1
|
Nichita DR, Dima M, Boboc L, Hâncean MG. Data analysis evidence beyond correlation of a possible causal impact of weather on the COVID-19 spread, mediated by human mobility. Sci Rep 2024; 14:17782. [PMID: 39090143 PMCID: PMC11294627 DOI: 10.1038/s41598-024-67918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Previous correlative and modeling approaches indicate influences of environmental factors on COVID-19 spread through atmospheric conditions' impact on virus survival and transmission or host susceptibility. However, causal connections from environmental factors to the pandemic, mediated by human mobility, received less attention. We use the technique of Convergent Cross Mapping to identify the causal connections, beyond correlation at the country level, between pairs of variables associated with weather conditions, human mobility, and the number of COVID-19 cases for 32 European states. Here, we present data-based evidence that the relatively reduced number of cases registered in Northern Europe is related to the causal impact of precipitation on people's decision to spend more time at home and that the relatively large number of cases observed in Southern Europe is linked to people's choice to spend time outdoors during warm days. We also emphasize the channels of the significant impact of the pandemic on human mobility. The weather-human mobility connections inferred here are relevant not only for COVID-19 spread but also for any other virus transmitted through human interactions. These results may help authorities and public health experts contain possible future waves of the COVID-19 pandemic or limit the threats of similar human-to-human transmitted viruses.
Collapse
Affiliation(s)
- Denis-Răducu Nichita
- Faculty of Physics, University of Bucharest, Bucharest, Romania.
- Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Măgurele, Romania.
| | - Mihai Dima
- Faculty of Physics, University of Bucharest, Bucharest, Romania
| | - Loredana Boboc
- Faculty of Physics, University of Bucharest, Bucharest, Romania
| | | |
Collapse
|
2
|
Ganasegeran K, Jamil MFA, Ch’ng ASH, Looi I, Rusli N, Peariasamy KM. COVID-19 pandemic indicators and variation with vaccinations in Malaysia: a regional-based geo-visualization and geo-ecological regression study. GEOJOURNAL 2024; 89:114. [DOI: 10.1007/s10708-024-11111-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 01/03/2025]
|
3
|
Niu Y, Wang F, Luo D, Shu Z, Huang J, Zhang Y, Liu C, Qian H. Vertical transmission of infectious aerosols through building toilet drainage system: An experimental study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123284. [PMID: 38163630 DOI: 10.1016/j.envpol.2023.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/23/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
The building's toilet drainage system has been identified as a potential route for the transmission of SARS-CoV-2 during outbreaks. This study employed agar-fluorescein sodium semi-solid as trace particles to investigate the possibility of vertical transmission of the SARS-CoV-2 in drainage system. In both scenarios, where floor drains were all properly sealed or dried out, simulated faeces containing fluorescein sodium were flushed into the toilet bowl. Air sampling was conducted in each restroom, and differential pressure measurements at the floor drain locations were taken. The experimental results showed that when all floor drains were properly sealed, the differential pressure at each floor drain was 0. The fluorescein sodium-traced aerosol did not transmit through the drainage system to various floors, which significantly reduced the risk of infection for users through this route. However, when all floor drains dried out, toilet users above the neutral pressure layer (NPL) were at a high risk of virus infection. Due to the increasing maximum negative pressure at the floor drain above the NPL with ascending floor levels, users on each floor above the NPL faced an elevated infection risk in restrooms. Specifically, users on the top floor were exposed to infectious aerosols roughly 1.6 times that of the first floor above the NPL. Conversely, owing to the increasing maximum positive pressure at the floor drain below the NPL with descending floor levels, users below the NPL experienced a comparatively lower infection risk. This finding has important implications for understanding the vertical transmission dynamics of SARS-CoV-2 in residential or public building and can inform the development of effective control measures.
