1
|
Kreidenhuber R, Poppert KN, Mauritz M, Hamer HM, Delev D, Schnell O, Rampp S. MEG in MRI-Negative Patients with Focal Epilepsy. J Clin Med 2024; 13:5746. [PMID: 39407806 PMCID: PMC11476570 DOI: 10.3390/jcm13195746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
OBJECTIVES To review the evidence on the clinical value of magnetic source imaging (MSI) in patients with refractory focal epilepsy without evidence for an epileptogenic lesion on magnetic resonance imaging ("MRI-negative" or "non-lesional MRI"). METHODS We conducted a systematic literature search on PUBMED, which was extended by researchrabbit.ai using predefined criteria to identify studies that applied MSI in MRI-negative patients with epilepsy. We extracted data on patient characteristics, MSI methods, localization results, surgical outcomes, and correlation with other modalities. RESULTS We included 23 studies with a total of 512 non-lesional epilepsy patients who underwent MSI. Most studies used equivalent current dipole (ECD) models to estimate the sources of interictal epileptic discharges (IEDs). MEG detected IEDs in 32-100% of patients. MSI results were concordant with other modalities, such as EEG, PET, and SPECT, in 3892% of cases. If MSI concordant surgery was performed, 52-89% of patients achieved seizure freedom. MSI contributed to the decision-making process in 28-75% of cases and altered the surgical plan in 5-33% of cases. CONCLUSIONS MSI is a valuable diagnostic tool for MRI-negative patients with epilepsy, as it can detect and localize IEDs with high accuracy and sensitivity, and provides useful information for surgical planning and predicts outcomes. MSI can also complement and refine the results of other modalities, such as EEG and PET, and optimize the use of invasive recordings. MSI should be considered as part of the presurgical evaluation, especially in patients with non-lesional refractory epilepsy.
Collapse
Affiliation(s)
- Rudolf Kreidenhuber
- Department of Radiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Kai-Nicolas Poppert
- Christian-Doppler Medical Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Matthias Mauritz
- Christian-Doppler Medical Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Hajo M. Hamer
- Epilepsy Center, Department of Neurology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Daniel Delev
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Oliver Schnell
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Stefan Rampp
- Department of Neurosurgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Neuroradiology, University Hospital Erlangen, 91054 Erlangen, Germany
- Department of Neurosurgery, University Hospital Halle (Saale), 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Ishida M, Kakisaka Y, Jin K, Kanno A, Nakasato N. Somatosensory evoked spikes in normal adults detected by magnetoencephalography. Clin Neurophysiol 2024; 164:19-23. [PMID: 38820667 DOI: 10.1016/j.clinph.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE Somatosensory evoked spikes (SESs) have been reported only in children aged under 14 years and are considered as an age-dependent phenomenon. However, we detected SESs in adult patients with epilepsy using magnetoencephalography (MEG). The present study investigated whether MEG can detect SESs in normal adults. METHODS Spontaneous MEG was recorded during measurement of somatosensory evoked fields (SEFs) for bilateral electrical median nerve stimuli in 30 healthy adults. RESULTS Bilateral SESs were observed in 10 adults but none in the other 20 subjects. SESs consisted of one or two peaks, and the first peak latency corresponded to that of the second peak (M2) of SEFs. The first SES peak was identical to the M2 in isofield map pattern, as well as location and orientation of the equivalent current dipole (ECD). M2 ECD strength in the 10 subjects with SESs was larger (p <0.0001) than in 20 without SESs. CONCLUSIONS All-or-nothing detection of bilateral SESs by MEG in normal adults must depend on the signal-to-noise issue of symmetrical SEFs and background brain activity. SIGNIFICANCE Our results further confirm the higher sensitivity of MEG compared to scalp EEG for the detection of focal cortical sources tangential to the scalp such as SESs.
Collapse
Affiliation(s)
- Makoto Ishida
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Yosuke Kakisaka
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akitake Kanno
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
3
|
Erdbrügger T, Höltershinken M, Radecke J, Buschermöhle Y, Wallois F, Pursiainen S, Gross J, Lencer R, Engwer C, Wolters C. CutFEM-based MEG forward modeling improves source separability and sensitivity to quasi-radial sources: A somatosensory group study. Hum Brain Mapp 2024; 45:e26810. [PMID: 39140847 PMCID: PMC11323619 DOI: 10.1002/hbm.26810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/21/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024] Open
Abstract
Source analysis of magnetoencephalography (MEG) data requires the computation of the magnetic fields induced by current sources in the brain. This so-called MEG forward problem includes an accurate estimation of the volume conduction effects in the human head. Here, we introduce the Cut finite element method (CutFEM) for the MEG forward problem. CutFEM's meshing process imposes fewer restrictions on tissue anatomy than tetrahedral meshes while being able to mesh curved geometries contrary to hexahedral meshing. To evaluate the new approach, we compare CutFEM with a boundary element method (BEM) that distinguishes three tissue compartments and a 6-compartment hexahedral FEM in an n = 19 group study of somatosensory evoked fields (SEF). The neural generators of the 20 ms post-stimulus SEF components (M20) are reconstructed using both an unregularized and a regularized inversion approach. Changing the forward model resulted in reconstruction differences of about 1 centimeter in location and considerable differences in orientation. The tested 6-compartment FEM approaches significantly increase the goodness of fit to the measured data compared with the 3-compartment BEM. They also demonstrate higher quasi-radial contributions for sources below the gyral crowns. Furthermore, CutFEM improves source separability compared with both other approaches. We conclude that head models with 6 compartments rather than 3 and the new CutFEM approach are valuable additions to MEG source reconstruction, in particular for sources that are predominantly radial.
Collapse
Affiliation(s)
- Tim Erdbrügger
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Institute for Analysis and Numerics, University of MünsterMünsterGermany
| | - Malte Höltershinken
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Institute for Analysis and Numerics, University of MünsterMünsterGermany
| | - Jan‐Ole Radecke
- Deptartment of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
- Center for Brain, Behaviour and Metabolism (CBBM)University of LübeckLübeckGermany
| | - Yvonne Buschermöhle
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| | - Fabrice Wallois
- Institut National de la Santé et de la Recherche Médicale, University of Picardie Jules VerneAmiensFrance
| | - Sampsa Pursiainen
- Computing Sciences Unit, Faculty of Information Technology and Communication SciencesTampere UniversityTampereFinland
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| | - Rebekka Lencer
- Deptartment of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
- Center for Brain, Behaviour and Metabolism (CBBM)University of LübeckLübeckGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
- Institute for Translational Psychiatry, University of MünsterMünsterGermany
| | - Christian Engwer
- Institute for Analysis and Numerics, University of MünsterMünsterGermany
| | - Carsten Wolters
- Institute for Biomagnetism and Biosignalanalysis, University of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| |
Collapse
|
4
|
Hao G, Yan H, Wang X, Gao R, Xue Y, Zhang X, Ni D, Shu W, Qiao L, He L, Yu T. The role of magnetoencephalography in preoperative localization and postoperative outcome prediction in patients with posterior cortical epilepsy. CNS Neurosci Ther 2024; 30:e14602. [PMID: 38332652 PMCID: PMC10853654 DOI: 10.1111/cns.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024] Open
Abstract
OBJECTIVE We aimed to explore the value of magnetoencephalography in the presurgical evaluation of patients with posterior cortex epilepsy. METHODS A total of 39 patients with posterior cortex epilepsy (PCE) and intact magnetoencephalography (MEG) images were reviewed from August 2019 to July 2022. MEG dipole clusters were classified into single clusters, multiple clusters, and scatter dipoles based on tightness criteria. The association of the surgical outcome with MEG dipole classifications was evaluated using Fisher's exact tests. RESULTS Among the 39 cases, there were 24 cases of single clusters (61.5%), nine cases of multiple clusters (23.1%), and six cases of scattered dipoles (15.4%). Patients with single dipole clusters were more likely to become seizure-free. Among single dipole cluster cases (n = 24), complete MEG dipole resection yielded a more favorable surgical outcome than incomplete resection (83.3% vs. 16.7%, p = 0.007). Patients with concordant MRI and MEG findings achieved a significantly more favorable surgical outcome than discordant patients (66.7% vs. 33.3%, p = 0.044), especially in single dipole cluster patients (87.5% vs. 25.0%, p = 0.005). SIGNIFICANCE MEG can provide additional valuable information regarding surgical candidate selection, epileptogenic zone localization, electrode implantation schedule, and final surgical planning in patients with posterior cortex epilepsy.
Collapse
Affiliation(s)
- Guiliang Hao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Hao Yan
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xueyuan Wang
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Runshi Gao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yansong Xue
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xiating Zhang
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Duanyu Ni
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Wei Shu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Liang Qiao
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Liu He
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Tao Yu
- Department of Functional Neurosurgery, Beijing Institute of Functional Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Westin K, Beniczky S, Pfeiffer C, Hämäläinen M, Lundqvist D. On the clinical utility of on-scalp MEG: A modeling study of epileptic activity source estimation. Clin Neurophysiol 2023; 156:143-155. [PMID: 37951041 DOI: 10.1016/j.clinph.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 11/13/2023]
Abstract
OBJECTIVE Epilepsy surgery requires localization of the seizure onset zone (SOZ). Today this can only be achieved by intracranial electroencephalography (iEEG). The iEEG electrode placement is guided by findings from non-invasive modalities that cannot themselves detect SOZ-generated initial seizure activity. On scalp magnetoencephalography (osMEG), with sensors placed on the scalp, demonstrates higher sensitivity than conventional MEG (convMEG) and could potentially detect early seizure activity. Here, we modeled EEG, convMEG and osMEG to compare the modalities' ability to localize SOZ activity and to detect epileptic spikes. METHODS We modeled seizure propagation within ten epileptic networks located in the mesial and lateral temporal lobe; basal, dorsal, central and frontopolar frontal lobe; parietal and occipital lobe as well as insula and cingulum. The networks included brain regions often involved in focal epilepsy. 128-channel osMEG, convMEG, EEG and combined osMEG + EEG and convMEG + EEG were modeled, and the SOZ source estimation accuracy was quantified and compared using Student's t-test. RESULTS OsMEG was significantly (p-value <0.01) better than both convMEG and EEG at detecting the earliest SOZ-generated seizure activity and epileptic spikes, and better at localizing seizure activity from all epileptic networks (p < 0.01). CONCLUSIONS Our modeling results clearly show that osMEG has an unsurpassed potential to detect both epileptic spikes and seizure activity from all simulated anatomical sites. SIGNIFICANCE No clinically available non-invasive technique can detect SOZ activity from all brain regions. Our study indicates that osMEG has the potential to become an important clinical tool, improving both non-invasive SOZ localization and iEEG electrode placement accuracy.
