1
|
Duma GM, Pellegrino G, Rabuffo G, Danieli A, Antoniazzi L, Vitale V, Scotto Opipari R, Bonanni P, Sorrentino P. Altered spread of waves of activities at large scale is influenced by cortical thickness organization in temporal lobe epilepsy: a magnetic resonance imaging-high-density electroencephalography study. Brain Commun 2023; 6:fcad348. [PMID: 38162897 PMCID: PMC10754317 DOI: 10.1093/braincomms/fcad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Temporal lobe epilepsy is a brain network disorder characterized by alterations at both the structural and the functional levels. It remains unclear how structure and function are related and whether this has any clinical relevance. In the present work, we adopted a novel methodological approach investigating how network structural features influence the large-scale dynamics. The functional network was defined by the spatio-temporal spreading of aperiodic bursts of activations (neuronal avalanches), as observed utilizing high-density electroencephalography in patients with temporal lobe epilepsy. The structural network was modelled as the region-based thickness covariance. Loosely speaking, we quantified the similarity of the cortical thickness of any two brain regions, both across groups and at the individual level, the latter utilizing a novel approach to define the subject-wise structural covariance network. In order to compare the structural and functional networks (at the nodal level), we studied the correlation between the probability that a wave of activity would propagate from a source to a target region and the similarity of the source region thickness as compared with other target brain regions. Building on the recent evidence that large-waves of activities pathologically spread through the epileptogenic network in temporal lobe epilepsy, also during resting state, we hypothesize that the structural cortical organization might influence such altered spatio-temporal dynamics. We observed a stable cluster of structure-function correlation in the bilateral limbic areas across subjects, highlighting group-specific features for left, right and bilateral temporal epilepsy. The involvement of contralateral areas was observed in unilateral temporal lobe epilepsy. We showed that in temporal lobe epilepsy, alterations of structural and functional networks pair in the regions where seizures propagate and are linked to disease severity. In this study, we leveraged on a well-defined model of neurological disease and pushed forward personalization approaches potentially useful in clinical practice. Finally, the methods developed here could be exploited to investigate the relationship between structure-function networks at subject level in other neurological conditions.
Collapse
Affiliation(s)
- Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| | - Giovanni Rabuffo
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Lisa Antoniazzi
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Valerio Vitale
- Department of Neuroscience, Neuroradiology Unit, San Bortolo Hospital, Vicenza 36100, Italy
| | | | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
2
|
Huang C, Zhou Y, Zhong Y, Wang X, Zhang Y. The Bilateral Precuneus as a Potential Neuroimaging Biomarker for Right Temporal Lobe Epilepsy: A Support Vector Machine Analysis. Front Psychiatry 2022; 13:923583. [PMID: 35782449 PMCID: PMC9240203 DOI: 10.3389/fpsyt.2022.923583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Objective While evidence has demonstrated that the default-mode network (DMN) plays a key role in the broad-scale cognitive problems that occur in right temporal lobe epilepsy (rTLE), little is known about alterations in the network homogeneity (NH) of the DMN in TLE. In this study, we used the NH method to investigate the NH of the DMN in TLE at rest, and an support vector machine (SVM) method for the diagnosis of rTLE. Methods A total of 43 rTLE cases and 42 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI). Imaging data were analyzed with the NH and SVM methods. Results rTLE patients have a decreased NH in the right inferior temporal gyrus (ITG) and left middle temporal gyrus (MTG), but increased NH in the bilateral precuneus (PCu) and right inferior parietal lobe (IPL), compared with HCs. We found that rTLE had a longer performance reaction time (RT). No significant correlation was found between abnormal NH values and clinical variables of the patients. The SVM results showed that increased NH in the bilateral PCu as a diagnostic biomarker distinguished rTLE from HCs with an accuracy of 74.12% (63/85), a sensitivity 72.01% (31/43), and a specificity 72.81% (31/42). Conclusion These findings suggest that abnormal NH of the DMN exists in rTLE, and highlights the significance of the DMN in the pathophysiology of cognitive problems occurring in rTLE, and the bilateral PCu as a neuroimaging diagnostic biomarker for rTLE.
Collapse
Affiliation(s)
- Chunyan Huang
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yang Zhou
- Wuhan Mental Health Center, Wuhan, China
- Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Yi Zhong
- NHC Key Laboratory of Mental Health (Peking University), Peking University Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Xi Wang
- Department of Sleep and Psychosomatic Medicine Center, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, Shiyan, China
| | - Yunhua Zhang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
3
|
Park BY, Larivière S, Rodríguez-Cruces R, Royer J, Tavakol S, Wang Y, Caciagli L, Caligiuri ME, Gambardella A, Concha L, Keller SS, Cendes F, Alvim MKM, Yasuda C, Bonilha L, Gleichgerrcht E, Focke NK, Kreilkamp BAK, Domin M, von Podewils F, Langner S, Rummel C, Rebsamen M, Wiest R, Martin P, Kotikalapudi R, Bender B, O’Brien TJ, Law M, Sinclair B, Vivash L, Kwan P, Desmond PM, Malpas CB, Lui E, Alhusaini S, Doherty CP, Cavalleri GL, Delanty N, Kälviäinen R, Jackson GD, Kowalczyk M, Mascalchi M, Semmelroch M, Thomas RH, Soltanian-Zadeh H, Davoodi-Bojd E, Zhang J, Lenge M, Guerrini R, Bartolini E, Hamandi K, Foley S, Weber B, Depondt C, Absil J, Carr SJA, Abela E, Richardson MP, Devinsky O, Severino M, Striano P, Parodi C, Tortora D, Hatton SN, Vos SB, Duncan JS, Galovic M, Whelan CD, Bargalló N, Pariente J, Conde-Blanco E, Vaudano AE, Tondelli M, Meletti S, Kong X, Francks C, Fisher SE, Caldairou B, Ryten M, Labate A, Sisodiya SM, Thompson PM, McDonald CR, Bernasconi A, Bernasconi N, Bernhardt BC. Topographic divergence of atypical cortical asymmetry and atrophy patterns in temporal lobe epilepsy. Brain 2022; 145:1285-1298. [PMID: 35333312 PMCID: PMC9128824 DOI: 10.1093/brain/awab417] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 08/14/2021] [Indexed: 12/20/2022] Open
Abstract
Temporal lobe epilepsy, a common drug-resistant epilepsy in adults, is primarily a limbic network disorder associated with predominant unilateral hippocampal pathology. Structural MRI has provided an in vivo window into whole-brain grey matter structural alterations in temporal lobe epilepsy relative to controls, by either mapping (i) atypical inter-hemispheric asymmetry; or (ii) regional atrophy. However, similarities and differences of both atypical asymmetry and regional atrophy measures have not been systematically investigated. Here, we addressed this gap using the multisite ENIGMA-Epilepsy dataset comprising MRI brain morphological measures in 732 temporal lobe epilepsy patients and 1418 healthy controls. We compared spatial distributions of grey matter asymmetry and atrophy in temporal lobe epilepsy, contextualized their topographies relative to spatial gradients in cortical microstructure and functional connectivity calculated using 207 healthy controls obtained from Human Connectome Project and an independent dataset containing 23 temporal lobe epilepsy patients and 53 healthy controls and examined clinical associations using machine learning. We identified a marked divergence in the spatial distribution of atypical inter-hemispheric asymmetry and regional atrophy mapping. The former revealed a temporo-limbic disease signature while the latter showed diffuse and bilateral patterns. Our findings were robust across individual sites and patients. Cortical atrophy was significantly correlated with disease duration and age at seizure onset, while degrees of asymmetry did not show a significant relationship to these clinical variables. Our findings highlight that the mapping of atypical inter-hemispheric asymmetry and regional atrophy tap into two complementary aspects of temporal lobe epilepsy-related pathology, with the former revealing primary substrates in ipsilateral limbic circuits and the latter capturing bilateral disease effects. These findings refine our notion of the neuropathology of temporal lobe epilepsy and may inform future discovery and validation of complementary MRI biomarkers in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Bo-yong Park
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
- Department of Data Science, Inha University, Incheon, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Sara Larivière
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Raul Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Lorenzo Caciagli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Antonio Gambardella
- Neuroscience Research Center, University Magna Græcia, Catanzaro, CZ, Italy
- Institute of Neurology, University Magna Græcia, Catanzaro, CZ, Italy
| | - Luis Concha
- Institute of Neurobiology, Universidad Nacional Autónoma de México, Querétaro, México
| | - Simon S Keller
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Fernando Cendes
- Department of Neurology, University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| | - Marina K M Alvim
- Department of Neurology, University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| | - Clarissa Yasuda
- Department of Neurology, University of Campinas–UNICAMP, Campinas, São Paulo, Brazil
| | | | | | - Niels K Focke
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Martin Domin
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, University Medicine Greifswald, Greifswald, Germany
| | - Felix von Podewils
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Soenke Langner
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Christian Rummel
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Michael Rebsamen
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Roland Wiest
- Support Center for Advanced Neuroimaging (SCAN), University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland
| | - Pascal Martin
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raviteja Kotikalapudi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Radiology, Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Bender
- Department of Radiology, Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Terence J O’Brien
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Meng Law
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
| | - Benjamin Sinclair
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Lucy Vivash
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Alfred Hospital, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Patricia M Desmond
- Department of Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Charles B Malpas
- Departments of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Elaine Lui
- Department of Radiology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Saud Alhusaini
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Colin P Doherty
- Department of Neurology, St James’ Hospital, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Norman Delanty
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
- FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Member of the European Reference Network for Rare and Complex Epilepsies EpiCARE, Kuopio, Finland
- Faculty of Health Sciences, School of Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Magdalena Kowalczyk
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Mario Mascalchi
- Neuroradiology Research Program, Meyer Children Hospital of Florence, University of Florence, Florence, Italy
| | - Mira Semmelroch
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Rhys H Thomas
- Transitional and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hamid Soltanian-Zadeh
- Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
- Departments of Research Administration and Radiology, Henry Ford Health System, Detroit, MI, USA
| | | | - Junsong Zhang
- Department of Artificial Intelligence, Xiamen University, Xiamen, China
| | - Matteo Lenge
- Child Neurology Unit and Laboratories, Neuroscience Department, Children’s Hospital A. Meyer-University of Florence, Florence, Italy
- Functional and Epilepsy Neurosurgery Unit, Neurosurgery Department, Children’s Hospital A. Meyer-University of Florence, Florence, Italy
| | - Renzo Guerrini
- Child Neurology Unit and Laboratories, Neuroscience Department, Children’s Hospital A. Meyer-University of Florence, Florence, Italy
| | - Emanuele Bartolini
- USL Centro Toscana, Neurology Unit, Nuovo Ospedale Santo Stefano, Prato, Italy
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, UK
| | - Sonya Foley
- Cardiff University Brain Research Imaging Centre (CUBRIC), College of Biomedical Sciences, Cardiff University, Cardiff, UK
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Bonn, Germany
| | - Chantal Depondt
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Absil
- Department of Radiology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Sarah J A Carr
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Eugenio Abela
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Mark P Richardson
- Division of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Orrin Devinsky
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Mariasavina Severino
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pasquale Striano
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Costanza Parodi
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Domenico Tortora
- IRCCS Istituto Giannina Gaslini, Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Sean N Hatton
- Department of Neurosciences, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Marian Galovic
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christopher D Whelan
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Núria Bargalló
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Radiology CDIC, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jose Pariente
- Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Anna Elisabetta Vaudano
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Meletti
- Neurology Unit, Azienda Ospedaliero-Universitaria of Modena, OCB Hospital, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Xiang‐Zhen Kong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Mina Ryten
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Angelo Labate
- Neurology, BIOMORF Department, University of Messina, Messina, Italy
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- MRI Unit, Epilepsy Society, Chalfont St Peter, Buckinghamshire, UK
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging and Informatics, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Carrie R McDonald
- Department of Psychiatry, Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA, USA
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Jo H, Kim J, Kim D, Hwang Y, Seo D, Hong S, Shon YM. Lateralizing Characteristics of Morphometric Changes to Hippocampus and Amygdala in Unilateral Temporal Lobe Epilepsy with Hippocampal Sclerosis. Medicina (B Aires) 2022; 58:medicina58040480. [PMID: 35454319 PMCID: PMC9029741 DOI: 10.3390/medicina58040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background andObjective: In the present study, a detailed investigation of substructural volume change in the hippocampus (HC) and amygdala (AMG) was performed and the association with clinical features in patients with mesial temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) determined. Methods: The present study included 22 patients with left-sided TLE-HS (LTLE-HS) and 26 patients with right-sided TLE-HS (RTLE-HS). In addition, 28 healthy controls underwent high-resolution T2-weighted image (T2WI) and T1-weighted image (T1WI) MRI scanning. Subfield analysis of HC and AMG was performed using FreeSurfer version 6.0. Results: Patients with TLE-HS showed a decrease in the volume of substructures in both HC and AMG, and this change was observed on the contralateral side and the ipsilateral side with HS. The volume reduction pattern of substructures showed laterality-dependent characteristics. Patients with LTLE-HS had smaller volumes of the ipsilateral subiculum (SUB), contralateral SUB, and ipsilateral cortical nucleus of AMG than patients with RTLE-HS. Patients with RTLE-HS had reduced ipsilateral cornu ammonis (CA) 2/3 and contralateral cortico-amygdaloid transition area (CAT) volumes. The relationship between clinical variables and subregions was different based on the lateralization of the seizure focus. Focal to bilateral tonic-clonic seizures (FTBTCS) was associated with contralateral and ipsilateral side subregions only in LTLE-HS. The abdominal FAS was associated with the volume reduction of AMG subregions only in LTLE-HS, but the volume reduction was less than in patients without FAS. Conclusions: The results indicate that unilateral TLE-HS is a bilateral disease that shows different laterality-dependent characteristics based on the subfield analysis of HC and AMG. Subfield volumes of HC and AMG were associated with clinical variables, and the more damaged substructures depended on laterality in TLE-HS. These findings support the evidence that LTLE-HS and RTLE-HS are disparate epilepsy entities rather than simply identical syndromes harboring a mesial temporal lesion. In addition, the presence of FAS supports good localization value, and abdominal FAS has a high localization value, especially in patients with LTLE-HS.
