1
|
Hagen JFD, Roberts NS, Johnston RJ. The evolutionary history and spectral tuning of vertebrate visual opsins. Dev Biol 2023; 493:40-66. [PMID: 36370769 PMCID: PMC9729497 DOI: 10.1016/j.ydbio.2022.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Many animals depend on the sense of vision for survival. In eumetazoans, vision requires specialized, light-sensitive cells called photoreceptors. Light reaches the photoreceptors and triggers the excitation of light-detecting proteins called opsins. Here, we describe the story of visual opsin evolution from the ancestral bilaterian to the extant vertebrate lineages. We explain the mechanisms determining color vision of extant vertebrates, focusing on opsin gene losses, duplications, and the expression regulation of vertebrate opsins. We describe the sequence variation both within and between species that has tweaked the sensitivities of opsin proteins towards different wavelengths of light. We provide an extensive resource of wavelength sensitivities and mutations that have diverged light sensitivity in many vertebrate species and predict how these mutations were accumulated in each lineage based on parsimony. We suggest possible natural and sexual selection mechanisms underlying these spectral differences. Understanding how molecular changes allow for functional adaptation of animals to different environments is a major goal in the field, and therefore identifying mutations affecting vision and their relationship to photic selection pressures is imperative. The goal of this review is to provide a comprehensive overview of our current understanding of opsin evolution in vertebrates.
Collapse
Affiliation(s)
- Joanna F D Hagen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Natalie S Roberts
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
2
|
Colour morph predicts social behaviour and contest outcomes in a polymorphic lizard (Podarcis erhardii). Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Robles-Bello SM, Vázquez-López M, Ramírez-Barrera SM, Terrones-Ramírez AK, Hernández-Baños BE. Drivers of phenotypic divergence in a Mesoamerican highland bird. PeerJ 2022; 10:e12901. [PMID: 35198262 PMCID: PMC8860067 DOI: 10.7717/peerj.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Animals derive their coloration from a variety of pigments as well as non-pigmentary structural features. One of the most widespread types of pigments are carotenoids, which are used by all invertebrate taxa and most vertebrate orders to generate red, pink, orange and yellow coloration. Despite their widespread use by diverse animal groups, animals obligately obtain carotenoid pigments from diet. Carotenoid-based coloration is therefore modulated by evolutionary and ecological processes that affect the acquisition and deposition of these pigments into tegumentary structures. The Flame-colored Tanager (Piranga bidentata) is a highland songbird in the cardinal family (Cardinalidae) that is distributed from Mexican sierras through Central America up to western Panama. While female plumage throughout its entire range is predominantly yellow, males exhibit a noticeable split in ventral plumage color, which is bright orange on the West slope and the Tres Marias Islands and blood red in Eastern Mexico and Central America. We used Multiple Regression on Matrices (MRM) to evaluate the relative contributions of geographic distance, climate and genetic distance on color divergence and body differences between geographically disjunct populations. We found that differentiation in carotenoid plumage coloration was mainly explained by rainfall differences between disjunct populations, whereas body size differences was best explained by variation in the annual mean temperature and temperature of coldest quarter. These results indicate that climate is a strong driver of phenotypic divergence in Piranga bidentata.
Collapse
Affiliation(s)
- Sahid M. Robles-Bello
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, Mexico
| | - Melisa Vázquez-López
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Sandra M. Ramírez-Barrera
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Alondra K. Terrones-Ramírez
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| | - Blanca E. Hernández-Baños
- Facultad de Ciencias, Biología Evolutiva, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
4
|
Evaluation of Age-Dependent Changes in the Coloration of Male Killifish Nothobranchius Guentheri Using New Photoprocessing Methods. BIOLOGY 2022; 11:biology11020205. [PMID: 35205071 PMCID: PMC8869725 DOI: 10.3390/biology11020205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/23/2022]
Abstract
Simple Summary This paper proposes a new methodology for evaluating fish coloration, which allows us to identify differences in the intensity of coloration of specific areas of the body. Changes in fish coloration occur during growth and under the influence of environmental factors. Male fish belonging to the family Nothobranchius are characterized by extremely diverse coloration, depending on the age of the fish, environmental factors, and social hierarchical status. As the lifespan of this genus of fish is very short (12–14 months), studies on age-dependent changes are possible. In this study, we demonstrate correlations between the coloration of particular body zones of male Nothobranchius guentheri and age using new photofixation methods and image processing software. This methodology can be applied to other fish with unique coloration patterns, for example, family Cichlidae and order Cyprinodontiformes. Abstract Fish as model objects have found wide applications in biology and fundamental medicine and allow studies of behavioral and physiological responses to various environmental factors. Representatives of the genus Nothobranchius are one of the most convenient objects for such studies. Male fish belonging to the family Nothobranchiidae are characterized by extremely diverse coloration, which constantly changes, depending on the age of the fish, environmental factors, and social hierarchical status. These fish species are characterized by a short life cycle, which allows changes in coloration, an indicator of the ontogenesis stage, to be estimated. Existing methods of fish color assessments do not allow the intensity of coloration of particular body zones to be clearly differentiated. In the present study, we suggest a method of two-factor assessment of specific fish body zones using modified methods of photofixation and image processing software. We describe the protocol of the method and the results of its application to different-aged groups of male Nothobranchius guentheri. The coloration of selected areas (i.e., red spot on the gill cover (RSGC), black border on the caudal fin (BBCF), and white border on the dorsal fin (WBDF)) differed significantly according to the size and age of the fish (p < 0.05). The data obtained suggest that N. guentheri can be a model for studying aging by the intensity of body coloration in males.