Collapse
Affiliation(s)
- Karin Westin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Aarhus University Hospital, Denmark and Danish Epilepsy Centre, Dianalund, Denmark
| | - Christoph Pfeiffer
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Matti Hämäläinen
- Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland
| | - Daniel Lundqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Ono H, Sonoda M, Sakakura K, Kitazawa Y, Mitsuhashi T, Firestone E, Jeong JW, Luat AF, Marupudi NI, Sood S, Asano E. Dynamic cortical and tractography atlases of proactive and reactive alpha and high-gamma activities. Brain Commun 2023; 5:fcad111. [PMID: 37228850 PMCID: PMC10204271 DOI: 10.1093/braincomms/fcad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/15/2022] [Accepted: 04/03/2023] [Indexed: 05/27/2023] Open
Abstract
Alpha waves-posterior dominant rhythms at 8-12 Hz reactive to eye opening and closure-are among the most fundamental EEG findings in clinical practice and research since Hans Berger first documented them in the early 20th century. Yet, the exact network dynamics of alpha waves in regard to eye movements remains unknown. High-gamma activity at 70-110 Hz is also reactive to eye movements and a summary measure of local cortical activation supporting sensorimotor or cognitive function. We aimed to build the first-ever brain atlases directly visualizing the network dynamics of eye movement-related alpha and high-gamma modulations, at cortical and white matter levels. We studied 28 patients (age: 5-20 years) who underwent intracranial EEG and electro-oculography recordings. We measured alpha and high-gamma modulations at 2167 electrode sites outside the seizure onset zone, interictal spike-generating areas and MRI-visible structural lesions. Dynamic tractography animated white matter streamlines modulated significantly and simultaneously beyond chance, on a millisecond scale. Before eye-closure onset, significant alpha augmentation occurred at the occipital and frontal cortices. After eye-closure onset, alpha-based functional connectivity was strengthened, while high gamma-based connectivity was weakened extensively in both intra-hemispheric and inter-hemispheric pathways involving the central visual areas. The inferior fronto-occipital fasciculus supported the strengthened alpha co-augmentation-based functional connectivity between occipital and frontal lobe regions, whereas the posterior corpus callosum supported the inter-hemispheric functional connectivity between the occipital lobes. After eye-opening offset, significant high-gamma augmentation and alpha attenuation occurred at occipital, fusiform and inferior parietal cortices. High gamma co-augmentation-based functional connectivity was strengthened, whereas alpha-based connectivity was weakened in the posterior inter-hemispheric and intra-hemispheric white matter pathways involving central and peripheral visual areas. Our results do not support the notion that eye closure-related alpha augmentation uniformly reflects feedforward or feedback rhythms propagating from lower to higher order visual cortex, or vice versa. Rather, proactive and reactive alpha waves involve extensive, distinct white matter networks that include the frontal lobe cortices, along with low- and high-order visual areas. High-gamma co-attenuation coupled to alpha co-augmentation in shared brain circuitry after eye closure supports the notion of an idling role for alpha waves during eye closure. These normative dynamic tractography atlases may improve understanding of the significance of EEG alpha waves in assessing the functional integrity of brain networks in clinical practice; they also may help elucidate the effects of eye movements on task-related brain network measures observed in cognitive neuroscience research.
Collapse
Affiliation(s)
- Hiroya Ono
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatric Neurology, National Center of Neurology and Psychiatry, Joint Graduate School of Tohoku University, Tokyo 1878551, Japan
- Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Masaki Sonoda
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama 2360004, Japan
| | - Kazuki Sakakura
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, University of Tsukuba, Tsukuba 3058575, Japan
| | - Yu Kitazawa
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology and Stroke Medicine, Yokohama City University, Yokohama, Kanagawa 2360004, Japan
| | - Takumi Mitsuhashi
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurosurgery, Juntendo University, School of Medicine, Tokyo 1138421, Japan
| | - Ethan Firestone
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Jeong-Won Jeong
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Aimee F Luat
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University, Mount Pleasant, MI 48858, USA
| | - Neena I Marupudi
- Department of Neurosurgery, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Sandeep Sood
- Department of Neurosurgery, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
- Department of Neurology, Children’s Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Okamura A, Iida K, Hashizume A, Kagawa K, Seyama G, Horie N. Magnetoencephalographic spikes with small spikes on simultaneous electroencephalography have high spatial clustering in temporal lobe epilepsy. Epilepsy Res 2023; 192:107127. [PMID: 36963303 DOI: 10.1016/j.eplepsyres.2023.107127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE To classify magnetoencephalographic (MEG) spikes according to the findings of simultaneous scalp electroencephalography (EEG) to study dipole estimation in patients with temporal lobe epilepsy. METHODS We analyzed MEG and simultaneous scalp EEG in 27 patients with intractable temporal lobe epilepsy. We classified MEG spikes into three groups (H-EM-spikes, L-EM-spikes, M-spikes) based on the amplitude of simultaneous EEG (50 μV or higher, lower than 50 μV, no spike morphology on EEG, respectively). We calculated parameters of the dipoles, such as goodness of fit (GOF), current moment, and location. RESULTS We detected 707 MEG spikes, consisting of 175 H-EM-spikes, 245 L-EM-spikes, and 287 M-spikes. Dipoles of H-EM-spikes showed the highest current moment among the three spike groups. Dipoles of L-EM-spikes showed the highest GOF, a moderate current moment, the highest density to cluster, and the highest proportion of being located in the temporal lobe among the three groups. Dipoles of M-spikes showed the lowest GOF and current moment among the three groups. CONCLUSIONS The characteristics of the dipoles of the MEG spikes differ depending on the simultaneous scalp EEG findings, though most of the MEG spikes were located in the temporal lobe. MEG spikes with concurrent small spikes on simultaneous scalp EEG may have higher spatial clustering in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Akitake Okamura
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Koji Iida
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan.
| | - Akira Hashizume
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Kota Kagawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Go Seyama
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Allouch S, Kabbara A, Duprez J, Khalil M, Modolo J, Hassan M. Effect of channel density, inverse solutions and connectivity measures on EEG resting-state networks reconstruction: A simulation study. Neuroimage 2023; 271:120006. [PMID: 36914106 DOI: 10.1016/j.neuroimage.2023.120006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Along with the study of brain activity evoked by external stimuli, the past two decades witnessed an increased interest in characterizing the spontaneous brain activity occurring during resting conditions. The identification of connectivity patterns in this so-called "resting-state" has been the subject of a great number of electrophysiology-based studies, using the Electro/Magneto-Encephalography (EEG/MEG) source connectivity method. However, no consensus has been reached yet regarding a unified (if possible) analysis pipeline, and several involved parameters and methods require cautious tuning. This is particularly challenging when different analytical choices induce significant discrepancies in results and drawn conclusions, thereby hindering the reproducibility of neuroimaging research. Hence, our objective in this study was to shed light on the effect of analytical variability on outcome consistency by evaluating the implications of parameters involved in the EEG source connectivity analysis on the accuracy of resting-state networks (RSNs) reconstruction. We simulated, using neural mass models, EEG data corresponding to two RSNs, namely the default mode network (DMN) and dorsal attentional network (DAN). We investigated the impact of five channel densities (19, 32, 64, 128, 256), three inverse solutions (weighted minimum norm estimate (wMNE), exact low-resolution brain electromagnetic tomography (eLORETA), and linearly constrained minimum variance (LCMV) beamforming) and four functional connectivity measures (phase-locking value (PLV), phase-lag index (PLI), and amplitude envelope correlation (AEC) with and without source leakage correction), on the correspondence between reconstructed and reference networks. We showed that, with different analytical choices related to the number of electrodes, source reconstruction algorithm, and functional connectivity measure, high variability is present in the results. More specifically, our results show that a higher number of EEG channels significantly increased the accuracy of the reconstructed networks. Additionally, our results showed significant variability in the performance of the tested inverse solutions and connectivity measures. Such methodological variability and absence of analysis standardization represent a critical issue for neuroimaging studies that should be prioritized. We believe that this work could be useful for the field of electrophysiology connectomics, by increasing awareness regarding the challenge of variability in methodological approaches and its implications on reported results.
Collapse
Affiliation(s)
- Sahar Allouch
- Univ Rennes, INSERM, LTSI - UMR 1099, Rennes F-35000, France; Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon.
| | - Aya Kabbara
- MINDIG, Rennes F-35000, France; LASeR - Lebanese Association for Scientific Research, Tripoli, Lebanon
| | - Joan Duprez
- Univ Rennes, INSERM, LTSI - UMR 1099, Rennes F-35000, France
| | - Mohamad Khalil
- Azm Center for Research in Biotechnology and Its Applications, EDST, Tripoli, Lebanon; CRSI research center, Faculty of Engineering, Lebanese University, Beirut, Lebanon
| | - Julien Modolo
- Univ Rennes, INSERM, LTSI - UMR 1099, Rennes F-35000, France
| | - Mahmoud Hassan
- MINDIG, Rennes F-35000, France; School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| |
Collapse
|
9
|
Passaro EA. Neuroimaging in Adults and Children With Epilepsy. Continuum (Minneap Minn) 2023; 29:104-155. [PMID: 36795875 DOI: 10.1212/con.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE This article discusses the fundamental importance of optimal epilepsy imaging using the International League Against Epilepsy-endorsed Harmonized Neuroimaging of Epilepsy Structural Sequences (HARNESS) protocol and the use of multimodality imaging in the evaluation of patients with drug-resistant epilepsy. It outlines a methodical approach to evaluating these images, particularly in the context of clinical information. LATEST DEVELOPMENTS Epilepsy imaging is rapidly evolving, and a high-resolution epilepsy protocol MRI is essential in evaluating newly diagnosed, chronic, and drug-resistant epilepsy. The article reviews the spectrum of relevant MRI findings in epilepsy and their clinical significance. Integrating multimodality imaging is a powerful tool in the presurgical evaluation of epilepsy, particularly in "MRI-negative" cases. For example, correlation of clinical phenomenology, video-EEG with positron emission tomography (PET), ictal subtraction single-photon emission computerized tomography (SPECT), magnetoencephalography (MEG), functional MRI, and advanced neuroimaging such as MRI texture analysis and voxel-based morphometry enhances the identification of subtle cortical lesions such as focal cortical dysplasias to optimize epilepsy localization and selection of optimal surgical candidates. ESSENTIAL POINTS The neurologist has a unique role in understanding the clinical history and seizure phenomenology, which are the cornerstones of neuroanatomic localization. When integrated with advanced neuroimaging, the clinical context has a profound impact on identifying subtle MRI lesions or finding the "epileptogenic" lesion when multiple lesions are present. Patients with an identified lesion on MRI have a 2.5-fold improved chance of achieving seizure freedom with epilepsy surgery compared with those without a lesion. This clinical-radiographic integration is essential to accurate classification, localization, determination of long-term prognosis for seizure control, and identification of candidates for epilepsy surgery to reduce seizure burden or attain seizure freedom.