Collapse
Affiliation(s)
- Hyunjin Jo
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea; (H.J.); (J.K.); (D.S.); (S.H.)
| | - Jeongsik Kim
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea; (H.J.); (J.K.); (D.S.); (S.H.)
| | - Dongyeop Kim
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul 03760, Korea;
| | - Yoonha Hwang
- Department of Neurology, The Catholic University of Korea Eunpyeong St. Mary’s Hospital, Seoul 07345, Korea;
| | - Daewon Seo
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea; (H.J.); (J.K.); (D.S.); (S.H.)
| | - Seungbong Hong
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea; (H.J.); (J.K.); (D.S.); (S.H.)
| | - Young-Min Shon
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea; (H.J.); (J.K.); (D.S.); (S.H.)
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Sunkyunkwan University, Seoul 06355, Korea
- Correspondence: ; Tel.: +82-2-3410-2701
| |
Collapse
|
5
|
Rayatpour A, Farhangi S, Verdaguer E, Olloquequi J, Ureña J, Auladell C, Javan M. The Cross Talk between Underlying Mechanisms of Multiple Sclerosis and Epilepsy May Provide New Insights for More Efficient Therapies. Pharmaceuticals (Basel) 2021; 14:ph14101031. [PMID: 34681255 PMCID: PMC8541630 DOI: 10.3390/ph14101031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022] Open
Abstract
Despite the significant differences in pathological background of neurodegenerative diseases, epileptic seizures are a comorbidity in many disorders such as Huntington disease (HD), Alzheimer's disease (AD), and multiple sclerosis (MS). Regarding the last one, specifically, it has been shown that the risk of developing epilepsy is three to six times higher in patients with MS compared to the general population. In this context, understanding the pathological processes underlying this connection will allow for the targeting of the common and shared pathological pathways involved in both conditions, which may provide a new avenue in the management of neurological disorders. This review provides an outlook of what is known so far about the bidirectional association between epilepsy and MS.
Collapse
Affiliation(s)
- Atefeh Rayatpour
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Sahar Farhangi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Ester Verdaguer
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Biomedical Sciences Institute, Health Sciences Faculty, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Jesus Ureña
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
| | - Carme Auladell
- Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, 08028 Barcelona, Spain; (E.V.); (J.U.)
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Neuroscience, Universitat de Barcelona, 08035 Barcelona, Spain
- Correspondence: (C.A.); (M.J.)
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran; (A.R.); (S.F.)
- Institute for Brain and Cognition, Tarbiat Modares University, Tehran 14117-13116, Iran
- Cell Science Research Center, Department of Brain and Cognitive Sciences, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 14117-13116, Iran
- Correspondence: (C.A.); (M.J.)
| |
Collapse
|
6
|
de Figueiredo NSV, Gaça LB, Assunção-Leme IB, Mazetto L, Garcia MTFC, Sandim GB, Alonso NB, Centeno RS, Filho GMDA, Jackowski AP, Júnior HC, Yacubian EMT. A pioneering FreeSurfer volumetric study of a series of patients with mesial temporal lobe epilepsy and hippocampal sclerosis with comorbid depression. Psychiatry Res Neuroimaging 2021; 311:111281. [PMID: 33836383 DOI: 10.1016/j.pscychresns.2021.111281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Depression is the most frequent psychiatric comorbidity in patients with mesial temporal lobe epilepsy (MTLE) and hippocampal sclerosis (HS). This study aimed to confirm whether patients with comorbid depression have different volumetric patterns on magnetic resonance imaging, analysing the influence of HS sides. Psychiatrists conducted semi-structured interviews with 75 patients, who were divided into non-depression group (NDG, n = 52) and depression group (DG, n = 23), and compared with 98 controls. The FreeSurfer software was used in the volumetric analysis of the estimated total intracranial volume (eTIV), bilateral cortical and subcortical regions of interest (ROIs), and for presence of left (L-, n = 41) or right (R-, n = 34) MTLE-HS. Twenty-three (30.7%) patients had depression, of whom 14 (34.1%) had l-MTLE-HS and 9 (26.5%) had R-MTLE-HS. No difference was observed between DG and NDG vs. controls in terms of eTIV and cortical ROIs, regardless of the severity of depression. In patients with l-MTLE-HS, the eTIV in the DG was reduced in comparison with that in the NDG and control group, with a small effect size. Hippocampal reduction occurred ipsilateral to HS in the l-MTLE-HS and R-MTLE-HS subgroups when DG and NDG were compared with controls, as expected according to Enhancing Neuro Imaging Genetics through Meta-Analysis (2018).
Collapse
Affiliation(s)
- Nathália Stela Visoná de Figueiredo
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650, 1st floor. Postal number: 04039-002 Vila Clementino, São Paulo, Brazil.
| | - Larissa Botelho Gaça
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650, 1st floor. Postal number: 04039-002 Vila Clementino, São Paulo, Brazil
| | - Idaiane Batista Assunção-Leme
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 669, 3rd floor. Postal number: 04039-032 Vila Clementino, São Paulo, Brazil
| | - Lenon Mazetto
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650, 1st floor. Postal number: 04039-002 Vila Clementino, São Paulo, Brazil
| | - Maria Teresa Fernandes Castilho Garcia
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650, 1st floor. Postal number: 04039-002 Vila Clementino, São Paulo, Brazil
| | - Gabriel Barbosa Sandim
- Departament of Diagnosis by Imaging, Universidade Federal de São Paulo (UNIFESP), Napoleão de Barros Street, 800. Postal number: 04024-002 Vila Clementino, São Paulo, Brazil
| | - Neide Barreira Alonso
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650, 1st floor. Postal number: 04039-002 Vila Clementino, São Paulo, Brazil
| | - Ricardo Silva Centeno
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650, 1st floor. Postal number: 04039-002 Vila Clementino, São Paulo, Brazil
| | - Gerardo Maria de Araújo Filho
- Department of Psychiatry and Medical Psychology, Faculdade de Medicina de São José do Rio Preto (FAMERP), Brigadeiro Faria Lima Avenue, 5416. Postal number: 15090-000 Vila São José, São José do Rio Preto, Brazil
| | - Andrea Parolin Jackowski
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 669, 3rd floor. Postal number: 04039-032 Vila Clementino, São Paulo, Brazil
| | - Henrique Carrete Júnior
- Departament of Diagnosis by Imaging, Universidade Federal de São Paulo (UNIFESP), Napoleão de Barros Street, 800. Postal number: 04024-002 Vila Clementino, São Paulo, Brazil
| | - Elza Márcia Targas Yacubian
- Department of Neurology and Neurosurgery, Universidade Federal de São Paulo (UNIFESP), Pedro de Toledo Street, 650, 1st floor. Postal number: 04039-002 Vila Clementino, São Paulo, Brazil
| |
Collapse
|
7
|
Owen TW, de Tisi J, Vos SB, Winston GP, Duncan JS, Wang Y, Taylor PN. Multivariate white matter alterations are associated with epilepsy duration. Eur J Neurosci 2021; 53:2788-2803. [PMID: 33222308 PMCID: PMC8246988 DOI: 10.1111/ejn.15055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023]
Abstract
Previous studies investigating associations between white matter alterations and duration of temporal lobe epilepsy (TLE) have shown differing results, and were typically limited to univariate analyses of tracts in isolation. In this study, we apply a multivariate measure (the Mahalanobis distance), which captures the distinct ways white matter may differ in individual patients, and relate this to epilepsy duration. Diffusion MRI, from a cohort of 94 subjects (28 healthy controls, 33 left-TLE and 33 right-TLE), was used to assess the association between tract fractional anisotropy (FA) and epilepsy duration. Using ten white matter tracts, we analysed associations using the traditional univariate analysis (z-scores) and a complementary multivariate approach (Mahalanobis distance), incorporating multiple white matter tracts into a single unified analysis. For patients with right-TLE, FA was not significantly associated with epilepsy duration for any tract studied in isolation. For patients with left-TLE, the FA of two limbic tracts (ipsilateral fornix, contralateral cingulum gyrus) were significantly negatively associated with epilepsy duration (Bonferonni corrected p < .05). Using a multivariate approach we found significant ipsilateral positive associations with duration in both left, and right-TLE cohorts (left-TLE: Spearman's ρ = 0.487, right-TLE: Spearman's ρ = 0.422). Extrapolating our multivariate results to duration equals zero (i.e., at onset) we found no significant difference between patients and controls. Associations using the multivariate approach were more robust than univariate methods. The multivariate Mahalanobis distance measure provides non-overlapping and more robust results than traditional univariate analyses. Future studies should consider adopting both frameworks into their analysis in order to ascertain a more complete understanding of epilepsy progression, regardless of laterality.
Collapse
Affiliation(s)
- Thomas W. Owen
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of ComputingNewcastle UniversityNewcastle upon TyneUK
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research CentreUCL Institute of NeurologyQueen SquareLondonUK
| | - Sjoerd B. Vos
- Centre for Medical Image ComputingUniversity College LondonLondonUK
- Epilepsy Society MRI UnitChalfont St PeterUK
- Neuroradiological Academic UnitUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Gavin P. Winston
- NIHR University College London Hospitals Biomedical Research CentreUCL Institute of NeurologyQueen SquareLondonUK
- Epilepsy Society MRI UnitChalfont St PeterUK
- Department of MedicineDivision of NeurologyQueen's UniversityKingstonCanada
| | - John S Duncan
- NIHR University College London Hospitals Biomedical Research CentreUCL Institute of NeurologyQueen SquareLondonUK
- Epilepsy Society MRI UnitChalfont St PeterUK
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of ComputingNewcastle UniversityNewcastle upon TyneUK
- NIHR University College London Hospitals Biomedical Research CentreUCL Institute of NeurologyQueen SquareLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of ComputingNewcastle UniversityNewcastle upon TyneUK
- NIHR University College London Hospitals Biomedical Research CentreUCL Institute of NeurologyQueen SquareLondonUK
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
8
|
Roh H, Kim W, Kim J, Kim JH, Kim JH. Duration-dependent extensive volume and shape changes of mesolimbic structures in surgically treated unilateral patients with temporal lobe epilepsy. Epilepsy Behav 2021; 114:107517. [PMID: 33257292 DOI: 10.1016/j.yebeh.2020.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Although surgical treatment of drug-resistant mesial temporal lobe epilepsy (MTLE) has proven efficacy, surgical referrals are often delayed. Knowledge of the abnormalities of mesolimbic structures beyond the hippocampus may be important for patients with MTLE because of its usefulness in the understanding of progressive disabilities in affected structures. This study aimed to identify volume and shape changes of mesolimbic structures in surgically treated patients with unilateral MTLE and their correlation with various clinical parameters. METHODS Twenty-four patients with unilateral MTLE (12 with left MTLE [LMTLE] and 12 with right MTLE [RMTLE]) who were surgically treated with standard temporal lobectomy, including amygdalohippocampectomy, and 24 age- and sex-matched healthy individuals were enrolled. Preoperatively, volumetric analysis using magnetic resonance imaging (MRI) of 27 mesolimbic substructures (11 from each hemisphere and 5 from the midline) was performed. We also investigated the three-dimensional morphometric differences of the mesolimbic structures between the unilateral MTLE and control groups using shape analyses. RESULTS Patients with LMTLE showed significant volume reductions in various ipsilateral mesolimbic (72.7%, 8/11) and contralateral structures (27.3%, 3/11). Patients with RMTLE had also significant reduced volumes in ipsilateral (63.6%, 7/11) and contralateral structures (73.3%, 3/11). Among the clinical parameters, only the duration of epilepsy had a statistically significant inverse correlation with the volumes of the hippocampus, parahippocampus, entorhinal cortex, cingulate, and corpus callosum. In the shape analysis of the bilateral hippocampus, amygdala, parahippocampus, and entorhinal cortex, after accounting for the effects of age and total intracranial volume, significant shape changes in the anterolateral area of the ipsilateral hippocampus were noted, which corresponds to the cornu ammonis (CA)1 and subiculum of the hippocampus. CONCLUSIONS The extensive volume reductions in the multiple mesolimbic structures and the substantial inverse correlation between the duration of epilepsy and the volumes of the various mesolimbic structures in our study supports that MTLE is not restricted to the hippocampus, but it progressively involves extensive mesolimbic structures. The duration-dependent atrophic changes in multiple subcortical structures seen in this study also suggest a positive role of early surgical intervention for patients with drug-resistant TLE.