Collapse
|
5
|
Wilgers DJ, Colton Watts J, Hebets EA. Habitat complexity and complex signal function – exploring the role of ornamentation. Behav Ecol 2021. [DOI: 10.1093/beheco/arab144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Animals often communicate in complex, heterogeneous environments, leading to hypothesized selection for increased detectability or discriminability in signaling traits. The extent to which secondary sexual ornaments have evolved to overcome the challenges of signaling in complex environments, however, remains understudied, especially in comparison to their role as indicator traits. This study tested the hypothesis that the condition-dependent secondary sexual ornamentation in the wolf spider Rabidosa rabida functions to increase detectability/discriminability in visually complex environments. We predicted that male ornamentation would interact with the complexity of the signaling environment to affect male mating success. In particular, we expected ornaments to confer a greater mating advantage when males courted in visually complex environments. To test this, we artificially manipulated male foreleg ornamentation (present/absent) and ran repeated-measures mating trials across laboratory microcosms that represented simple versus complex visual signaling environments. Microcosm visual complexity differed in their background pattern, grass stem color, and grass stem placement. We found that ornamented males mated more often and more quickly than unornamented males across both environments, but we found no support for an ornament-by-environment interaction. Male courtship rate, however, did interact with the signaling environment. Despite achieving the same level of mating success across signaling environments, ornamented males courted less rapidly in complex versus simple environments, although environmental complexity had no influence on unornamented male courtship rates. Our results suggest that the visual complexity of the signaling environment influences the interactive influence of ornamentation and dynamic visual courtship on female mate choice.
Collapse
Affiliation(s)
- Dustin J Wilgers
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Department of Natural Sciences, McPherson College, McPherson, KS, USA
| | - J Colton Watts
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
6
|
McDermott MT, Safran RJ. Sensitive periods during the development and expression of vertebrate sexual signals: A systematic review. Ecol Evol 2021; 11:14416-14432. [PMID: 34765116 PMCID: PMC8571593 DOI: 10.1002/ece3.8203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 08/14/2021] [Accepted: 09/19/2021] [Indexed: 01/01/2023] Open
Abstract
Many sexually selected traits exhibit phenotypic plasticity. Despite a growing appreciation for the ecological context in which sexual selection occurs, and for the role of plasticity in shaping traits associated with local adaptation and divergence, there is an important gap in knowledge about the onset and duration of plasticity in sexual trait expression. Integrating this temporal dimension of plasticity into models of sexual selection informs our understanding of the information conveyed by sexual traits and our predictions related to trait evolution, and is critical in this time of unprecedented and rapid environmental change. We conducted a systematic review of 869 studies to ask how trait modalities (e.g., visual and chemical) relate to the onset and duration of plasticity in vertebrate sexual signals. We show that this literature is dominated by studies of coloration in birds and fish, and most studies take place during the breeding season. Where possible, we integrate results across studies to link physiology of specific trait modalities with the life stage (e.g., juvenile, breeding, or nonbreeding) during which plasticity occurs in well-studied traits. Limitations of our review included a lack of replication in our dataset, which precluded formal analysis. We argue that the timing of trait plasticity, in addition to environmental context, is critical for determining whether and how various communication signals are associated with ecological context, because plasticity may be ongoing or occur at only one point in an individual's lifetime, and determining a fixed trajectory of trait expression. We advocate for careful consideration of the onset and duration of plasticity when analyzing how environmental variation affects sexual trait expression and associated evolutionary outcomes.
Collapse
Affiliation(s)
- Molly T. McDermott
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| | - Rebecca J. Safran
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| |
Collapse
|
7
|
Huang D, Lewis VM, Foster TN, Toomey MB, Corbo JC, Parichy DM. Development and genetics of red coloration in the zebrafish relative Danio albolineatus. eLife 2021; 10:70253. [PMID: 34435950 PMCID: PMC8416024 DOI: 10.7554/elife.70253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Animal pigment patterns play important roles in behavior and, in many species, red coloration serves as an honest signal of individual quality in mate choice. Among Danio fishes, some species develop erythrophores, pigment cells that contain red ketocarotenoids, whereas other species, like zebrafish (D. rerio) only have yellow xanthophores. Here, we use pearl danio (D. albolineatus) to assess the developmental origin of erythrophores and their mechanisms of differentiation. We show that erythrophores in the fin of D. albolineatus share a common progenitor with xanthophores and maintain plasticity in cell fate even after differentiation. We further identify the predominant ketocarotenoids that confer red coloration to erythrophores and use reverse genetics to pinpoint genes required for the differentiation and maintenance of these cells. Our analyses are a first step toward defining the mechanisms underlying the development of erythrophore-mediated red coloration in Danio and reveal striking parallels with the mechanism of red coloration in birds.
Collapse
Affiliation(s)
- Delai Huang
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Victor M Lewis
- Department of Biology, University of Virginia, Charlottesville, United States
| | - Tarah N Foster
- Department of Biological Science, University of Tulsa, Tulsa, United States
| | - Matthew B Toomey
- Department of Biological Science, University of Tulsa, Tulsa, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, United States.,Department of Cell Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
8
|
Zhang S, Tian H, Sun Y, Li X, Wang W, Ru S. Brightened body coloration in female guppies (Poecilia reticulata) serves as an in vivo biomarker for environmental androgens: The example of 17β-trenbolone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112698. [PMID: 34450427 DOI: 10.1016/j.ecoenv.2021.112698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In vivo testing systems for environmental androgens are scarce. The aim of this study was to evaluate the potential of male-specific brightened body coloration in female guppies (Poecilia reticulata) to serve as an in vivo biomarker of environmental androgens using 17β-trenbolone as an example. The high bioaccumulation of 17β-trenbolone in the skin of female guppies suggests that it is a potential target tissue of environmental androgens. The coloration index, pigment cell ultrastructure, pigment levels, sexual attractiveness, and reproductive capability of female guppies were analyzed following 28 days of exposure to 20 ng/L, 200 ng/L, and 2000 ng/L 17β-trenbolone. Increases in the coloration index caused by 17β-trenbolone exposure were attributable to increased pteridine and melanin levels. Decreases in the sexual attractiveness, number of offspring, and survival rate of offspring suggested that the changes in body coloration translated into adverse outcomes. Finally, mRNA sequencing indicated that 17β-trenbolone increased pteridine levels by activating genomic effects of androgen receptor on xanthine dehydrogenase and increased melanin levels by exerting non-genomic effects targeting microphthalmia-associated transcription factor, tyrosinase, and tyrosinase-related protein 1 that were mediated by mitogen-activated protein kinase and calcium signaling pathways. We have derived a robust adverse outcome pathway of environmental androgens, and our findings suggest that indicators at different biological levels related to brightened body coloration in female guppies can serve as less-invasive or noninvasive in vivo biomarkers of short-term exposure to environmental androgens.
