Clin Pharmacol 2020; 87:1859-1868. [PMID: 32997351 DOI: 10.1111/bcp.14574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022] Open
Abstract
AIMS To investigate the impact of Plasmodium vivax malaria and chloroquine-primaquine chemotherapy on CYP2D6 and CYP2C19 activity in patients from the Brazilian Amazon. METHODS Adult patients (n = 30) were given subtherapeutic doses of CYP2D6 and CYP2C19 phenotypic probes metoprolol (10 mg) and omeprazole (2 mg) in three different stages of vivax malaria illness: acute disease (study phase 1), post chemotherapy (phase 2) and convalescence (stage 3). Plasma concentrations of probes and CYP-hydroxylated metabolites (α-OH metoprolol and 5-OH omeprazole) were measured using LC/MS/MS. Two pharmacokinetic metrics were used to estimate CYP activity: (a) ratio of plasma concentrations of probe/metabolite at 240 minutes after administration of the probes and (b) ratio of areas under the time-concentration curves for probe/metabolite (AUC0-12h ). For statistical analysis, the pharmacokinetic metrics were normalized to the respective values in phase 3. Taqman assays were used for CYP2D6 and CYP2C19 genotyping. Cytokines levels were measured using cytometric bead array. RESULTS Both pharmacokinetic metrics for metoprolol and omeprazole, and plasma concentrations of cytokines IL-6, IL-8 and IL-10 varied significantly across the three study phases (ANOVA P < 0.0001). Post hoc tests showed greater metoprolol:α-OH metoprolol ratios in phases 1 and 2 compared to phase 3, larger omeprazole:5-OH omeprazole ratios in phase 1 than in phases 2 and 3, and higher circulating IL-6, IL-8 and IL-10 in phase 1 than in phases 2 and 3. CONCLUSION P. vivax malaria and treatment altered CYP2D6 and CYP2C19 metabolic phenotypes. CYP2C19 inhibition is attributed to a higher level of circulating proinflammatory cytokines, while suppression of CYP2D6 is ascribed mainly to chloroquine exposure.
Collapse
Affiliation(s)
- Anne Cristine Almeida
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | | | - Maria Paula Marques
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Gisely Cardoso de Melo
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Allyson Guimarães da Costa
- Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil.,Departamento de Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas, Manaus, Amazonas, Brazil
| | - Erick Frota Gomes Figueiredo
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Larissa Wanderley Brasil
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Fernanda Rodrigues-Soares
- Departamento de Patologia, Genética e Evolução, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wuelton Marcelo Monteiro
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Gerência de Malária, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, Brazil
| | - Vera Lucia Lanchote
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
36
|
Albrecht L, Lopes SCP, da Silva ABIE, Barbosa V, Almeida RP, Siqueira AM, Leite JA, Bittencourt NC, Dos Santos HG, Bourgard C, Garcia LFC, Kayano ACAV, Soares IS, Russell B, Rénia L, Lacerda MVG, Costa FTM. Rosettes integrity protects Plasmodium vivax of being phagocytized. Sci Rep 2020; 10:16706. [PMID: 33028898 PMCID: PMC7541459 DOI: 10.1038/s41598-020-73713-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Plasmodium vivax is the most prevalent cause of malaria outside of Africa. P. vivax biology and pathogenesis are still poorly understood. The role of one highly occurring phenotype in particular where infected reticulocytes cytoadhere to noninfected normocytes, forming rosettes, remains unknown. Here, using a range of ex vivo approaches, we showed that P. vivax rosetting rates were enhanced by plasma of infected patients and that total immunoglobulin M levels correlated with rosetting frequency. Moreover, rosetting rates were also correlated with parasitemia, IL-6 and IL-10 levels in infected patients. Transcriptomic analysis of peripheral leukocytes from P. vivax-infected patients with low or moderated rosetting rates identified differentially expressed genes related to human host phagocytosis pathway. In addition, phagocytosis assay showed that rosetting parasites were less phagocyted. Collectively, these results showed that rosette formation plays a role in host immune response by hampering leukocyte phagocytosis. Thus, these findings suggest that rosetting could be an effective P. vivax immune evasion strategy.
Collapse
Affiliation(s)
- Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, PR, Brazil. .,Laboratório de Doenças Tropicais Prof. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Stefanie C P Lopes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Gerência de Malária, Manaus, AM, Brazil.,Instituto Leônidas & Maria Deane, Fiocruz Amazônia, Manaus, AM, Brazil
| | | | - Vanessa Barbosa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Gerência de Malária, Manaus, AM, Brazil.,Instituto Leônidas & Maria Deane, Fiocruz Amazônia, Manaus, AM, Brazil
| | - Rodrigo P Almeida
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, PR, Brazil
| | - André M Siqueira
- Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Juliana Almeida Leite
- Laboratório de Doenças Tropicais Prof. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Najara C Bittencourt
- Laboratório de Doenças Tropicais Prof. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Catarina Bourgard
- Laboratório de Doenças Tropicais Prof. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Ana Carolina A V Kayano
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, PR, Brazil.,Laboratório de Doenças Tropicais Prof. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Irene S Soares
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Gerência de Malária, Manaus, AM, Brazil.,Instituto Leônidas & Maria Deane, Fiocruz Amazônia, Manaus, AM, Brazil
| | - Fabio T M Costa
- Laboratório de Doenças Tropicais Prof. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
37
|
Mourão LC, Cardoso-Oliveira GP, Braga ÉM. Autoantibodies and Malaria: Where We Stand? Insights Into Pathogenesis and Protection. Front Cell Infect Microbiol 2020; 10:262. [PMID: 32596165 PMCID: PMC7300196 DOI: 10.3389/fcimb.2020.00262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
Autoantibodies are frequently reported in patients with malaria, but whether they contribute to protection or to pathology is an issue of debate. A large body of evidence indicates that antibodies against host-self components are associated to malaria clinical outcomes such as cerebral malaria, renal dysfunction and anemia. Nonetheless, self-reactive immunoglobulins induced during an infection can also mediate protection. In light of these controversies, we summarize here the latest findings in our understanding of autoimmune responses in malaria, focusing on Plasmodium falciparum and Plasmodium vivax. We review the main targets of self-antibody responses in malaria as well as the current, but still limited, knowledge of their role in disease pathogenesis or protection.
Collapse
Affiliation(s)
- Luiza Carvalho Mourão
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Érika Martins Braga
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|