Collapse
|
10
|
Katagiri M, Wang ZI, Hirfanoglu T, Aldosari MM, Aung T, Wang S, Kobayashi K, Bulacio J, Bingaman W, Najm IM, Alexopoulos AV, Burgess RC. Clinical significance of ictal magnetoencephalography in patients undergoing epilepsy surgery. Clin Neurophysiol 2023; 145:108-118. [PMID: 36443170 DOI: 10.1016/j.clinph.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The significance of ictal magnetoencephalography (MEG) is not well appreciated. We evaluated the relationships between ictal MEG, MRI, intracranial electroencephalography (ICEEG), surgery and postoperative seizure outcome. METHODS A total of 45 patients (46 cases) with ictal MEG who underwent epilepsy surgery was included. We examined the localization of each modality, surgical resection area and seizure freedom after surgery. RESULTS Twenty-one (45.7%) out of 46 cases were seizure-free at more than 6 months follow-up. Median duration of postoperative follow-up was 16.5 months. The patients in whom ictal, interictal single equivalent current dipole (SECD) and MRI lesion localization were completely included in the resection had a higher chance of being seizure-free significantly (p < 0.05). Concordance between ictal and interictal SECD localizations was significantly associated with seizure-freedom. Concordance between MRI lesion and ictal SECD, concordance between ictal ICEEG and ictal and interictal SECD, as well as concordance between ictal ICEEG and MRI lesion were significantly associated with seizure freedom. CONCLUSIONS Ictal MEG can contribute useful information for delineating the resection area in epilepsy surgery. SIGNIFICANCE Resection should include ictal, interictal SECDs and MRI lesion localization, when feasible. Concordant ictal and interictal SECDs on MEG can be a favorable predictor of seizure freedom.
Collapse
Affiliation(s)
- Masaya Katagiri
- Epilepsy Center, Cleveland Clinic, OH, USA; Department of Neurosurgery, Graduate School of Medicine, Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Tugba Hirfanoglu
- Epilepsy Center, Cleveland Clinic, OH, USA; Department of Pediatric Neurology, Gazi University School of Medicine, Ankara, Turkey
| | - Mubarak M Aldosari
- Epilepsy Center, Cleveland Clinic, OH, USA; Epilepsy Program, National Neurosciences Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Thandar Aung
- Epilepsy Center, Cleveland Clinic, OH, USA; Comprehensive Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shan Wang
- Epilepsy Center, Cleveland Clinic, OH, USA; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Katsuya Kobayashi
- Epilepsy Center, Cleveland Clinic, OH, USA; Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Malik S. Magnetoencephalography: at the forefront of optimizing epilepsy surgery. FUTURE NEUROLOGY 2022. [DOI: 10.2217/fnl-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Saleem Malik
- Medical Director, Comprehensive Epilepsy Care program; Director, MEG, TMS lab; Director, IntraOp Neuro monitoring; Jane & Justin Neuroscience Center, Cook Children’s Health Care System, 1500 Cooper Street, 4th Floor, Fort Worth, TX 76104-2734, USA
| |
Collapse
|
12
|
Validating EEG, MEG and Combined MEG and EEG Beamforming for an Estimation of the Epileptogenic Zone in Focal Cortical Dysplasia. Brain Sci 2022; 12:brainsci12010114. [PMID: 35053857 PMCID: PMC8796031 DOI: 10.3390/brainsci12010114] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
MEG and EEG source analysis is frequently used for the presurgical evaluation of pharmacoresistant epilepsy patients. The source localization of the epileptogenic zone depends, among other aspects, on the selected inverse and forward approaches and their respective parameter choices. In this validation study, we compare the standard dipole scanning method with two beamformer approaches for the inverse problem, and we investigate the influence of the covariance estimation method and the strength of regularization on the localization performance for EEG, MEG, and combined EEG and MEG. For forward modelling, we investigate the difference between calibrated six-compartment and standard three-compartment head modelling. In a retrospective study, two patients with focal epilepsy due to focal cortical dysplasia type IIb and seizure freedom following lesionectomy or radiofrequency-guided thermocoagulation (RFTC) used the distance of the localization of interictal epileptic spikes to the resection cavity resp. RFTC lesion as reference for good localization. We found that beamformer localization can be sensitive to the choice of the regularization parameter, which has to be individually optimized. Estimation of the covariance matrix with averaged spike data yielded more robust results across the modalities. MEG was the dominant modality and provided a good localization in one case, while it was EEG for the other. When combining the modalities, the good results of the dominant modality were mostly not spoiled by the weaker modality. For appropriate regularization parameter choices, the beamformer localized better than the standard dipole scan. Compared to the importance of an appropriate regularization, the sensitivity of the localization to the head modelling was smaller, due to similar skull conductivity modelling and the fixed source space without orientation constraint.
Collapse
|
13
|
Jiang X, Ye S, Sohrabpour A, Bagić A, He B. Imaging the extent and location of spatiotemporally distributed epileptiform sources from MEG measurements. Neuroimage Clin 2021; 33:102903. [PMID: 34864288 PMCID: PMC8648830 DOI: 10.1016/j.nicl.2021.102903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/23/2022]
Abstract
Non-invasive MEG/EEG source imaging provides valuable information about the epileptogenic brain areas which can be used to aid presurgical planning in focal epilepsy patients suffering from drug-resistant seizures. However, the source extent estimation for electrophysiological source imaging remains to be a challenge and is usually largely dependent on subjective choice. Our recently developed algorithm, fast spatiotemporal iteratively reweighted edge sparsity minimization (FAST-IRES) strategy, has been shown to objectively estimate extended sources from EEG recording, while it has not been applied to MEG recordings. In this work, through extensive numerical experiments and real data analysis in a group of focal drug-resistant epilepsy patients' interictal spikes, we demonstrated the ability of FAST-IRES algorithm to image the location and extent of underlying epilepsy sources from MEG measurements. Our results indicate the merits of FAST-IRES in imaging the location and extent of epilepsy sources for pre-surgical evaluation from MEG measurements.
Collapse
Affiliation(s)
- Xiyuan Jiang
- Department of Biomedical Engineering, Carnegie Mellon University, USA
| | - Shuai Ye
- Department of Biomedical Engineering, Carnegie Mellon University, USA
| | - Abbas Sohrabpour
- Department of Biomedical Engineering, Carnegie Mellon University, USA
| | - Anto Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), University of Pittsburgh Medical School, USA
| | - Bin He
- Department of Biomedical Engineering, Carnegie Mellon University, USA.
| |
Collapse
|
14
|
Laohathai C, Ebersole JS, Mosher JC, Bagić AI, Sumida A, Von Allmen G, Funke ME. Practical Fundamentals of Clinical MEG Interpretation in Epilepsy. Front Neurol 2021; 12:722986. [PMID: 34721261 PMCID: PMC8551575 DOI: 10.3389/fneur.2021.722986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
Magnetoencephalography (MEG) is a neurophysiologic test that offers a functional localization of epileptic sources in patients considered for epilepsy surgery. The understanding of clinical MEG concepts, and the interpretation of these clinical studies, are very involving processes that demand both clinical and procedural expertise. One of the major obstacles in acquiring necessary proficiency is the scarcity of fundamental clinical literature. To fill this knowledge gap, this review aims to explain the basic practical concepts of clinical MEG relevant to epilepsy with an emphasis on single equivalent dipole (sECD), which is one the most clinically validated and ubiquitously used source localization method, and illustrate and explain the regional topology and source dynamics relevant for clinical interpretation of MEG-EEG.
Collapse
Affiliation(s)
- Christopher Laohathai
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
- Department of Neurology, Saint Louis University, Saint Louis, MO, United States
| | - John S. Ebersole
- Northeast Regional Epilepsy Group, Atlantic Health Neuroscience Institute, Summit, NJ, United States
| | - John C. Mosher
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Anto I. Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center, Pittsburg, PA, United States
| | - Ai Sumida
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Gretchen Von Allmen
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| | - Michael E. Funke
- Division of Child Neurology, Department of Pediatrics, McGovern Medical School at UTHealth, Houston, TX, United States
| |
Collapse
|
15
|
Jin L, Choi JY, Bulacio J, Alexopoulos AV, Burgess RC, Murakami H, Bingaman W, Najm I, Wang ZI. Multimodal Image Integration for Epilepsy Presurgical Evaluation: A Clinical Workflow. Front Neurol 2021; 12:709400. [PMID: 34421808 PMCID: PMC8372749 DOI: 10.3389/fneur.2021.709400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 12/02/2022] Open
Abstract
Multimodal image integration (MMII) is a promising tool to help delineate the epileptogenic zone (EZ) in patients with medically intractable focal epilepsies undergoing presurgical evaluation. We report here the detailed methodology of MMII and an overview of the utility of MMII at the Cleveland Clinic Epilepsy Center from 2014 to 2018, exemplified by illustrative cases. The image integration was performed using the Curry platform (Compumedics Neuroscan™, Charlotte, NC, USA), including all available diagnostic modalities such as Magnetic resonance imaging (MRI), Positron Emission Tomography (PET), single-photon emission computed tomography (SPECT) and Magnetoencephalography (MEG), with additional capability of trajectory planning for intracranial EEG (ICEEG), particularly stereo-EEG (SEEG), as well as surgical resection planning. In the 5-year time span, 467 patients underwent MMII; of them, 98 patients (21%) had a history of prior neurosurgery and recurring seizures. Of the 467 patients, 425 patients underwent ICEEG implantation with further CT co-registration to identify the electrode locations. A total of 351 patients eventually underwent surgery after MMII, including 197 patients (56%) with non-lesional MRI and 223 patients (64%) with extra-temporal lobe epilepsy. Among 269 patients with 1-year post-operative follow up, 134 patients (50%) had remained completely seizure-free. The most common histopathological finding is focal cortical dysplasia. Our study illustrates the usefulness of MMII to enhance SEEG electrode trajectory planning, assist non-invasive/invasive data interpretation, plan resection strategy, and re-evaluate surgical failures. Information presented by MMII is essential to the understanding of the anatomo-functional-electro-clinical correlations in individual cases, which leads to the ultimate success of presurgical evaluation of patients with medically intractable focal epilepsies.