Collapse
Affiliation(s)
- Suqiu Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China.
| | - Yang Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Xuefu Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong, China
| |
Collapse
|
9
|
Stephenson JF, Stevens M, Troscianko J, Jokela J. The Size, Symmetry, and Color Saturation of a Male Guppy's Ornaments Forecast His Resistance to Parasites. Am Nat 2020; 196:597-608. [PMID: 33064581 DOI: 10.1086/711033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractSexually selected ornaments range from highly dynamic traits to those that are fixed during development and relatively static throughout sexual maturity. Ornaments along this continuum differ in the information they provide about the qualities of potential mates, such as their parasite resistance. Dynamic ornaments enable real-time assessment of the bearer's condition: they can reflect an individual's current infection status, or they can reflect resistance to recent infections. Static ornaments, however, are not affected by recent infection but may instead indicate an individual's genetically determined resistance, even in the absence of infection. Given the typically aggregated distribution of parasites among hosts, infection is unlikely to affect the ornaments of the vast majority of individuals in a population: static ornaments may therefore be the more reliable indicators of parasite resistance. To test this hypothesis, we quantified the ornaments of male guppies (Poecilia reticulata) before experimentally infecting them with Gyrodactylus turnbulli. Males with more left-right symmetrical black coloration and those with larger areas of orange coloration, both static ornaments, were more resistant. However, males with more saturated orange coloration, a dynamic ornament, were less resistant. Female guppies often prefer symmetrical males with larger orange ornaments, suggesting that parasite-mediated natural and sexual selection act in concert on these traits.
Collapse
|
10
|
Dale Broder E, Ghalambor CK, Handelsman CA, Ruell EW, Reznick DN, Angeloni LM. Rapid evolution and plasticity of genitalia. J Evol Biol 2020; 33:1361-1370. [PMID: 32896937 DOI: 10.1111/jeb.13700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022]
Abstract
Genital morphology exhibits tremendous variation and is intimately linked with fitness. Sexual selection, nonmating natural selection and neutral forces have been explored as potential drivers of genital divergence. Though less explored, genitalia may also be plastic in response to the developmental environment. In poeciliid fishes, the length of the male intromittent organ, the gonopodium, may be driven by sexual selection if longer gonopodia attract females or aid in forced copulation attempts or by nonmating natural selection if shorter gonopodia allow predator evasion. The rearing environment may also affect gonopodium development. Using an experimental introduction of Trinidadian guppies into four replicate streams with reduced predation risk, we tested whether this new environment caused the evolution of genitalia. We measured gonopodium length after rearing the source and introduced populations for two generations in the laboratory to remove maternal and other environmental effects. We split full-sibling brothers into different rearing treatments to additionally test for developmental plasticity of gonopodia in response to predator cues and food levels as well as the evolution of plasticity. The introduced populations had shorter gonopodia after accounting for body size, demonstrating rapid genital evolution in 2-3 years (8-12 generations). Brothers reared on low food levels had longer gonopodia relative to body size than those on high food, reflecting maintenance of gonopodium length despite a reduction in body size. In contrast, gonopodium length was not significantly different in response to the presence or absence of predator cues. Because the plastic response to low food was maintained between the source and introduced populations, there was no evidence that plasticity evolved. This study demonstrates the importance of both evolution and developmental plasticity in explaining genital variation.
Collapse
Affiliation(s)
- E Dale Broder
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.,Department of Biology, St. Ambrose University, Davenport, IA, USA
| | - Cameron K Ghalambor
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA.,Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Corey A Handelsman
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Emily W Ruell
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - David N Reznick
- Department of Biology, University of California Riverside, Riverside, CA, USA
| | - Lisa M Angeloni
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
11
|
Sato A, Kawata M. Genetic segregation for male body coloration and female mate preference in the guppy. BMC Res Notes 2020; 13:49. [PMID: 32000847 PMCID: PMC6993340 DOI: 10.1186/s13104-020-4909-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/16/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The purpose of this study was to segregate the genetic lines responsible for the orange area of coloration in males and the response to orange coloration exhibited by females in the guppy (Poecilia reticulata) through artificial selection. This study is part of a project that uses QTL-seq to search for candidate genes involved in male orange coloration and female response to male coloration. We created two lines: high-selected lines of males having large areas of orange spots and of females with high response to male orange coloration; and low-selected lines of males having small areas of orange spots and of females with low response to male orange coloration. RESULTS The male orange area and the female response became significantly different between high- and low-selected lines after three generations of artificial selection. This indicates that the differences in the frequencies of alleles at loci affecting the orange area and the female response between the lines increased over the generations through selection.
Collapse
Affiliation(s)
- Aya Sato
- Faculty of Education, Gunma University, 4-2 Aramaki, Maebashi, Gunma, 371-8510, Japan.
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
12
|
Bruinjé AC, Coelho FEA, Paiva TMA, Costa GC. Aggression, color signaling, and performance of the male color morphs of a Brazilian lizard (Tropidurus semitaeniatus). Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2673-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Richardson J, Smiseth PT. Nutrition during sexual maturation and at the time of mating affects mating behaviour in both sexes of a burying beetle. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Órfão I, Barbosa M, Ojanguren AF, Vicente L, Varela SAM, Magurran AE. Me against who? Male guppies adjust mating behaviour according to their rival’s presence and attractiveness. Ethology 2019. [DOI: 10.1111/eth.12864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Inês Órfão
- CFCUL – Centro de Filosofia das Ciências da Universidade de Lisboa, Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
- Centre for Biological Diversity, School of Biology University of St Andrews St Andrews UK
| | - Miguel Barbosa
- Centre for Biological Diversity, School of Biology University of St Andrews St Andrews UK
- CESAM – Centro de Estudos do Ambiente e do Mar Universidade de Aveiro Aveiro Portugal
| | - Alfredo F. Ojanguren
- Centre for Biological Diversity, School of Biology University of St Andrews St Andrews UK
| | - Luís Vicente
- CFCUL – Centro de Filosofia das Ciências da Universidade de Lisboa, Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
| | - Susana A. M. Varela
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências Universidade de Lisboa Lisboa Portugal
- IGC – Instituto Gulbenkian de Ciência Oeiras Portugal
| | - Anne E. Magurran
- Centre for Biological Diversity, School of Biology University of St Andrews St Andrews UK
| |
Collapse
|
15
|
Steffen JE, Hultberg J, Drozda S. The effect of dietary carotenoid increase on painted turtle spot and stripe color. Comp Biochem Physiol B Biochem Mol Biol 2019; 229:10-17. [DOI: 10.1016/j.cbpb.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
|
16
|
Gotanda KM, Pack A, LeBlond C, Hendry AP. Do replicates of independent guppy lineages evolve similarly in a predator-free laboratory environment? Ecol Evol 2019; 9:36-51. [PMID: 30680094 PMCID: PMC6342246 DOI: 10.1002/ece3.4585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/02/2022] Open
Abstract
The Trinidadian guppy is emblematic of parallel and convergent evolution, with repeated demonstrations that predation regime is a driver of adaptive trait evolution. A classic and foundational experiment in this system was conducted by John Endler 40 years ago, where male guppies placed into low-predation environments in the laboratory evolved increased color in a few generations. However, Endler's experiment did not employ the now typical design for a parallel/convergent evolution study, which would employ replicates of different ancestral lineages. We therefore implemented an experiment that seeded replicate mesocosms with small founding populations of guppies originating from high-predation populations of two very different lineages. The different mesocosms were maintained identically, and male guppy color was quantified every four months. After one year, we tested whether male color had increased, whether replicates within a lineage had parallel phenotypic trajectories, and whether the different lineages converged on a common phenotype. Results showed that male guppy color generally increased through time, primarily due to changes in melanic color, whereas the other colors showed inconsistent and highly variable trajectories. Most of the nonparallelism in phenotypic trajectories was among mesocosms containing different lineages. In addition to this mixture of parallelism and nonparallelism, convergence was not evident in that the variance in color among the mesocosms actually increased through time. We suggest that our results reflect the potential importance of high variation in female preference and stochastic processes such as drift and founder effects, both of which could be important in nature.