Collapse
Affiliation(s)
- Haewon Roh
- The Department of Neurosurgery, Guro Hospital, Korea University Medicine, Republic of Korea
| | - Won Kim
- The Department of Neurosurgery, Guro Hospital, Korea University Medicine, Republic of Korea
| | - Junwon Kim
- The Department of Neurosurgery, Guro Hospital, Korea University Medicine, Republic of Korea
| | - Ji Hyun Kim
- The Department of Neurology, Guro Hospital, Korea University Medicine, Republic of Korea
| | - Jong Hyun Kim
- The Department of Neurosurgery, Guro Hospital, Korea University Medicine, Republic of Korea.
| |
Collapse
|
9
|
Reconfiguration of human evolving large-scale epileptic brain networks prior to seizures: an evaluation with node centralities. Sci Rep 2020; 10:21921. [PMID: 33318564 PMCID: PMC7736584 DOI: 10.1038/s41598-020-78899-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Previous research has indicated that temporal changes of centrality of specific nodes in human evolving large-scale epileptic brain networks carry information predictive of impending seizures. Centrality is a fundamental network-theoretical concept that allows one to assess the role a node plays in a network. This concept allows for various interpretations, which is reflected in a number of centrality indices. Here we aim to achieve a more general understanding of local and global network reconfigurations during the pre-seizure period as indicated by changes of different node centrality indices. To this end, we investigate—in a time-resolved manner—evolving large-scale epileptic brain networks that we derived from multi-day, multi-electrode intracranial electroencephalograpic recordings from a large but inhomogeneous group of subjects with pharmacoresistant epilepsies with different anatomical origins. We estimate multiple centrality indices to assess the various roles the nodes play while the networks transit from the seizure-free to the pre-seizure period. Our findings allow us to formulate several major scenarios for the reconfiguration of an evolving epileptic brain network prior to seizures, which indicate that there is likely not a single network mechanism underlying seizure generation. Rather, local and global aspects of the pre-seizure network reconfiguration affect virtually all network constituents, from the various brain regions to the functional connections between them.
Collapse
|
10
|
Gleichgerrcht E, Keller SS, Drane DL, Munsell BC, Davis KA, Kaestner E, Weber B, Krantz S, Vandergrift WA, Edwards JC, McDonald CR, Kuzniecky R, Bonilha L. Temporal Lobe Epilepsy Surgical Outcomes Can Be Inferred Based on Structural Connectome Hubs: A Machine Learning Study. Ann Neurol 2020; 88:970-983. [PMID: 32827235 PMCID: PMC8019146 DOI: 10.1002/ana.25888] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Medial temporal lobe epilepsy (TLE) is the most common form of medication-resistant focal epilepsy in adults. Despite removal of medial temporal structures, more than one-third of patients continue to have disabling seizures postoperatively. Seizure refractoriness implies that extramedial regions are capable of influencing the brain network and generating seizures. We tested whether abnormalities of structural network integration could be associated with surgical outcomes. METHODS Presurgical magnetic resonance images from 121 patients with drug-resistant TLE across 3 independent epilepsy centers were used to train feed-forward neural network models based on tissue volume or graph-theory measures from whole-brain diffusion tensor imaging structural connectomes. An independent dataset of 47 patients with TLE from 3 other epilepsy centers was used to assess the predictive values of each model and regional anatomical contributions toward surgical treatment results. RESULTS The receiver operating characteristic area under the curve based on regional betweenness centrality was 0.88, significantly higher than a random model or models based on gray matter volumes, degree, strength, and clustering coefficient. Nodes most strongly contributing to the predictive models involved the bilateral parahippocampal gyri, as well as the superior temporal gyri. INTERPRETATION Network integration in the medial and lateral temporal regions was related to surgical outcomes. Patients with abnormally integrated structural network nodes were less likely to achieve seizure freedom. These findings are in line with previous observations related to network abnormalities in TLE and expand on the notion of underlying aberrant plasticity. Our findings provide additional information on the mechanisms of surgical refractoriness. ANN NEUROL 2020;88:970-983.
Collapse
Affiliation(s)
| | - Simon S. Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Bioology, University of Liverpool, Liverpool, United Kingdom; Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Daniel L. Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Brent C. Munsell
- Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Kathryn A. Davis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Erik Kaestner
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University of Bonn
| | - Samantha Krantz
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Jonathan C. Edwards
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Carrie R. McDonald
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Ruben Kuzniecky
- Department of Neurology, Hofstra University / Northwell, NY, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
11
|
Mazrooyisebdani M, Nair VA, Garcia-Ramos C, Mohanty R, Meyerand E, Hermann B, Prabhakaran V, Ahmed R. Graph Theory Analysis of Functional Connectivity Combined with Machine Learning Approaches Demonstrates Widespread Network Differences and Predicts Clinical Variables in Temporal Lobe Epilepsy. Brain Connect 2020; 10:39-50. [PMID: 31984759 DOI: 10.1089/brain.2019.0702] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Understanding how global brain networks are affected in epilepsy may elucidate the pathogenesis of seizures and its accompanying neurobehavioral comorbidities. We investigated functional changes within neural networks in temporal lobe epilepsy (TLE) using graph theory analysis of resting-state connectivity. Twenty-seven TLE presurgical patients (age 41.0 ± 12.3 years) and 85 age, gender, and handedness equivalent healthy controls (HCs; age 39.7 ± 16.9 years) were enrolled. Eyes-closed resting-state functional magnetic resonance image scans were analyzed to compare network properties and functional connectivity (FC) changes. TLE subjects showed significantly higher global efficiency, lower clustering coefficient ratio, and lower shortest path lengths ratio than HCs, as an indication of a more synchronized, yet less segregated network. A trend of functional reorganization with a shift of network hubs to the contralateral hemisphere was noted in TLE subjects. Support vector machine (SVM) with linear kernel was trained to separate between neural networks in TLE and HC subjects based on graph measurements. SVM analysis allowed separation between TLE and HC networks with 80.66% accuracy using eight features of graph measurements. Support vector regression (SVR) was used to predict neurocognitive performance from graph metrics. An SVR linear predictor showed discriminative prediction accuracy for four key neurocognitive variables in TLE (absolute R value range: 0.61-0.75). Despite TLE, our results showed both local and global network topology differences that reflect widespread alterations in FC in TLE. Network differences are discriminative between TLE and HCs using data-driven analysis and predicted severity of neurocognitive sequelae in our cohort.
Collapse
Affiliation(s)
- Mohsen Mazrooyisebdani
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Veena A Nair
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Camille Garcia-Ramos
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Rosaleena Mohanty
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Elizabeth Meyerand
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Neuroscience Training Program, and University of Wisconsin-Madison, Madison, Wisconsin
| | - Raheel Ahmed
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
12
|
da Silva NM, Forsyth R, McEvoy A, Miserocchi A, de Tisi J, Vos SB, Winston GP, Duncan J, Wang Y, Taylor PN. Network reorganisation following anterior temporal lobe resection and relation with post-surgery seizure relapse: A longitudinal study. NEUROIMAGE-CLINICAL 2020; 27:102320. [PMID: 32623138 PMCID: PMC7334605 DOI: 10.1016/j.nicl.2020.102320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/12/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022]
Abstract
Diffusion changes assessed at two time points following epilepsy surgery. Graph theory and connectometry revealed substantial longitudinal diffusion changes. Changes were found beyond the site of resection. Postoperative seizure freedom associated with longitudinal structural changes.
Objective To characterise temporal lobe epilepsy (TLE) surgery-induced changes in brain network properties, as measured using diffusion weighted MRI, and investigate their association with postoperative seizure-freedom. Methods For 48 patients who underwent anterior temporal lobe resection, diffusion weighted MRI was acquired pre-operatively, 3–4 months post-operatively (N = 48), and again 12 months post-operatively (N = 13). Data for 17 controls were also acquired over the same period. After registering all subjects to a common space, we performed two complementary analyses of the subjects’ quantitative anisotropy (QA) maps. 1) A connectometry analysis which is sensitive to changes in subsections of fasciculi. 2) A graph theory approach which integrates connectivity information across the wider brain network. Results We found significant postoperative alterations in QA in patients relative to controls measured over the same period. Reductions were primarily located in the uncinate fasciculus and inferior fronto-occipital fasciculus ipsilaterally for all patients. Larger reductions were associated with postoperative seizure-freedom in left TLE. Increased QA was mainly located in corona radiata and corticopontine tracts. Graph theoretic analysis revealed widespread increases in nodal betweenness centrality, which were not associated with patient outcomes. Conclusion Substantial alterations in QA occur in the months after epilepsy surgery, suggesting Wallerian degeneration and strengthening of specific white matter tracts. Greater reductions in QA were related to postoperative seizure freedom in left TLE.
Collapse
Affiliation(s)
- Nádia Moreira da Silva
- CNNP lab(1), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rob Forsyth
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew McEvoy
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Anna Miserocchi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Jane de Tisi
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Sjoerd B Vos
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom; Centre for Medical Image Computing, University College London, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Gavin P Winston
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom; Department of Medicine, Division of Neurology, Queen's University, Kingston, Canada
| | - John Duncan
- NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom; Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Yujiang Wang
- CNNP lab(1), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Peter N Taylor
- CNNP lab(1), Interdisciplinary Complex Systems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
13
|
Huesmann GR, Schwarb H, Smith DR, Pohlig RT, Anderson AT, McGarry MDJ, Paulsen KD, Wszalek TM, Sutton BP, Johnson CL. Hippocampal stiffness in mesial temporal lobe epilepsy measured with MR elastography: Preliminary comparison with healthy participants. NEUROIMAGE-CLINICAL 2020; 27:102313. [PMID: 32585569 PMCID: PMC7322100 DOI: 10.1016/j.nicl.2020.102313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/26/2023]
Abstract
Hippocampal stiffness in MTLE is measured with magnetic resonance elastography. The epileptogenic hippocampus is stiffer than non-epileptogenic hippocampus in MTLE. Hippocampal stiffness ratio is higher in MTLE patients than in healthy participants. Stiffness ratio provides additional diagnostic information to hippocampal volume.
Mesial temporal lobe epilepsy (MTLE) is the most common form of refractory epilepsy. Common imaging biomarkers are often not sensitive enough to identify MTLE sufficiently early to facilitate the greatest benefit from surgical or pharmacological intervention. The objective of this work is to establish hippocampal stiffness measured with magnetic resonance elastography (MRE) as a biomarker for MTLE; we hypothesized that the epileptogenic hippocampus in MTLE is stiffer than the non-epileptogenic hippocampus. MRE was used to measure hippocampal stiffness in a group of patients with unilateral MTLE (n = 12) and a group of healthy comparison participants (n = 13). We calculated the ratio of hippocampal stiffness ipsilateral to epileptogenesis to the contralateral side for both groups. We found a higher hippocampal stiffness ratio in patients with MTLE compared with healthy participants (1.14 v. 0.99; p = 0.004), and that stiffness ratio differentiated MTLE from control groups effectively (AUC = 0.85). Hippocampal stiffness ratio, when added to volume ratio, an established MTLE biomarker, significantly improved the ability to differentiate the two groups (p = 0.038). Stiffness measured with MRE is sensitive to hippocampal pathology in MTLE and the addition of MRE to neuroimaging assessments may improve detection and characterization of the disease.
