1
|
Imbert A, Gavlovsky PJ, Judor JP, Bardou-Jacquet E, Elkrief L, Lannes A, Silvain C, Schnee M, Tanne F, Chevalier C, Vavasseur F, Khaldi M, Brouard S, Mosnier JF, Gournay J, Conchon S, Renand A. T cell immuno-phenotyping : a source of predictive biomarkers for autoimmune hepatitis relapse. Sci Rep 2024; 14:24448. [PMID: 39424872 PMCID: PMC11489469 DOI: 10.1038/s41598-024-75624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Relapse after immunosuppression (IS) treatment withdrawal is frequent in patients with Autoimmune Hepatitis (AIH), and non-invasive biomarkers predictive of this risk are lacking. We assessed the frequency of circulating T cell subsets as potential biomarkers of disease activity and predictor of the risk of relapse after IS withdrawal. Serum levels of the cytokine B-cell Activating Factor (BAFF) were also investigated. Blood samples from 58 patients with active AIH, 56 AIH patients in remission, and 31 patients with NASH were analyzed. The frequency of activated CD4+ T peripheral helper (TPH) cells (CD4+CD45RA-CXCR5-PD1+CD38+) and of activated CD8+ T cells (CD8+CD45RA-PD1+CD38+) were assessed by flow cytometry. BAFF levels were determined by ELISA. Activated TPH and CD8+ T cell frequencies were significantly increased in patients with active AIH compared to remission AIH or NASH (TPH: 0.88% of total CD3+ vs. 0.42% and 0.39% respectively, p < 0.0001; CD8+ subset: 1.42% vs. 0.09% and 0.11% p < 0.0001). Among patients in remission undergoing treatment withdrawal (n = 18), those with increased frequencies of activated TPH (> 0.5% of total CD3+) and/or activated CD8+ T cells (> 0.18% total CD3+) had a higher risk of relapse (80% vs. 15% after 2 years, p = 0.0071). High BAFF serum concentration (> 213pg/ml) was also associated to a higher risk of relapse (57% vs. 11%, p = 0.0452). In conclusion, high frequency of activated TPH and of activated CD8+, as well as high levels of BAFF, before IS discontinuation, were significantly associated to a greater risk of relapse during the first two years. Thus, they represent promising biomarkers to provide personalized clinical follow-up for patients with AIH.
Collapse
Affiliation(s)
- Astrid Imbert
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
- CHU Nantes, Nantes Université, Service Hépato-Gastroentérologie, IMAD, Nantes, France
| | - Pierre-Jean Gavlovsky
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Jean-Paul Judor
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | | | - Laure Elkrief
- CHRU Tours, Service Hépato-Gastroentérologie, Tours, France
| | - Adrien Lannes
- CHU Angers, Service Hépato-Gastroentérologie et Oncologie Digestive, Angers, France
- Université d'Angers, Laboratoire HIFIH, UPRES EA3859, SFR 4208, Angers, France
| | | | - Mathieu Schnee
- CHD Vendée-La Roche sur Yon, Service Hépato-Gastroentérologie, F- 85000, la Roche sur Yon, France
| | - Florence Tanne
- CHU Brest, Service Hépato-Gastroentérologie, Brest, France
| | - Caroline Chevalier
- CHU Nantes, INSERM, Centre d'Investigation Clinique IMAD, Nantes, France
| | - Fabienne Vavasseur
- CHU Nantes, INSERM, Centre d'Investigation Clinique IMAD, Nantes, France
| | - Marion Khaldi
- CHU Nantes, Nantes Université, Service Hépato-Gastroentérologie, IMAD, Nantes, France
| | - Sophie Brouard
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
| | - Jean-François Mosnier
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
- CHU Nantes, Nantes Université, Service Anatomie et Cytologie Pathologiques, Nantes, France
| | - Jérôme Gournay
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France
- CHU Nantes, Nantes Université, Service Hépato-Gastroentérologie, IMAD, Nantes, France
| | - Sophie Conchon
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.
- CR2TI, UMR 1064, 30 Bd Jean Monnet, 44093, Nantes, France.
| | - Amédée Renand
- Nantes Université, CHU Nantes, INSERM, Centre de Recherche Translationnelle en Transplantation et Immunologie, UMR 1064, F-44000, Nantes, France.
- CR2TI, UMR 1064, 30 Bd Jean Monnet, 44093, Nantes, France.
| |
Collapse
|
2
|
Ren J, Ma K, Lu X, Peng H, Wang J, Nasser MI, Liu C. Occurrence and role of Tph cells in various renal diseases. Mol Med 2024; 30:174. [PMID: 39390361 PMCID: PMC11468416 DOI: 10.1186/s10020-024-00919-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
A new population of peripheral helper T (Tph) cells has been identified and contributed to various autoimmune diseases. Tph cells can secrete interleukin-21 (IL-21), interferon (IFN) and C-X-C motif chemokine ligand 13 (CXCL13) to moderate renal disease. Moreover, Tph cells can congregate in huge numbers and immerse within inflamed tissue. Compared to Tfh cells, Tph cells express high programmed cell death protein 1 (PD-1), major histocompatibility complex II (MHC-II), C-C chemokine receptor 2 (CCR2) and C-C chemokine receptor 5 (CCR5) but often lack expression of the chemokine receptor C-X-C chemokine receptor 5 (CXCR5). They display features distinct from other T cells, which are uniquely poised to promote responses and antibody production of B cells within pathologically inflamed non-lymphoid tissues and a key feature of Tph cells. In this review, we summarize recent findings on the role of Tph cells in chronic kidney disease, acute kidney injury, kidney transplantation and various renal diseases.
Collapse
Affiliation(s)
- Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xiangheng Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia Wang
- General Practice Center, Sichuan Provincial People's Hospital, Sichuan Academy of Sciences, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510100, Guangdong, China.
| | - Chi Liu
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, China.
| |
Collapse
|
3
|
Forsyth KS, Toothacre NE, Jiwrajka N, Driscoll AM, Shallberg LA, Cunningham-Rundles C, Barmettler S, Farmer J, Verbsky J, Routes J, Beiting DP, Romberg N, May MJ, Anguera MC. Maintenance of X chromosome inactivation after T cell activation requires NF-κB signaling. Sci Immunol 2024; 9:eado0398. [PMID: 39365876 DOI: 10.1126/sciimmunol.ado0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
X chromosome inactivation (XCI) balances X-linked gene dosage between sexes. Unstimulated T cells lack cytological enrichment of X-inactive specific transcript (Xist) RNA and heterochromatic modifications on the inactive X chromosome (Xi), which are involved in maintenance of XCI, and these modifications return to the Xi after stimulation. Here, we examined allele-specific gene expression and epigenomic profiles of the Xi in T cells. We found that the Xi in unstimulated T cells is largely dosage compensated and enriched with the repressive H3K27me3 modification but not the H2AK119-ubiquitin (Ub) mark. Upon T cell stimulation mediated by both CD3 and CD28, the Xi accumulated H2AK119-Ub at gene regions of previous H3K27me3 enrichment. T cell receptor (TCR) engagement, specifically NF-κB signaling downstream of the TCR, was required for Xist RNA localization to the Xi. Disruption of NF-κB signaling in mouse and human T cells using genetic deletion, chemical inhibitors, and patients with immunodeficiencies prevented Xist/XIST RNA accumulation at the Xi and altered X-linked gene expression. Our findings reveal a previously undescribed connection between NF-κB signaling pathways, which affects XCI maintenance in T cells in females.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalie E Toothacre
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda M Driscoll
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey A Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York City, NY 10029, USA
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Massachusetts General Hospital, Boston MA 02114, USA
| | - Jocelyn Farmer
- Allergy and Clinical Immunology Unit, Massachusetts General Hospital, Boston MA 02114, USA
| | - James Verbsky
- Allergy and Clinical Immunology Division, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John Routes
- Allergy and Clinical Immunology Division, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Pazhouhandeh M, Yu D. Interferon disrupts immune and tissue homeostasis in SLE via CXCL13. Nat Rev Rheumatol 2024:10.1038/s41584-024-01164-y. [PMID: 39251769 DOI: 10.1038/s41584-024-01164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Mehrdad Pazhouhandeh
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
He P, Wei L, Zhang R, Zhao J, Zhang Y, Huang L, Bai X, Ning X, Sun S. Exploring the crosstalk molecular mechanisms between IgA nephropathy and Sjögren's syndrome based on comprehensive bioinformatics and immunohistochemical analyses. Clin Exp Med 2024; 24:188. [PMID: 39136821 PMCID: PMC11322200 DOI: 10.1007/s10238-024-01420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
IgA nephropathy (IgAN) and Sjogren's syndrome (SS) are two autoimmune diseases with undetermined etiology and related to abnormal activation of lymphocytes. This study aims to explore the crucial genes, pathways and immune cells between IgAN and SS. Gene expression profiles of IgAN and SS were obtained from the Gene Expression Omnibus and Nephroseq data. Differentially expressed gene (DEG) and weighted gene co-expression network analyses (WGCNA) were done to identify common genes. Enrichment analysis and protein-protein interaction network were used to explore potential molecular pathways and crosstalk genes between IgAN and SS. The results were further verified by external validation and immunohistochemistry (IHC) analysis. Additionally, immune cell analysis and transcription factor prediction were also conducted. The DEG analysis revealed 28 commonly up-regulated genes, while WGCNA identified 98 interactively positive-correlated module genes between IgAN and SS. The enrichment analysis suggested that these genes were mainly involved in the biological processes of response to virus and antigen processing and presentation. The external validation and IHC analysis identified 5 hub genes (PSMB8, PSMB9, IFI44, ISG15, and CD53). In the immune cell analysis, the effector memory CD8 T and T follicular helper cells were significantly activated, and the corresponding proportions showed positively correlations with the expressions of the 5 hub genes in the two autoimmune diseases. Together, our data identified the crosstalk genes, molecular pathways, and immune cells underlying the IgAN and SS, which provides valuable insights into the intricate mechanisms of these diseases and offers potential intervention targets.
Collapse
Affiliation(s)
- Peng He
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei Wei
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruijing Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuzhan Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liuyifei Huang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao Bai
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Nakajima S, Tsuchiya H, Fujio K. Unraveling immune cell heterogeneity in autoimmune arthritis: insights from single-cell RNA sequencing. Immunol Med 2024:1-13. [PMID: 39120105 DOI: 10.1080/25785826.2024.2388343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of immune-mediated arthritis, which comprises rheumatoid arthritis and spondyloarthritis. This review outlines the key findings and advancements in scRNA-seq studies focused on the pathogenesis of autoimmune arthritis and its clinical application. In rheumatoid arthritis, scRNA-seq has elucidated the heterogeneity among synovial fibroblasts and immune cell subsets in inflammatory sites, offering insights into disease mechanisms and the differences in treatment responses. Various studies have identified distinct synovial fibroblast subpopulations, such as THY1+ inflammatory and THY1- destructive fibroblasts. Furthermore, scRNA-seq has revealed diverse T cell profiles in the synovium, including peripheral helper T cells and clonally expanded CD8+ T cells, shedding light on potential therapeutic targets and predictive markers of treatment response. Similarly, in spondyloarthritis, particularly psoriatic arthritis and ankylosing spondylitis, scRNA-seq studies have identified distinct cellular profiles associated with disease pathology. Challenges such as cost and sample size limitations persist, but collaborative efforts and utilization of public databases hold promise for overcoming these obstacles. Overall, scRNA-seq emerges as a powerful tool for dissecting cellular heterogeneity and driving precision medicine in immune-mediated arthritis.