Collapse
Affiliation(s)
- Kiyoko M. Gotanda
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | - Amy Pack
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
- Global ProgramsHealth Standards OrganizationOttawaOntarioCanada
| | - Caroline LeBlond
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Andrew P. Hendry
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
17
|
Johnson AM, Chang CH, Fuller RC. Testing the potential mechanisms for the maintenance of a genetic color polymorphism in bluefin killifish populations. Curr Zool 2018; 64:733-743. [PMID: 30538733 PMCID: PMC6280095 DOI: 10.1093/cz/zoy017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/28/2018] [Indexed: 02/03/2023] Open
Abstract
The maintenance of genetic variation in the face of natural selection is a long-standing question in evolutionary biology. In the bluefin killifish Lucania goodei, male coloration is polymorphic. Males can produce either red or yellow coloration in their anal fins, and both color morphs are present in all springs. These 2 morphs are heritable and how they are maintained in nature is unknown. Here, we tested 2 mechanisms for the maintenance of the red/yellow color morphs. Negative frequency-dependent mating success predicts that rare males have a mating advantage over common males. Spatial variation in fitness predicts that different color morphs have an advantage in different microhabitat types. Using a breeding experiment, we tested these hypotheses by creating populations with different ratios of red to yellow males (5 red:1 yellow; 1 red:5 yellow) and determining male mating success on shallow and deep spawning substrates. We found no evidence of negative frequency-dependent mating success. Common morphs tended to have higher mating success, and this was particularly so on shallow spawning substrates. However, on deep substrates, red males enjoyed higher mating success than yellow males, particularly so when red males were rare. However, yellow males did not have an advantage at either depth nor when rare. We suggest that preference for red males is expressed in deeper water, possibly due to alterations in the lighting environment. Finally, male pigment levels were correlated with one another and predicted male mating success. Hence, pigmentation plays an important role in male mating success.
Collapse
Affiliation(s)
- Ashley M Johnson
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Chia-Hao Chang
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Rebecca C Fuller
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
18
|
Tomkins P, Saaristo M, Bertram MG, Michelangeli M, Tomkins RB, Wong BBM. An endocrine-disrupting agricultural contaminant impacts sequential female mate choice in fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:103-110. [PMID: 29477864 DOI: 10.1016/j.envpol.2018.02.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/15/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
The environmental impact of endocrine-disrupting chemicals (EDCs)-compounds that interfere with endocrine system function at minute concentrations-is now well established. In recent years, concern has been mounting over a group of endocrine disruptors known as hormonal growth promotants (HGPs), which are natural and synthetic chemicals used to promote growth in livestock by targeting the endocrine system. One of the most potent compounds to enter the environment as a result of HGP use is 17β-trenbolone, which has repeatedly been detected in aquatic habitats. Although recent research has revealed that 17β-trenbolone can interfere with mechanisms of sexual selection, its potential to impact sequential female mate choice remains unknown, as is true for all EDCs. To address this, we exposed female guppies (Poecilia reticulata) to 17β-trenbolone at an environmentally relevant level (average measured concentration: 2 ng/L) for 21 days using a flow-through system. We then compared the response of unexposed and exposed females to sequentially presented stimulus (i.e., unexposed) males that varied in their relative body area of orange pigmentation, as female guppies have a known preference for orange colouration in males. We found that, regardless of male orange pigmentation, both unexposed and exposed females associated with males indiscriminately during their first male encounter. However, during the second male presentation, unexposed females significantly reduced the amount of time they spent associating with low-orange males if they had previously encountered a high-orange male. Conversely, 17β-trenbolone-exposed females associated with males indiscriminately (i.e., regardless of orange colouration) during both their first and second male encounter, and, overall, associated with males significantly less than did unexposed females during both presentations. This is the first study to demonstrate altered sequential female mate choice resulting from exposure to an endocrine disruptor, highlighting the need for a greater understanding of how EDCs may impact complex mechanisms of sexual selection.
Collapse
Affiliation(s)
- Patrick Tomkins
- School of Biological Sciences, Monash University, Victoria, Australia.