Collapse
Affiliation(s)
- Liri Jin
- Department of Neurology, Peking Union Medical College Hospital, Beijing, China.,Epilepsy Center, Cleveland Clinic, Cleveland, OH, United States
| | - Joon Yul Choi
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, United States
| | - Juan Bulacio
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, United States
| | | | | | | | - William Bingaman
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, United States
| | - Imad Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, United States
| | | |
Collapse
|
16
|
Agari D, Jin K, Kakisaka Y, Kanno A, Ishida M, Kawashima R, Nakasato N. Magnetoencephalography to confirm epileptiform discharges mimicking small sharp spikes in temporal lobe epilepsy. Clin Neurophysiol 2021; 132:1785-1789. [PMID: 34130246 DOI: 10.1016/j.clinph.2021.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/27/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To determine whether magnetoencephalography (MEG) can identify epileptiform discharges mimicking small sharp spikes (SSSs) on scalp electroencephalography (EEG) in patients with temporal lobe epilepsy (TLE). METHODS We retrospectively reviewed simultaneous scalp EEG and MEG recordings of 83 consecutive patients with TLE and 49 with extra-TLE (ETLE). RESULTS SSSs in scalp EEG were detected in 15 (18.1%) of 83 TLE patients compared to only two (4.1%) of 49 ETLE patients (p = 0.029). Five of the 15 TLE patients had MEG spikes with concurrent SSSs in EEG, but neither of the 2 ETLE patients. Three of these 5 TLE patients had additional interictal epileptiform discharges (IEDs) in EEG and MEG. Equivalent current dipoles (ECDs) of MEG spikes with concurrent SSSs and IEDs showed no difference in temporal lobe localization and horizontal orientation, whereas ECD moments were smaller in MEG spikes with concurrent SSSs than those with IEDs. CONCLUSIONS SSSs were more common in TLE than in ETLE. At least some morphologically diagnosed SSSs are true but low-amplitude epileptiform discharges in TLE which can be identified with simultaneous MEG. SIGNIFICANCE Simultaneous MEG is useful to identify epileptiform discharges mimicking SSSs in patients with TLE.
Collapse
Affiliation(s)
- Dai Agari
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Collaborative Laboratory of Electromagnetic Neurophysiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Collaborative Laboratory of Electromagnetic Neurophysiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Yosuke Kakisaka
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Collaborative Laboratory of Electromagnetic Neurophysiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Akitake Kanno
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Collaborative Laboratory of Electromagnetic Neurophysiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Makoto Ishida
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan; Department of Collaborative Laboratory of Electromagnetic Neurophysiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
17
|
Piastra MC, Nüßing A, Vorwerk J, Clerc M, Engwer C, Wolters CH. A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources. Hum Brain Mapp 2021; 42:978-992. [PMID: 33156569 PMCID: PMC7856654 DOI: 10.1002/hbm.25272] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
Signal-to-noise ratio (SNR) maps are a good way to visualize electroencephalography (EEG) and magnetoencephalography (MEG) sensitivity. SNR maps extend the knowledge about the modulation of EEG and MEG signals by source locations and orientations and can therefore help to better understand and interpret measured signals as well as source reconstruction results thereof. Our work has two main objectives. First, we investigated the accuracy and reliability of EEG and MEG finite element method (FEM)-based sensitivity maps for three different head models, namely an isotropic three and four-compartment and an anisotropic six-compartment head model. As a result, we found that ignoring the cerebrospinal fluid leads to an overestimation of EEG SNR values. Second, we examined and compared EEG and MEG SNR mappings for both cortical and subcortical sources and their modulation by source location and orientation. Our results for cortical sources show that EEG sensitivity is higher for radial and deep sources and MEG for tangential ones, which are the majority of sources. As to the subcortical sources, we found that deep sources with sufficient tangential source orientation are recordable by the MEG. Our work, which represents the first comprehensive study where cortical and subcortical sources are considered in highly detailed FEM-based EEG and MEG SNR mappings, sheds a new light on the sensitivity of EEG and MEG and might influence the decision of brain researchers or clinicians in their choice of the best modality for their experiment or diagnostics, respectively.
Collapse
Affiliation(s)
- Maria Carla Piastra
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
- Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical CenterNijmegenThe Netherlands
| | - Andreas Nüßing
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
| | - Johannes Vorwerk
- Institute of Electrical and Biomedical Engineering, University for Health SciencesMedical Informatics and TechnologyHall in TirolAustria
| | - Maureen Clerc
- Inria Sophia Antipolis‐MediterranéeBiotFrance
- Université Côte d'AzurNiceFrance
| | - Christian Engwer
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
- Cluster of Excellence EXC 1003, Cells in Motion, CiM, University of MünsterMünsterGermany
| | - Carsten H. Wolters
- Institute for Biomagnetism and BiosignalanalysisUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMünsterGermany
| |
Collapse
|
18
|
Bagić AI, Funke ME, Kirsch HE, Tenney JR, Zillgitt AJ, Burgess RC. The 10 Common Evidence-Supported Indications for MEG in Epilepsy Surgery: An Illustrated Compendium. J Clin Neurophysiol 2021; 37:483-497. [PMID: 33165222 DOI: 10.1097/wnp.0000000000000726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Unfamiliarity with the indications for and benefits of magnetoencephalography (MEG) persists, even in the epilepsy community, and hinders its acceptance to clinical practice, despite the evidence. The wide treatment gap for patients with drug-resistant epilepsy and immense underutilization of epilepsy surgery had similar effects. Thus, educating referring physicians (epileptologists, neurologists, and neurosurgeons) both about the value of epilepsy surgery and about the potential benefits of MEG can achieve synergy and greatly improve the process of selecting surgical candidates. As a practical step toward a comprehensive educational process to benefit potential MEG users, current MEG referrers, and newcomers to MEG, the authors have elected to provide an illustrated guide to 10 everyday situations where MEG can help in the evaluation of people with drug-resistant epilepsy. They are as follows: (1) lacking or imprecise hypothesis regarding a seizure onset; (2) negative MRI with a mesial temporal onset suspected; (3) multiple lesions on MRI; (4) large lesion on MRI; (5) diagnostic or therapeutic reoperation; (6) ambiguous EEG findings suggestive of "bilateral" or "generalized" pattern; (7) intrasylvian onset suspected; (8) interhemispheric onset suspected; (9) insular onset suspected; and (10) negative (i.e., spikeless) EEG. Only their practical implementation and furtherance of personal and collective education will lead to the potentially impactful synergy of the two-MEG and epilepsy surgery. Thus, while fulfilling our mission as physicians, we must not forget that ignoring the wealth of evidence about the vast underutilization of epilepsy surgery - and about the usefulness and value of MEG in selecting surgical candidates - is far from benign neglect.
Collapse
Affiliation(s)
- Anto I Bagić
- University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, U.S.A
| | - Michael E Funke
- MEG Center, McGovern Medical School, UT Houston, Houston, Texas, U.S.A
| | - Heidi E Kirsch
- UCSF Biomagnetic Imaging Laboratory, UCSF, San Francisco, California, U.S.A
| | - Jeffrey R Tenney
- MEG Center, Cincinnati Children's Hospital Medical Center , Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, U.S.A
| | - Andrew J Zillgitt
- Department of Neurology, Beaumont Health Adult Comprehensive Epilepsy Center, Neurosicence Center, Royal Oak, Michigan, U.S.A.; and
| | - Richard C Burgess
- Magnetoencephalography Laboratory, Cleveland Clinic Epilepsy Center, Cleveland, Ohio, U.S.A
| |
Collapse
|
19
|
Rampp S, Kakisaka Y, Shibata S, Wu X, Rössler K, Buchfelder M, Burgess RC. Normal Variants in Magnetoencephalography. J Clin Neurophysiol 2020; 37:518-536. [PMID: 33165225 DOI: 10.1097/wnp.0000000000000484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Normal variants, although not occurring frequently, may appear similar to epileptic activity. Misinterpretation may lead to false diagnoses. In the context of presurgical evaluation, normal variants may lead to mislocalizations with severe impact on the viability and success of surgical therapy. While the different variants are well known in EEG, little has been published in regard to their appearance in magnetoencephalography. Furthermore, there are some magnetoencephalography normal variants that have no counterparts in EEG. This article reviews benign epileptiform variants and provides examples in EEG and magnetoencephalography. In addition, the potential of oscillatory configurations in different frequency bands to appear as epileptic activity is discussed.
Collapse
Affiliation(s)
- Stefan Rampp
- Department of Neurosurgery, University Hospital, Erlangen, Germany.,Department of Neurosurgery, University Hospital, Halle (Saale), Germany
| | - Yosuke Kakisaka
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan
| | - Sumiya Shibata
- Department of Neurosurgery and Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Xingtong Wu
- Department of Neurosurgery, University Hospital, Erlangen, Germany.,Department of Neurology, West China Hospital, Sichuan University, Sichuan, China; and
| | - Karl Rössler
- Department of Neurosurgery, University Hospital, Erlangen, Germany
| | | | | |
Collapse
|
20
|
Westin K, Pfeiffer C, Andersen LM, Ruffieux S, Cooray G, Kalaboukhov A, Winkler D, Ingvar M, Schneiderman J, Lundqvist D. Detection of interictal epileptiform discharges: A comparison of on-scalp MEG and conventional MEG measurements. Clin Neurophysiol 2020; 131:1711-1720. [DOI: 10.1016/j.clinph.2020.03.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 10/24/2022]
|
21
|
Abstract
Magnetoencephalography is the noninvasive measurement of miniscule magnetic fields produced by brain electrical currents, and is used most fruitfully to evaluate epilepsy patients. While other modalities infer brain function indirectly by measuring changes in blood flow, metabolism, and oxygenation, magnetoencephalography measures neuronal and synaptic function directly with submillisecond temporal resolution. The brain's magnetic field is recorded by neuromagnetometers surrounding the head in a helmet-shaped sensor array. Because magnetic signals are not distorted by anatomy, magnetoencephalography allows for a more accurate measurement and localization of brain activities than electroencephalography. Magnetoencephalography has become an indispensable part of the armamentarium at epilepsy centers.