Collapse
Affiliation(s)
- Sotaro Nakajima
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Tsuchiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Moore E, Bharrhan S, Rao DA, Macian F, Putterman C. Characterisation of choroid plexus-infiltrating T cells reveals novel therapeutic targets in murine neuropsychiatric lupus. Ann Rheum Dis 2024; 83:1006-1017. [PMID: 38531610 DOI: 10.1136/ard-2023-224689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVE Diffuse central nervous system manifestations, referred to as neuropsychiatric lupus (NPSLE), are observed in 20-40% of lupus patients and involve complex mechanisms that have not yet been adequately elucidated. In murine NPSLE models, choroid plexus (ChP)-infiltrating T cells have not been fully evaluated as drivers of neuropsychiatric disease. METHOD Droplet-based single-cell transcriptomic analysis (single-cell RNA sequencing) and immune T-cell receptor profiling were performed on ChP tissue from MRL/lpr mice, an NPSLE mouse model, at an 'early' and 'late' disease state, to investigate the infiltrating immune cells that accumulate with NPSLE disease progression. RESULTS We found 19 unique clusters of stromal and infiltrating cells present in the ChP of NPSLE mice. Higher resolution of the T-cell clusters uncovered multiple T-cell subsets, with increased exhaustion and hypoxia expression profiles. Clonal analysis revealed that the clonal CD8+T cell CDR3 sequence, ASGDALGGYEQY, matched that of a published T-cell receptor sequence with specificity for myelin basic protein. Stromal fibroblasts are likely drivers of T-cell recruitment by upregulating the VCAM signalling pathway. Systemic blockade of VLA-4, the cognate ligand of VCAM, resulted in significant resolution of the ChP immune cell infiltration and attenuation of the depressive phenotype. CONCLUSION Our analysis details the dynamic transcriptomic changes associated with murine NPSLE disease progression, and highlights its potential use in identifying prospective lupus brain therapeutic targets.
Collapse
Affiliation(s)
- Erica Moore
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sushma Bharrhan
- Department of Microbiology and Immunology, Louisiana State University Shreveport, Shreveport, Louisiana, USA
| | - Deepak A Rao
- Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Azrieli Faculty of Medicine of Bar-Ilan University, Safed, Israel
| |
Collapse
|
8
|
Elahee M, Mueller AA, Wang R, Marks KE, Sasaki T, Cao Y, Fava A, Dellaripa PF, Boin F, Rao DA. A PD-1 highCD4 + T Cell Population With a Cytotoxic Phenotype is Associated With Interstitial Lung Disease in Systemic Sclerosis. ACR Open Rheumatol 2024; 6:429-439. [PMID: 38698736 PMCID: PMC11246828 DOI: 10.1002/acr2.11671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/06/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE T cells contribute to tissue injury in systemic sclerosis (SSc), yet the specific T cell subsets expanded in patients with SSc remain incompletely defined. Here we evaluated specific phenotypes and functions of peripheral helper T (Tph) and follicular helper T (Tfh) cells, which have been implicated in autoantibody production, and assessed their associations with clinical features in a well-characterized cohort of patients with SSc. METHODS Mass cytometry of T cells from peripheral blood mononuclear cells of patients with SSc and controls were evaluated using t-distributed stochastic neighbor embedding visualization, biaxial gating, and marker expression levels. Findings were validated with flow cytometry and in vitro assays. RESULTS The frequencies of PD-1highCXCR5+ Tfh cells and PD-1highCXCR5- Tph cells were similar in patients with SSc and controls. t-distributed stochastic neighbor embedding visualization (tSNE) revealed distinct populations within the PD-1highCXCR5- cells distinguished by expression of HLA-DR and inducible costimulator (ICOS). Among PD-1highCXCR5- cells, only the HLA-DR+ICOS- cell population was expanded in patients with SSc. Cytometric and RNA sequencing analyses indicated that these cells expressed cytotoxic rather than B cell helper features. HLA-DR+ICOS- PD-1highCXCR5- cells were less potent in inducing B cell plasmablast differentiation and antibody production than comparator T helper cell populations. HLA-DR+ICOS-PD-1highCXCR5- cells were significantly associated with the presence and severity of interstitial lung disease among patients with SSc. CONCLUSION Among PD-1highCXCR5- T cells, a subset of HLA-DR+ICOS- cells with cytotoxic features is specifically expanded in patients with SSc and is significantly associated with interstitial lung disease severity. This potential cytotoxicity appearing in the CD4 T cell population can be evaluated as a prognostic disease biomarker in patients with SSc.
Collapse
Affiliation(s)
- Mehreen Elahee
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alisa A Mueller
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Runci Wang
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kathryne E Marks
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Takanori Sasaki
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ye Cao
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrea Fava
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul F Dellaripa
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Deepak A Rao
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
10
|
Liu J, Xu Y, Liu Y, Zhu Y, Li X. Associations between type 1 diabetes and autoimmune skin diseases: Mendelian randomization analysis. Heliyon 2024; 10:e32781. [PMID: 38975116 PMCID: PMC11226843 DOI: 10.1016/j.heliyon.2024.e32781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) may be associated with various autoimmune diseases, but the causal relationship between T1DM and autoimmune skin diseases is not yet clear. Methods The summary statistical data on T1DM and nine autoimmune skin diseases in European populations were extracted for mendelian randomization (MR) analysis. Subsequently, the analysis was replicated in East Asian populations. In the MR estimation, inverse variance-weighted (IVW), MR-Egger, weighted median, simple mode, and weighted mode methods were utilized. Outliers were excluded using MR-PRESSO, and horizontal pleiotropy was assessed with MR-Egger. Additionally, a multivariable MR analysis was conducted to investigate whether T1DM has an independent effect on autoimmune skin diseases after adjusting for potential confounders. Results In Europe, the MR estimated based on IVW method indicated a causal association between genetically determined T1DM and systemic lupus erythematosus (SLE) (OR = 1.38, 95%CI: 1.26-1.50, p<0.01), rheumatoid arthritis (RA) (OR = 1.15, 95%CI: 1.05-1.25, p<0.01), as well as multiple sclerosis (MS) (OR = 1.17, 95%CI: 1.01-1.36, p = 0.04), but there is no association between T1DM and atopic dermatitis (AD), vitiligo, lichen planus (LP), hidradenitis suppurativa (HS), alopecia areata (AA) and systemic sclerosis (SS). After adjusting for time spent watching television, body mass index, type 2 diabetes mellitus, and body fat percentage, we found a causal relationship between T1DM and SLE (OR = 1.29, 95%CI: 1.16-1.44, p < 0.01), RA (OR = 1.28, 95%CI: 1.20-1.38 p < 0.01) and MS (OR = 1.11, 95%CI: 1.04-1.18, p < 0.01). Then, no genetic causal association was found between TIDM and SLE, and AD in East Asia. These results didn't exhibit horizontal pleiotropy, and "leave-one-out" analysis demonstrated result stability. Conclusion Our MR research indicates a causal relationship between T1DM and SLE, RA, and MS in Europe. However, no causal relationship between T1DM and SLE has been observed in East Asia. Therefore, it is important to regularly monitor relevant immunological markers of SLE, RA, and MS in T1DM patients and take preventive measures.
Collapse
Affiliation(s)
- Jie Liu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yinde Xu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuanju Liu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun Zhu
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolan Li
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Fazazi MR, Doss PMIA, Pereira R, Fudge N, Regmi A, Joly-Beauparlant C, Akbar I, Yeola AP, Mailhot B, Baillargeon J, Grenier P, Bertrand N, Lacroix S, Droit A, Moore CS, Rojas OL, Rangachari M. Myelin-reactive B cells exacerbate CD4 + T cell-driven CNS autoimmunity in an IL-23-dependent manner. Nat Commun 2024; 15:5404. [PMID: 38926356 PMCID: PMC11208426 DOI: 10.1038/s41467-024-49259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
B cells and T cells collaborate in multiple sclerosis (MS) pathogenesis. IgH[MOG] mice possess a B cell repertoire skewed to recognize myelin oligodendrocyte glycoprotein (MOG). Here, we show that upon immunization with the T cell-obligate autoantigen, MOG[35-55], IgH[MOG] mice develop rapid and exacerbated experimental autoimmune encephalomyelitis (EAE) relative to wildtype (WT) counterparts, characterized by aggregation of T and B cells in the IgH[MOG] meninges and by CD4+ T helper 17 (Th17) cells in the CNS. Production of the Th17 maintenance factor IL-23 is observed from IgH[MOG] CNS-infiltrating and meningeal B cells, and in vivo blockade of IL-23p19 attenuates disease severity in IgH[MOG] mice. In the CNS parenchyma and dura mater of IgH[MOG] mice, we observe an increased frequency of CD4+PD-1+CXCR5- T cells that share numerous characteristics with the recently described T peripheral helper (Tph) cell subset. Further, CNS-infiltrating B and Tph cells from IgH[MOG] mice show increased reactive oxygen species (ROS) production. Meningeal inflammation, Tph-like cell accumulation in the CNS and B/Tph cell production of ROS were all reduced upon p19 blockade. Altogether, MOG-specific B cells promote autoimmune inflammation of the CNS parenchyma and meninges in an IL-23-dependent manner.