Collapse
Affiliation(s)
- Graham R Huesmann
- Carle Neuroscience Institute, Carle Foundation Hospital, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| | - Hillary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Interdisciplinary Health Sciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| | - Daniel R Smith
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Ryan T Pohlig
- College of Health Sciences, University of Delaware, Newark, DE, United States
| | - Aaron T Anderson
- Carle Neuroscience Institute, Carle Foundation Hospital, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Tracey Mencio Wszalek
- Carle Neuroscience Institute, Carle Foundation Hospital, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Bradley P Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Curtis L Johnson
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States.
| |
Collapse
|
14
|
Kaestner E, Balachandra AR, Bahrami N, Reyes A, Lalani SJ, Macari AC, Voets NL, Drane DL, Paul BM, Bonilha L, McDonald CR. The white matter connectome as an individualized biomarker of language impairment in temporal lobe epilepsy. Neuroimage Clin 2019; 25:102125. [PMID: 31927128 PMCID: PMC6953962 DOI: 10.1016/j.nicl.2019.102125] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 11/05/2022]
Abstract
OBJECTIVE The distributed white matter network underlying language leads to difficulties in extracting clinically meaningful summaries of neural alterations leading to language impairment. Here we determine the predictive ability of the structural connectome (SC), compared with global measures of white matter tract microstructure and clinical data, to discriminate language impaired patients with temporal lobe epilepsy (TLE) from TLE patients without language impairment. METHODS T1- and diffusion-MRI, clinical variables (CVs), and neuropsychological measures of naming and verbal fluency were available for 82 TLE patients. Prediction of language impairment was performed using a robust tree-based classifier (XGBoost) for three models: (1) a CV-model which included demographic and epilepsy-related clinical features, (2) an atlas-based tract-model, including four frontotemporal white matter association tracts implicated in language (i.e., the bilateral arcuate fasciculus, inferior frontal occipital fasciculus, inferior longitudinal fasciculus, and uncinate fasciculus), and (3) a SC-model based on diffusion MRI. For the association tracts, mean fractional anisotropy was calculated as a measure of white matter microstructure for each tract using a diffusion tensor atlas (i.e., AtlasTrack). The SC-model used measurement of cortical-cortical connections arising from a temporal lobe subnetwork derived using probabilistic tractography. Dimensionality reduction of the SC was performed with principal components analysis (PCA). Each model was trained on 49 patients from one epilepsy center and tested on 33 patients from a different center (i.e., an independent dataset). Randomization was performed to test the stability of the results. RESULTS The SC-model yielded a greater area under the curve (AUC; .73) and accuracy (79%) compared to both the tract-model (AUC: .54, p < .001; accuracy: 70%, p < .001) and the CV-model (AUC: .59, p < .001; accuracy: 64%, p < .001). Within the SC-model, lateral temporal connections had the highest importance to model performance, including connections similar to language association tracts such as links between the superior temporal gyrus to pars opercularis. However, in addition to these connections many additional connections that were widely distributed, bilateral and interhemispheric in nature were identified as contributing to SC-model performance. CONCLUSION The SC revealed a white matter network contributing to language impairment that was widely distributed, bilateral, and lateral temporal in nature. The distributed network underlying language may be why the SC-model has an advantage in identifying sub-components of the complex fiber networks most relevant for aspects of language performance.
Collapse
Affiliation(s)
- Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Akshara R Balachandra
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Naeim Bahrami
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Anny Reyes
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Sanam J Lalani
- Department of Neurology, University of California - San Francisco, San Francisco, CA, USA
| | - Anna Christina Macari
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA
| | - Natalie L Voets
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel L Drane
- Departments of Neurology and Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, University of Washington, Seattle, WA, USA
| | - Brianna M Paul
- Department of Neurology, University of California - San Francisco, San Francisco, CA, USA
| | - Leonardo Bonilha
- Medical University of South Carolina, Department of Neurology, USA
| | - Carrie R McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, CA, USA; San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego, CA, USA.
| |
Collapse
|
15
|
Iida K, Kagawa K, Katagiri M, Seyama G, Hashizume A, Abiko M, Katayama J, Suzuki H, Kurisu K, Otsubo H. Preservation of Memory Despite Unresected Contralateral Hippocampal Volume Loss After Resection of Hippocampal Sclerosis in Seizure-Free Patients. World Neurosurg 2019; 132:e759-e765. [PMID: 31415886 DOI: 10.1016/j.wneu.2019.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/03/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To determine postoperative long-term changes of hippocampal volume (HV) correlating with cognitive functions in patients who underwent surgery for hippocampal sclerosis with postoperative freedom from seizures. METHODS We studied 1.5T magnetic resonance imaging before and after surgery in 24 patients (mean ± SD age, 36.9 ± 11.0 years) with hippocampal sclerosis. We performed serial magnetic resonance imaging at 6 months to 1 year, 1-2 years, 2-3 years, and 3-5 years postoperatively. We compared HVs of 24 patients with HVs of 14 age-matched control subjects. We analyzed correlations between consecutive HVs and seizure duration and age at surgery. We compared consecutive changes in HVs between dominant and nondominant hemispheres with concurrent cognitive functions. RESULTS Preoperative HVs of unresected contralateral hippocampus were significantly smaller than HVs of control subjects (P < 0.01). Unresected contralateral HV changes compared with preoperative HVs were -3.6% ± 6.9%, -2.3% ± 8.5%, -3.6% ± 10.2% (P < 0.05), and -5.0% ± 9.5% (P < 0.05) at consecutive postoperative periods. Largest change in HVs at 3-5 years was significantly correlated with older age at surgery (P < 0.05). Unresected contralateral dominant 14 HVs remained consistently smaller than nondominant 10 HVs up to 5 years with statistical significance (P < 0.05). Verbal memory was preserved in 14 patients with unresected contralateral smaller dominant hippocampus. CONCLUSIONS In seizure-free patients after hippocampal sclerosis resection , unresected contralateral HV significantly declined with older age at surgery. Visual memory was preserved regardless of side and volume loss. Despite significantly reduced HVs, verbal memory was preserved with the unresected contralateral dominant hippocampus. Earlier surgical intervention may have lower potential risk for memory decline secondary to postoperative HV loss.
Collapse
Affiliation(s)
- Koji Iida
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan.
| | - Kota Kagawa
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Masaya Katagiri
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Go Seyama
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Akira Hashizume
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Epilepsy Center, Hiroshima University Hospital, Hiroshima, Japan
| | - Masaru Abiko
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Junko Katayama
- Division of Radiology, Hiroshima Chuo-Kenshin-Sho, Hiroshima, Japan
| | - Hiroharu Suzuki
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Otsubo
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Kaestner E, Reyes A, Macari AC, Chang YH, Paul B, Hermann B, McDonald CR. Identifying the neural basis of a language-impaired phenotype of temporal lobe epilepsy. Epilepsia 2019; 60:1627-1638. [PMID: 31297795 PMCID: PMC6687533 DOI: 10.1111/epi.16283] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To identify neuroimaging and clinical biomarkers associated with a language-impaired phenotype in refractory temporal lobe epilepsy (TLE). METHODS Eighty-five patients with TLE were characterized as language-impaired (TLE-LI) or non-language-impaired (TLE-NLI) based on comprehensive neuropsychological testing. Structural magnetic resonance imaging (MRI), diffusion tensor imaging, and functional MRI (fMRI) were obtained in patients and 47 healthy controls (HC). fMRI activations and cortical thickness were calculated within language regions of interest, and fractional anisotropy (FA) was calculated within deep white matter tracts associated with language. Analyses of variance were performed to test for differences among the groups in imaging measures. Receiver operator characteristic curves were used to determine how well different clinical versus imaging measures discriminated TLE-LI from TLE-NLI. RESULTS TLE-LI patients showed significantly less activation within left superior temporal cortex compared to HC and TLE-NLI, regardless of side of seizure onset. TLE-LI also showed decreased FA in the inferior longitudinal fasciculus and arcuate fasciculus compared to HC. Cortical thickness did not differ between groups in any region. A model that included language-related fMRI activations within the superior temporal gyrus, age at onset, and demographic variables was the most predictive of language impairment (area under the curve = 0.80). SIGNIFICANCE These findings demonstrate a unique imaging signature associated with a language-impaired phenotype in TLE, characterized by functional and microstructural alterations within the language network. Reduced left superior temporal activation combined with compromise to language association tracts underlies this phenotype, extending our previous work on cognitive phenotypes that could have implications for treatment-planning or cognitive progression in TLE.
Collapse
Affiliation(s)
- Erik Kaestner
- Center for Multimodal Imaging and Genetics, University of California, San Diego
| | - Anny Reyes
- Center for Multimodal Imaging and Genetics, University of California, San Diego
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego
| | | | - Yu-Hsuan Chang
- Center for Multimodal Imaging and Genetics, University of California, San Diego
| | - Brianna Paul
- Department of Neurology, University of California – San Francisco, San Francisco
- UCSF Comprehensive Epilepsy Center, San Francisco
| | - Bruce Hermann
- Matthews Neuropsychology Section, University of Wisconsin
| | - Carrie R. McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego
- UCSD Comprehensive Epilepsy Center, San Diego
- Department of Psychiatry, University of California, San Diego
| |
Collapse
|
17
|
Kunda S, LaFrance-Corey RG, Khadjevand F, Worrell GA, Howe CL. Systemic evidence of acute seizure-associated elevation in serum neuronal injury biomarker in patients with temporal lobe epilepsy. ACTA EPILEPTOLOGICA 2019. [DOI: 10.1186/s42494-019-0001-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Morishita Y, Mugikura S, Mori N, Tamura H, Sato S, Akashi T, Jin K, Nakasato N, Takase K. Atrophy of the ipsilateral mammillary body in unilateral hippocampal sclerosis shown by thin-slice-reconstructed volumetric analysis. Neuroradiology 2019; 61:515-523. [PMID: 30637459 DOI: 10.1007/s00234-019-02158-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/03/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE Conventional volumetric analysis could not detect ipsilateral atrophy of the mammillary body in patients with unilateral hippocampal sclerosis. By using thin-slice-reconstructed volumetric analysis, we investigated whether the mammillary body volume is smaller on the hippocampal sclerosis side than in healthy subjects or the non-hippocampal sclerosis side. METHODS This retrospective study included 45 patients with unilateral hippocampal sclerosis and 30 healthy subjects. Three-dimensional T1WI of 1 mm thicknesses were oversampled to a thickness of 0.2 mm (thin-slice-reconstructed images), and the mammillary bodies were segmented manually to determine mammillary body volume on each side. Mammillary body volumes on the hippocampal sclerosis side were compared with those in healthy subjects or the non-hippocampal sclerosis side. RESULTS In patients with right hippocampal sclerosis, right mammillary body volume was both significantly smaller than that in healthy subjects (30.3 ± 10.3 vs. 43.3 ± 8.07 mm3, P < 0.001) and significantly smaller than the left mammillary body volume in each patient (30.3 ± 10.3 vs. 41.4 ± 10.1 mm3, P < 0.001). Similarly, in patients with left hippocampal sclerosis, left mammillary body volume was both significantly smaller than that in healthy subjects (37.7 ± 11.2 vs. 47.0 ± 8.65 mm3, P < 0.001) and significantly smaller than right mammillary body volume in each patient (37.7 ± 11.2 vs. 42.5 ± 7.78 mm3, P = 0.044). CONCLUSIONS In this study, thin-slice-reconstructed volumetric analysis showed that, in patients with unilateral hippocampal sclerosis, mammillary body volume on the hippocampal sclerosis side is smaller than that in healthy subjects and the non-hippocampal sclerosis side.
Collapse
Affiliation(s)
- Yohei Morishita
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.
| | - Naoko Mori
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hajime Tamura
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Shiho Sato
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Toshiaki Akashi
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Kazutaka Jin
- Department of Epileptology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Nobukazu Nakasato
- Department of Epileptology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| |
Collapse
|
19
|
Tsougos I, Kousi E, Georgoulias P, Kapsalaki E, Fountas KN. Neuroimaging methods in Epilepsy of Temporal Origin. Curr Med Imaging 2018; 15:39-51. [DOI: 10.2174/1573405613666170622114920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/04/2017] [Accepted: 05/11/2017] [Indexed: 11/22/2022]
Abstract
Background:
Temporal Lobe Epilepsy (TLE) comprises the most common form of
symptomatic refractory focal epilepsy in adults. Accurate lateralization and localization of the
epileptogenic focus are a significant prerequisite for determining surgical candidacy once the
patient has been deemed medically intractable. Structural MR imaging, clinical,
electrophysiological, and neurophysiological data have an established role in the localization of the
epileptogenic foci. Nevertheless, hippocampal sclerosis cannot be detected on MR images in more
than 30% of patients with TLE, and the presurgical assessment remains controversial.
</P><P>
Discussion: In the last years, advanced MR imaging techniques, such as 1H-MRS, DWI, DTI,
DSCI, and fMRI, may provide valuable additional information regarding the physiological and
metabolic characterization of brain tissue. MR imaging has shifted towards functional and
molecular imaging, thus, promising to improve the accuracy regarding the lateralization and the
localization of the epileptogenic focus. Additionally, nuclear medicine studies, such as SPECT and
PET imaging modalities, have become an asset for the decoding of brain function and activity, and
can be diagnostically helpful as well, since they provide valuable data regarding the altered
metabolic activity of the seizure foci.
Conclusion:
Overall, advanced MRI, SPECT, and PET imaging techniques are increasingly
becoming an essential part of TLE diagnostics, when the epileptogenic area is not identified on
structural MRI or when structural MRI, clinical, and electrophysiological findings are not in
concordance.