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia
| | | | - Raymond B Tomkins
- Centre for AgriBioscience, Department of Environment and Primary Industries (DEPI), Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
19
|
Cavraro F, Gheno G, Ganzerla R, Zucchetta M, Franzoi P, Malavasi S. Habitat constraints on carotenoid-based coloration in a small euryhaline teleost. Ecol Evol 2018; 8:4422-4430. [PMID: 29760884 PMCID: PMC5938449 DOI: 10.1002/ece3.4003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 01/08/2018] [Accepted: 02/11/2018] [Indexed: 11/18/2022] Open
Abstract
Display of bright and striking color patterns is a widespread way of communication in many animal species. Carotenoid‐based coloration accounts for most of the bright yellow, orange, and red displays in invertebrates, fish, amphibians, reptiles, and birds, being widely considered a signal of individual health. This type of coloration is under the influence of several factors, such as sexual selection, predator pressure, pigment availability, and light transmission. Fish offer numerous examples of visual communication by means of color patterns. We used a small cyprinodontid fish, Aphanius fasciatus (Valenciennes, 1821), as a model species to assess habitat constraints on the color display in male caudal fin. Populations from natural and open/closed artificial habitats were tested for differences in the pigmentation of caudal fins. The most important factors explaining the intensity of coloration were the habitat type and the chlorophyll concentration in the sediment, followed by water turbidity; yellow fins were observed in natural habitats with low chlorophyll concentration and high water turbidity, while orange fins occurred in artificial habitats with high chlorophyll concentration and low turbidity. Furthermore, A. fasciatus in artificial habitats showed a higher somatic and a lower reproductive allotment with respect to natural habitats, according to the existing literature on the species. Furthermore, in closed artificial habitats, where the most intense reddish coloration of caudal fins was observed, a trade‐off between somatic growth and the coloration intensity of a carotenoid‐based sexual ornament has been observed; in these populations, intensity of caudal fin coloration was negatively related to the somatic allotment. Results of this study suggested how both the pigmentation of male's caudal fin and the life history strategies of the species are constrained by habitat characteristics.
Collapse
Affiliation(s)
- Francesco Cavraro
- Department of Environmental Sciences, Informatics and Statistics Ca' Foscari University Venice Venezia Mestre Italy
| | - Giulia Gheno
- Department of Molecular Sciences and Nanosystems Ca' Foscari University Venice Venezia Mestre Italy
| | - Renzo Ganzerla
- Department of Molecular Sciences and Nanosystems Ca' Foscari University Venice Venezia Mestre Italy
| | - Matteo Zucchetta
- Department of Environmental Sciences, Informatics and Statistics Ca' Foscari University Venice Venezia Mestre Italy
| | - Piero Franzoi
- Department of Environmental Sciences, Informatics and Statistics Ca' Foscari University Venice Venezia Mestre Italy
| | - Stefano Malavasi
- Department of Environmental Sciences, Informatics and Statistics Ca' Foscari University Venice Venezia Mestre Italy
| |
Collapse
|
20
|
Wojan EM, Bertram SM, Clendenen DA, Castillo C, Neldner HM, Kolluru GR. Sexual selection on the multicomponent display of black morph male Girardinus metallicus (Pisces: Poeciliidae). Behav Processes 2018; 153:1-8. [PMID: 29727713 DOI: 10.1016/j.beproc.2018.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 11/19/2022]
Abstract
Sexually selected displays often include suites of integrated traits. Black morph males of the poeciliid fish Girardinus metallicus perform courtship and aggressive displays that exhibit their conspicuous yellow and black coloration. Body size, gonopodium size and ventral black area are correlated with intermale aggression, which is key for access to mates. A previous study showed that females may prefer dominant males prior to watching them fight; however, that result was obtained in trials that allowed for male-male interactions across partitions, and to date no study has uncovered the traits important in female choice. We performed a more comprehensive investigation of the multicomponent sexual display including measures of male yellow hue, saturation and brightness. We examined the behavior of size-matched males paired to maximize the difference in yellow saturation, and measured female choice exclusive of male-male interactions and chemical cues. We found no female preference for any traits in the multicomponent sexual display. Males with brighter and more saturated yellow coloration were more likely to be dominant, and dominant males courted and attempted copulations more. Our results suggest that yellow coloration is sexually selected; however, the courtship display requires further investigation because we did not identify targets of female preference, and we discuss possible explanations for this finding.
Collapse
Affiliation(s)
- E M Wojan
- Biological Sciences Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California, 93407-0401, USA
| | - S M Bertram
- Biology Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - D A Clendenen
- Biological Sciences Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California, 93407-0401, USA
| | - C Castillo
- Biological Sciences Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California, 93407-0401, USA
| | - H M Neldner
- Biological Sciences Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California, 93407-0401, USA
| | - G R Kolluru
- Biological Sciences Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California, 93407-0401, USA.
| |
Collapse
|
21
|
Zimmer C, Riesch R, Jourdan J, Bierbach D, Arias-Rodriguez L, Plath M. Female Choice Undermines the Emergence of Strong Sexual Isolation between Locally Adapted Populations of Atlantic Mollies ( Poecilia mexicana). Genes (Basel) 2018; 9:E232. [PMID: 29724050 PMCID: PMC5977172 DOI: 10.3390/genes9050232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022] Open
Abstract
Divergent selection between ecologically dissimilar habitats promotes local adaptation, which can lead to reproductive isolation (RI). Populations in the Poecilia mexicana species complex have independently adapted to toxic hydrogen sulfide and show varying degrees of RI. Here, we examined the variation in the mate choice component of prezygotic RI. Mate choice tests across drainages (with stimulus males from another drainage) suggest that specific features of the males coupled with a general female preference for yellow color patterns explain the observed variation. Analyses of male body coloration identified the intensity of yellow fin coloration as a strong candidate to explain this pattern, and common-garden rearing suggested heritable population differences. Male sexual ornamentation apparently evolved differently across sulfide-adapted populations, for example because of differences in natural counterselection via predation. The ubiquitous preference for yellow color ornaments in poeciliid females likely undermines the emergence of strong RI, as female discrimination in favor of own males becomes weaker when yellow fin coloration in the respective sulfide ecotype increases. Our study illustrates the complexity of the (partly non-parallel) pathways to divergence among replicated ecological gradients. We suggest that future work should identify the genomic loci involved in the pattern reported here, making use of the increasing genomic and transcriptomic datasets available for our study system.
Collapse
Affiliation(s)
- Claudia Zimmer
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Department of Ecology and Evolution, Goethe University of Frankfurt, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Rüdiger Riesch
- Centre for Ecology, Evolution and Behaviour, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK.
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, D-63571 Gelnhausen, Germany.
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, D-12587 Berlin, Germany.