Collapse
Affiliation(s)
- Richard C Burgess
- Epilepsy Center, Neurological Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
22
|
Gao R, Yu T, Xu C, Zhang X, Yan X, Ni D, Zhang X, Ma K, Qiao L, Zhu J, Wang X, Ren Z, Zhang X, Zhang G, Li Y. The value of magnetoencephalography for stereo-EEG-guided radiofrequency thermocoagulation in MRI-negative epilepsy. Epilepsy Res 2020; 163:106322. [PMID: 32278277 DOI: 10.1016/j.eplepsyres.2020.106322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/24/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Magnetoencephalography (MEG) is valuable for guiding resective surgery in patients with epilepsy. However, its value for minimally invasive treatment is still unknown. This study aims to evaluate the value of MEG for stereo-electroencephalogram (EEG)-guided radiofrequency thermocoagulation (SEEG-guided RF-TC) in magnetic resonance imaging (MRI)-negative epilepsies. METHODS An observational cohort study was performed and 19 MRI-negative patients who underwent SEEG-guided RF-TC in our epilepsy center were included. In addition, 16 MRI-positive patients were included as a reference group. Semiology, electrophysiology, and imaging information were collected. To evaluate the value of locating the MEG cluster, the proportion of the RF-TC contacts located in the MEG cluster out of all contacts used to perform RF-TC in each patient was calculated. All patients underwent the standard SEEG-guided RF-TC procedure and were followed up after the treatment. RESULTS Nineteen MRI-negative patients were divided into two groups based on the existence of MEG clusters; 10 patients with MEG clusters were in group I and nine patients without any MEG cluster were in group II. No significant difference was observed in terms of age, sex, type of seizures, or number of SEEG electrodes implanted. The median of the proportion of contacts in the MEG cluster was 77.0 % (IQR 57.7-100.0 %). The follow-up results showed that the probability of being seizure-free at one year after RFTC in MRI-negative patients with an MEG cluster was 30.0 % (95 % CI 11.6-77.3 %), significantly (p = 0.014) higher than that in patients without an MEG cluster; there was no significant difference when compared with MRI-positive patients. CONCLUSION This is the first study to evaluate the value of MEG in SEEG-guided RF-TC in MRI-negative epilepsies. MEG is a useful supplement for patients with MRI-negative epilepsy. MEG can be applied in minimally invasive treatment. MEG clusters can help identify better candidates and provide a valuable target for SEEG-guided RF-TC, which leads to better outcomes.
Collapse
Affiliation(s)
- Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiating Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kai Ma
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jin Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
23
|
A novel method for extracting interictal epileptiform discharges in multi-channel MEG: Use of fractional type of blind source separation. Clin Neurophysiol 2019; 131:425-436. [PMID: 31887614 DOI: 10.1016/j.clinph.2019.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/28/2019] [Accepted: 11/15/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Visual inspection of interictal epileptiform discharges (IEDs) in multi-channel MEG requires a time-consuming evaluation process and often leads to inconsistent results due to variability of IED waveforms. Here, we propose a novel extraction method for IEDs using a T/k type of blind source separation (BSST/k). METHODS We applied BSST/k with seven patients with focal epilepsy to test the accuracy of identification of IEDs. We conducted comparisons of the results of BSS components with those obtained by visual inspection in sensor-space analysis. RESULTS BSST/k provided better signal estimation of IEDs compared with sensor-space analysis. Importantly, BSST/k was able to uncover IEDs that could not be detected by visual inspection. Furthermore, IED components were clearly extracted while preserving spike and wave morphology. Variable IED waveforms were decomposed into one dominant component. CONCLUSIONS BSST/k was able to visualize the spreading signals over multiple channels into a single component from a single epileptogenic zone. BSST/k can be applied to focal epilepsy with a simple parameter setting. SIGNIFICANCE Our novel method was able to highlight IEDs with increased accuracy for identification of IEDs from multi-channel MEG data.
Collapse
|
24
|
Plummer C, Vogrin SJ, Woods WP, Murphy MA, Cook MJ, Liley DTJ. Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study. Brain 2019; 142:932-951. [PMID: 30805596 PMCID: PMC6459284 DOI: 10.1093/brain/awz015] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/07/2018] [Accepted: 12/05/2018] [Indexed: 11/17/2022] Open
Abstract
Drug-resistant focal epilepsy is a major clinical problem and surgery is under-used. Better non-invasive techniques for epileptogenic zone localization are needed when MRI shows no lesion or an extensive lesion. The problem is interictal and ictal localization before propagation from the epileptogenic zone. High-density EEG (HDEEG) and magnetoencephalography (MEG) offer millisecond-order temporal resolution to address this but co-acquisition is challenging, ictal MEG studies are rare, long-term prospective studies are lacking, and fundamental questions remain. Should HDEEG-MEG discharges be assessed independently [electroencephalographic source localization (ESL), magnetoencephalographic source localization (MSL)] or combined (EMSL) for source localization? Which phase of the discharge best characterizes the epileptogenic zone (defined by intracranial EEG and surgical resection relative to outcome)? Does this differ for interictal and ictal discharges? Does MEG detect mesial temporal lobe discharges? Thirteen patients (10 non-lesional, three extensive-lesional) underwent synchronized HDEEG-MEG (72–94 channel EEG, 306-sensor MEG). Source localization (standardized low-resolution tomographic analysis with MRI patient-individualized boundary-element method) was applied to averaged interictal epileptiform discharges (IED) and ictal discharges at three phases: ‘early-phase’ (first latency 90% explained variance), ‘mid-phase’ (first of 50% rising-phase, 50% mean global field power), ‘late-phase’ (negative peak). ‘Earliest-solution’ was the first of the three early-phase solutions (ESL, MSL, EMSL). Prospective follow-up was 3–21 (median 12) months before surgery, 14–39 (median 21) months after surgery. IEDs (n = 1474) were recorded, seen in: HDEEG only, 626 (42%); MEG only, 232 (16%); and both 616 (42%). Thirty-three seizures were captured, seen in: HDEEG only, seven (21%); MEG only, one (3%); and both 25 (76%). Intracranial EEG was done in nine patients. Engel scores were I (9/13, 69%), II (2/13,15%), and III (2/13). MEG detected baso-mesial temporal lobe epileptogenic zone sources. Epileptogenic zone OR [odds ratio(s)] were significantly higher for earliest-solution versus early-phase IED-surgical resection and earliest-solution versus all mid-phase and late-phase solutions. ESL outperformed EMSL for ictal-surgical resection [OR 3.54, 95% confidence interval (CI) 1.09–11.55, P = 0.036]. MSL outperformed EMSL for IED-intracranial EEG (OR 4.67, 95% CI 1.19–18.34, P = 0.027). ESL outperformed MSL for ictal-surgical resection (OR 3.73, 95% CI 1.16–12.03, P = 0.028) but was outperformed by MSL for IED-intracranial EEG (OR 0.18, 95% CI 0.05–0.73, P = 0.017). Thus, (i) HDEEG and MEG source solutions more accurately localize the epileptogenic zone at the earliest resolvable phase of interictal and ictal discharges, not mid-phase (as is common practice) or late peak-phase (when signal-to-noise ratios are maximal); (ii) from empirical observation of the differential timing of HDEEG and MEG discharges and based on the superiority of ESL plus MSL over either modality alone and over EMSL, concurrent HDEEG-MEG signals should be assessed independently, not combined; (iii) baso-mesial temporal lobe sources are detectable by MEG; and (iv) MEG is not ‘more accurate’ than HDEEG—emphasis is best placed on the earliest signal (whether HDEEG or MEG) amenable to source localization. Our findings challenge current practice and our reliance on invasive monitoring in these patients.
Collapse
Affiliation(s)
- Chris Plummer
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Simon J Vogrin
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - William P Woods
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Michael A Murphy
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Mark J Cook
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Graeme Clark Institute of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - David T J Liley
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia
| |
Collapse
|
25
|
Carrette E, Stefan H. Evidence for the Role of Magnetic Source Imaging in the Presurgical Evaluation of Refractory Epilepsy Patients. Front Neurol 2019; 10:933. [PMID: 31551904 PMCID: PMC6746885 DOI: 10.3389/fneur.2019.00933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/12/2019] [Indexed: 12/03/2022] Open
Abstract
Magnetoencephalography (MEG) in the field of epilepsy has multiple advantages; just like electroencephalography (EEG), MEG is able to measure the epilepsy specific information (i.e., the brain activity reflecting seizures and/or interictal epileptiform discharges) directly, non-invasively and with a very high temporal resolution (millisecond-range). In addition MEG has a unique sensitivity for tangential sources, resulting in a full picture of the brain activity when combined with EEG. It accurately allows to perform source imaging of focal epileptic activity and functional cortex and shows a specific high sensitivity for a source in the neocortex. In this paper the current evidence and practice for using magnetic source imaging of focal interictal and ictal epileptic activity during the presurgical evaluation of drug resistant patients is being reviewed.
Collapse
Affiliation(s)
- Evelien Carrette
- Reference Centre for Refractory Epilepsy, Ghent University Hospital, Ghent, Belgium
| | - Hermann Stefan
- Department of Neurology-Biomagnetism, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
26
|
Schevon CA, Tobochnik S, Eissa T, Merricks E, Gill B, Parrish RR, Bateman LM, McKhann GM, Emerson RG, Trevelyan AJ. Multiscale recordings reveal the dynamic spatial structure of human seizures. Neurobiol Dis 2019; 127:303-311. [PMID: 30898669 PMCID: PMC6588430 DOI: 10.1016/j.nbd.2019.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023] Open
Abstract
The cellular activity underlying human focal seizures, and its relationship to key signatures in the EEG recordings used for therapeutic purposes, has not been well characterized despite many years of investigation both in laboratory and clinical settings. The increasing use of microelectrodes in epilepsy surgery patients has made it possible to apply principles derived from laboratory research to the problem of mapping the spatiotemporal structure of human focal seizures, and characterizing the corresponding EEG signatures. In this review, we describe results from human microelectrode studies, discuss some data interpretation pitfalls, and explain the current understanding of the key mechanisms of ictogenesis and seizure spread.
Collapse
Affiliation(s)
- Catherine A Schevon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | - Steven Tobochnik
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Tahra Eissa
- Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO, USA
| | - Edward Merricks
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Brian Gill
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - R Ryley Parrish
- Institute for Aging, Newcastle University, Newcastle-Upon-Tyne, UK
| | - Lisa M Bateman
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Ronald G Emerson
- Department of Neurology, Weill Cornell Medical Center, New York, NY, USA
| | - Andrew J Trevelyan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA; Institute for Aging, Newcastle University, Newcastle-Upon-Tyne, UK
| |
Collapse
|
27
|
van Klink N, Mooij A, Huiskamp G, Ferrier C, Braun K, Hillebrand A, Zijlmans M. Simultaneous MEG and EEG to detect ripples in people with focal epilepsy. Clin Neurophysiol 2019; 130:1175-1183. [PMID: 30871799 DOI: 10.1016/j.clinph.2019.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We studied ripples (80-250 Hz) simultaneously recorded in electroencephalography (EEG) and magnetoencephalography (MEG) to evaluate the differences. METHODS Simultaneous EEG and MEG were recorded in 30 patients with drug resistant focal epilepsy. Ripples were automatically detected and visually checked in virtual channels throughout the cortex. The number and location of ripples in EEG and MEG were compared to each other and to a region of interest (ROI) defined by clinically available information. RESULTS Eleven patients showed ripples in both MEG and EEG, 11 only in EEG and one only in MEG. Twenty-four percent of the ripples occurred simultaneously in EEG and MEG, 71% only in EEG, and 5% only in MEG. Three patients without spikes in EEG showed EEG ripples. Ripple localization was concordant with the ROI in 80% of patients with MEG ripples, as opposed to 62% full or partial concordance for EEG ripples. With the optimal threshold for localizing the ROI, sensitivity and specificity were more than 80%. CONCLUSIONS Ripples in MEG are less frequent but more specific and sensitive for the region of interest than ripples in EEG. Ripples in EEG can exist without spikes in the EEG. SIGNIFICANCE Ripples in MEG and EEG provide complementary information.