Collapse
Affiliation(s)
- Mohamed Reda Fazazi
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Prenitha Mercy Ignatius Arokia Doss
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Resel Pereira
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
| | - Neva Fudge
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Aryan Regmi
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
- Department of Immunology, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Charles Joly-Beauparlant
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Irshad Akbar
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Asmita Pradeep Yeola
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Benoit Mailhot
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Joanie Baillargeon
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
| | - Philippe Grenier
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
| | - Nicolas Bertrand
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
- Faculty of Pharmacy, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Steve Lacroix
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Arnaud Droit
- axe Endocrinologie et nephrologie, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, QC, G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Olga L Rojas
- Krembil Research Institute, University Health Network, Toronto, M5T 0S8, ON, Canada
- Department of Immunology, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Manu Rangachari
- axe Neurosciences, Centre de recherche du Centre hospitalier universitaire (CHU) de Québec - Université Laval, Pavillon CHUL, 2705 boul Laurier, Quebec City, G1V 4G2, QC, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Laval University, 1050 ave de la Médecine, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
12
|
黄 会, 赵 静, 赵 祥, 白 自, 李 霞, 王 冠. [Regulatory effect of lactate on peripheral blood CD4 + T cell subsets in patients with rheumatoid arthritis]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:519-525. [PMID: 38864139 PMCID: PMC11167554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To investigate the serum lactate level in patients with rheumatoid arthritis (RA) and its relationship with disease activity, and to analyze the effect of sodium lactate on the activation of CD4+ T cells, the ability of secreting cytokines and CD4+T cell subsets in peripheral blood of the RA patients. METHODS The peripheral blood of healthy controls (HC) and RA patients was collected, and the content of lactate in the supernatant was detected by lactate detection kit, the correlation between the content of lactate and the disease score of the RA patients was analyzed; the activation level of CD4+ T cells, the proportion of CD4+ T cell subsets and the cytokines secreted by CD4+ T cells in peripheral blood of all the RA patients were detected by flow cytometry after being stimulated with sodium lactate. RESULTS The serum lactate level in the RA patients (n=66) was significantly higher than that in the HC (n=60, P < 0.001), and there was a certain correlation with disease activity score in 28 joints (DAS28)-C-reactive protein (CRP) (r=0.273, P=0.029), The levels of rheumatoid factor [RF, 197.50 (26.03, 783.00) IU/mL vs. 29.30 (0.00, 102.60) IU/mL, P < 0.01], CRP [37.40 (11.30, 72.60) mg/L vs. 5.83 (2.36, 12.45) mg/L, P < 0.001], were increased in patients with the lactate concentration greater than 5 mmol/L were significantly higher than those in patients with the lactate concentration less than or equal 5 mmol/L, however, there was no significant difference in the expression of erythrocyte sedimentation rate [ESR, 42.00 (19.00, 77.00) mm/h vs. 25.00 (12.50, 45.50) mm/h, P>0.05] and anti-cyclic citrullinated peptied (CCP) antibody [82.35 (17.70, 137.00) RU/mL vs. 68.60 (25.95, 119.70) RU/mL, P>0.05]. Compared with the control group, the expression of PD-1 (46.15%±8.54% vs. 41.67%±9.98%, P < 0.001), inducible costimulatory molecule (ICOS, 5.77%±8.60% vs. 18.65%±7.94%, P < 0.01) and CD25 (25.89%±5.80% vs. 22.25%±4.59%, P < 0.01) on the surface of CD4+ T cells in the RA patients treated with sodium lactate was significantly increased. Compared with the control group, the proportion of Th17 (4.62%±1.74% vs. 2.93%±1.92%, P < 0.05) and Tph (28.02%±6.28% vs. 20.32%±5.82%, P < 0.01) cells in CD4+T cells of the RA patients in the sodium lactate treatment group increased. Compared with the control group, the expression of IL-21 (5.73%±1.59% vs. 4.75%±1.71%, P < 0.05) in CD4+T cells was up-regulated in the RA patients treated with sodium lactate. CONCLUSION The level of serum lactate in RA patients is increased, which promotes the activation of CD4+T cells and the secretion of IL-21, and up-regulates the proportion of Th17 and Tph cells in the RA patients.
Collapse
Affiliation(s)
- 会娜 黄
- 大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 静 赵
- 北京大学人民医院风湿免疫科, 北京 100044Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - 祥格 赵
- 大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 自然 白
- 大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 霞 李
- 大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| | - 冠 王
- 大连医科大学基础医学院免疫学教研室, 辽宁大连 116044Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, Liaoning, China
| |
Collapse
|
13
|
Duffy A, Azeem MI, Kanangat S, Yushak M, Lawson D, Dhodapkar MV, Dhodapkar KM. Tregs protect against combination checkpoint blockade toxicity induced by TPH and B cell interactions. J Clin Invest 2024; 134:e174724. [PMID: 38696264 PMCID: PMC11178527 DOI: 10.1172/jci174724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Affiliation(s)
- Alyssa Duffy
- Emory University, Atlanta, United States of America
| | | | | | | | - David Lawson
- Emory University, Atlanta, United States of America
| | | | | |
Collapse
|
14
|
Luo RG, Wu YF, Lu HW, Weng D, Xu JY, Wang LL, Zhang LS, Zhao CQ, Li JX, Yu Y, Jia XM, Xu JF. Th2-skewed peripheral T-helper cells drive B-cells in allergic bronchopulmonary aspergillosis. Eur Respir J 2024; 63:2400386. [PMID: 38514095 PMCID: PMC11096668 DOI: 10.1183/13993003.00386-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Patients with allergic bronchopulmonary aspergillosis (ABPA) suffer from repeated exacerbations. The involvement of T-cell subsets remains unclear. METHODS We enrolled ABPA patients, asthma patients and healthy controls. T-helper type 1 (Th1), 2 (Th2) and 17 (Th17) cells, regulatory T-cells (Treg) and interleukin (IL)-21+CD4+T-cells in total or sorted subsets of peripheral blood mononuclear cells and ABPA bronchoalveolar lavage fluid (BALF) were analysed using flow cytometry. RNA sequencing of subsets of CD4+T-cells was done in exacerbated ABPA patients and healthy controls. Antibodies of T-/B-cell co-cultures in vitro were measured. RESULTS ABPA patients had increased Th2 cells, similar numbers of Treg cells and decreased circulating Th1 and Th17 cells. IL-5+IL-13+IL-21+CD4+T-cells were rarely detected in healthy controls, but significantly elevated in the blood of ABPA patients, especially the exacerbated ones. We found that IL-5+IL-13+IL-21+CD4+T-cells were mainly peripheral T-helper (Tph) cells (PD-1+CXCR5-), which also presented in the BALF of ABPA patients. The proportions of circulating Tph cells were similar among ABPA patients, asthma patients and healthy controls, while IL-5+IL-13+IL-21+ Tph cells significantly increased in ABPA patients. Transcriptome data showed that Tph cells of ABPA patients were Th2-skewed and exhibited signatures of follicular T-helper cells. When co-cultured in vitro, Tph cells of ABPA patients induced the differentiation of autologous B-cells into plasmablasts and significantly enhanced the production of IgE. CONCLUSION We identified a distinctly elevated population of circulating Th2-skewed Tph cells that induced the production of IgE in ABPA patients. It may be a biomarker and therapeutic target for ABPA.
Collapse
Affiliation(s)
- Rong-Guang Luo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Yi-Fan Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Hai-Wen Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Dong Weng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
- These authors contributed equally
| | - Jia-Yan Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Le-Le Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Li-Sha Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Cai-Qi Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Jian-Xiong Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| | - Yong Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin-Ming Jia
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Jonsson AH. Granzyme K + CD8 T cells in autoimmunity. Best Pract Res Clin Rheumatol 2024; 38:101930. [PMID: 38307763 PMCID: PMC11291703 DOI: 10.1016/j.berh.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
CD8 T cells expressing granzyme K are enriched in synovial tissue from patients with rheumatoid arthritis and in tissues affected by several other autoimmune diseases. The roles these cells play in autoimmune disease is under active investigation, and several recent studies have begun to shed light on this question. Putting this cell type into functional perspective is especially important given their enrichment at the sites of disease. This review summarizes available evidence for the presence of CD8 T cells and other granzyme K-expressing cells in tissues in autoimmune diseases and discusses the effects these cells may have on the pathogenesis of autoimmune conditions.
Collapse
Affiliation(s)
- Anna Helena Jonsson
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, USA.
| |
Collapse
|
16
|
Zou X, Huo F, Sun L, Huang J. Peripheral helper T cells in human diseases. J Autoimmun 2024; 145:103218. [PMID: 38574420 DOI: 10.1016/j.jaut.2024.103218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Peripheral helper T cells (Tph) are a specialized subset of CD4+ T cells with the ability to help B cells and induce antibody production. Although usually located in ectopic lymphoid-like structures (ELS), inside the peripheral blood, Tph cells can also be identified. The aberrant proliferation and functions of Tph cells are commonly found in the patients with disease. In this review, first we will summarize the biological characteristics of Tph cells, such as the expression of surface molecules, transcription factors and cytokines, and discuss its B cell help functions. Tph cells also have roles in a wide range of human diseases, including autoimmune diseases, infectious diseases, malignancies etc. Therefore, there is a strong interest in targeting Tph cells to improve treat strategies of human diseases.
Collapse
Affiliation(s)
- Xueyang Zou
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130000, PR China
| | - Feifei Huo
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, 130000, PR China
| | - Lulu Sun
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130000, PR China
| | - Jing Huang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
17
|
Lindeman I, Høydahl LS, Christophersen A, Risnes LF, Jahnsen J, Lundin KEA, Sollid LM, Iversen R. Generation of circulating autoreactive pre-plasma cells fueled by naive B cells in celiac disease. Cell Rep 2024; 43:114045. [PMID: 38578826 DOI: 10.1016/j.celrep.2024.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.
Collapse
Affiliation(s)
- Ida Lindeman
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Lene S Høydahl
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Asbjørn Christophersen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Louise F Risnes
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Rasmus Iversen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
18
|
Gartshteyn Y, Geraldino-Pardilla L, Khalili L, Bukhari S, Lerrer S, Winchester RJ, Askanase AD, Mor A. SAP-expressing T peripheral helper cells identify systemic lupus erythematosus patients with lupus nephritis. Front Immunol 2024; 15:1327437. [PMID: 38550577 PMCID: PMC10972949 DOI: 10.3389/fimmu.2024.1327437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 04/02/2024] Open
Abstract
Introduction T follicular (TFH) and peripheral helper (TPH) cells have been increasingly recognized as a pathogenic subset of CD4 T cells in systemic lupus erythematosus (SLE). The SLAM Associated Protein (SAP) regulates TFH and TPH function by binding to the co-stimulatory signaling lymphocyte activation molecule family (SLAMF) receptors that mediate T cell - B cell interactions. SAP and SLAMF are critical for TPH-dependent B cell maturation into autoantibody-producing plasma cells that characterize SLE pathogenesis. We hypothesized that SAP-expressing TPH cells are involved in the pathogenesis of lupus nephritis (LN). Methods Peripheral blood mononuclear cells (PBMC) were isolated using density gradient separation from whole blood. Cells were stained for cell surface markers, followed by permeabilization and staining of intracellular SAP for spectral flow cytometry analysis. We also analyzed SAP expression from renal infiltrating LN T cells using the available single-cell RNA sequencing (scRNA seq) Accelerated Medicines Partnership (AMP) SLE dataset. Results PBMC from 30 patients with SLE (34 ± 10 years old, 83% female), including 10 patients with LN, were analyzed. We found an increase in total SAP-positive CD4 and CD8 T cells in SLE compared with controls (55.5 ± 2.6 vs. 41.3 ± 3.4, p=0.007, and 52.5 ± 3.0 vs. 39.2 ± 2.8, p=0.007 respectively). In CD4 T cells, the highest SAP expression was in the TPH subset. The frequency of SAP+TPH in circulation correlated with disease activity; SLE patients with renal disease had higher levels of circulating SAP+TPH that remained significant after adjusting for age, sex, race, low complements, and elevated anti-dsDNA (p=0.014). scRNA-seq data of renal infiltrating T cells in LN identified SAP expression to localize to the TFH-like CD4 cluster and GZMK+ CD8 cluster. Increased SAP expression in LN was associated with the differential expression of SLAMF3 and SLAMF7 and granzyme K and EOMES. The existence of two predominant SAP-expressing subsets, the TFH-like CD4 T cells, and GZMK+ effector CD8 T cells, was verified using scRNA-seq data from a human transcriptomic atlas of fifteen major organs. Conclusion The expansion of SAP-expressing T helper cells was associated with LN in our cohort and verified using scRNA-seq data of renal infiltrating T cells. Improved SLAM and SAP signaling understanding can identify new therapeutic targets in LN.