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco (UJAT), 86150 Villahermosa, Tabasco, Mexico.
| | - Martin Plath
- College of Animal Science & Technology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
22
|
Dijkstra PD, Border SE. How does male-male competition generate negative frequency-dependent selection and disruptive selection during speciation? Curr Zool 2018; 64:89-99. [PMID: 29492042 PMCID: PMC5809039 DOI: 10.1093/cz/zox079] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 12/16/2017] [Indexed: 11/14/2022] Open
Abstract
Natural selection has been shown to drive population differentiation and speciation. The role of sexual selection in this process is controversial; however, most of the work has centered on mate choice while the role of male-male competition in speciation is relatively understudied. Here, we outline how male-male competition can be a source of diversifying selection on male competitive phenotypes, and how this can contribute to the evolution of reproductive isolation. We highlight how negative frequency-dependent selection (advantage of rare phenotype arising from stronger male-male competition between similar male phenotypes compared with dissimilar male phenotypes) and disruptive selection (advantage of extreme phenotypes) drives the evolution of diversity in competitive traits such as weapon size, nuptial coloration, or aggressiveness. We underscore that male-male competition interacts with other life-history functions and that variable male competitive phenotypes may represent alternative adaptive options. In addition to competition for mates, aggressive interference competition for ecological resources can exert selection on competitor signals. We call for a better integration of male-male competition with ecological interference competition since both can influence the process of speciation via comparable but distinct mechanisms. Altogether, we present a more comprehensive framework for studying the role of male-male competition in speciation, and emphasize the need for better integration of insights gained from other fields studying the evolutionary, behavioral, and physiological consequences of agonistic interactions.
Collapse
Affiliation(s)
- Peter D Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Shana E Border
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
23
|
Tinghitella RM, Lackey ACR, Martin M, Dijkstra PD, Drury JP, Heathcote R, Keagy J, Scordato ESC, Tyers AM. On the role of male competition in speciation: a review and research agenda. Behav Ecol 2017. [DOI: 10.1093/beheco/arx151] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Alycia C R Lackey
- Department of Biological Sciences, Watershed Studies Institute, Murray State University, Murray, KY, USA
| | - Michael Martin
- Department of Biology, Oxford College of Emory University, Oxford, GA, USA
| | - Peter D Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Jonathan P Drury
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Heathcote
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jason Keagy
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth S C Scordato
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Alexandra M Tyers
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor, Gwynedd,, Wales, UK
| |
Collapse
|
24
|
Wilkins LGE, Marques da Cunha L, Menin L, Ortiz D, Vocat-Mottier V, Hobil M, Nusbaumer D, Wedekind C. Maternal allocation of carotenoids increases tolerance to bacterial infection in brown trout. Oecologia 2017; 185:351-363. [PMID: 28894954 DOI: 10.1007/s00442-017-3952-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 09/03/2017] [Indexed: 11/27/2022]
Abstract
Life-history theory predicts that iteroparous females allocate their resources differently among different breeding seasons depending on their residual reproductive value. In iteroparous salmonids there is typically much variation in egg size, egg number, and in the compounds that females allocate to their clutch. These compounds include various carotenoids whose functions are not sufficiently understood yet. We sampled 37 female and 35 male brown trout from natural streams, collected their gametes for in vitro fertilizations, experimentally produced 185 families in 7 full-factorial breeding blocks, raised the developing embryos singly (n = 2960), and either sham-treated or infected them with Pseudomonas fluorescens. We used female redness (as a measure of carotenoids stored in the skin) and their allocation of carotenoids to clutches to infer maternal strategies. Astaxanthin contents largely determined egg colour. Neither egg weight nor female size was correlated with the content of this carotenoid. However, astaxanthin content was positively correlated with larval growth and with tolerance against P. fluorescens. There was a negative correlation between female skin redness and the carotenoid content of their eggs. Although higher astaxanthin contents in the eggs were associated with an improvement of early fitness-related traits, some females appeared not to maximally support their current offspring as revealed by the negative correlation between female red skin colouration and egg carotenoid content. This correlation was not explained by female size and supports the prediction of a maternal trade-off between current and future reproduction.
Collapse
Affiliation(s)
- Laetitia G E Wilkins
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
- Department of Environmental Sciences, Policy and Management, 130 Mulford Hall #3114, University of California, Berkeley, CA, 94720, USA
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Laure Menin
- Institute of Chemical Sciences and Engineering ISIC, Batochime, EPFL, 1015, Lausanne, Switzerland
| | - Daniel Ortiz
- Institute of Chemical Sciences and Engineering ISIC, Batochime, EPFL, 1015, Lausanne, Switzerland
| | - Véronique Vocat-Mottier
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Matay Hobil
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - David Nusbaumer
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
25
|
Miletto Petrazzini ME, Bisazza A, Agrillo C, Lucon-Xiccato T. Sex differences in discrimination reversal learning in the guppy. Anim Cogn 2017; 20:1081-1091. [PMID: 28791553 DOI: 10.1007/s10071-017-1124-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/05/2023]
Abstract
In several mammalian and avian species, females show a higher performance than males in tasks requiring cognitive flexibility such as the discrimination reversal learning. A recent study showed that female guppies are twice as efficient as males in a reversal learning task involving yellow-red discrimination, suggesting a higher cognitive flexibility in female guppies. However, the possibility exists that the superior performance exhibited by females does not reflect a general sex difference in cognitive abilities, but instead, is confined to colour discrimination tasks. To address this issue, we compared male and female guppies in two different discrimination reversal learning tasks and we performed a meta-analysis of these experiments and the previous one involving colour discrimination. In the first experiment of this study, guppies were tested in a task requiring them to learn to select the correct arm of a T-maze in order to rejoin a group of conspecifics. In experiment 2, guppies were observed in a numerical task requiring them to discriminate between 5 and 10 dots in order to obtain a food reward. Although females outperformed males in one condition of the T-maze, we did not find any clear evidence of females' greater reversal learning performance in either experiment. However, the meta-analysis of the three experiments supported the hypothesis of females' greater reversal learning ability. Our data do not completely exclude the idea that female guppies have a generally higher cognitive flexibility than males; however, they suggest that the size of this sex difference might depend on the task.