Collapse
Affiliation(s)
- Nicole van Klink
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands.
| | - Anne Mooij
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Geertjan Huiskamp
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Cyrille Ferrier
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Kees Braun
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and Magnetoencephalography Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Maeike Zijlmans
- Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery, UMC Utrecht, the Netherlands; SEIN - Stichting Epilepsie Instellingen Nederland, Heemstede, the Netherlands
| |
Collapse
|
28
|
Comparing the potential of MEG and EEG to uncover brain tracking of speech temporal envelope. Neuroimage 2019; 184:201-213. [DOI: 10.1016/j.neuroimage.2018.09.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/22/2018] [Accepted: 09/03/2018] [Indexed: 11/20/2022] Open
|
29
|
Burgess RC. Magnetoencephalography for localizing and characterizing the epileptic focus. HANDBOOK OF CLINICAL NEUROLOGY 2019; 160:203-214. [PMID: 31277848 DOI: 10.1016/b978-0-444-64032-1.00013-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Magnetoencephalography (MEG) is the noninvasive measurement of the miniscule magnetic fields produced by electrical currents flowing in the brain-the same neuroelectric activity that produces the EEG. MEG is one of several diagnostic tests employed in the evaluation of patients with epilepsy, but without the need to expose the patient to any potentially harmful agents. MEG is especially important in those being considered for epilepsy surgery, in whom accurate localization of the epileptic focus is paramount. While other modalities infer brain function indirectly by measuring changes in blood flow, metabolism, oxygenation, etc., MEG, as well as EEG, measures neuronal and synaptic function directly and, like EEG, MEG enjoys submillisecond temporal resolution. The measurement of magnetic fields provides information not only about the amplitude of the current but also its orientation. MEG picks up the magnetic field from neuromagnetometers surrounding the head in a helmet-shaped array of sensors. Clinical whole-head systems currently have 200-300 magnetic sensors, thereby offering very high resolution. The magnetic signals are not distorted by anatomy, because magnetic susceptibility is the same for all tissues, including the skull. Hence, MEG allows for a more accurate measurement and localization of brain activities than does EEG. Because one of its primary strengths is the ability to precisely localize electromagnetic activity within brain areas, MEG results are always coregistered to the patient's MRI. When combined in this way with structural imaging, it has been called magnetic source imaging (MSI), but MEG is properly understood as a clinical neurophysiologic diagnostic test. Signal processing and clinical interpretation in magnetoencephalography require sophisticated noise reduction and computerized mathematical modeling. Technological advances in these areas have brought MEG to the point where it is now part of routine clinical practice. MEG has become an indispensable part of the armamentarium at epilepsy centers where MEG laboratories are located, especially when patients are MRI-negative or where results of other structural and functional tests are not entirely concordant.
Collapse
Affiliation(s)
- Richard C Burgess
- Department of Neurology, Cleveland Clinic Foundation, Cleveland, OH, United States.
| |
Collapse
|
30
|
Abstract
PURPOSE Most clinical magnetoencephalography (MEG) centers record both MEG and EEG, but model only MEG sources. This may be related to the belief that MEG spikes are more prevalent, MEG is more sensitive, or to proprietary software limitations. Biophysics would contend, however, that EEG, being sensitive to radial and tangential source orientations, would provide complementary data for analysis. METHODS We recorded 306 channels of MEG and 25 channels of EEG simultaneously in 297 consecutive patients over 3 years. We inspected the MEG and EEG recordings separately, identified spikes in both, determined whether their voltage and/or magnetometer magnetic fields were dipolar and thus model-worthy, and segregated them into types based on similar and distinct field topography. We placed for each patient their spike types into categories, including those with both a recognizable MEG and EEG signal and those with only an MEG and only an EEG signal. RESULTS Eighty-three percent of patients had spikes recorded, and these patients had an average of 2.7 spike types each. Fifty-six percent of spike types were present in both MEG and EEG. However, 36% of spike types were only evident in EEG, whereas 8% were noted in MEG alone. In 49% of patients with spikes, MEG review missed at least one spike type, whereas in 17% of patients, EEG review missed at least one spike type. CONCLUSIONS To obtain an optimal yield of diagnostic information, EEG should also be subjected to source analysis in any clinical MEG study. EEG and MEG data are indeed complementary.
Collapse
|
31
|
Murakami H, Wang ZI, Marashly A, Krishnan B, Prayson RA, Kakisaka Y, Mosher JC, Bulacio J, Gonzalez-Martinez JA, Bingaman WE, Najm IM, Burgess RC, Alexopoulos AV. Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain 2018; 139:2935-2947. [PMID: 27567464 DOI: 10.1093/brain/aww215] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/06/2016] [Indexed: 11/15/2022] Open
Affiliation(s)
- Hiroatsu Murakami
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan.,Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Zhong I Wang
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmad Marashly
- Department of Child Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Balu Krishnan
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Richard A Prayson
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Yosuke Kakisaka
- Department of Epileptology, Tohoku University School of Medicine, Sendai, Japan
| | - John C Mosher
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Juan Bulacio
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Imad M Najm
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
32
|
Hari R, Baillet S, Barnes G, Burgess R, Forss N, Gross J, Hämäläinen M, Jensen O, Kakigi R, Mauguière F, Nakasato N, Puce A, Romani GL, Schnitzler A, Taulu S. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin Neurophysiol 2018; 129:1720-1747. [PMID: 29724661 PMCID: PMC6045462 DOI: 10.1016/j.clinph.2018.03.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 03/18/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022]
Abstract
Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation, stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations. In 2017, about 200 whole-scalp MEG devices were in operation worldwide, many of them located in clinical environments. Yet, the established clinical indications for MEG examinations remain few, mainly restricted to the diagnostics of epilepsy and to preoperative functional evaluation of neurosurgical patients. We are confident that the extensive ongoing basic MEG research indicates potential for the evaluation of neurological and psychiatric syndromes, developmental disorders, and the integrity of cortical brain networks after stroke. Basic and clinical research is, thus, paving way for new clinical applications to be identified by an increasing number of practitioners of MEG.
Collapse
Affiliation(s)
- Riitta Hari
- Department of Art, Aalto University, Helsinki, Finland.
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gareth Barnes
- Wellcome Centre for Human Neuroimaging, University College of London, London, UK
| | - Richard Burgess
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nina Forss
- Clinical Neuroscience, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK; Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Germany
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute of Physiological Sciences, Okazaki, Japan
| | - François Mauguière
- Department of Functional Neurology and Epileptology, Neurological Hospital & University of Lyon, Lyon, France
| | | | - Aina Puce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Gian-Luca Romani
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, and Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Samu Taulu
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Physics, University of Washington, Seattle, WA, USA
| |
Collapse
|
33
|
Zhdanov A, Nurminen J, Larson E. Helsinki VideoMEG Project: Augmenting magnetoencephalography with synchronized video recordings. MethodsX 2018; 5:234-243. [PMID: 30009137 PMCID: PMC6043671 DOI: 10.1016/j.mex.2018.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/13/2018] [Indexed: 11/30/2022] Open
Abstract
The primary goal of the Helsinki VideoMEG Project is to enable magnetoencephalography (MEG) practitioners to record and analyze the video of the subject during an MEG experiment jointly with the MEG data. The project provides: Hardware assembly instructions and software for setting up video and audio recordings of the participant synchronized to MEG data acquisition. Basic software tools for analyzing video and audio together with the MEG data.
The resulting setup allows reliable recording of video and audio from the subject in various real-world usage scenarios. The Helsinki VideoMEG Project allowed successful establishment of video-MEG facilities in four different MEG laboratories in Finland, Sweden and the United States.
Collapse
Affiliation(s)
- Andrey Zhdanov
- BioMag Laboratory, HUS Medical Imaging Center, Hospital District of Helsinki and Uusimaa, P.O. Box 340, FI-00029, Finland
- Corresponding author.
| | - Jussi Nurminen
- BioMag Laboratory, HUS Medical Imaging Center, Hospital District of Helsinki and Uusimaa, P.O. Box 340, FI-00029, Finland
| | - Eric Larson
- University of Washington, Institute of Learning and Brain Sciences, 1715 NE Columbia Road, Box 357988, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C. Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy. Hum Brain Mapp 2017; 39:880-901. [PMID: 29164737 DOI: 10.1002/hbm.23889] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Fusion of electroencephalography (EEG) and magnetoencephalography (MEG) data using maximum entropy on the mean method (MEM-fusion) takes advantage of the complementarities between EEG and MEG to improve localization accuracy. Simulation studies demonstrated MEM-fusion to be robust especially in noisy conditions such as single spike source localizations (SSSL). Our objective was to assess the reliability of SSSL using MEM-fusion on clinical data. We proposed to cluster SSSL results to find the most reliable and consistent source map from the reconstructed sources, the so-called consensus map. Thirty-four types of interictal epileptic discharges (IEDs) were analyzed from 26 patients with well-defined epileptogenic focus. SSSLs were performed on EEG, MEG, and fusion data and consensus maps were estimated using hierarchical clustering. Qualitative (spike-to-spike reproducibility rate, SSR) and quantitative (localization error and spatial dispersion) assessments were performed using the epileptogenic focus as clinical reference. Fusion SSSL provided significantly better results than EEG or MEG alone. Fusion found at least one cluster concordant with the clinical reference in all cases. This concordant cluster was always the one involving the highest number of spikes. Fusion yielded highest reproducibility (SSR EEG = 55%, MEG = 71%, fusion = 90%) and lowest localization error. Also, using only few channels from either modality (21EEG + 272MEG or 54EEG + 25MEG) was sufficient to reach accurate fusion. MEM-fusion with consensus map approach provides an objective way of finding the most reliable and concordant generators of IEDs. We, therefore, suggest the pertinence of SSSL using MEM-fusion as a valuable clinical tool for presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Rasheda Arman Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | | | - Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| | - Jean-Marc Lina
- Ecole de Technologie Supérieure, Montréal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
| | - François Dubeau
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
35
|
Epileptic MEG Spike Detection Using Statistical Features and Genetic Programming with KNN. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:3035606. [PMID: 29118962 PMCID: PMC5651155 DOI: 10.1155/2017/3035606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/06/2017] [Accepted: 09/13/2017] [Indexed: 11/18/2022]
Abstract
Epilepsy is a neurological disorder that affects millions of people worldwide. Monitoring the brain activities and identifying the seizure source which starts with spike detection are important steps for epilepsy treatment. Magnetoencephalography (MEG) is an emerging epileptic diagnostic tool with high-density sensors; this makes manual analysis a challenging task due to the vast amount of MEG data. This paper explores the use of eight statistical features and genetic programing (GP) with the K-nearest neighbor (KNN) for interictal spike detection. The proposed method is comprised of three stages: preprocessing, genetic programming-based feature generation, and classification. The effectiveness of the proposed approach has been evaluated using real MEG data obtained from 28 epileptic patients. It has achieved a 91.75% average sensitivity and 92.99% average specificity.