Collapse
Affiliation(s)
- Yevgeniya Gartshteyn
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Laura Geraldino-Pardilla
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Leila Khalili
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Shoiab Bukhari
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Shalom Lerrer
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Robert J. Winchester
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Anca D. Askanase
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
19
|
Kim T, Martínez-Bonet M, Wang Q, Hackert N, Sparks JA, Baglaenko Y, Koh B, Darbousset R, Laza-Briviesca R, Chen X, Aguiar VRC, Chiu DJ, Westra HJ, Gutierrez-Arcelus M, Weirauch MT, Raychaudhuri S, Rao DA, Nigrovic PA. Non-coding autoimmune risk variant defines role for ICOS in T peripheral helper cell development. Nat Commun 2024; 15:2150. [PMID: 38459032 PMCID: PMC10923805 DOI: 10.1038/s41467-024-46457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Fine-mapping and functional studies implicate rs117701653, a non-coding single nucleotide polymorphism in the CD28/CTLA4/ICOS locus, as a risk variant for rheumatoid arthritis and type 1 diabetes. Here, using DNA pulldown, mass spectrometry, genome editing and eQTL analysis, we establish that the disease-associated risk allele is functional, reducing affinity for the inhibitory chromosomal regulator SMCHD1 to enhance expression of inducible T-cell costimulator (ICOS) in memory CD4+ T cells from healthy donors. Higher ICOS expression is paralleled by an increase in circulating T peripheral helper (Tph) cells and, in rheumatoid arthritis patients, of blood and joint fluid Tph cells as well as circulating plasmablasts. Correspondingly, ICOS ligation and carriage of the rs117701653 risk allele accelerate T cell differentiation into CXCR5-PD-1high Tph cells producing IL-21 and CXCL13. Thus, mechanistic dissection of a functional non-coding variant in human autoimmunity discloses a previously undefined pathway through which ICOS regulates Tph development and abundance.
Collapse
Affiliation(s)
- Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Qiang Wang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolaj Hackert
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuriy Baglaenko
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Byunghee Koh
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roxane Darbousset
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raquel Laza-Briviesca
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Darren J Chiu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harm-Jan Westra
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
He Y, Vinuesa CG. Germinal center versus extrafollicular responses in systemic autoimmunity: Who turns the blade on self? Adv Immunol 2024; 162:109-133. [PMID: 38866437 PMCID: PMC7616122 DOI: 10.1016/bs.ai.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Spontaneously formed germinal centers (GCs) have been reported in most mouse models of human autoimmune disease and autoimmune patients, and have long been considered a source of somatically-mutated and thus high affinity autoantibodies, but their role in autoimmunity is becoming increasingly controversial, particularly in the context of systemic autoimmune diseases like lupus. On the one hand, there is good evidence that some pathogenic lupus antibodies have acquired somatic mutations that increase affinity for self-antigens. On the other hand, recent studies that have genetically prevented GC formation, suggest that GCs are dispensable for systemic autoimmunity, pointing instead to pathogenic extrafollicular (EF) B-cell responses. Furthermore, several lines of evidence suggest germinal centers may in fact be somewhat protective in the context of autoimmunity. Here we review how some of the conflicting evidence arose, and current views on the role of GCs in autoimmunity, outlining mechanisms by which GC may eliminate self-reactivity. We also discuss recent advances in understanding extrafollicular B cell subsets that participate in autoimmunity.
Collapse
Affiliation(s)
- Yuke He
- China-Australia Centre for Personalised Immunology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Carola G Vinuesa
- China-Australia Centre for Personalised Immunology, Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China; Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
21
|
Jonsson AH. Synovial Tissue Insights into Heterogeneity of Rheumatoid Arthritis. Curr Rheumatol Rep 2024; 26:81-88. [PMID: 38157158 PMCID: PMC11245950 DOI: 10.1007/s11926-023-01129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Rheumatoid arthritis is one of the most common rheumatic and autoimmune diseases. While it can affect many different organ systems, RA primarily involves inflammation in the synovium, the tissue that lines joints. Patients with RA exhibit significant clinical heterogeneity in terms of presence or absence of autoantibodies, degree of permanent deformities, and most importantly, treatment response. These clinical characteristics point to heterogeneity in the cellular and molecular pathogenesis of RA, an area that several recent studies have begun to address. RECENT FINDINGS Single-cell RNA-sequencing initiatives and deeper focused studies have revealed several RA-associated cell populations in synovial tissues, including peripheral helper T cells, autoimmunity-associated B cells (ABCs), and NOTCH3+ sublining fibroblasts. Recent large transcriptional studies and translational clinical trials present frameworks to capture cellular and molecular heterogeneity in RA synovium. Technological developments, such as spatial transcriptomics and machine learning, promise to further elucidate the different types of RA synovitis and the biological mechanisms that characterize them, key elements of precision medicine to optimize patient care and outcomes in RA. This review recaps the findings of those recent studies and puts our current knowledge and future challenges into scientific and clinical perspective.
Collapse
Affiliation(s)
- Anna Helena Jonsson
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
22
|
Wu L, Kälble F, Lorenz HM, Zeier M, Schaier M, Steinborn A. Sex-specific differences in ICOS + T helper cell differentiation in systemic lupus erythematosus patients with low disease activity. Clin Exp Med 2024; 24:47. [PMID: 38427068 PMCID: PMC10907489 DOI: 10.1007/s10238-024-01307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Systemic lupus erythematosus (SLE) is a sex biased chronic autoimmune disease affecting predominantly females during reproductive ages. Changes in the ratio of inducible costimulatory molecule (ICOS)+ regulatory (Treg) and non-regulatory responder (Tresp) CD4+ T cells proved to be crucial for the occurrence of high disease activity. Here, we investigated how the differentiation of ICOS+CD45RA+CD31+ recent thymic emigrant (RTE) Tresps into CD45RA-CD31- memory Tresps affects the percentages of ICOS+ Tresps within total CD4+ T cells. Three different pathways (pathway 1 via CD45RA-CD31+ memory Tresps, pathway 2 via direct proliferation and pathway 3 via resting mature naïve CD45RA+CD31- (MN) cells) were examined in healthy controls and SLE remission patients separated by sex. In female SLE remission patients, immunosuppressive therapy inhibited the ICOS+ RTE differentiation via CD45RA-CD31+ memory Tresps and direct proliferation, leaving an age-independently increased differentiation into CD45RA-CD31- memory Tresps by conversion of resting MN Tresps compared with healthy controls. Due to exhaustion of this pathway with age, no age-dependent change in the percentages of ICOS+ Tresps within total CD4+ T cells could be found. In contrast, no age-independently increased differentiation could be detected in men due to sufficient immunosuppression of all three pathways. This allowed an age-dependent differentiation of ICOS+ RTE Tresps into CD45RA-CD31- memory Tresps by conversion of resting MN Tresps, resulting in age-dependently increasing percentages of ICOS+ Tresps within total CD4+ T cells. We hypothesize that the sex-specific differential effect of immunosuppression on the differentiation of ICOS+ Tresps may explain the sex- and age-dependent occurrence of high disease activity.
Collapse
Affiliation(s)
- Lisa Wu
- Department of Obstetrics and Gynecology, University of Heidelberg, INF 440, 69120, Heidelberg, Germany
- Department of Nephrology, University of Heidelberg, INF 162, 69120, Heidelberg, Germany
| | - Florian Kälble
- Department of Nephrology, University of Heidelberg, INF 162, 69120, Heidelberg, Germany
| | - Hanns-Martin Lorenz
- Department of Rheumatology, University of Heidelberg, INF 410, 69120, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, INF 162, 69120, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, INF 162, 69120, Heidelberg, Germany
| | - Andrea Steinborn
- Department of Obstetrics and Gynecology, University of Heidelberg, INF 440, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Forsyth KS, Toothacre NE, Jiwrajka N, Driscoll AM, Shallberg LA, Cunningham-Rundles C, Barmettler S, Farmer J, Verbsky J, Routes J, Beiting DP, Romberg N, May MJ, Anguera MC. NF-κB Signaling is Required for X-Chromosome Inactivation Maintenance Following T cell Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579505. [PMID: 38405871 PMCID: PMC10888971 DOI: 10.1101/2024.02.08.579505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
X Chromosome Inactivation (XCI) is a female-specific process which balances X-linked gene dosage between sexes. Unstimulated T cells lack cytological enrichment of Xist RNA and heterochromatic modifications on the inactive X chromosome (Xi), and these modifications become enriched at the Xi after cell stimulation. Here, we examined allele-specific gene expression and the epigenomic profiles of the Xi following T cell stimulation. We found that the Xi in unstimulated T cells is largely dosage compensated and is enriched with the repressive H3K27me3 modification, but not the H2AK119-ubiquitin (Ub) mark, even at promoters of XCI escape genes. Upon CD3/CD28-mediated T cell stimulation, the Xi accumulates H2AK119-Ub and H3K27me3 across the Xi. Next, we examined the T cell signaling pathways responsible for Xist RNA localization to the Xi and found that T cell receptor (TCR) engagement, specifically NF-κB signaling downstream of TCR, is required. Disruption of NF-κB signaling, using inhibitors or genetic deletions, in mice and patients with immunodeficiencies prevents Xist/XIST RNA accumulation at the Xi and alters expression of some X-linked genes. Our findings reveal a novel connection between NF-κB signaling pathways which impact XCI maintenance in female T cells.