Collapse
Affiliation(s)
- Yuanyuan Niu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Fang Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Danting Luo
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Zhiyong Shu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Jiayu Huang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yongpeng Zhang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Cong Liu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
4
|
Feng Y, Fan Y, Luo X, Ge J. A Wells-Riley based COVID-19 infectious risk assessment model combining both short range and room scale effects. BUILDING SIMULATION 2024; 17:93-111. [DOI: 10.1007/s12273-023-1060-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 01/05/2025]
|
5
|
Feng Y, Zhang Y, Ding X, Fan Y, Ge J. Multi-scale risk assessment and mitigations comparison for COVID-19 in urban public transport: A combined field measurement and modeling approach. BUILDING AND ENVIRONMENT 2023; 242:110489. [PMID: 37333517 PMCID: PMC10236904 DOI: 10.1016/j.buildenv.2023.110489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an unparalleled disruption to daily life. Given that COVID-19 primarily spreads in densely populated indoor areas, urban public transport (UPT) systems pose significant risks. This study presents an analysis of the air change rate in buses, subways, and high speed trains based on measured CO2 concentrations and passenger behaviors. The resulting values were used as inputs for an infection risk assessment model, which was used to quantitatively evaluate the effects of various factors, including ventilation rates, respiratory activities, and viral variants, on the infection risk. The findings demonstrate that ventilation has a negligible impact on reducing average risks (less than 10.0%) for short-range scales, but can result in a reduction of average risks by 32.1%-57.4% for room scales. When all passengers wear masks, the average risk reduction ranges from 4.5-folds to 7.5-folds. Based on our analysis, the average total reproduction numbers (R) of subways are 1.4-folds higher than buses, and 2-folds higher than high speed trains. Additionally, it is important to note that the Omicron variant may result in a much higher R value, estimated to be approximately 4.9-folds higher than the Delta variant. To reduce disease transmission, it is important to keep the R value below 1. Thus, two indices have been proposed: time-scale based exposure thresholds and spatial-scale based upper limit warnings. Mask wearing provides the greatest protection against infection in the face of long exposure duration to the omicron epidemic.
Collapse
Affiliation(s)
- Yinshuai Feng
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
- Center for Balance Architecture, Zhejiang University, Hangzhou, China
- International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Yan Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
- International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Xiaotian Ding
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
- International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Yifan Fan
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
- Center for Balance Architecture, Zhejiang University, Hangzhou, China
- International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| | - Jian Ge
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, China
- International Research Center for Green Building and Low-Carbon City, International Campus, Zhejiang University, Haining, China
| |
Collapse
|
6
|
An overview of SARS-CoV-2 transmission and engineering strategies to mitigate risk. JOURNAL OF BUILDING ENGINEERING 2023; 73:106737. [PMCID: PMC10165872 DOI: 10.1016/j.jobe.2023.106737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 10/31/2024]
Abstract
The spread of the COVID-19 pandemic has profoundly affected every aspect of our lives. To date, experts have acknowledged that airborne transmission is a key piece of the SARS-CoV-2 puzzle. Nevertheless, the exact mechanism of airborne transmission of SARS-CoV-2 remains unclear. Recent works have shown the spreading of SARS-CoV-2 through numerical modeling and experimental works, but the successful applications of engineering approaches in reducing the spread of SARS-CoV-2 are lacking. In this review, the environmental factors that influence the transmission risk of SARS-CoV-2, such as ventilation flow rates, humidity, and temperature, are discussed. Besides, additional macro and micro weather factors, regional and global transmission, and the variants of the spread of SARS-CoV-2 are also reviewed. Engineering approaches that practically reduce the risks of SARS-CoV-2 transmissions are reported. Given the complex human behavior, environmental properties, and dynamic nature of the SARS-CoV-2 virus, it is reasonable to summarize that SARS-CoV-2 may not be eradicated even with the timely implementation of interventions. Therefore, more research exploring the potential cost-effective ways to control the transmission rate of SARS-CoV-2 may be a worthwhile pursuit to moderate the current crisis.
Collapse
|
7
|
Yang S, Muthalagu A, Serrano VG, Licina D. Human personal air pollution clouds in a naturally ventilated office during the COVID-19 pandemic. BUILDING AND ENVIRONMENT 2023; 236:110280. [PMID: 37064616 PMCID: PMC10080864 DOI: 10.1016/j.buildenv.2023.110280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Personal cloud, termed as the difference in air pollutant concentrations between breathing zone and room sites, represents the bias in approximating personal inhalation exposure that is linked to accuracy of health risk assessment. This study performed a two-week field experiment in a naturally ventilated office during the COVID-19 pandemic to assess occupants' exposure to common air pollutants and to determine factors contributing to the personal cloud effect. During occupied periods, indoor average concentrations of endotoxin (0.09 EU/m3), TVOC (231 μg/m3), CO2 (630 ppm), and PM10 (14 μg/m3) were below the recommended limits, except for formaldehyde (58 μg/m3). Personal exposure concentrations, however, were significantly different from, and mostly higher than, concentrations measured at room stationary sampling sites. Although three participants shared the same office, their personal air pollution clouds were mutually distinct. The mean personal cloud magnitude ranged within 0-0.05 EU/m3, 35-192 μg/m3, 32-120 ppm, and 4-9 μg/m3 for endotoxin, TVOC, CO2, and PM10, respectively, and was independent from room concentrations. The use of hand sanitizer was strongly associated with an elevated personal cloud of endotoxin and alcohol-based VOCs. Reduced occupancy density in the office resulted in more pronounced personal CO2 clouds. The representativeness of room stationary sampling for capturing dynamic personal exposures was as low as 28% and 5% for CO2 and PM10, respectively. The findings of our study highlight the necessity of considering the personal cloud effect when assessing personal exposure in offices.