Collapse
|
36
|
MEG May Reveal Hidden Population of Spikes in Epilepsy With Porencephalic Cyst/Encephalomalacia. J Clin Neurophysiol 2017; 34:546-549. [DOI: 10.1097/wnp.0000000000000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
37
|
Zerouali Y, Ghaziri J, Nguyen DK. Multimodal investigation of epileptic networks: The case of insular cortex epilepsy. PROGRESS IN BRAIN RESEARCH 2017; 226:1-33. [PMID: 27323937 DOI: 10.1016/bs.pbr.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The insula is a deep cortical structure sharing extensive synaptic connections with a variety of brain regions, including several frontal, temporal, and parietal structures. The identification of the insular connectivity network is obviously valuable for understanding a number of cognitive processes, but also for understanding epilepsy since insular seizures involve a number of remote brain regions. Ultimately, knowledge of the structure and causal relationships within the epileptic networks associated with insular cortex epilepsy can offer deeper insights into this relatively neglected type of epilepsy enabling the refining of the clinical approach in managing patients affected by it. In the present chapter, we first review the multimodal noninvasive tests performed during the presurgical evaluation of epileptic patients with drug refractory focal epilepsy, with particular emphasis on their value for the detection of insular cortex epilepsy. Second, we review the emerging multimodal investigation techniques in the field of epilepsy, that aim to (1) enhance the detection of insular cortex epilepsy and (2) unveil the architecture and causal relationships within epileptic networks. We summarize the results of these approaches with emphasis on the specific case of insular cortex epilepsy.
Collapse
Affiliation(s)
- Y Zerouali
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada; Ecole Polytechnique de Montréal, Montreal, QC, Canada
| | - J Ghaziri
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - D K Nguyen
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada; CHUM-Hôpital Notre-Dame, Montreal, QC, Canada.
| |
Collapse
|
38
|
Simultaneous SEEG-MEG-EEG recordings Overcome the SEEG limited spatial sampling. Epilepsy Res 2016; 128:68-72. [PMID: 27816896 DOI: 10.1016/j.eplepsyres.2016.10.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/21/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
During presurgical evaluation of pharmacoresistant partial epilepsies, stereoelectroencephalography (SEEG) records interictal and ictal activities directly but is inherently limited in spatial sampling. In contrast, scalp-EEG and MEG are less sensitive but provide a global view on brain activity. Therefore, recording simultaneously these three modalities should provide a better understanding of the underlying brain sources by taking advantage of the different sensitivities of the three recording techniques. We performed trimodal EEG-MEG-SEEG recordings in a 19-year-old woman with pharmacoresistant cryptogenic posterior cortex epilepsy. Sub-continuous and highly focal spikes that were not visible at the surface were marked on SEEG by an epileptologist. Surface signals, MEG and scalp-EEG, were then averaged locked on SEEG spikes. MEG sources were reconstructed based on a moving dipole approach (Brainstorm software). This analysis revealed source within the left occipital pole, located posteriorly to the SEEG leads presenting the maximal number of spikes, in a region not explored by SEEG. In summary, simultaneous recordings provide a new framework for obtaining a view on brain signals that is both local and global, thereby overcoming the inherent SEEG limited spatial sampling.
Collapse
|
39
|
Kim D, Joo EY, Seo DW, Kim MY, Lee YH, Kwon HC, Kim JM, Hong SB. Accuracy of MEG in localizing irritative zone and seizure onset zone: Quantitative comparison between MEG and intracranial EEG. Epilepsy Res 2016; 127:291-301. [PMID: 27693985 DOI: 10.1016/j.eplepsyres.2016.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/25/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND We conducted the study to examine accuracy of the magnetoencephalography (MEG) spike source localization in presurgical evaluation of patients with medically refractory focal epilepsy. METHODS Ten consecutive patients with refractory focal epilepsy who were candidates for two-stage surgery with long-term intracranial electroencephalography (ICEEG) monitoring were enrolled. Interictal MEG recordings with simultaneous scalp EEG were obtained within 7days before the ICEEG electrode implantation. The location of each MEG spike source was quantitatively compared with ICEEG spike foci (focal area of interictal spikes) and ICEEG ictal foci (earliest cortical origin of seizures). Gyral-width concordance and sublobar concordance were also determined for all MEG spike sources. Gyral-width concordance was defined by distance of 15mm or less between MEG spike sources and ICEEG spike foci or ICEEG ictal foci. RESULTS Visual analyses of the MEG traces of all 10 patients revealed 292 spikes (29.2±24.0 per patient). Spike yield of the MEG was similar to the simultaneously recorded scalp EEG. MEG spike sources were closely located with ICEEG spike foci (distance: 9.3±10.8mm). Clustered MEG spike sources were even closer to ICEEG spike foci (distance: 7.3±6.4mm). MEG spike sources, even clustered ones, were less concordant with ICEEG ictal foci and had significant longer distance from ICEEG ictal foci (distance: 21.5±15.6mm for all sources, 19.7±13.7mm for clustered sources). Gyral-width concordance rate and sublobar concordance rate were also higher with ICEEG interictal spike foci than with ICEEG ictal foci. On the other hand, 53.4% of interictal spike foci from ICEEG were not detected by interictal MEG recordings. CONCLUSIONS MEG spike sources, especially clustered ones, from interictal recording could localize the irritative zone of ICEEG with a high accuracy. However, MEG spike sources have relatively poor correlation with seizure onset zone and lower sensitivity in identifying all irritative zones of ICEEG. This limitation should be considered in the interpretation of MEG results.
Collapse
Affiliation(s)
- Daeyoung Kim
- Department of Neurology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Eun Yeon Joo
- Department of Neurology, Samsung Medical Center, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Dae-Won Seo
- Department of Neurology, Samsung Medical Center, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min-Young Kim
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Yong-Ho Lee
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Hyuk Chan Kwon
- Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Jae-Moon Kim
- Department of Neurology, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| | - Seung Bong Hong
- Department of Neurology, Samsung Medical Center, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Samsung Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
40
|
Ducis K, Guan J, Karsy M, Bollo RJ. Preoperative evaluation and surgical decision-making in pediatric epilepsy surgery. Transl Pediatr 2016; 5:169-179. [PMID: 27709099 PMCID: PMC5035764 DOI: 10.21037/tp.2016.06.02] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epilepsy is a common disease in the pediatric population, and the majority of cases are controlled with medications and lifestyle modification. For the children whose seizures are pharmacoresistant, continued epileptic activity can have a severely detrimental impact on cognitive development. Early referral of children with drug-resistant seizures to a pediatric epilepsy surgery center for evaluation is critical to achieving optimal patient outcomes. There are several components to a thorough presurgical evaluation, including a detailed medical history and physical examination, noninvasive testing including electroencephalogram, magnetic resonance imaging (MRI) of the brain, and often metabolic imaging. When necessary, invasive diagnostic testing using intracranial monitoring can be used. The identification of an epileptic focus may allow resection or disconnection from normal brain structures, with the ultimate goal of complete seizure remission. Additional operative measures can decrease seizure frequency and/or intensity if a clear epileptic focus cannot be identified. In this review, we will discuss the nuances of presurgical evaluation and decision-making in the management of children with drug-resistant epilepsy (DRE).
Collapse
Affiliation(s)
- Katrina Ducis
- Department of Neurosurgery, University of Vermont School of Medicine, Burlington, VT, USA; ; Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jian Guan
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Michael Karsy
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert J Bollo
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, UT, USA; ; Division of Pediatric Neurosurgery, Primary Children's Hospital, Salt Lake City, UT, USA
| |
Collapse
|
41
|
Hunold A, Funke ME, Eichardt R, Stenroos M, Haueisen J. EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth. Physiol Meas 2016; 37:1146-62. [DOI: 10.1088/0967-3334/37/7/1146] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Nissen IA, Stam CJ, Citroen J, Reijneveld JC, Hillebrand A. Preoperative evaluation using magnetoencephalography: Experience in 382 epilepsy patients. Epilepsy Res 2016; 124:23-33. [PMID: 27232766 DOI: 10.1016/j.eplepsyres.2016.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/03/2015] [Accepted: 05/09/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Identifying epilepsy patients for whom clinical MEG is likely to be beneficial avoids or optimizes burdensome ancillary investigations. We determined whether it could be predicted upfront if MEG would be able to generate a hypothesis about the location of the epileptogenic zone (EZ), and in which patients MEG fails to do so. METHODS MEG recordings of 382 epilepsy patients with inconclusive findings regarding EZ localization prior to MEG were acquired for preoperative evaluation. MEG reports were categorized for several demographic, clinical and MEG variables. First, demographic and clinical variables were associated with MEG localization ability for upfront prediction. Second, all variables were compared between patients with and without MEG location in order to characterize patients without MEG location. RESULTS Our patient group had often complex etiology and did not contain the (by other means) straightforward and well-localized cases, such as those with concordant tumor and EEG location. For our highly-selected patient group, MEG localization ability cannot be predicted upfront, although the odds of a recording with MEG location were significantly higher in the absence of a tumor and in the presence of widespread MRI abnormalities. Compared to the patients with MEG location, patients without MEG location more often had a tumor, widespread EEG abnormalities, non-lateralizing MEG abnormalities, non-concordant MEG/EEG abnormalities and less often widespread MRI abnormalities or epileptiform MEG activity. In a subgroup of 48 patients with known surgery outcome, more patients with concordant MEG and resection area were seizure-free than patients with discordant results. CONCLUSIONS MEG potentially adds information about the location of the EZ even in patients with a complex etiology, and the clinical advice is to not withhold MEG in epilepsy surgery candidates. Providing a hypothesis about the location of the EZ using MEG is difficult in patients with inconclusive EEG and MRI findings, and in the absence of specific epileptiform activity. More refined methods are needed for patients where MEG currently does not contribute to the hypothesis about the location of the EZ.