Collapse
|
24
|
DiToro D, Murakami N, Pillai S. T-B Collaboration in Autoimmunity, Infection, and Transplantation. Transplantation 2024; 108:386-398. [PMID: 37314442 PMCID: PMC11345790 DOI: 10.1097/tp.0000000000004671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have attempted here to provide an up-to-date review of the collaboration between helper T cells and B cells in response to protein and glycoprotein antigens. This collaboration is essential as it not only protects from many pathogens but also contributes to a litany of autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Daniel DiToro
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Naoka Murakami
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Shiv Pillai
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
25
|
Ishina IA, Kurbatskaia IN, Mamedov AE, Shramova EI, Deyev SM, Nurbaeva KS, Rubtsov YP, Belogurov AA, Gabibov AG, Zakharova MY. Genetically engineered CD80-pMHC-harboring extracellular vesicles for antigen-specific CD4 + T-cell engagement. Front Bioeng Biotechnol 2024; 11:1341685. [PMID: 38304104 PMCID: PMC10833362 DOI: 10.3389/fbioe.2023.1341685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Elena I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | | | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (NN Blokhin NMRCO), Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
26
|
Araki Y, Mimura T. Epigenetic Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:1019. [PMID: 38256093 PMCID: PMC10816225 DOI: 10.3390/ijms25021019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease in which immune disorders lead to autoreactive immune responses and cause inflammation and tissue damage. Genetic and environmental factors have been shown to trigger SLE. Recent evidence has also demonstrated that epigenetic factors contribute to the pathogenesis of SLE. Epigenetic mechanisms play an important role in modulating the chromatin structure and regulating gene transcription. Dysregulated epigenetic changes can alter gene expression and impair cellular functions in immune cells, resulting in autoreactive immune responses. Therefore, elucidating the dysregulated epigenetic mechanisms in the immune system is crucial for understanding the pathogenesis of SLE. In this paper, we review the important roles of epigenetic disorders in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Yasuto Araki
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan;
| | | |
Collapse
|
27
|
Shbeer AM, Ahmed Robadi I. The role of Interleukin-21 in autoimmune Diseases: Mechanisms, therapeutic Implications, and future directions. Cytokine 2024; 173:156437. [PMID: 37972478 DOI: 10.1016/j.cyto.2023.156437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
IL-21 is a multifunctional cytokine that regulates the functional activity of various immune cells. Initial studies have shown that IL-21 can influence the differentiation, proliferation and function of T and B cells, as well as promote the maturation and increase the cytotoxicity of CD8 + T cells and NK cells. During humoral immune responses, IL-21 has significant effects on B cell activation, differentiation and apoptosis. In addition, IL-21 promotes the differentiation of both naive and memory B cells, ultimately leading to the activation of plasma cells. The function of IL-21 in the immune system is complex, as it has the ability to either stimulate or inhibit immune responses. in addition, IL-21 facilitates the differentiation of naive and memory B cells into plasma cells. The functionality of IL-21 in the immune system is diverse, as it has the ability to stimulate or inhibit immune responses. This cytokine has been implicated in several diseases including cancer, allergies and autoimmune diseases. Research has suggested that this cytokine is involved in the development of autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. Several studies have suggested that inhibition of IL-21 has a therapeutic effect on autoimmune diseases. Therefore, targeting both the cytokine's receptor and IL-21 in autoimmune diseases may be an effective approach to reduce the severity of the disease or to treat it. This review will examine the biological effects of IL-21 on various immune cells and the role of the cytokine in autoimmune diseases.
Collapse
Affiliation(s)
- Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia.
| | - Ibrahim Ahmed Robadi
- Department of pathology, Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
28
|
Krenács L, Krenács D, Borbényi Z, Tóth E, Nagy A, Piukovics K, Bagdi E. Comparison of Follicular Helper T-Cell Markers with the Expression of the Follicular Homing Marker CXCR5 in Peripheral T-Cell Lymphomas-A Reappraisal of Follicular Helper T-Cell Lymphomas. Int J Mol Sci 2023; 25:428. [PMID: 38203606 PMCID: PMC10778845 DOI: 10.3390/ijms25010428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) expressing multiple follicular T helper (TFH) cell-related antigens are now classified as TFH lymphomas (TFHL), including angioimmunoblastic, follicular, and not otherwise specified (NOS) types. CXCR5 is the TFH cell-defining chemokine receptor that, together with its ligand CXCL13, plays a critical role in the development of follicles and the positioning of TFH and B cells within follicles. A comprehensive immunomorphologic study was performed to investigate the expression pattern of CXCR5 in a large cohort of nodal PTCLs, particularly those with a TFH cell phenotype, and to compare its expression with six other TFH cell-related antigens. We found that CXCR5 is widely expressed in neoplastic TFH cells, except in TFHL-NOS, and represents a specific marker of this lymphoma entity. Our results suggest that CXCR5 directs the distribution of neoplastic T cells in the affected lymph nodes and may influence the formation of the pathognomic pathological FDC network.
Collapse
Affiliation(s)
- László Krenács
- Laboratory of Tumor Pathology and Molecular Diagnostics, 6726 Szeged, Hungary (E.B.)
| | - Dóra Krenács
- Laboratory of Tumor Pathology and Molecular Diagnostics, 6726 Szeged, Hungary (E.B.)
- Division of Haematology, Department of Internal Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, 6721 Szeged, Hungary
| | - Zita Borbényi
- Division of Haematology, Department of Internal Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, 6721 Szeged, Hungary
| | - Erika Tóth
- Department of Pathology, National Institute of Oncology, 1122 Budapest, Hungary;
| | - Anna Nagy
- 1st Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Klára Piukovics
- Division of Haematology, Department of Internal Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, 6721 Szeged, Hungary
| | - Enikő Bagdi
- Laboratory of Tumor Pathology and Molecular Diagnostics, 6726 Szeged, Hungary (E.B.)
| |
Collapse
|
29
|
Akiyama M, Alshehri W, Yoshimoto K, Kaneko Y. T follicular helper cells and T peripheral helper cells in rheumatic and musculoskeletal diseases. Ann Rheum Dis 2023; 82:1371-1381. [PMID: 37414520 DOI: 10.1136/ard-2023-224225] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Recent technological progress has greatly advanced our understanding of human immunology. In particular, the discovery of human T follicular helper (Tfh) and T peripheral helper (Tph) cells has significantly advanced our understanding of human adaptive immune system. Tfh and Tph cells share similar molecular characteristics and both play critical roles in B cell differentiation and maturation. However, they differ in their functional properties, such as chemokine receptor expression and cytokine production. As a result, Tfh cells are mainly involved in B cell differentiation and maturation in germinal centres of secondary lymphoid tissues, while Tph cells are involved in B cell differentiation and tissue damage in peripheral inflammatory lesions. Importantly, the involvement of Tfh and Tph cells in the pathogenesis of rheumatic and musculoskeletal diseases has become clear. In rheumatoid arthritis and systemic lupus erythematosus, Tph cell infiltration is predominant in peripheral inflammatory lesions, whereas Tfh cell infiltration is predominant in the affected lesions of IgG4-related disease. Therefore, the contribution of Tfh and Tph cells to the development of rheumatic and musculoskeletal diseases varies depending on each disease. In this review, we provide an overview of human Tfh and Tph cells and summarise the latest findings on these novel T cell subsets in various rheumatic and musculoskeletal diseases.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Waleed Alshehri
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Keiko Yoshimoto
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Japan
| |
Collapse
|
30
|
Zhang F, Jonsson AH, Nathan A, Millard N, Curtis M, Xiao Q, Gutierrez-Arcelus M, Apruzzese W, Watts GFM, Weisenfeld D, Nayar S, Rangel-Moreno J, Meednu N, Marks KE, Mantel I, Kang JB, Rumker L, Mears J, Slowikowski K, Weinand K, Orange DE, Geraldino-Pardilla L, Deane KD, Tabechian D, Ceponis A, Firestein GS, Maybury M, Sahbudin I, Ben-Artzi A, Mandelin AM, Nerviani A, Lewis MJ, Rivellese F, Pitzalis C, Hughes LB, Horowitz D, DiCarlo E, Gravallese EM, Boyce BF, Moreland LW, Goodman SM, Perlman H, Holers VM, Liao KP, Filer A, Bykerk VP, Wei K, Rao DA, Donlin LT, Anolik JH, Brenner MB, Raychaudhuri S. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 2023; 623:616-624. [PMID: 37938773 PMCID: PMC10651487 DOI: 10.1038/s41586-023-06708-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 10/03/2023] [Indexed: 11/09/2023]
Abstract
Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.
Collapse
Affiliation(s)
- Fan Zhang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aparna Nathan
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nghia Millard
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michelle Curtis
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qian Xiao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maria Gutierrez-Arcelus
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - William Apruzzese
- Accelerating Medicines Partnership Program: Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Network, Bethesda, MD, USA
| | - Gerald F M Watts
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dana Weisenfeld
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saba Nayar
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nida Meednu
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kathryne E Marks
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian Mantel
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Joyce B Kang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laurie Rumker
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph Mears
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kamil Slowikowski
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital (MGH), Boston, MA, USA
| | - Kathryn Weinand
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dana E Orange
- Hospital for Special Surgery, New York, NY, USA
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, NY, USA
| | - Laura Geraldino-Pardilla
- Division of Rheumatology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Darren Tabechian
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Arnoldas Ceponis
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, USA
| | - Mark Maybury
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Ilfita Sahbudin
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Ami Ben-Artzi
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Arthur M Mandelin
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, EULAR Centre of Excellence, William Harvey Research Institute, Queen Mary University of London, London, UK
- Barts Health NHS Trust, Barts Biomedical Research Centre (BRC), National Institute for Health and Care Research (NIHR), London, UK
- Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital, Milan, Italy
| | - Laura B Hughes
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diane Horowitz
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, NY, USA
| | - Edward DiCarlo
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Ellen M Gravallese
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Larry W Moreland
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan M Goodman
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Harris Perlman
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katherine P Liao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham Tissue Analytics, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Vivian P Bykerk
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H Anolik
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
31
|
Harada T, Kikushige Y, Miyamoto T, Uno K, Niiro H, Kawakami A, Koga T, Akashi K, Yoshizaki K. Peripheral helper-T-cell-derived CXCL13 is a crucial pathogenic factor in idiopathic multicentric Castleman disease. Nat Commun 2023; 14:6959. [PMID: 37907518 PMCID: PMC10618253 DOI: 10.1038/s41467-023-42718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Castleman disease (CD) is a rare lymphoproliferative disorder. Among subtypes of CD, idiopathic multicentric CD-not otherwise specified (iMCD-NOS) has a poor prognosis and its pathogenesis is largely unknown. Here we present a xenotransplantation model of iMCD-NOS pathogenesis. Immunodeficient mice, transplanted with lymph node (LN) cells from iMCD-NOS patients, develop iMCD-like lethal inflammation, while mice transplanted with LN cells from non-iMCD patients without inflammation serve as negative control. Grafts depleted of human CD3+ T cells fail to induce inflammation in vivo. Upon engraftment, peripheral helper T (Tph) cells expand and levels of human CXCL13 substantially increase in the sera of mice. A neutralizing antibody against human CXCL13 blocks development of inflammation and improves survival in the recipient mice. Our study thus indicates that Tph cells, producing CXCL13 play a critical role in the pathogenesis of iMCD-NOS, and establishes iMCD-NOS as an immunoregulatory disorder.
Collapse
Affiliation(s)
- Takuya Harada
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Yoshikane Kikushige
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Kazuko Uno
- Luis Pasteur Center for Medical Research, Kyoto, Japan
| | - Hiroaki Niiro
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Koga
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medicine, Fukuoka, Japan.
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.
| | - Kazuyuki Yoshizaki
- The Institute of Scientific and Industrial Research, SANKEN, Osaka University, Osaka, Japan.
- Medical corporation of Tokushukai, Osaka, Japan.
| |
Collapse
|
32
|
Chen H, Han Z, Fan Y, Chen L, Peng F, Cheng X, Wang Y, Su J, Li D. CD4+ T-cell subsets in autoimmune hepatitis: A review. Hepatol Commun 2023; 7:e0269. [PMID: 37695088 PMCID: PMC10497257 DOI: 10.1097/hc9.0000000000000269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.