Collapse
Affiliation(s)
- Shen Yang
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Akila Muthalagu
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Environmental Systems Group, Department of Civil Engineering, Indian Institute of Technology Hyderabad, Kandi, India
| | - Viviana González Serrano
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dusan Licina
- Human-Oriented Built Environment Lab, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Li Y, Cheng P, Liu L, Li A, Jia W, Zhang N. Predicting building ventilation performance in the era of an indoor air crisis. BUILDING SIMULATION 2023; 16:663-666. [PMID: 37128475 PMCID: PMC10126529 DOI: 10.1007/s12273-023-1019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- Faculty of Architecture, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pan Cheng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Li Liu
- School of Architecture, Tsinghua University, Beijing, China
| | - Ao Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wei Jia
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| |
Collapse
|
9
|
Rowe BR, Canosa A, Meslem A, Rowe F. Increased airborne transmission of COVID-19 with new variants, implications for health policies. BUILDING AND ENVIRONMENT 2022; 219:109132. [PMID: 35578697 PMCID: PMC9095081 DOI: 10.1016/j.buildenv.2022.109132] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
New COVID-19 variants, either of higher viral load such as delta or higher contagiousness like omicron, can lead to higher airborne transmission than historical strains. This paper highlights their implications for health policies, based on a clear analytical understanding and modeling of the airborne contamination paths, of the dose following exposure, and the importance of the counting unit for pathogens, itself linked to the dose-response law. Using the counting unit of Wells, i.e. the quantum of contagium, we develop the conservation equation of quanta which allows deriving the value of the quantum concentration at steady state for a well-mixed room. The link with the monitoring concentration of carbon dioxide is made and used for a risk analysis of a variety of situations for which we collected CO2 time-series observations. The main conclusions of these observations are that 1) the present norms of ventilation, are both insufficient and not respected, especially in a variety of public premises, leading to high risk of contamination and that 2) air can often be considered well-mixed. Finally, we insist that public health policy in the field of airborne transmission should be based on a multi parameter analysis such as the time of exposure, the quantum production rate, mask wearing and the infector proportion in the population in order to evaluate the risk, considering the whole complexity of dose evaluation. Recognizing airborne transmission requires thinking in terms of time of exposure rather than in terms of proximal distance.
Collapse
Affiliation(s)
- Bertrand R Rowe
- Rowe Consulting, 22 chemin des moines, 22750 Saint Jacut de la Mer, France
| | - André Canosa
- CNRS, IPR (Institut de Physique de Rennes)-UMR 6251, Université de Rennes, 35000 Rennes, France
| | - Amina Meslem
- Université de Rennes, LGCGM, 3 Rue du Clos Courtel, BP 90422, 35704, Rennes, CEDEX 7, France
| | - Frantz Rowe
- Nantes Université, LEMNA, Nantes, France
- SKEMA Business School, KTO, Sophia-Antipolis, France
| |
Collapse
|
10
|
Singh R. Public Health Issue of Indoor Dilution Ventilation for Disease Prevention Versus PM2.5 in Intake Air in Auditoriums of Premier Engineering Institutes in India. Cureus 2022; 14:e25258. [PMID: 35755566 PMCID: PMC9217168 DOI: 10.7759/cureus.25258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Dilution ventilation by enhancing fresh air intake has been prescribed to reduce airborne infection spread during the COVID-19 pandemic. This is all the more important in assembly spaces like auditoriums. Premier technology institutes have large campuses with large auditoriums for academic and cultural events in India. These institutes serve as role models for society, where gatherings are essential, but there is also the possibility of transmission of all airborne respiratory infections, including tuberculosis, into the community. The fresh air taken in should also be filtered for pollution to prevent other lung issues. Aims: Fresh air intake and filtration have been studied in order to understand whether the outside air supplied indoors is filtered for PM2.5, which is a major ambient polluter in India. Settings and design/methods: In this study, the Right to Information Act of 2005 has been used to obtain first-hand information from the institutes with respect to the heating, ventilation, and air conditioning (HVAC) systems in their auditoriums. Twelve of the 19 institutes fall in cities with non-attainment of ambient air quality standards. Results: Eleven out of all those had recently integrated fresh air supply, and six replied in the negative. Only one out of all of them had appropriate filters. Conclusion: This study highlights the need for a possible trade-off between the use of air conditioners for thermal comfort + assumed protection against PM2.5, which is the switching off of air conditioners and manually opening up windows and using fans for ventilation. Indian HVAC design for gathering spaces, especially educational institutes, needs to factor in fresh air for dilution ventilation as well as PM2.5 filtration.