Collapse
Affiliation(s)
- Ioannis Tsougos
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Evanthia Kousi
- The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Panagiotis Georgoulias
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Eftychia Kapsalaki
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| | - Kostas N. Fountas
- Department of Medical Physics, School of Medicine, University of Thessaly, Larisa, Greece
| |
Collapse
|
20
|
Duarte JTC, Jardim AP, Comper SM, De Marchi LR, Gaça LB, Garcia MTFC, Sandim GB, Assunção-Leme IB, Carrete H, Centeno RS, Lancellotti CLP, Jackowski AP, Cavalheiro EA, Guaranha MSB, Yacubian EMT. The impact of epilepsy duration in a series of patients with mesial temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsy Res 2018; 147:51-57. [DOI: 10.1016/j.eplepsyres.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/04/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
|
21
|
Chung BYT, Bailey CDC. Sex differences in the nicotinic excitation of principal neurons within the developing hippocampal formation. Dev Neurobiol 2018; 79:110-130. [PMID: 30354016 DOI: 10.1002/dneu.22646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022]
Abstract
The hippocampal formation (HF) plays an important role to facilitate higher order cognitive functions. Cholinergic activation of heteromeric nicotinic acetylcholine receptors (nAChRs) within the HF is critical for the normal development of principal neurons within this brain region. However, previous research investigating the expression and function of heteromeric nAChRs in principal neurons of the HF is limited to males or does not differentiate between the sexes. We used whole-cell electrophysiology to show that principal neurons in the CA1 region of the female mouse HF are excited by heteromeric nAChRs throughout postnatal development, with the greatest response occurring during the first two weeks of postnatal life. Excitability responses to heteromeric nAChR stimulation were also found in principal neurons in the CA3, dentate gyrus, subiculum, and entorhinal cortex layer VI (ECVI) of young postnatal female HF. A direct comparison between male and female mice found that principal neurons in ECVI display greater heteromeric nicotinic passive and active excitability responses in females. This sex difference is likely influenced by the generally more excitable nature of ECVI neurons from female mice, which display a higher resting membrane potential, greater input resistance, and smaller afterhyperpolarization potential of medium duration (mAHP). These findings demonstrate that heteromeric nicotinic excitation of ECVI neurons differs between male and female mice during a period of major circuitry development within the HF, which may have mechanistic implications for known sex differences in the development and function of this cognitive brain region.
Collapse
Affiliation(s)
- Beryl Y T Chung
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| |
Collapse
|
22
|
Gleichgerrcht E, Munsell B, Bhatia S, Vandergrift WA, Rorden C, McDonald C, Edwards J, Kuzniecky R, Bonilha L. Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery. Epilepsia 2018; 59:1643-1654. [PMID: 30098002 DOI: 10.1111/epi.14528] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/14/2018] [Accepted: 07/15/2018] [Indexed: 01/02/2023]
Abstract
OBJECTIVE We evaluated whether deep learning applied to whole-brain presurgical structural connectomes could be used to predict postoperative seizure outcome more accurately than inference from clinical variables in patients with mesial temporal lobe epilepsy (TLE). METHODS Fifty patients with unilateral TLE were classified either as having persistent disabling seizures (SZ) or becoming seizure-free (SZF) at least 1 year after epilepsy surgery. Their presurgical structural connectomes were reconstructed from whole-brain diffusion tensor imaging. A deep network was trained based on connectome data to classify seizure outcome using 5-fold cross-validation. RESULTS Classification accuracy of our trained neural network showed positive predictive value (PPV; seizure freedom) of 88 ± 7% and mean negative predictive value (NPV; seizure refractoriness) of 79 ± 8%. Conversely, a classification model based on clinical variables alone yielded <50% accuracy. The specific features that contributed to high accuracy classification of the neural network were located not only in the ipsilateral temporal and extratemporal regions, but also in the contralateral hemisphere. SIGNIFICANCE Deep learning demonstrated to be a powerful statistical approach capable of isolating abnormal individualized patterns from complex datasets to provide a highly accurate prediction of seizure outcomes after surgery. Features involved in this predictive model were both ipsilateral and contralateral to the clinical foci and spanned across limbic and extralimbic networks.
Collapse
Affiliation(s)
- Ezequiel Gleichgerrcht
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Brent Munsell
- Department of Computer Science, College of Charleston, Charleston, South Carolina
| | - Sonal Bhatia
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - William A Vandergrift
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, South Carolina
| | - Carrie McDonald
- Department of Psychology, University of California, San Diego, San Diego, California
| | - Jonathan Edwards
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
| | - Ruben Kuzniecky
- Department of Neurology, Hofstra Northwell School of Medicine, Great Neck, New York
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
23
|
Doty RL, Tourbier I, Neff JK, Silas J, Turetsky B, Moberg P, Kim T, Pluta J, French J, Sharan AD, Sperling MJ, Mirza N, Risser A, Baltuch G, Detre JA. Influences of temporal lobe epilepsy and temporal lobe resection on olfaction. J Neurol 2018; 265:1654-1665. [PMID: 29767353 PMCID: PMC6239967 DOI: 10.1007/s00415-018-8891-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 10/16/2022]
Abstract
Although temporal lobe epilepsy (TLE) and resection (TLR) impact olfactory eloquent brain structures, their influences on olfaction remain enigmatic. We sought to more definitively assess the influences of TLE and TLR on olfaction using three well-validated olfactory tests and measuring the tests' associations with the volume of numerous temporal lobe brain structures. The University of Pennsylvania Smell Identification Test and an odor detection threshold test were administered to 71 TLE patients and 71 age- and sex-matched controls; 69 TLE patients and controls received an odor discrimination/memory test. Fifty-seven patients and 57 controls were tested on odor identification and threshold before and after TLR; 27 patients and 27 controls were similarly tested for odor detection/discrimination. Scores were compared using analysis of variance and correlated with pre- and post-operative volumes of the target brain structures. TLE was associated with bilateral deficits in all test measures. TLR further decreased function on the side ipsilateral to resection. The hippocampus and other structures were smaller on the focus side of the TLE subjects. Although post-operative volumetric decreases were evident in most measured brain structures, modest contralateral volumetric increases were observed in some cases. No meaningful correlations were evident pre- or post-operatively between the olfactory test scores and the structural volumes. In conclusion, we demonstrate that smell dysfunction is clearly a key element of both TLE and TLR, impacting odor identification, detection, and discrimination/memory. Whether our novel finding of significant post-operative increases in the volume of brain structures contralateral to the resection side reflects plasticity and compensatory processes requires further study.
Collapse
Affiliation(s)
- Richard L Doty
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA.
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Isabelle Tourbier
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessica K Neff
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Silas
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Psychology, Middlesex University, London, UK
| | - Bruce Turetsky
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul Moberg
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taehoon Kim
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Pluta
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaqueline French
- Department of Neurology, New York University Langone Medical Center, New York, NY, 10016, USA
| | - Ashwini D Sharan
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Michael J Sperling
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Natasha Mirza
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anthony Risser
- Smell and Taste Center, Perelman School of Medicine, Hospital of the University of Pennsylvania, 5 Ravdin Pavilion, 3400 Spruce Street, Philadelphia, PA, 19104-4283, USA
| | - Gordon Baltuch
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John A Detre
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Gao Y, Zheng J, Li Y, Guo D, Wang M, Cui X, Ye W. Abnormal default-mode network homogeneity in patients with temporal lobe epilepsy. Medicine (Baltimore) 2018; 97:e11239. [PMID: 29952987 PMCID: PMC6039636 DOI: 10.1097/md.0000000000011239] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Default-mode network (DMN) plays a key role in a broad-scale cognitive problem, which occurs in temporal lobe epilepsy (TLE). However, little is known about the alterations of the network homogeneity (NH) of DMN in TLE. In the present study, we employed NH method to investigate the NH of DMN in TLE at rest.A total of 47 patients with TLE (right TLE [rTLE] 29, and left TLE [lTLE] 18) and 35 healthy controls who underwent resting-state functional magnetic resonance imaging were enrolled. NH approach was used to analyze the data.rTLE exhibited decreased NH in the right middle temporal pole gyrus and increased NH in the bilateral posterior cingulate cortex compared to the control group. In lTLE, decreased NH was observed in left inferior temporal gyrus and left hippocampus. Meanwhile, we found that lTLE had a longer performance reaction time. No significant correlation was found between abnormal NH values and clinical variables in the patients.These findings suggested that abnormal NH of the DMN exists in rTLE and lTLE, and highlighted the significance of DMN in the pathophysiology of cognitive problems occurring in TLE and also found the existence of abnormality of executive function in lTLE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Ye
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
25
|
Abstract
Bipolar I disorder and interictal personality syndrome have many overlapping characteristics that are difficult to distinguish. There is scant literature focused on interictal personality syndrome and no case reports to date detailing patients with comorbid bipolar pathology. We describe an individual with a history of bipolar I disorder who developed right temporal lobe epilepsy after several head injuries. He subsequently exhibited symptoms consistent with interictal personality syndrome that were independent of his bipolar symptomatology. Better understanding of these disorders can lead to improved diagnosis and symptom management. The similarities may also point to a partially shared neuropathology.
Collapse
|
26
|
Chung BYT, Bailey CDC. Similar nicotinic excitability responses across the developing hippocampal formation are regulated by small-conductance calcium-activated potassium channels. J Neurophysiol 2018; 119:1707-1722. [PMID: 29384449 DOI: 10.1152/jn.00426.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hippocampal formation forms a cognitive circuit that is critical for learning and memory. Cholinergic input to nicotinic acetylcholine receptors plays an important role in the normal development of principal neurons within the hippocampal formation. However, the ability of nicotinic receptors to stimulate principal neurons across all regions of the developing hippocampal formation has not been determined. We show in this study that heteromeric nicotinic receptors mediate direct inward current and depolarization responses in principal neurons across the hippocampal formation of the young postnatal mouse. These responses were found in principal neurons of the CA1, CA3, dentate gyrus, subiculum, and entorhinal cortex layer VI, and they varied in magnitude across regions with the greatest responses occurring in the subiculum and entorhinal cortex. Despite this regional variation in the magnitude of passive responses, heteromeric nicotinic receptor stimulation increased the excitability of active principal neurons by a similar amount in all regions. Pharmacological experiments found this similar excitability response to be regulated by small-conductance calcium-activated potassium (SK) channels, which exhibited regional differences in their influence on neuron activity that offset the observed regional differences in passive nicotinic responses. These findings demonstrate that SK channels play a role to coordinate the magnitude of heteromeric nicotinic excitability responses across the hippocampal formation at a time when nicotinic signaling drives the development of this cognitive brain region. This coordinated input may contribute to the normal development, synchrony, and maturation of the hippocampal formation learning and memory network. NEW & NOTEWORTHY This study demonstrates that small-conductance calcium-activated potassium channels regulate similar-magnitude excitability responses to heteromeric nicotinic acetylcholine receptor stimulation in active principal neurons across multiple regions of the developing mouse hippocampal formation. Given the importance of nicotinic neurotransmission for the development of principal neurons within the hippocampal formation, this coordinated excitability response is positioned to influence the normal development, synchrony, and maturation of the hippocampal formation learning and memory network.
Collapse
Affiliation(s)
- Beryl Y T Chung
- Department of Biomedical Sciences, University of Guelph , Guelph, Ontario , Canada
| | - Craig D C Bailey
- Department of Biomedical Sciences, University of Guelph , Guelph, Ontario , Canada
| |
Collapse
|
27
|
Abstract
This article reviews the major paradigm shifts that have occurred in the area of the application of clinical and experimental neuropsychology to epilepsy and epilepsy surgery since the founding of the International Neuropsychological Society. The five paradigm shifts discussed include: 1) The neurobiology of cognitive disorders in epilepsy - expanding the landscape of syndrome-specific neuropsychological impairment; 2) pathways to comorbidities: bidirectional relationships and their clinical implications; 3) discovering quality of life: The concept, its quantification and applicability; 4) outcomes of epilepsy surgery: challenging conventional wisdom; and 5) Iatrogenic effects of treatment: cognitive and behavioral effects of antiepilepsy drugs. For each area we characterize the status of knowledge, the key developments that have occurred, and how they have altered our understanding of the epilepsies and their management. We conclude with a brief overview of where we believe the field will be headed in the next decade which includes changes in assessment paradigms, moving from characterization of comorbidities to interventions; increasing development of new measures, terminology and classification; increasing interest in neurodegenerative proteins; transitioning from clinical seizure features to modifiable risk factors; and neurobehavioral phenotypes. Overall, enormous progress has been made over the lifespan of the INS with promise of ongoing improvements in understanding of the cognitive and behavioral complications of the epilepsies and their treatment. (JINS, 2017, 23, 791-805).