Collapse
Affiliation(s)
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- Chengdu Xinhua Hospital, Chengdu, China
| | | | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | | |
Collapse
|
33
|
Maeda S, Hashimoto H, Maeda T, Tamechika SY, Isogai S, Naniwa T, Niimi A. High-dimensional analysis of T-cell profiling variations following belimumab treatment in systemic lupus erythematosus. Lupus Sci Med 2023; 10:e000976. [PMID: 37802602 PMCID: PMC10565340 DOI: 10.1136/lupus-2023-000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study sought to elucidate the molecular impacts of belimumab (BEL) treatment on T-cell immune profiling in SLE. METHODS We used mass cytometry with 25 marker panels for T-cell immune profiling in peripheral blood T cells (CD3+) from 22 patients with BEL-treated SLE and 20 controls with non-BEL-treated SLE. An unsupervised machine-learning clustering, FlowSOM, was used to identify 39 T-cell clusters (TCLs; TCL01-TCL39). TCLs (% of CD3+) showing significant (p<0.05) associations with BEL treatment (BEL-TCL) were selected by a linear mixed-effects model for comparing groups of time-series data. Furthermore, we analysed the association between BEL treatment and variations in regulatory T-cell (Treg) phenotypes, and the ratio of other T-cell subsets to Treg as secondary analysis. RESULTS Clinical outcomes: BEL treatment was associated with a decrease in daily prednisolone use (coef=-0.1769, p=0.00074), and an increase in serum CH50 (coef=0.4653, p=0.003), C3 (coef=1.1047, p=0.00001) and C4 (coef=0.2990, p=0.00157) levels. Molecular effects: five distinct BEL-TCLs (TCL 04, 07, 11, 12 and 27) were identified. Among these, BEL-treated patients exhibited increased proportions in the Treg-like cluster TCL11 (coef=0.404, p=0.037) and two naïve TCLs (TCL04 and TCL07). TCL27 showed increased levels (coef=0.222, p=0.037) inversely correlating with baseline C3 levels. Secondary analyses revealed associations between BEL treatment and an increase in Tregs (coef=1.749, p=0.0044), elevated proportions of the fraction of Tregs with inhibitory function (fTregs, coef=0.7294, p=0.0178) and changes in peripheral helper T cells/fTreg (coef=-4.475, p=0.0319) and T helper 17/fTreg ratios (coef=-6.7868, p=0.0327). Additionally, BEL was linked to variations in T-cell immunoglobulin and mucin domain-containing protein-3 expression (coef=0.2422, p=0.039). CONCLUSIONS The study suggests an association between BEL treatment and variations in T cells, particularly Tregs, in SLE pathologies involving various immune cells.
Collapse
Affiliation(s)
- Shinji Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Hiroya Hashimoto
- Clinical Research Management Center, Nagoya City University Hospital, Nagoya, Japan
| | - Tomoyo Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shin-Ya Tamechika
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shuntaro Isogai
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Taio Naniwa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
34
|
Ji Z, Lu W, Wu S, Zhang Y, Meng D, Zhang X, Dai X, Chen H, Ma L, Sun Y, Jiang L, Kong X. Single-Cell RNA-Sequencing Reveals Peripheral T Helper Cells Promoting the Development of IgG4-Related Disease by Enhancing B Cell Activation and Differentiation. Int J Mol Sci 2023; 24:13735. [PMID: 37762039 PMCID: PMC10530310 DOI: 10.3390/ijms241813735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Abnormal B cell differentiation plays a critical role in IgG4-related disease (IgG4-RD), but the underlying mechanism remains largely unknown. We investigated the cell landscape from three IgG4-RD retroperitoneal tissues and three control tissues using single-cell RNA-sequencing. Critical cell type or markers were further validated in the peripheral blood from the patients with IgG4-RD and healthy controls via flow cytometry as well as in the IgG4-RD and control tissue via immunofluorescence staining. The increases in B cells, plasma cells, and CD4+ T cells were found in IgG4-RD retroperitoneal tissue. Importantly, among CD4+ T cells, an increase in CD4+CXCR5-PD1hi peripheral T helper (Tph) cells with a high expression of IL-21 and TIGIT was discovered in IgG4-RD tissue, which was further validated in peripheral blood of the patients with IgG4-RD. The Tph cell and TIGIT+ Tph cell proportion were remarkably higher in active IgG4-RD patients and correlated with disease activity. Moreover, TIGIT+CD4+ cells were able to promote B cell differentiation via IL-21. Our study revealed that Tph cells are increased in IgG4-RD and probably play critical roles in B cell differentiation through TIGIT-IL-21 axis. Peripheral Tph cell and TIGIT+Tph cell are potential markers for IgG4-RD disease activity.
Collapse
Affiliation(s)
- Zongfei Ji
- Department of Rheumatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; (Z.J.)
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Sifan Wu
- Department of Rheumatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; (Z.J.)
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China
| | - Dan Meng
- Department of Rheumatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; (Z.J.)
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiao Zhang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; (Z.J.)
| | - Xiaojuan Dai
- Department of Rheumatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; (Z.J.)
| | - Huiyong Chen
- Department of Rheumatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; (Z.J.)
| | - Lili Ma
- Department of Rheumatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; (Z.J.)
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Sun
- Department of Rheumatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; (Z.J.)
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; (Z.J.)
- Evidence-Based Medicine Center, Fudan University, Shanghai 200032, China
| | - Xiufang Kong
- Department of Rheumatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; (Z.J.)
- Evidence-Based Medicine Center, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Cui C, Craft J, Joshi NS. T follicular helper cells in cancer, tertiary lymphoid structures, and beyond. Semin Immunol 2023; 69:101797. [PMID: 37343412 DOI: 10.1016/j.smim.2023.101797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
With the emergence and success of checkpoint blockade immunotherapy, immuno-oncology has primarily focused on CD8 T cells, whose cytotoxic programs directly target tumor cells. However, the limited response rate of current immunotherapy regimens has prompted investigation into other types of tumor-infiltrating immune cells, such as CD4 T cells and B cells, and how they interact with CD8 T cells in a coordinated network. Recent studies have demonstrated the potential therapeutic benefits of CD4 T follicular helper (TFH) cells and B cells in cancer, highlighting the important role of their crosstalk and interactions with other immune cell components in the tumor microenvironment. These interactions also occur in tumor-associated tertiary lymphoid structures (TLS), which resemble secondary lymphoid organs (SLOs) with orchestrated vascular, chemokine, and cellular infrastructures that support the developmental pathways of functional immune cells. In this review, we discuss recent breakthroughs on TFH biology and T cell-B cell interactions in tumor immunology, and their potential as novel therapeutic targets to advance cancer treatment.
Collapse
Affiliation(s)
- Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Joseph Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
36
|
Xuan X, Ye C, Zhao J, Shen F, Chen Y, Liu J. Dysregulated Tfr/Tfh2 cells in patients with polycystic ovarian syndrome. J Reprod Immunol 2023; 159:104137. [PMID: 37625338 DOI: 10.1016/j.jri.2023.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Recent research revealed the pathogenic role of B cells in the pathogenesis of polycystic ovary syndrome (PCOS), while the Tfh cell plays a critical role in the B cell mediated autoantibody production and humoral immunity, but had not been investigated in PCOS patients. The frequency of Tfh and B cell subsets (Tfh1, Tfh2, Tfh17, naïve B, memory B, and plasma cells) in the peripheral blood of 21 PCOS patients and 15 healthy controls were investigated by flow cytometry. And the levels of follicle-stimulating hormone, luteinizing hormone, testosterone, prolactin and estradiol progesterone were measured by using the immunoluminescence method. Also, the associations between these hormone levels and Tfh cell subsets or B cell subsets were analyzed. No significant difference was observed in total Tfh cells between 21 PCOS patients and 15 healthy controls (p > 0.05). But the percentages of Tfh2 and plasma cells were significantly higher in 21 PCOS patients compared to 15 healthy controls (p < 0.05). In contrast, the frequency of Tfr cells and Tfr/Tfh2 ratio were significantly lower than healthy controls (p < 0.01). Importantly, among these cells, only the percentage of Tfh2 cells was positively correlated with the levels of testosterone (r = 0.513, p = 0.018). And the percentage of Tfr cells and Tfr/Tfh2 ratio were also positively correlated with the levels of testosterone (r = 0.567, p = 0.007; r = 0.434, p = 0.05) and prolactin (r = 0.511, p = 0.018; r = 0.490, p = 0.024). These new findings provide unique insights into dysregulated Tfh/Tfr cells in mediating the immunopathogenesis of PCOS patients.
Collapse
Affiliation(s)
- Xiaofang Xuan
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Chunmei Ye
- Department of Clinical Laboratory, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua, China
| | - Jiwei Zhao
- Department of Laboratory Medicine, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Fuping Shen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanxia Chen
- Department of Rheumatology and Immunology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
| | - Jinlin Liu
- Department of Clinical Laboratory, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
| |
Collapse
|
37
|
Shan Y, Nakayamada S, Nawata A, Yamagata K, Sonomoto K, Tanaka H, Satoh-Kanda Y, Nguyen MP, Todoroki Y, Nagayasu A, Ueno M, Kanda R, Fujita Y, Zhang T, Hao H, Zhou J, Ma X, Anan J, Nguyen AP, Tanaka Y. TGF-β3 in differentiation and function of Tph-like cells and its relevance to disease activity in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2023; 62:2464-2474. [PMID: 36370078 DOI: 10.1093/rheumatology/keac646] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/06/2022] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES T peripheral helper (Tph) cells have major roles in pathological processes in SLE. We sought to clarify the mechanisms of Tph cell differentiation and their relevance to clinical features in patients with SLE. METHOD Phenotypes and functions of Tph cell-related markers in human CD4+ T cells purified from volunteers or patients were analysed using flow cytometry and quantitative PCR. Renal biopsy specimens from patients with LN were probed by multicolour immunofluorescence staining. RESULTS Among multiple cytokines, transforming growth factor (TGF)-β3 characteristically induced programmed cell death protein 1 (PD-1)hi musculoaponeurotic fibrosarcoma (MAF)+, IL-21+IL-10+ Tph-like cells with a marked upregulation of related genes including PDCD-1, MAF, SOX4 and CXCL13. The induction of Tph-like cells by TGF-β3 was suppressed by the neutralization of TGF-β type II receptor (TGF-βR2). TGF-β3-induced Tph-like cells efficiently promoted the differentiation of class-switch memory B cells into plasmocytes, resulting in enhanced antibody production. The proportion of Tph cells in the peripheral blood was significantly increased in patients with SLE than in healthy volunteers in concordance with disease activity and severity of organ manifestations such as LN. TGF-β3 was strongly expressed on macrophages, which was associated with the accumulation of CD4+ C-X-C chemokine receptor (CXCR5)-PD-1+ Tph cells, in the renal tissue of patients with active LN. CONCLUSION The induction of Tph-like cells by TGF-β3 mainly produced from tissue macrophages plays a pivotal role in the pathological processes of active LN by enhancing B-cell differentiation in patients with SLE.