Collapse
Affiliation(s)
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy
| | - Christian Agrillo
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy
| | - Tyrone Lucon-Xiccato
- Dipartimento di Psicologia Generale, Università di Padova, Via Venezia 8, 35131, Padua, Italy
| |
Collapse
|
26
|
Evans JP, Lymbery RA, Wiid KS, Rahman MM, Gasparini C. Sperm as moderators of environmentally induced paternal effects in a livebearing fish. Biol Lett 2017; 13:rsbl.2017.0087. [PMID: 28404822 DOI: 10.1098/rsbl.2017.0087] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
Until recently, paternal effects-the influence of fathers on their offspring due to environmental factors rather than genes-were largely discarded or assumed to be confined to species exhibiting paternal care. It is now recognized that paternal effects can be transmitted through the ejaculate, but unambiguous evidence for them is scarce, because it is difficult to isolate effects operating via changes to the ejaculate from maternal effects driven by female mate assessment. Here, we use artificial insemination to disentangle mate assessment from fertilization in guppies, and show that paternal effects can be transmitted to offspring exclusively via ejaculates. We show that males fed reduced diets produce poor-quality sperm and that offspring sired by such males (via artificial insemination) exhibit reduced body size at birth. These findings may have important implications for the many mating systems in which environmentally induced changes in ejaculate quality have been reported.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Rowan A Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kyle S Wiid
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Md Moshiur Rahman
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Clelia Gasparini
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
27
|
Chatelain M, Pessato A, Frantz A, Gasparini J, Leclaire S. Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon. OIKOS 2017. [DOI: 10.1111/oik.04262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Marion Chatelain
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Inst. d'Ecologie et des Sciences de l'Environnement de Paris; Paris France
- Warsaw Univ., Center of New Technologies, S. Banacha 2c; PL-02-097 Warsaw Poland
| | - Anaϊs Pessato
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS; Montpellier France
| | - Adrien Frantz
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Inst. d'Ecologie et des Sciences de l'Environnement de Paris; Paris France
| | - Julien Gasparini
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Inst. d'Ecologie et des Sciences de l'Environnement de Paris; Paris France
| | - Sarah Leclaire
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS; Montpellier France
- Laboratoire Evolution and Diversité Biologique, UMR 5174 (CNRS, Université Paul Sabatier, ENFA); Toulouse France
| |
Collapse
|
28
|
Stephenson BP, Ihász N, Byrd DC, Swierk J, Swierk L. Temperature-dependent colour change is a function of sex and directionality of temperature shift in the eastern fence lizard ( Sceloporus undulatus). Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Nikolett Ihász
- Department of Psychology; Mercer University; Macon GA 31207 USA
| | - David C. Byrd
- Department of Biology; Mercer University; Macon GA 31027 USA
| | - John Swierk
- Department of Chemistry; The Pennsylvania State University; University Park; PA 16802 USA
| | - Lindsey Swierk
- Department of Biology; Intercollege Graduate Program in Ecology and Center for Brain; Behavior and Cognition; The Pennsylvania State University; University Park; PA 16802 USA
| |
Collapse
|
29
|
Sandkam BA, Deere-Machemer KA, Johnson AM, Grether GF, Helen Rodd F, Fuller RC. Exploring visual plasticity: dietary carotenoids can change color vision in guppies (Poecilia reticulata). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:527-34. [DOI: 10.1007/s00359-016-1097-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/14/2016] [Accepted: 05/27/2016] [Indexed: 01/19/2023]
|
30
|
Auld HL, Pusiak RJP, Godin JGJ. Independent Mating Preferences for Male Body Size and Coloration in Female Trinidadian Guppies. Ethology 2016. [DOI: 10.1111/eth.12506] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Heather L. Auld
- Department of Biology; Carleton University; Ottawa ON Canada
| | | | | |
Collapse
|
31
|
Gordon SP, Reznick D, Arendt JD, Roughton A, Ontiveros Hernandez MN, Bentzen P, López-Sepulcre A. Selection analysis on the rapid evolution of a secondary sexual trait. Proc Biol Sci 2016; 282:20151244. [PMID: 26290077 DOI: 10.1098/rspb.2015.1244] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evolutionary analyses of population translocations (experimental or accidental) have been important in demonstrating speed of evolution because they subject organisms to abrupt environmental changes that create an episode of selection. However, the strength of selection in such studies is rarely measured, limiting our understanding of the evolutionary process. This contrasts with long-term, mark-recapture studies of unmanipulated populations that measure selection directly, yet rarely reveal evolutionary change. Here, we present a study of experimental evolution of male colour in Trinidadian guppies where we tracked both evolutionary change and individual-based measures of selection. Guppies were translocated from a predator-rich to a low-predation environment within the same stream system. We used a combination of common garden experiments and monthly sampling of individuals to measure the phenotypic and genetic divergence of male coloration between ancestral and derived fish. Results show rapid evolutionary increases in orange coloration in both populations (1 year or three generations), replicating the results of previous studies. Unlike previous studies, we linked this evolution to an individual-based analysis of selection. By quantifying individual reproductive success and survival, we show, for the first time, that males with more orange and black pigment have higher reproductive success, but males with more black pigment also have higher risk of mortality. The net effect of selection is thus an advantage of orange but not black coloration, as reflected in the evolutionary response. This highlights the importance of considering all components of fitness when understanding the evolution of sexually selected traits in the wild.
Collapse
Affiliation(s)
- Swanne P Gordon
- Department of Biology, University of California, Riverside, CA, USA Center of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - David Reznick
- Department of Biology, University of California, Riverside, CA, USA
| | - Jeff D Arendt
- Department of Biology, University of California, Riverside, CA, USA
| | - Allen Roughton
- Department of Biology, University of California, Riverside, CA, USA
| | | | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrés López-Sepulcre
- Center of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland Institute of Ecology and Environmental Sciences-Paris (iEES), CNRS UMR 7618, Paris, France
| |
Collapse
|
32
|
Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9830-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
McNeil GV, Friesen CN, Gray SM, Aldredge A, Chapman LJ. Male colour variation in a eurytopic African cichlid: the role of diet and hypoxia. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Georgia V. McNeil
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal QC H3A 1B1 Canada
| | - Caitlin N. Friesen
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal QC H3A 1B1 Canada
| | - Suzanne M. Gray
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal QC H3A 1B1 Canada
| | - Amalia Aldredge
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal QC H3A 1B1 Canada
| | - Lauren J. Chapman
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal QC H3A 1B1 Canada
- Wildlife Conservation Society; 2300 Southern Boulevard Bronx NY 10460 USA
| |
Collapse
|
34
|
Lai YT, Kekäläinen J, Kortet R. Infestation with the parasitic nematode Philometra ovata does not impair behavioral sexual competitiveness or odor attractiveness of the male European minnow (Phoxinus phoxinus). Acta Ethol 2015. [DOI: 10.1007/s10211-015-0229-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Herdegen M, Radwan J. Effect of induced mutations on sexually selected traits in the guppy, Poecilia reticulata. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Rahman MM, Gasparini C, Turchini GM, Evans JP. Testing the interactive effects of carotenoids and polyunsaturated fatty acids on ejaculate traits in the guppy Poecilia reticulata (Pisces: Poeciliidae). JOURNAL OF FISH BIOLOGY 2015; 86:1638-1643. [PMID: 25816838 DOI: 10.1111/jfb.12661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/31/2015] [Indexed: 06/04/2023]
Abstract
Using the polyandrous livebearing guppy Poecilia reticulata, this study revealed no main effects of carotenoids in the diet on ejaculate traits, but significant main effects of polyunsaturated fatty acids (PUFAs) on sperm viability and weak but significant interacting effects of both nutrients on sperm length. Collectively, these findings not only add evidence that PUFAs are critical determinants of sperm quality, but also provide tentative evidence that for some traits these effects may be moderated by carotenoid intake.