Collapse
|
11
|
Jimenez JL, Peng Z, Pagonis D. Systematic way to understand and classify the shared-room airborne transmission risk of indoor spaces. INDOOR AIR 2022; 32:e13025. [PMID: 35622715 DOI: 10.1111/ina.13025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/22/2023]
Affiliation(s)
- Jose L Jimenez
- Department of Chemistry and CIRES, University of Colorado, Boulder, Colorado, USA
| | - Zhe Peng
- Department of Chemistry and CIRES, University of Colorado, Boulder, Colorado, USA
| | - Demetrios Pagonis
- Department of Chemistry and CIRES, University of Colorado, Boulder, Colorado, USA
- Department of Chemistry and Biochemistry, Weber State University, Ogden, Utah, USA
| |
Collapse
|
12
|
Singh R. Studying the Double Paradox in Air Conditioning at Indian Airports for Airborne Infection Prevention and Filtration of Harmful Suspended Particulate Matter. Cureus 2022; 14:e23748. [PMID: 35509738 PMCID: PMC9058289 DOI: 10.7759/cureus.23748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2022] [Indexed: 11/05/2022] Open
|
13
|
Singh R. The Risk Status of Waiting Areas for Airborne Infection Control in Delhi Hospitals. Cureus 2022; 14:e23211. [PMID: 35444905 PMCID: PMC9012110 DOI: 10.7759/cureus.23211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Abstract
Background Hospital waiting areas are overlooked from the airborne infection control viewpoint as they are not classified as critical for infection control. This is the area where undiagnosed and potentially infected patients gather with susceptible and vulnerable patients, and there is no mechanism to segregate the two, especially when the potentially infected visitors/patients themselves are unaware of the infection or may be asymptomatic. It is important to know whether hospitals in Delhi, a populated, low-resource setting having community transmission/occurrence of airborne diseases such as tuberculosis, consider waiting areas as critical. Hence, this study aims to determine whether hospitals in Delhi consider waiting areas as critical areas from the airborne infection control viewpoint. Methodology The Right to Information Act, 2005, was used to request information from 11 hospitals included in this study. Results After compiling the results, it was found that five out of the 11 hospitals did not consider waiting areas as critical from the infection spread point of view. Two of the 11 hospitals acknowledged the criticality of waiting areas but did not include the same in the list of critical areas. Only three out of the 11 considered waiting areas as critical and included these in the list of critical areas in a hospital. Conclusions This study provided evidence that most hospitals in Delhi do not include waiting areas in the list of critical areas in a hospital.
Collapse
|
14
|
Affiliation(s)
| | - Philomena M Bluyssen
- Faculty of Architecture and the Built Environment, Delft University of Technology, The Netherlands
| | - Yuguo Li
- Department of Mechanical Engineering, University of Hong Kong, Hong Kong, China
| | - Julian W Tang
- Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
15
|
Capasso L, D’Alessandro D. Housing and Health: Here We Go Again. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12060. [PMID: 34831815 PMCID: PMC8624624 DOI: 10.3390/ijerph182212060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Housing is one of the major determinants of human health and the current COVID-19 pandemic has highlighted its relevance. The authors summarize the main issues, including dimensional standards, indoor air quality, safety, accessibility, neighborhoods, and area characteristics. The authors propose an operating scheme in order to implement actions to improve residential wellbeing on a local, national, and international level.
Collapse
Affiliation(s)
- Lorenzo Capasso
- Italian Ministry of Education, USR Abruzzo (Regional Office of Abruzzi), 66100 Chieti, Italy
| | - Daniela D’Alessandro
- Department of Civil Building and Environmental Engineering, “Sapienza” University of Rome, 00100 Rome, Italy;
| |
Collapse
|