Collapse
Affiliation(s)
- Yu Shan
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
- Department of Pediatrics, Shenyang Women's and Children's Hospital, Shenyang, China
| | - Shingo Nakayamada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Aya Nawata
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Kaoru Yamagata
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Koshiro Sonomoto
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Hiroaki Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Yurie Satoh-Kanda
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Mai-Phuong Nguyen
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Yasuyuki Todoroki
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Atsushi Nagayasu
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Masanobu Ueno
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Ryuichiro Kanda
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Yuya Fujita
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Tong Zhang
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - He Hao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jieqing Zhou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Ma
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Junpei Anan
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
- Pharmacology Research Laboratories I, Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Anh Phuong Nguyen
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| |
Collapse
|
38
|
Li D, Liu W, Sun S, Zhang Y, Zhang P, Feng G, Wei J, Chai L. Chinese herbal formula, modified Xianfang Huoming Yin, alleviates the inflammatory proliferation of rat synoviocytes induced by IL-1β through regulating the migration and differentiation of T lymphocytes. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116297. [PMID: 36849102 DOI: 10.1016/j.jep.2023.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xianfang Huoming Yin (XFH) is a traditional Chinese herbal formula, which has the effect of clearing heat and detoxifying toxins, dispersing swellings, activating blood circulation, and relieving pain. It is usually applied to treat various autoimmune diseases, including Rheumatoid arthritis (RA). AIM OF THE STUDY The migration of T lymphocytes plays an indispensable role in the pathogenesis of RA. Our previous studies demonstrated that modified Xianfang Huoming Yin (XFHM) could modulate the differentiation of T, B, and NK cells, and contribute to the restoration of immunologic balance. It also could downregulate the production of pro-inflammatory cytokines by regulating the activation of NF-κ B and JAK/STAT signaling pathways in the collagen-induced arthritis mouse model. In this study, we want to investigate whether XFHM has therapeutic effects on the inflammatory proliferation of rat fibroblast-like synovial cells (FLSs) by interfering with the migration of T lymphocytes in vitro experiments. MATERIALS AND METHODS High performance liquid chromatography-electrospray ionization/mass spectrometer system was used to identify the constituents of the XFHM formula. A co-culture system of rat fibroblast-like synovial cells (RSC-364 cells) and peripheral blood lymphocytes stimulated by interleukin-1 beta (IL-1β) was used as the cell model. IL-1β inhibitor (IL-1βRA) was used as a positive control medicine, and two concentrations (100 μg/mL and 250 μg/mL) of freeze-dried XFHM powder were used as intervention measure. The lymphocyte migration levels were analyzed by the Real-time xCELLigence analysis system after 24 h and 48 h of treatment. The percentage of CD3+CD4+ T cells and CD3+CD8+ T cells, and the apoptosis rate of FLSs were detected by flow cytometry. The morphology of RSC-364 cells was observed by hematoxylin-eosin staining. The protein expression of key factors for T cell differentiation and NF-κ B signaling pathway-related proteins in RSC-364 cells were examined by western-blot analysis. The migration-related cytokines levels of P-selectin, VCAM-1, and ICAM-1 in the supernatant were measured by enzyme-linked immunosorbent assay. RESULTS Twenty-one different components in XFHM were identified. The migration CI index of T cells was significantly decreased in treatment with XFHM. XFHM also could significantly downregulate the levels r of CD3+CD4+T cells and CD3+CD8+T cells that migrated to the FLSs layer. Further study found that XFHM suppresses the production of P-selectin, VCAM-1, and ICAM-1. Meanwhile, it downregulated the protein levels of T-bet, ROR γ t, IKKα/β, TRAF2, and NF-κ B p50, upregulated the expression of GATA-3 and alleviated synovial cells inflammation proliferation, contributing to the FLSs apoptosis. CONCLUSION XFHM could attenuate the inflammation of synovium by inhibiting T lymphocyte cell migration, regulating differentiation of T cells through modulating the activation of the NF-κ B signaling pathway.
Collapse
Affiliation(s)
- Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingkai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Wei
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
39
|
Russell WE, Bundy BN, Anderson MS, Cooney LA, Gitelman SE, Goland RS, Gottlieb PA, Greenbaum CJ, Haller MJ, Krischer JP, Libman IM, Linsley PS, Long SA, Lord SM, Moore DJ, Moore WV, Moran AM, Muir AB, Raskin P, Skyler JS, Wentworth JM, Wherrett DK, Wilson DM, Ziegler AG, Herold KC. Abatacept for Delay of Type 1 Diabetes Progression in Stage 1 Relatives at Risk: A Randomized, Double-Masked, Controlled Trial. Diabetes Care 2023; 46:1005-1013. [PMID: 36920087 PMCID: PMC10154649 DOI: 10.2337/dc22-2200] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/02/2023] [Indexed: 03/16/2023]
Abstract
OBJECTIVE Previous studies showed that inhibiting lymphocyte costimulation reduces declining β-cell function in individuals newly diagnosed with type 1 diabetes. We tested whether abatacept would delay or prevent progression of type 1 diabetes from normal glucose tolerance (NGT) to abnormal glucose tolerance (AGT) or to diabetes and the effects of treatment on immune and metabolic responses. RESEARCH DESIGN AND METHODS We conducted a phase 2, randomized, placebo-controlled, double-masked trial of abatacept in antibody-positive participants with NGT who received monthly abatacept/placebo infusions for 12 months. The end point was AGT or diabetes, assessed by oral glucose tolerance tests. RESULTS A total of 101 participants received abatacept and 111 placebo. Of these, 81 (35 abatacept and 46 placebo) met the end point of AGT or type 1 diabetes diagnosis (hazard ratio 0.702; 95% CI 0.452, 1.09; P = 0.11) The C-peptide responses to oral glucose tolerance tests were higher in the abatacept arm (P < 0.03). Abatacept reduced the frequency of inducible T-cell costimulatory (ICOS)+ PD1+ T-follicular helper (Tfh) cells during treatment (P < 0.0001), increased naive CD4+ T cells, and also reduced the frequency of CD4+ regulatory T cells (Tregs) from the baseline (P = 0.0067). Twelve months after treatment, the frequency of ICOS+ Tfh, naive CD4+ T cells, and Tregs returned to baseline. CONCLUSIONS Although abatacept treatment for 1 year did not significantly delay progression to glucose intolerance in at-risk individuals, it impacted immune cell subsets and preserved insulin secretion, suggesting that costimulation blockade may modify progression of type 1 diabetes.
Collapse
Affiliation(s)
- William E. Russell
- Departments of Pediatrics and Cell & Developmental Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Brian N. Bundy
- Health Informatics Institute, University of South Florida, Tampa, FL
| | - Mark S. Anderson
- Department of Medicine, University of California, San Francisco, San Francisco, CA
- Immune Tolerance Network, Seattle, WA
| | | | | | - Robin S. Goland
- Departments of Medicine and Pediatrics, Columbia University, New York, NY
| | | | | | | | | | | | | | | | | | - Daniel J. Moore
- Departments of Pediatrics and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | | | | | | | | | - Jay S. Skyler
- Department of Medicine, University of Miami, Miami, FL
| | - John M. Wentworth
- Royal Melbourne Hospital and The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Diane K. Wherrett
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Anette-Gabriele Ziegler
- Forschergruppe Diabetes, Technical University Munich at Klinikum rechts der Isar, Munich, Germany
- Institute for Diabetes Research, Helmholtz Munich, German Center for Environmental Health, Munich, Germany
| | | | | |
Collapse
|
40
|
Huang Y, Ba X, Han L, Wang H, Lin W, Chen Z, Tu S. T peripheral helper cells in autoimmune diseases: What do we know? Front Immunol 2023; 14:1145573. [PMID: 37077922 PMCID: PMC10106688 DOI: 10.3389/fimmu.2023.1145573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
The interactions between T cells and B cells are essential for antibody responses and the development of autoimmune diseases. Recently, a distinct subset of T cells capable of helping B cells was established in synovial fluid, and they were termed peripheral helper T (Tph) cells. PD-1hiCXCR5−CD4+ Tph cells express high levels of CXCL13, which drives the formation of lymphoid aggregates and tertiary lymphoid structures, ultimately facilitating the local production of pathogenic autoantibodies. Tph and T follicular helper cells share some key features but can be distinguished by their surface markers, transcriptional regulation, and migration capability. We summarize recent findings on Tph cells in this review and provide a perspective on their potential roles in a range of autoimmune diseases. More clinical and in-depth mechanistic investigations of Tph cells may help to improve the understanding of pathogenesis and further provide novel therapeutic targets in autoimmune diseases.
Collapse
Affiliation(s)
- Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medcal College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medcal College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Chen, ; Shenghao Tu,
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medcal College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhe Chen, ; Shenghao Tu,
| |
Collapse
|
41
|
Gutiérrez-Melo N, Baumjohann D. T follicular helper cells in cancer. Trends Cancer 2023; 9:309-325. [PMID: 36642575 DOI: 10.1016/j.trecan.2022.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
T follicular helper (Tfh) cells provide essential help to B cells for effective antibody-mediated immune responses. Although the crucial function of these CD4+ T cells in infection and vaccination is well established, their involvement in cancer is only beginning to emerge. Increased numbers of Tfh cells in Tfh cell-derived or B cell-associated malignancies are often associated with an unfavorable outcome, whereas in various solid organ tumor types of non-lymphocytic origin, their presence frequently coincides with a better prognosis. We discuss recent advances in understanding how Tfh cell crosstalk with B cells and CD8+ T cells in secondary and tertiary lymphoid structures (TLS) enhances antitumor immunity, but may also exacerbate immune-related adverse events (irAEs) such as autoimmunity during immune checkpoint blockade (ICB) and cancer immunotherapy.
Collapse
Affiliation(s)
- Nicolás Gutiérrez-Melo
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology, and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology, and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
42
|
Hayashi Y, Kimura S, Yano E, Yoshimoto S, Saeki A, Yasukochi A, Hatakeyama Y, Moriyama M, Nakamura S, Jimi E, Kawakubo-Yasukochi T. Id4 modulates salivary gland homeostasis and its expression is downregulated in IgG4-related disease via miR-486-5p. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119404. [PMID: 36535369 DOI: 10.1016/j.bbamcr.2022.119404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Salivary glands are physiologically orchestrated by the coordinated balance between cell differentiation, proliferation, apoptosis, and interactions between epithelial, mesenchymal endothelial, and neuronal cells, and they are frequent sites of manifestations of Sjögren's syndrome (SS) or IgG4-related disease (IgG4-RD). However, little is known about salivary gland homeostasis and its involvement in those diseases. Inhibitor of DNA binding/differentiation 4 (Id4) is an Id protein involved in the transcriptional control of many biological events, including differentiation. Studies of Id4-deficient mice revealed that Id4-deficient submandibular glands were smaller and exhibited accelerated differentiation, compared with those from wild-type littermates. In addition, dry mouth symptoms and Th17 expansion in splenocytes were also observed in the absence of Id4. Furthermore, Id4 levels in the salivary glands of patients with IgG4-RD, but not SS, were significantly decreased compared with those of healthy controls. miRNA-mRNA integrated analysis demonstrated that miR-486-5p was upregulated in IgG4-RD patients and that it might regulate Id4 in the lesion sites. Together, these results provide evidence for the inhibitory role of Id4 in salivary differentiation, and a critical association between Id4 downregulation and IgG4-RD.