Collapse
Affiliation(s)
- Bruce Hermann
- 1Department of Neurology,University of Wisconsin School of Medicine and Public Health,Madison Wisconsin
| | - David W Loring
- 2Departments of Neurology and Pediatrics,Emory University School of Medicine,Atlanta Georgia
| | - Sarah Wilson
- 3Department of Psychology,Melbourne University,Melbourne,Australia
| |
Collapse
|
28
|
Caciagli L, Bernasconi A, Wiebe S, Koepp MJ, Bernasconi N, Bernhardt BC. A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy: Time is brain? Neurology 2017; 89:506-516. [PMID: 28687722 DOI: 10.1212/wnl.0000000000004176] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/21/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE It remains unclear whether drug-resistant temporal lobe epilepsy (TLE) is associated with cumulative brain damage, with no expert consensus and no quantitative syntheses of the available evidence. METHODS We conducted a systematic review and meta-analysis of MRI studies on progressive atrophy, searching PubMed and Ovid MEDLINE databases for cross-sectional and longitudinal quantitative MRI studies on drug-resistant TLE. RESULTS We screened 2,976 records and assessed eligibility of 248 full-text articles. Forty-two articles met the inclusion criteria for quantitative evaluation. We observed a predominance of cross-sectional studies, use of different clinical indices of progression, and high heterogeneity in age-control procedures. Meta-analysis of 18/1 cross-sectional/longitudinal studies on hippocampal atrophy (n = 979 patients) yielded a pooled effect size of r = -0.42 for ipsilateral atrophy related to epilepsy duration (95% confidence interval [CI] -0.51 to -0.32; p < 0.0001; I2 = 65.22%) and r = -0.35 related to seizure frequency (95% CI -0.47 to -0.22; p < 0.0001; I2 = 61.97%). Sensitivity analyses did not change the results. Narrative synthesis of 25/3 cross-sectional/longitudinal studies on whole brain atrophy (n = 1,504 patients) indicated that >80% of articles reported duration-related progression in extratemporal cortical and subcortical regions. Detailed analysis of study design features yielded low to moderate levels of evidence for progressive atrophy across studies, mainly due to dominance of cross-sectional over longitudinal investigations, use of diverse measures of seizure estimates, and absence of consistent age control procedures. CONCLUSIONS While the neuroimaging literature is overall suggestive of progressive atrophy in drug-resistant TLE, published studies have employed rather weak designs to directly demonstrate it. Longitudinal multicohort studies are needed to unequivocally differentiate aging from disease progression.
Collapse
Affiliation(s)
- Lorenzo Caciagli
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK
| | - Andrea Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK
| | - Samuel Wiebe
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK
| | - Matthias J Koepp
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK
| | - Neda Bernasconi
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK
| | - Boris C Bernhardt
- From the Neuroimaging of Epilepsy Laboratory (L.C., A.B., N.B., B.C.B.) and Multimodal Imaging and Connectome Analysis Laboratory (B.C.B.), Montreal Neurological Institute and Hospital, McGill University; Department of Clinical Neurosciences (S.W.), University of Calgary, Canada; and Department of Clinical and Experimental Epilepsy (L.C., M.J.K.), UCL Institute of Neurology, London, UK.
| |
Collapse
|
29
|
Abstract
SummaryIntroduction.Medial temporal lobe epilepsy (MTLE) is the most frequent form of epilepsy in adulthood. It is classified as local/regional epilepsy. However, there is increasing evidence of the involvement of both temporal lobes and this provides abundant arguments to question this view, and consider MTLE as one of the typical bilateral system epilepsies.Aim.To provide a contemporary review of medial temporal lobe epilepsy, discussing the bilateral aspects, with reference to epilepsy surgery.Methods.A literature review and a resume of the author’s own experiences with MTLE patients.Results.Recent electrophysiological and neuroimaging data provide convincing data supporting that MTLE is a bilateral disease. The uni-and bilateral features form a continuum and the participation rate of the two temporal lobes determine course and surgical perspective of the individual patient.Conclusions.The contradictory data of invasive presurgical evaluations of MTLE patients suggest that there need to identify further indicatory markers of bilaterality and thus change the presurgical evaluation from the non-invasive towards the invasive ways. The mechanisms of the interrelationship between the two temporal lobes in MTLE warrants further research.
Collapse
|
30
|
Zhang Z, Liao W, Xu Q, Wei W, Zhou HJ, Sun K, Yang F, Mantini D, Ji X, Lu G. Hippocampus-associated causal network of structural covariance measuring structural damage progression in temporal lobe epilepsy. Hum Brain Mapp 2016; 38:753-766. [PMID: 27677885 DOI: 10.1002/hbm.23415] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/24/2016] [Accepted: 09/21/2016] [Indexed: 01/06/2023] Open
Abstract
In mesial temporal lobe epilepsy (mTLE), the causal relationship of morphometric alterations between hippocampus and the other regions, that is, how the hippocampal atrophy leads to progressive morphometric alterations in the epileptic network regions remains largely unclear. In this study, a causal network of structural covariance (CaSCN) was proposed to map the causal effects of hippocampal atrophy on the network-based morphometric alterations in mTLE. It was hypothesized that if cross-sectional morphometric MRI data could be attributed temporal information, for example, by sequencing the data according to disease progression information, GCA would be a feasible approach for constructing a CaSCN. Based on a large cohort of mTLE patients (n = 108), the hippocampus-associated CaSCN revealed that the hippocampus and the thalamus were prominent nodes exerting causal effects (i.e., GM reduction) on other regions and that the prefrontal cortex and cerebellum were prominent nodes being subject to causal effects. Intriguingly, compensatory increased gray matter volume in the contralateral temporal region and post cingulate cortex were also detected. The method unraveled richer information for mapping network atrophy in mTLE relative to the traditional methods of stage-specific comparisons and structured covariance network. This study provided new evidence on the network spread mechanism in terms of the causal influence of hippocampal atrophy on progressive brain structural alterations in mTLE. Hum Brain Mapp 38:753-766, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China
| | - Wei Liao
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,Center for Cognition and Brain Disorders, Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Wei Wei
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Helen Juan Zhou
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorder Program, Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - Kangjian Sun
- Department of Neurosurgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Dante Mantini
- Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Belgium
| | - Xueman Ji
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
31
|
Nagy SA, Horváth R, Perlaki G, Orsi G, Barsi P, John F, Horváth A, Kovács N, Bogner P, Ábrahám H, Bóné B, Gyimesi C, Dóczi T, Janszky J. Age at onset and seizure frequency affect white matter diffusion coefficient in patients with mesial temporal lobe epilepsy. Epilepsy Behav 2016; 61:14-20. [PMID: 27232377 DOI: 10.1016/j.yebeh.2016.04.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 02/01/2023]
Abstract
In mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS), structural abnormalities are present not only in the hippocampus but also in the white matter with ipsilateral predominance. Although the timing of epilepsy onset is commonly associated with clinical and semiological dissimilarities, limited data exist regarding white matter diffusion changes with respect to age at epilepsy onset. The aim of this study was to investigate diffusion changes in the white matter of patients with unilateral MTLE-HS with respect to clinical parameters and to compare them with an age- and sex-matched healthy control group. Apparent diffusion coefficients (ADCs) were derived using monoexponential approaches from 22 (11 early and 11 late age at onset) patients with unilateral MTLE-HS and 22 age- and sex-matched control subjects after acquiring diffusion-weighted images on a 3T MRI system. Data were analyzed using two-tailed t-tests and multiple linear regression models. In the group with early onset MTLE-HS, ADC was significantly elevated in the ipsilateral hemispheric (p=0.04) and temporal lobe white matter (p=0.01) compared with that in controls. These differences were not detectable in late onset MTLE-HS patients. Apparent diffusion coefficient of the group with early onset MTLE-HS was negatively related to age at epilepsy onset in the ipsilateral hemispheric white matter (p=0.03) and the uncinate fasciculus (p=0.03), while in patients with late onset MTLE-HS, ADC was no longer dependent on age at epilepsy onset itself but rather on the seizure frequency in the ipsilateral uncinate fasciculus (p=0.03). Such diffusivity pattern has been associated with chronic white matter degeneration, reflecting myelin loss and higher extracellular volume which are more pronounced in the frontotemporal regions and also depend on clinical features. In the group with early onset MTLE-HS, the timing of epilepsy seems to be the major cause of white matter abnormalities while in late onset disease, it has a secondary role in provoking diffusion changes.
Collapse
Affiliation(s)
- Szilvia A Nagy
- Pécs Diagnostics Center, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Neurobiology of Stress Research Group, H-7624 Pécs, Ifjúság Street 20., Hungary.
| | - Réka Horváth
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - Gábor Perlaki
- Pécs Diagnostics Center, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Clinical Neuroscience MR Research Group, H-7623 Pécs, Rét Street 2., Hungary.
| | - Gergely Orsi
- Pécs Diagnostics Center, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Clinical Neuroscience MR Research Group, H-7623 Pécs, Rét Street 2., Hungary.
| | - Péter Barsi
- MR Research Centre, Semmelweis University, H-1083 Budapest, Balassa Street 6., Hungary.
| | - Flóra John
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - Andrea Horváth
- Pécs Diagnostics Center, H-7623 Pécs, Rét Street 2., Hungary; Department of Neurosurgery, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - Norbert Kovács
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Clinical Neuroscience MR Research Group, H-7623 Pécs, Rét Street 2., Hungary.
| | - Péter Bogner
- Department of Radiology, University of Pécs, H-7624 Pécs, Ifjúság Street 13., Hungary.
| | - Hajnalka Ábrahám
- Department of Medical Biology, University of Pécs, H-7624 Pécs, Szigeti Street 12., Hungary; Central Electron Microscopic Laboratory, University of Pécs, H-7624 Pécs, Honvéd Street 1., Hungary.
| | - Beáta Bóné
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - Csilla Gyimesi
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - Tamás Dóczi
- Pécs Diagnostics Center, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Clinical Neuroscience MR Research Group, H-7623 Pécs, Rét Street 2., Hungary; Department of Neurosurgery, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary.
| | - József Janszky
- Department of Neurology, University of Pécs, H-7623 Pécs, Rét Street 2., Hungary; MTA-PTE, Clinical Neuroscience MR Research Group, H-7623 Pécs, Rét Street 2., Hungary.
| |
Collapse
|
32
|
Structural alterations in the rat brain and behavioral impairment after status epilepticus: An MRI study. Neuroscience 2016; 315:79-90. [DOI: 10.1016/j.neuroscience.2015.11.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/07/2015] [Accepted: 11/26/2015] [Indexed: 12/26/2022]
|
33
|
Hutchings F, Han CE, Keller SS, Weber B, Taylor PN, Kaiser M. Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations. PLoS Comput Biol 2015; 11:e1004642. [PMID: 26657566 PMCID: PMC4675531 DOI: 10.1371/journal.pcbi.1004642] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/29/2015] [Indexed: 02/03/2023] Open
Abstract
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder resulting in disruptive seizures. In the case of drug resistant epilepsy resective surgery is often considered. This is a procedure hampered by unpredictable success rates, with many patients continuing to have seizures even after surgery. In this study we apply a computational model of epilepsy to patient specific structural connectivity derived from diffusion tensor imaging (DTI) of 22 individuals with left TLE and 39 healthy controls. We validate the model by examining patient-control differences in simulated seizure onset time and network location. We then investigate the potential of the model for surgery prediction by performing in silico surgical resections, removing nodes from patient networks and comparing seizure likelihood post-surgery to pre-surgery simulations. We find that, first, patients tend to transit from non-epileptic to epileptic states more often than controls in the model. Second, regions in the left hemisphere (particularly within temporal and subcortical regions) that are known to be involved in TLE are the most frequent starting points for seizures in patients in the model. In addition, our analysis also implicates regions in the contralateral and frontal locations which may play a role in seizure spreading or surgery resistance. Finally, the model predicts that patient-specific surgery (resection areas chosen on an individual, model-prompted, basis and not following a predefined procedure) may lead to better outcomes than the currently used routine clinical procedure. Taken together this work provides a first step towards patient specific computational modelling of epilepsy surgery in order to inform treatment strategies in individuals. Temporal lobe epilepsy (TLE) is a disorder characterised by unpredictable seizures, where surgical removal of brain tissue is often the final treatment option. In roughly 30% of cases surgery procedures are unsuccessful at preventing future seizures. This paper shows the application of a computational model which uses patient derived brain connectivity to predict the success rates of surgery in people with TLE. We consider the brains of 22 patients as networks, with brain regions as nodes and the white matter connections between them as edges. The brain network is unique to each subject and produced from brain imaging scans of 22 patients and 39 controls. Seizures are simulated before and after surgery, where surgery in the model is the removal of nodes from the network. The model successfully identifies regions known to be involved in TLE, and its predicted success rates for surgery are close to the results found in reality. The model additionally provides patient specific recommendations for surgical procedures, which in simulations show improved results compared to standard surgery in every case. This is a first step towards designing personalised surgery procedures in order to improve surgery success rates.