Collapse
Affiliation(s)
- I A Nissen
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Postbus 7057, 1007 MB, Amsterdam, The Netherlands.
| | - C J Stam
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Postbus 7057, 1007 MB, Amsterdam, The Netherlands.
| | - J Citroen
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Postbus 7057, 1007 MB, Amsterdam, The Netherlands.
| | - J C Reijneveld
- Brain Tumor Center Amsterdam & Department of Neurology, VU University Medical Center, Postbus 7057, 1007 MB, Amsterdam, The Netherlands.
| | - A Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Neuroscience Campus Amsterdam, VU University Medical Center, Postbus 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Pre-operative evaluation in pediatric patients with cortical dysplasia. Childs Nerv Syst 2015; 31:2225-33. [PMID: 26280628 DOI: 10.1007/s00381-015-2869-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 08/03/2015] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Focal cortical dysplasia (FCD) is an important cause of refractory seizures and catastrophic epilepsy in infants and children who had epilepsy surgery. AIMS OF THE REVIEW This manuscript will discuss age-related unique clinical characteristics in evaluation of infants and young children because the understanding of these age-related features is critical in selecting children who can benefit from epilepsy surgery. In addition, we will review the non-invasive tools available for the presurgical evaluation of children with FCD and their individual contribution to the formulation of the presurgical hypothesis.
Collapse
|
44
|
Pedram MZ, Shamloo A, Alasty A, Ghafar-Zadeh E. Toward Epileptic Brain Region Detection Based on Magnetic Nanoparticle Patterning. SENSORS 2015; 15:24409-27. [PMID: 26402686 PMCID: PMC4610430 DOI: 10.3390/s150924409] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/02/2015] [Accepted: 09/14/2015] [Indexed: 01/15/2023]
Abstract
Resection of the epilepsy foci is the best treatment for more than 15% of epileptic patients or 50% of patients who are refractory to all forms of medical treatment. Accurate mapping of the locations of epileptic neuronal networks can result in the complete resection of epileptic foci. Even though currently electroencephalography is the best technique for mapping the epileptic focus, it cannot define the boundary of epilepsy that accurately. Herein we put forward a new accurate brain mapping technique using superparamagnetic nanoparticles (SPMNs). The main hypothesis in this new approach is the creation of super-paramagnetic aggregates in the epileptic foci due to high electrical and magnetic activities. These aggregates may improve tissue contrast of magnetic resonance imaging (MRI) that results in improving the resection of epileptic foci. In this paper, we present the mathematical models before discussing the simulation results. Furthermore, we mimic the aggregation of SPMNs in a weak magnetic field using a low-cost microfabricated device. Based on these results, the SPMNs may play a crucial role in diagnostic epilepsy and the subsequent treatment of this disease.
Collapse
Affiliation(s)
- Maysam Z Pedram
- Departement of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
- Departement of Electrical Engineering and Computer Science, York University, Toronto, ON M3J1P3, Canada.
| | - Amir Shamloo
- Departement of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Aria Alasty
- Departement of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ebrahim Ghafar-Zadeh
- Departement of Electrical Engineering and Computer Science, York University, Toronto, ON M3J1P3, Canada.
| |
Collapse
|
45
|
MEG-EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy. Brain Topogr 2015; 28:785-812. [PMID: 26016950 PMCID: PMC4600479 DOI: 10.1007/s10548-015-0437-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 05/04/2015] [Indexed: 11/26/2022]
Abstract
The purpose of this study is to develop and quantitatively assess whether fusion of EEG and MEG (MEEG) data within the maximum entropy on the mean (MEM) framework increases the spatial accuracy of source localization, by yielding better recovery of the spatial extent and propagation pathway of the underlying generators of inter-ictal epileptic discharges (IEDs). The key element in this study is the integration of the complementary information from EEG and MEG data within the MEM framework. MEEG was compared with EEG and MEG when localizing single transient IEDs. The fusion approach was evaluated using realistic simulation models involving one or two spatially extended sources mimicking propagation patterns of IEDs. We also assessed the impact of the number of EEG electrodes required for an efficient EEG–MEG fusion. MEM was compared with minimum norm estimate, dynamic statistical parametric mapping, and standardized low-resolution electromagnetic tomography. The fusion approach was finally assessed on real epileptic data recorded from two patients showing IEDs simultaneously in EEG and MEG. Overall the localization of MEEG data using MEM provided better recovery of the source spatial extent, more sensitivity to the source depth and more accurate detection of the onset and propagation of IEDs than EEG or MEG alone. MEM was more accurate than the other methods. MEEG proved more robust than EEG and MEG for single IED localization in low signal-to-noise ratio conditions. We also showed that only few EEG electrodes are required to bring additional relevant information to MEG during MEM fusion.
Collapse
|
46
|
Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH. What's New in Traumatic Brain Injury: Update on Tracking, Monitoring and Treatment. Int J Mol Sci 2015; 16:11903-65. [PMID: 26016501 PMCID: PMC4490422 DOI: 10.3390/ijms160611903] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI), defined as an alteration in brain functions caused by an external force, is responsible for high morbidity and mortality around the world. It is important to identify and treat TBI victims as early as possible. Tracking and monitoring TBI with neuroimaging technologies, including functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), positron emission tomography (PET), and high definition fiber tracking (HDFT) show increasing sensitivity and specificity. Classical electrophysiological monitoring, together with newly established brain-on-chip, cerebral microdialysis techniques, both benefit TBI. First generation molecular biomarkers, based on genomic and proteomic changes following TBI, have proven effective and economical. It is conceivable that TBI-specific biomarkers will be developed with the combination of systems biology and bioinformation strategies. Advances in treatment of TBI include stem cell-based and nanotechnology-based therapy, physical and pharmaceutical interventions and also new use in TBI for approved drugs which all present favorable promise in preventing and reversing TBI.
Collapse
Affiliation(s)
- Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Physiology, School of Medicine, University of Jinan, Guangzhou 250012, China.
| | - Onat Akyol
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
| | - Wing Mann Ho
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, University Hospital Innsbruck, Tyrol 6020, Austria.
| | - Richard Applegate Ii
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA 92354, USA.
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, 11041 Campus Street, Risley Hall, Room 219, Loma Linda, CA 92354, USA.
- Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
47
|
Kharkar S, Knowlton R. Magnetoencephalography in the presurgical evaluation of epilepsy. Epilepsy Behav 2015; 46:19-26. [PMID: 25555504 DOI: 10.1016/j.yebeh.2014.11.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 11/27/2022]
Abstract
Magnetoencephalography (MEG) is an important tool in the presurgical evaluation of patients with medically refractory epilepsy. The appropriate utilization and interpretation of MEG studies can increase the proportion of patients who may be able to further pursue surgical evaluation, refine surgical planning, and potentially increase the probability of seizure freedom after surgery. The aim of this paper is to provide the reader with a comprehensive but accessible guide to MEG, with particular emphasis on acquiring a working knowledge of MEG analysis, identifying patient groups that are most likely to benefit, and clarifying the limitations of this technology.
Collapse
Affiliation(s)
| | - Robert Knowlton
- Department of Neurology, University of California at San Francisco, USA; Department of Radiology, University of California at San Francisco, USA; Department of Neurological Surgery, University of California at San Francisco, USA
| |
Collapse
|
48
|
Aydin Ü, Vorwerk J, Dümpelmann M, Küpper P, Kugel H, Heers M, Wellmer J, Kellinghaus C, Haueisen J, Rampp S, Stefan H, Wolters CH. Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis. PLoS One 2015; 10:e0118753. [PMID: 25761059 PMCID: PMC4356563 DOI: 10.1371/journal.pone.0118753] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/06/2015] [Indexed: 11/25/2022] Open
Abstract
We investigated two important means for improving source reconstruction in presurgical epilepsy diagnosis. The first investigation is about the optimal choice of the number of epileptic spikes in averaging to (1) sufficiently reduce the noise bias for an accurate determination of the center of gravity of the epileptic activity and (2) still get an estimation of the extent of the irritative zone. The second study focuses on the differences in single modality EEG (80-electrodes) or MEG (275-gradiometers) and especially on the benefits of combined EEG/MEG (EMEG) source analysis. Both investigations were validated with simultaneous stereo-EEG (sEEG) (167-contacts) and low-density EEG (ldEEG) (21-electrodes). To account for the different sensitivity profiles of EEG and MEG, we constructed a six-compartment finite element head model with anisotropic white matter conductivity, and calibrated the skull conductivity via somatosensory evoked responses. Our results show that, unlike single modality EEG or MEG, combined EMEG uses the complementary information of both modalities and thereby allows accurate source reconstructions also at early instants in time (epileptic spike onset), i.e., time points with low SNR, which are not yet subject to propagation and thus supposed to be closer to the origin of the epileptic activity. EMEG is furthermore able to reveal the propagation pathway at later time points in agreement with sEEG, while EEG or MEG alone reconstructed only parts of it. Subaveraging provides important and accurate information about both the center of gravity and the extent of the epileptogenic tissue that neither single nor grand-averaged spike localizations can supply.
Collapse
Affiliation(s)
- Ümit Aydin
- Institute for Biomagnetism and Biosignalanalysis, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Institute for Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
- * E-mail:
| | - Johannes Vorwerk
- Institute for Biomagnetism and Biosignalanalysis, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Universitätsklinikum Freiburg, Freiburg im Breisgau, Germany
| | - Philipp Küpper
- Institute for Biomagnetism and Biosignalanalysis, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Department of Neurology, Klinikum Osnabrück, Osnabrück, Germany
| | - Harald Kugel
- Department of Clinical Radiology, Universitätsklinikum Münster, Münster, Germany
| | - Marcel Heers
- Epilepsy Center, Universitätsklinikum Freiburg, Freiburg im Breisgau, Germany
- Ruhr-Epileptology Department of Neurology, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Jörg Wellmer
- Ruhr-Epileptology Department of Neurology, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | | | - Jens Haueisen
- Institute for Biomedical Engineering and Informatics, Technische Universität Ilmenau, Ilmenau, Germany
| | - Stefan Rampp
- Ruhr-Epileptology Department of Neurology, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
- Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hermann Stefan
- Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carsten H. Wolters
- Institute for Biomagnetism and Biosignalanalysis, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
49
|
Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy. Brain Topogr 2015; 29:162-81. [DOI: 10.1007/s10548-014-0423-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
|
50
|
Magnetic Source Imaging in Posterior Cortex Epilepsies. Brain Topogr 2014; 28:162-71. [DOI: 10.1007/s10548-014-0412-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/20/2014] [Indexed: 11/27/2022]
|