Collapse
Affiliation(s)
- Yoshikazu Hayashi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Soi Kimura
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ena Yano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka 814-0193, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Ayaka Saeki
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Yasukochi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuji Hatakeyama
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Masafumi Moriyama
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomoyo Kawakubo-Yasukochi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
43
|
Preglej T, Brinkmann M, Steiner G, Aletaha D, Göschl L, Bonelli M. Advanced immunophenotyping: A powerful tool for immune profiling, drug screening, and a personalized treatment approach. Front Immunol 2023; 14:1096096. [PMID: 37033944 PMCID: PMC10080106 DOI: 10.3389/fimmu.2023.1096096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Various autoimmune diseases are characterized by distinct cell subset distributions and activation profiles of peripheral blood mononuclear cells (PBMCs). PBMCs can therefore serve as an ideal biomarker material, which is easily accessible and allows for screening of multiple cell types. A detailed understanding of the immune landscape is critical for the diagnosis of patients with autoimmune diseases, as well as for a personalized treatment approach. In our study, we investigate the potential of multi-parameter spectral flow cytometry for the identification of patients suffering from autoimmune diseases and its power as an evaluation tool for in vitro drug screening approaches (advanced immunophenotyping). We designed a combination of two 22-color immunophenotyping panels for profiling cell subset distribution and cell activation. Downstream bioinformatics analyses included percentages of individual cell populations and median fluorescent intensity of defined markers which were then visualized as heatmaps and in dimensionality reduction approaches. In vitro testing of epigenetic immunomodulatory drugs revealed an altered activation status upon treatment, which supports the use of spectral flow cytometry as a high-throughput drug screening tool. Advanced immunophenotyping might support the exploration of novel therapeutic drugs and contribute to future personalized treatment approaches in autoimmune diseases and beyond.
Collapse
Affiliation(s)
| | | | | | | | - Lisa Göschl
- *Correspondence: Lisa Göschl, ; Michael Bonelli,
| | | |
Collapse
|
44
|
Poggi A. 10th Anniversary of Cells: Advances in Cellular Immunology-Regulation of Autoimmune Response and Antitumor Reactivity: Are They Two Side of the Same Coin? Cells 2022; 11:cells11244122. [PMID: 36552886 PMCID: PMC9776996 DOI: 10.3390/cells11244122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The innate and adaptive arms of the immune system are involved in maintaining organism homeostasis [...].
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogensesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
45
|
Sasaki T, Bracero S, Keegan J, Chen L, Cao Y, Stevens E, Qu Y, Wang G, Nguyen J, Sparks JA, Holers VM, Alves SE, Lederer JA, Costenbader KH, Rao DA. Longitudinal Immune Cell Profiling in Patients With Early Systemic Lupus Erythematosus. Arthritis Rheumatol 2022; 74:1808-1821. [PMID: 35644031 PMCID: PMC10238884 DOI: 10.1002/art.42248] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVES To investigate the immune cell profiles of patients with systemic lupus erythematosus (SLE), and to identify longitudinal changes in those profiles over time. METHODS We employed mass cytometry with 3 different panels of 38-39 markers (an immunophenotyping panel, a T cell/monocyte panel, and a B cell panel) in cryopreserved peripheral blood mononuclear cells (PBMCs) from 9 patients with early SLE, 15 patients with established SLE, and 14 controls without autoimmune disease. We used machine learning-driven clustering, flow self-organizing maps, and dimensional reduction with t-distributed stochastic neighbor embedding to identify unique cell populations in early SLE and established SLE. We used mass cytometry data of PBMCs from 19 patients with early rheumatoid arthritis (RA) and 23 controls to compare levels of specific cell populations in early RA and SLE. For the 9 patients with early SLE, longitudinal mass cytometry analysis was applied to PBMCs at enrollment, 6 months after enrollment, and 1 year after enrollment. Serum samples were also assayed for 65 cytokines using Luminex multiplex assay, and associations between cell types and cytokines/chemokines were assessed. RESULTS Levels of peripheral helper T cells, follicular helper T (Tfh) cells, and several Ki-67+ proliferating subsets (ICOS+Ki-67+ CD8 T cells, Ki-67+ regulatory T cells, CD19intermediate Ki-67high plasmablasts, and PU.1high Ki-67high monocytes) were increased in patients with early SLE, with more prominent alterations than were seen in patients with early RA. Longitudinal mass cytometry and multiplex serum cytokine assays of samples from patients with early SLE revealed that levels of Tfh cells and CXCL10 had decreased 1 year after enrollment. Levels of CXCL13 were positively correlated with levels of several of the expanded cell populations in early SLE. CONCLUSION Two major helper T cell subsets and unique Ki-67+ proliferating immune cell subsets were expanded in patients in the early phase of SLE, and the immunologic features characteristic of early SLE evolved over time.
Collapse
Affiliation(s)
- Takanori Sasaki
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Sabrina Bracero
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Joshua Keegan
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Lin Chen
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ye Cao
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Emma Stevens
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yujie Qu
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Guoxing Wang
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jennifer Nguyen
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeffrey A. Sparks
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephen E. Alves
- Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - James A. Lederer
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Deepak A. Rao
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Su QY, Zheng JW, Yang JY, Zhang TY, Song S, Zhao R, Di JK, Zhang SX, Wang CH, Gao HY. Levels of Peripheral Th17 Cells and Th17-Related Cytokines in Patients with Ankylosing Spondylitis: A Meta-analysis. Adv Ther 2022; 39:4423-4439. [PMID: 35960483 DOI: 10.1007/s12325-022-02240-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/22/2022] [Indexed: 01/30/2023]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic inflammatory disease. Several proinflammatory cytokines produced by T helper 17 (Th17) cells are involved in the pathogenesis of AS. We performed a meta-analysis to determine the levels of Th17 cells and serum Th17-associated cytokines in patients with AS. METHODS We determined the levels of Th17 cells and Th17 cytokines in patients with AS using data extracted from published articles retrieved from the PubMed, Embase, Web of Science, Cochrane Library, MEDLINE, Web of Knowledge, Clinical Trials.gov, and FDA.gov. DATABASES The effect estimates were pooled using a random-effects model. The review protocols were registered on PROSPERO (reference: CRD42021255741) and followed the PRISMA guideline. RESULTS This meta-analysis included 138 studies. Compared to healthy controls (HCs), patients with AS had a higher proportion of Th17 cells (standardized mean difference [SMD] 2.23, 95% confidence interval [CI] 1.78-2.68; p < 0.001) and levels of proinflammatory cytokines, such as interleukin (IL)-17 (SMD 2.04, 95% CI 1.70-2.38; p < 0.001), IL-21 (SMD 1.77, 95% CI 0.95-2.59; p < 0.001), and IL-23 (SMD 1.11, 95% CI 0.78-1.44; p < 0.001). The subgroup analysis showed higher levels of IL-17+ Th17 cells among peripheral blood mononuclear cells (PBMCs) and CD4+ T cells in patients with AS compared to HCs (SMD 2.26, 95% CI 1.58-2.94 [p < 0.001] and SMD 1.61, 95% CI 0.55-2.67 [p = 0.003], respectively). Patients with AS had higher levels of CD4+IL-17+IFN-γ- Th17 in PBMCs and of CD4+CCR6+CCR4+Th17 in CD4+ T cells compared to HCs (SMD 1.85, 95% CI 1.06-2.64 [p < 0.001] and SMD 7.72, 95% CI 6.55-8.89 [p < 0.001], respectively). No significant differences were observed in the proportions of CD4+IL-17+IFN-γ- Th17 in CD4+ T cells and CD4+CCR6+CCR4+ Th17 in PBMCs (SMD - 0.11, 95% CI - 0.61 to 0.38 [p = 0.650] and SMD 1.32, 95% CI - 0.54 to 3.19 [p = 0.165], respectively). In addition, compared to stable AS, the levels of Th17 cells and IL-17 and IL-23 were significantly higher in active AS (SMD 1.58, 95% CI 0.30-2.85 [p = 0.016], SMD 3.52, 95% CI 0.72-6.33 [p = 0.014], and SMD 5.10, 95% CI 1.83-8.36 [p = 0.002], respectively). CONCLUSIONS The levels of Th17 cells and serum IL-17, IL-21, and IL-23 were higher in patients with AS than in HCs and, compared with stable AS, they increased more significantly in active AS. These results suggest that Th17 cells and Th17-related cytokines play major roles in AS pathogenesis and are an important target for treatment.
Collapse
Affiliation(s)
- Qin-Yi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
| | - Jing-Wen Zheng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jing-Yuan Yang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Tong-Yuan Zhang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Shan Song
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
| | - Rong Zhao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
| | - Jing-Kai Di
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
| | - Cai-Hong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China.,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China
| | - Hui-Ying Gao
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China. .,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, China. .,Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi, China.
| |
Collapse
|
47
|
Yoshitomi H. Peripheral Helper T Cell Responses in Human Diseases. Front Immunol 2022; 13:946786. [PMID: 35880181 PMCID: PMC9307902 DOI: 10.3389/fimmu.2022.946786] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
A series of rheumatoid arthritis (RA) studies established a PD-1hiCXCR5-CD4+ T-cell subset that was coined peripheral helper T (Tph) cells. CXCL13 production is a key feature of Tph cells and may contribute to the formation of tertiary lymphoid structures (TLS) in inflamed tissues. In addition, Tph cells provide help to B cells in situ as efficiently as follicular helper T (Tfh) cells, and these features would implicate Tph cells in the pathogenesis of RA. Subsequent studies have revealed that Tph cells are involved in various human diseases such as autoimmune diseases, infectious diseases, and cancers. Although the analysis of human immunity has various limitations, accumulating evidence demonstrated the expansion of B cells with low somatic hypermutation and a link between TLS and immune functions in these diseases. We discuss about the emerging roles of the Tph cell and its relevant immune responses in peripheral tissues including B-cell expansion with atypical features.
Collapse
|
48
|
Greisen SR, Aspari M, Deleuran B. Co-Inhibitory Molecules – Their Role in Health and Autoimmunity; Highlighted by Immune Related Adverse Events. Front Immunol 2022; 13:883733. [PMID: 35784333 PMCID: PMC9243421 DOI: 10.3389/fimmu.2022.883733] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint receptors are key players in regulating the immune response. They are responsible for both generating an immune response sufficient to kill invading pathogens, balancing the same response, and protecting against tissue destruction or the development of autoimmune events. The central role of the co-inhibitory receptors also referred to as inhibitory immune checkpoints, including PD-1 and CTLA-4 has become especially evident with the cancer treatments targeting these receptors. Blocking these pathways enhances the immune activity, resulting in both an increased chance of cancer clearance, at the same time induction of immune-related adverse events (irAE). Some of these irAE progress into actual autoimmune diseases with autoantibodies and symptoms, undistinguished from the naturally occurring diseases. This review will take advantage of the lessons learned from immune checkpoint blockade and relate this knowledge to our understanding of the same pathways in naturally occurring autoimmune diseases, mainly focusing on rheumatic diseases.
Collapse
Affiliation(s)
- Stinne R. Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- *Correspondence: Stinne R. Greisen,
| | - Maithri Aspari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
49
|
Pelanda R, Zikherman J. Many Achilles' heels of B and T cell tolerance. Immunol Rev 2022; 307:5-11. [PMID: 35301733 PMCID: PMC8986605 DOI: 10.1111/imr.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engelman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143
| |
Collapse
|