Collapse
Affiliation(s)
- Frances Hutchings
- Interdisciplinary Computing and Complex BioSystems, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| | - Cheol E. Han
- Department of Biomedical Engineering, Korea University, Seoul, Republic of Korea
- Department of Brain Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Simon S. Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Bernd Weber
- Center for Economics and Neuroscience, University of Bonn, Bonn, Germany
- Department of Epileptology, University of Bonn, Bonn, Germany
| | - Peter N. Taylor
- Interdisciplinary Computing and Complex BioSystems, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marcus Kaiser
- Interdisciplinary Computing and Complex BioSystems, School of Computing Science, Newcastle University, Newcastle upon Tyne, United Kingdom
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
34
|
Individual feature maps: a patient-specific analysis tool with applications in temporal lobe epilepsy. Int J Comput Assist Radiol Surg 2015; 11:53-71. [PMID: 26567092 DOI: 10.1007/s11548-015-1258-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/01/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE MRI-based diagnosis of temporal lobe epilepsy (TLE) can be challenging when pathology is not visually evident due to low image contrast or small lesion size. Computer-assisted analyses are able to detect lesions common in a specific patient population, but most techniques do not address clinically relevant individual pathologies resulting from the heterogeneous etiology of the disease. We propose a novel method to supplement the radiological inspection of TLE patients (n = 15) providing patient-specific quantitative assessment. METHOD Regions of interest are defined across the brain and volume, relaxometry, and diffusion features are extracted from them. Statistical comparisons between individual patients and a healthy control group (n = 17) are performed on these features, identifying and visualizing significant differences through individual feature maps. Four maps are created per patient showing differences in intensity, asymmetry, and volume. RESULTS Detailed reports were generated per patient. Abnormal hippocampal intensity and volume differences were detected in all patients diagnosed with mesial temporal sclerosis (MTS). Abnormal intensities in the temporal cortex were identified in patients with no MTS. A laterality score correctly distinguished left from right TLE in 12 out of 15 patients. CONCLUSION The proposed focus on subject-specific quantitative changes has the potential of improving the assessment of TLE patients using MRI techniques, possibly even redefining current imaging protocols for TLE.
Collapse
|
35
|
Bernedo Paredes VE, Buchholz HG, Gartenschläger M, Breimhorst M, Schreckenberger M, Werhahn KJ. Reduced D2/D3 Receptor Binding of Extrastriatal and Striatal Regions in Temporal Lobe Epilepsy. PLoS One 2015; 10:e0141098. [PMID: 26544593 PMCID: PMC4636381 DOI: 10.1371/journal.pone.0141098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Objective Dopamine is an endogenous neuromodulator in cortical circuits and the basal ganglia. In animal models of temporal lobe epilepsy (TLE), seizure threshold is modulated to some extent by dopamine, with D1-receptors having a pro- and D2-receptors an anticonvulsant effect. We aimed to extend our previously reported results on decreased D2/D3 receptor binding in the lateral epileptogenic temporal lobe and to correlate them with demographic and seizure variables to gain a more comprehensive understanding of the underlying involvement of the dopaminergic system in the epileptogenesis of TLE. Methods To quantify D2/D3 receptor binding, we studied 21 patients with TLE and hippocampal sclerosis (13 left- and eight right-sided) and 18 controls using PET with the high-affinity dopamine D2/D3-receptor ligand 18F-Fallypride to image striatal and extrastriatal binding. TLE was defined by interictal and ictal video-EEG, MRI and 18F-Fluorodeoxyglucose PET. Voxel-based statistical and regions-of-interest analyses were performed. Results 18F-Fallypride binding potential was significantly reduced in the affected temporal lobe and bilateral putamen. A positive correlation between age at onset of epilepsy and [18F]FP BPnd (binding potential non-displaceable) in temporal regions on the epileptogenic side was found, as well as a negative correlation between epilepsy duration and [18F]FP BPnd in the temporal pole on the epileptogenic side and a positive correlation between the estimated number of lifetime GTCS and [18F]FP BPnd in the hippocampus on the epileptogenic side. Significance The areas of reduced D2/D3 receptor availability correspond to “the irritative zone” surrounding the epileptogenic area. Moreover, reduced D2/D3 receptor availability was detectable in the basal ganglia, which are suspected to be involved in a control circuit for epileptic seizures. The correlational analysis additionally suggests that increased epilepsy duration leads to increasing impairment of the dopaminergic system.
Collapse
Affiliation(s)
- Viviane E. Bernedo Paredes
- Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Martin Gartenschläger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Markus Breimhorst
- Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Konrad J. Werhahn
- Department of Neurology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
36
|
Kim JB, Suh SI, Kim JH. Volumetric and shape analysis of hippocampal subfields in unilateral mesial temporal lobe epilepsy with hippocampal atrophy. Epilepsy Res 2015; 117:74-81. [DOI: 10.1016/j.eplepsyres.2015.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/11/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022]
|
37
|
Peng WF, Ding J, Li X, Fan F, Zhang QQ, Wang X. N-methyl-D-aspartate receptor NR2B subunit involved in depression-like behaviours in lithium chloride-pilocarpine chronic rat epilepsy model. Epilepsy Res 2015; 119:77-85. [PMID: 26688426 DOI: 10.1016/j.eplepsyres.2015.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/25/2015] [Accepted: 09/21/2015] [Indexed: 11/24/2022]
Abstract
Depression is a common comorbidity in patients with epilepsy with unclear mechanisms. This study is to explore the role of glutamate N-methyl-D-aspartate (NMDA) receptor NR1, NR2A and NR2B subunits in epilepsy-associated depression. Lithium chloride (Licl)-pilocarpine chronic rat epilepsy model was established and rats were divided into epilepsy with depression (EWD) and epilepsy without depression (EWND) subgroups based on forced swim test. Expression of NMDA receptor NR1, NR2A and NR2B subunits was measured by western blot and immunofluorescence methods. The immobility time (IMT) was significantly greater in Licl-pilocarpine model group than in Control group, which was also greater in EWD group than in EWND group. No differences of spontaneous recurrent seizure (SRS) counts over two weeks and latency were found between EWD and EWND groups. The number of NeuN positive cells was significantly less in Licl-pilocarpine model group than in Control group, but had no difference between EWD and EWND groups. The ratios of phosphorylated NR1 (p-NR1)/NR1 and p-NR2B/NR2B were significantly greater in the hippocampus in EWD group than in EWND group. Moreover, the expression of p-NR1 and p-NR2B in the CA1 subfield of hippocampus were both greater in Licl-pilocarpine model group than Control group. Selective blockage of NR2B subunit with ifenprodil could alleviate depression-like behaviours of Licl-pilocarpine rat epilepsy model. In conclusion, glutamate NMDA receptor NR2B subunit was involved in promoting depression-like behaviours in the Licl-pilocarpine chronic rat epilepsy model and might be a target for treating epilepsy-associated depression.
Collapse
Affiliation(s)
- Wei-Feng Peng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Li
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Fan Fan
- Department of Emergency, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qian-Qian Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Gleichgerrcht E, Kocher M, Bonilha L. Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy. Epilepsia 2015; 56:1660-8. [DOI: 10.1111/epi.13133] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Ezequiel Gleichgerrcht
- Department of Neurology; Medical University of South Carolina; Charleston South Carolina U.S.A
| | - Madison Kocher
- Department of Neurology; Medical University of South Carolina; Charleston South Carolina U.S.A
| | - Leonardo Bonilha
- Department of Neurology; Medical University of South Carolina; Charleston South Carolina U.S.A
| |
Collapse
|
39
|
Gray and White Matter Volumes and Cognitive Dysfunction in Drug-Naïve Newly Diagnosed Pediatric Epilepsy. BIOMED RESEARCH INTERNATIONAL 2015; 2015:923861. [PMID: 26417604 PMCID: PMC4568349 DOI: 10.1155/2015/923861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 04/20/2015] [Accepted: 06/21/2015] [Indexed: 12/02/2022]
Abstract
Epilepsy patients often have cognitive dysfunction even at early stages of disease. We investigated the relationship between structural findings and neuropsychological status in drug-naïve newly diagnosed pediatric epilepsy patients. Thirty newly diagnosed pediatric epilepsy patients and 25 healthy control subjects aged 7~16 years were enrolled, who were assessed by the Korean version of the Wechsler Intelligence Scale for Children (K-WISC-III), the Stroop test, and the trail making test (TMT). Optimized voxel-based morphometry (VBM) was performed for both Gray Matter (GM) and White Matter (WM) volumes. Lower performance levels of verbal intelligence quotient, freedom from distractibility, and executive function were observed in epilepsy group. Interestingly, poor performance in these cognitive subdomains was correlated with regional VBM findings involving both GM and WM volumes, but with different patterns between groups. GM volumes revealed clear differences predominantly in the bilateral frontal regions. These findings indicate that certain cognitive functions may be affected in the early stage of epilepsy, not related to the long-standing epilepsy or medication, but more related to the neurocognitive developmental process in this age. Epilepsy can lead to neuroanatomical alterations in both GM and WM, which may affect cognitive functions, during early stages even before commencement of AED medication.
Collapse
|
40
|
Miró J, Gurtubay-Antolin A, Ripollés P, Sierpowska J, Juncadella M, Fuentemilla L, Sánchez V, Falip M, Rodríguez- Fornells A. Interhemispheric microstructural connectivity in bitemporal lobe epilepsy with hippocampal sclerosis. Cortex 2015; 67:106-21. [DOI: 10.1016/j.cortex.2015.03.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/06/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
|
41
|
Pan JW, Kuzniecky RI. Utility of magnetic resonance spectroscopic imaging for human epilepsy. Quant Imaging Med Surg 2015; 5:313-22. [PMID: 25853088 DOI: 10.3978/j.issn.2223-4292.2015.01.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/15/2015] [Indexed: 01/07/2023]
Abstract
This review discusses the potential utility of broad based use of magnetic resonance (MR) spectroscopic imaging for human epilepsy and seizure localization. The clinical challenges are well known to the epilepsy community, intrinsic in the variability of location, volumetric size and network extent of epileptogenic tissue in individual patients. The technical challenges are also evident, with high performance requirements in multiple steps, including magnet homogeneity, detector performance, sequence design, speed of acquisition in addition to large territory spectral processing. We consider how MR spectroscopy and spectroscopic imaging has been informative for epilepsy thus far, with specific attention to what is measured, the interpretation of such measurements and technical performance challenges. Examples are shown from medial temporal lobe and neocortical epilepsies are considered from 4T, 7T and most recently 3T.
Collapse
Affiliation(s)
- Jullie W Pan
- 1 Departments of Neurology and Radiology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; 2 Department of Neurology, NYU School of Medicine, New York, USA
| | - Ruben I Kuzniecky
- 1 Departments of Neurology and Radiology, University of Pittsburgh School of Medicine, Pittsburgh, USA ; 2 Department of Neurology, NYU School of Medicine, New York, USA
| |
Collapse
|
42
|
Young woman with a four-year history of epilepsy and progressive focal cortical atrophy - What is the diagnosis? EPILEPSY & BEHAVIOR CASE REPORTS 2015; 2:91-5. [PMID: 25667879 PMCID: PMC4307882 DOI: 10.1016/j.ebcr.2014.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The pathogenesis of disease progression in drug-refractory epilepsy is poorly understood. We report the case of a young woman with a four-year history of epilepsy that progressed rapidly as evidenced by the development of progressive focal cortical atrophy. She underwent biopsy that showed perinatal ischemia and a prominent inflammatory response, including T-cell infiltration and microglial activation. There was no consensus reached on the final diagnosis although the hypothesis of dual pathology (adult variant of Rasmussen's encephalitis and perinatal stroke) was considered. The possible role of inflammation in the progression of epilepsy caused by a “static” lesion (perinatal stroke) is discussed.
Collapse
|
43
|
Coito A, Plomp G, Genetti M, Abela E, Wiest R, Seeck M, Michel CM, Vulliemoz S. Dynamic directed interictal connectivity in left and right temporal lobe epilepsy. Epilepsia 2015; 56:207-17. [PMID: 25599821 DOI: 10.1111/epi.12904] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2014] [Indexed: 11/27/2022]
Abstract
OBJECTIVE There is increasing evidence that epileptic activity involves widespread brain networks rather than single sources and that these networks contribute to interictal brain dysfunction. We investigated the fast-varying behavior of epileptic networks during interictal spikes in right and left temporal lobe epilepsy (RTLE and LTLE) at a whole-brain scale using directed connectivity. METHODS In 16 patients, 8 with LTLE and 8 with RTLE, we estimated the electrical source activity in 82 cortical regions of interest (ROIs) using high-density electroencephalography (EEG), individual head models, and a distributed linear inverse solution. A multivariate, time-varying, and frequency-resolved Granger-causal modeling (weighted Partial Directed Coherence) was applied to the source signal of all ROIs. A nonparametric statistical test assessed differences between spike and baseline epochs. Connectivity results between RTLE and LTLE were compared between RTLE and LTLE and with neuropsychological impairments. RESULTS Ipsilateral anterior temporal structures were identified as key drivers for both groups, concordant with the epileptogenic zone estimated invasively. We observed an increase in outflow from the key driver already before the spike. There were also important temporal and extratemporal ipsilateral drivers in both conditions, and contralateral only in RTLE. A different network pattern between LTLE and RTLE was found: in RTLE there was a much more prominent ipsilateral to contralateral pattern than in LTLE. Half of the RTLE patients but none of the LTLE patients had neuropsychological deficits consistent with contralateral temporal lobe dysfunction, suggesting a relationship between connectivity changes and cognitive deficits. SIGNIFICANCE The different patterns of time-varying connectivity in LTLE and RTLE suggest that they are not symmetrical entities, in line with our neuropsychological results. The highest outflow region was concordant with invasive validation of the epileptogenic zone. This enhanced characterization of dynamic connectivity patterns could better explain cognitive deficits and help the management of epilepsy surgery candidates.
Collapse
Affiliation(s)
- Ana Coito
- Functional Brain Mapping Lab, Department of Fundamental Neurosciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Morgan VL, Conrad BN, Abou-Khalil B, Rogers BP, Kang H. Increasing structural atrophy and functional isolation of the temporal lobe with duration of disease in temporal lobe epilepsy. Epilepsy Res 2014; 110:171-8. [PMID: 25616470 DOI: 10.1016/j.eplepsyres.2014.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Due to pharmacoresistant seizures and the underutilization of surgical treatments, a large number of temporal lobe epilepsy (TLE) patients experience seizures for years or decades. The goal of this study was to generate a predictive model of duration of disease with the least number of parameters possible in order to identify and quantify the significant volumetric and functional indicators of TLE progression. METHODS Two cohorts of subjects including 12 left TLE, 21 right TLE and 20 healthy controls (duration = 0) were imaged on a 3T MRI scanner using high resolution T1-weighted structural MRI and 20 min of resting functional MRI scanning. Multivariate linear regression methods were used to compute a predictive model of duration of disease using 49 predictors including functional connectivity and gray matter volumes computed from these images. RESULTS No model developed from the full set of data accurately predicted the duration of disease across the entire range from 3 to 50 years. We then performed the regression on 35 subjects with durations of disease in the range 10 to 35 years. The resulting predictive model showed that longer durations were associated with reductions in functional connectivity from the ipsilateral temporal lobe to the contralateral temporal lobe, precuneus and mid cingulate, and with decreases in volume of the ipsilateral hippocampus and pallidum. CONCLUSIONS Functional and volumetric parameters accurately predicted duration of disease in TLE. The findings suggest that TLE is associated with a gradual functional isolation and significant progressive structural atrophy of the ipsilateral temporal lobe over years of duration in the range of 10-35 years. Furthermore, these changes can also be detected in the contralateral hemisphere in these patients, but to a lesser degree.
Collapse
Affiliation(s)
- Victoria L Morgan
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Benjamin N Conrad
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
45
|
Guimãraes CA, Rzezak P, Fuentes D, Franzon RC, Montenegro MA, Cendes F, Valente KD, Guerreiro MM. Memory in children with symptomatic temporal lobe epilepsy. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:184-9. [PMID: 24676434 DOI: 10.1590/0004-282x20130223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/03/2013] [Indexed: 11/21/2022]
Abstract
In children with temporal lobe epilepsy (TLE), memory deficit is not so well understood as it is in adults. The aim of this study was to identify and describe memory deficits in children with symptomatic TLE, and to verify the influence of epilepsy variables on memory. We evaluated 25 children with TLE diagnosed on clinical, EEG and MRI findings. Twenty-five normal children were compared with the patients. All children underwent a neuropsychological assessment to estimate intellectual level, attention, visual perception, handedness, and memory processes (verbal and visual: short-term memory, learning, and delayed recall). The results allowed us to conclude: besides memory deficits, other neuropsychological disturbances may be found in children with TLE such as attention, even in the absence of overall cognitive deficit; the earlier onset of epilepsy, the worse verbal stimuli storage; mesial lesions correlate with impairment in memory storage stage while neocortical temporal lesions correlate with retrieval deficits.
Collapse
Affiliation(s)
- Catarina A Guimãraes
- Departamento de Neurologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Patricia Rzezak
- Instituto de Psiquiatria, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Daniel Fuentes
- Instituto de Psiquiatria, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Renata C Franzon
- Departamento de Neurologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Fernando Cendes
- Departamento de Neurologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Kette D Valente
- Instituto de Psiquiatria, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marilisa M Guerreiro
- Departamento de Neurologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
46
|
Pacagnella D, Lopes TM, Morita ME, Yasuda CL, Cappabianco FAM, Bergo F, Balthazar MLF, Coan AC, Cendes F. Memory impairment is not necessarily related to seizure frequency in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 2014; 55:1197-204. [DOI: 10.1111/epi.12691] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Denise Pacagnella
- Department of Neurology; University of Campinas; Campinas Sao Paulo Brazil
| | - Tatila M. Lopes
- Department of Neurology; University of Campinas; Campinas Sao Paulo Brazil
| | - Marcia E. Morita
- Department of Neurology; University of Campinas; Campinas Sao Paulo Brazil
| | - Clarissa L. Yasuda
- Department of Neurology; University of Campinas; Campinas Sao Paulo Brazil
| | - Fabio A. M. Cappabianco
- Department of Science and Technology; Federal University of Sao Paulo; São José dos Campos SP Brazil
| | - Felipe Bergo
- Department of Neurology; University of Campinas; Campinas Sao Paulo Brazil
| | | | - Ana C. Coan
- Department of Neurology; University of Campinas; Campinas Sao Paulo Brazil
| | - Fernando Cendes
- Department of Neurology; University of Campinas; Campinas Sao Paulo Brazil
| |
Collapse
|
47
|
Goldberg H, Weinstock A, Bergsland N, Dwyer MG, Farooq O, Sazgar M, Poloni G, Treu C, Weinstock-Guttman B, Ramanathan M, Zivadinov R. MRI segmentation analysis in temporal lobe and idiopathic generalized epilepsy. BMC Neurol 2014; 14:131. [PMID: 24938118 PMCID: PMC4070342 DOI: 10.1186/1471-2377-14-131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 06/10/2014] [Indexed: 11/21/2022] Open
Abstract
Background Temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) patients have each been associated with extensive brain atrophy findings, yet to date there are no reports of head to head comparison of both patient groups. Our aim was to assess and compare between tissue-specific and structural brain atrophy findings in TLE to IGE patients and to healthy controls (HC). Methods TLE patients were classified in TLE lesional (L-TLE) or non-lesional (NL-TLE) based on presence or absence of MRI temporal structural abnormalities. High resolution 3 T MRI with automated segmentation by SIENAX and FIRST tools were performed in a group of patients with temporal lobe epilepsy (11 L-TLE and 15 NL-TLE) and in15 IGE as well as in 26 HC. Normal brain volume (NBV), normal grey matter volume (NGMV), normal white matter volume (NWMV), and volumes of subcortical deep grey matter structures were quantified. Using regression analyses, differences between the groups in both volume and left/right asymmetry were evaluated. Additionally, laterality of results was also evaluated to separately quantify ipsilateral and contralateral effects in the TLE group. Results All epilepsy groups had significantly lower NBV and NWMV compared to HC (p < 0.001). L-TLE had lower hippocampal volume than HC and IGE (p = 0.001), and all epilepsy groups had significantly lower amygdala volume than HC (p < = 0.004). In L-TLE, there was evidence of atrophy in both ipsilateral and contralateral structures. Conclusions Our study revealed that TLE and IGE patients demonstrated similar overall tissue-specific brain atrophy, although specific structures differences were appreciated. L-TLE also appeared to behave differently than NL-TLE, with atrophy not limited to the ipsilateral side.
Collapse
Affiliation(s)
| | - Arie Weinstock
- Comprehensive Epilepsy Program, State University of New York, Buffalo, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Peng WF, Ding J, Li X, Mao LY, Wang X. Clinical risk factors for depressive symptoms in patients with epilepsy. Acta Neurol Scand 2014; 129:343-9. [PMID: 24359278 DOI: 10.1111/ane.12191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND AIMS To investigate the relationships between demographic data, seizure-related factors, anti-epileptic drugs (AEDs) taking, and depressive symptoms in patients with epilepsy (PWE), determining the major clinical risk factors of depression. METHODS Patients with epilepsy who visited our epilepsy clinic from 2010 to 2012 were included. The clinical data were collected, and Hamilton Depression Rating Scale (HAMD), National Hospital Seizure Severity Scale (NHS3) and Pittsburgh Sleep Quality Index (PSQI) were evaluated. RESULTS A total of 116 PWE were recruited. They were divided into three groups. Age, duration of epilepsy, percentages of patients with partial seizures, history of status epilepticus (SE), using topiramate (TPM) or clonazepam (CZP), and using greater than or equal to 2 types of AEDs were all significantly higher in patients with moderate depressive symptoms than patients without depression. HAMD scores were positively correlated with age, duration of epilepsy, and the number of AEDs taking, respectively. PSQI scores were positively correlated with HAMD scores in patients with depressive symptoms. Age greater than 35 years, females, having partial seizures, history of SE, and using TPM were independent predictors of depressive symptoms in PWE by regression analysis. CONCLUSIONS Age greater than 35 years, females, having partial seizures, history of SE, and using TPM might become risk factors for depressive symptoms in PWE.
Collapse
Affiliation(s)
- W.-F. Peng
- Department of Neurology; Zhongshan Hospital; Fudan University; Shanghai China
| | - J. Ding
- Department of Neurology; Zhongshan Hospital; Fudan University; Shanghai China
| | - X. Li
- Department of Neurology; Zhongshan Hospital; Fudan University; Shanghai China
| | - L.-Y. Mao
- Department of Neurology; Zhongshan Hospital; Fudan University; Shanghai China
| | - X. Wang
- Department of Neurology; Zhongshan Hospital; Fudan University; Shanghai China
- Institute of Brain Science and State Key Laboratory of Medical Neurobiology; Fudan University; Shanghai China
| |
Collapse
|
49
|
Neuroimaging of epilepsy: lesions, networks, oscillations. Clin Neuroradiol 2014; 24:5-15. [PMID: 24424576 DOI: 10.1007/s00062-014-0284-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
Abstract
While analysis and interpretation of structural epileptogenic lesion is an essential task for the neuroradiologist in clinical practice, a substantial body of epilepsy research has shown that focal lesions influence brain areas beyond the epileptogenic lesion, across ensembles of functionally and anatomically connected brain areas. In this review article, we aim to provide an overview about altered network compositions in epilepsy, as measured with current advanced neuroimaging techniques to characterize the initiation and spread of epileptic activity in the brain with multimodal noninvasive imaging techniques. We focus on resting-state functional magnetic resonance imaging (MRI) and simultaneous electroencephalography/fMRI, and oppose the findings in idiopathic generalized versus focal epilepsies. These data indicate that circumscribed epileptogenic lesions can have extended effects on many brain systems. Although epileptic seizures may involve various brain areas, seizure activity does not spread diffusely throughout the brain but propagates along specific anatomic pathways that characterize the underlying epilepsy syndrome. Such a functionally oriented approach may help to better understand a range of clinical phenomena such as the type of cognitive impairment, the development of pharmacoresistance, the propagation pathways of seizures, or the success of epilepsy surgery.
Collapse
|
50
|
Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, Costantino L, Biagini G. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 2014; 21:663-88. [PMID: 24251566 PMCID: PMC4101766 DOI: 10.2174/0929867320666131119152201] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/04/2013] [Accepted: 08/29/2013] [Indexed: 12/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is frequently associated with hippocampal sclerosis, possibly caused by a primary brain injury that occurred a long time before the appearance of neurological symptoms. This type of epilepsy is characterized by refractoriness to drug treatment, so to require surgical resection of mesial temporal regions involved in seizure onset. Even this last therapeutic approach may fail in giving relief to patients. Although prevention of hippocampal damage and epileptogenesis after a primary event could be a key innovative approach to TLE, the lack of clear data on the pathophysiological mechanisms leading to TLE does not allow any rational therapy. Here we address the current knowledge on mechanisms supposed to be involved in epileptogenesis, as well as on the possible innovative treatments that may lead to a preventive approach. Besides loss of principal neurons and of specific interneurons, network rearrangement caused by axonal sprouting and neurogenesis are well known phenomena that are integrated by changes in receptor and channel functioning and modifications in other cellular components. In particular, a growing body of evidence from the study of animal models suggests that disruption of vascular and astrocytic components of the blood-brain barrier takes place in injured brain regions such as the hippocampus and piriform cortex. These events may be counteracted by drugs able to prevent damage to the vascular component, as in the case of the growth hormone secretagogue ghrelin and its analogues. A thoroughly investigation on these new pharmacological tools may lead to design effective preventive therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G Biagini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Laboratorio di Epilettologia Sperimentale, Universita di Modena e Reggio Emilia, Via Campi, 287, 41125 Modena, Italy.
| |
Collapse
|