Collapse
Affiliation(s)
- M M Rahman
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | |
Collapse
|
37
|
Evans JP, Rahman MM, Gasparini C. Genotype-by-environment interactions underlie the expression of pre- and post-copulatory sexually selected traits in guppies. J Evol Biol 2015; 28:959-72. [DOI: 10.1111/jeb.12627] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/20/2015] [Accepted: 03/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- J. P. Evans
- Centre for Evolutionary Biology; School of Animal Biology (M092); Crawley WA Australia
| | - M. M. Rahman
- Centre for Evolutionary Biology; School of Animal Biology (M092); Crawley WA Australia
| | - C. Gasparini
- Centre for Evolutionary Biology; School of Animal Biology (M092); Crawley WA Australia
| |
Collapse
|
38
|
Cole GL, Endler JA. Variable environmental effects on a multicomponent sexually selected trait. Am Nat 2015; 185:452-68. [PMID: 25811082 DOI: 10.1086/680022] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Multicomponent signals are made up of interacting elements that generate a functional signaling unit. The interactions between signal components and their effects on individual fitness are not well understood, and the effect of environment is even less so. It is usually assumed that color patterns appear the same in all light environments and that the effects of each color are additive. Using guppies, Poecilia reticulata, we investigated the effect of water color on the interactions between components of sexually selected male coloration. Through behavioral mate choice trials in four different water colors, we estimated the attractiveness of male color patterns, using multivariate fitness estimates and overall signal contrast. Our results show that females exhibit preferences that favor groups of colors rather than individual colors independently and that each environment favors different color combinations. We found that these effects are consistent with female guppies selecting entire color patterns on the basis of overall visual contrast. This suggests that both individuals and populations inhabiting different light environments will be subject to divergent, multivariate selection. Although the appearance of color patterns changes with light environment, achromatic components change little, suggesting that these could function in species recognition or other aspects of communication that must work across environments. Consequently, we predict different phylogenetic patterns between chromatic and achromatic signals within the same clades.
Collapse
Affiliation(s)
- Gemma L Cole
- Centre for Integrative Ecology, Deakin University, Waurn Ponds 3216, Victoria, Australia
| | | |
Collapse
|
39
|
The expression of pre- and postcopulatory sexually selected traits reflects levels of dietary stress in guppies. PLoS One 2014; 9:e105856. [PMID: 25170940 PMCID: PMC4149491 DOI: 10.1371/journal.pone.0105856] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/22/2014] [Indexed: 11/21/2022] Open
Abstract
Environmental and ecological conditions can shape the evolution of life history traits in many animals. Among such factors, food or nutrition availability can play an important evolutionary role in moderating an animal's life history traits, particularly sexually selected traits. Here, we test whether diet quantity and/or composition in the form of omega-3 long chain polyunsaturated fatty acids (here termed ‘n3LC’) influence the expression of pre- and postcopulatory traits in the guppy (Poecilia reticulata), a livebearing poeciliid fish. We assigned males haphazardly to one of two experimental diets supplemented with n3LC, and each of these diet treatments was further divided into two diet ‘quantity’ treatments. Our experimental design therefore explored the main and interacting effects of two factors (n3LC content and diet quantity) on the expression of precopulatory (sexual behaviour and sexual ornamentation, including the size, number and spectral properties of colour spots) and postcopulatory (the velocity, viability, number and length of sperm) sexually selected traits. Our study revealed that diet quantity had significant effects on most of the pre- and postcopulatory traits, while n3LC manipulation had a significant effect on sperm traits and in particular on sperm viability. Our analyses also revealed interacting effects of diet quantity and n3LC levels on courtship displays, and the area of orange and iridescent colour spots in the males’ colour patterns. We also confirmed that our dietary manipulations of n3LC resulted in the differential uptake of n3LC in body and testes tissues in the different n3LC groups. This study reveals the effects of diet quantity and n3LC on behavioural, ornamental and ejaculate traits in P. reticulata and underscores the likely role that diet plays in maintaining the high variability in these condition-dependent sexual traits.
Collapse
|
40
|
Sato A, Ozawa N, Karino K. Variation in female guppy preference for male olfactory and visual traits. J ETHOL 2014. [DOI: 10.1007/s10164-014-0402-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Animals often use different sensory systems to assess different sexually selected signals from potential mates. However, the relative importance of different signals on mate choice is not well understood in many animal species. In this study, we examined the relative importance of male olfactory and visual cues on female preference in the guppy Poecilia reticulata. We used digitally modified male images to standardize visual stimuli. We found that, regardless of whether females were presented without male visual stimuli or with identical male visual stimuli, they preferred stimuli with the odor of males to those without. However, when females were allowed to choose between dull male visual stimuli with male odor, and brightly colored male visual stimuli without male odor, there was no clear preference for either. Some females preferred the dull male visual stimuli with male odor, whereas some other females preferred the brightly colored male visual stimuli without male odor. These results indicate that the relative importance of olfactory and visual cues in female mate preference varied between individuals.
Collapse
|
41
|
Gotanda KM, Hendry AP. Using adaptive traits to consider potential consequences of temporal variation in selection: male guppy colour through time and space. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Kiyoko M. Gotanda
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal Quebec H3A 1B1 Canada
- Redpath Museum; McGill University; 859 Sherbrooke West Montreal Quebec H3A 0C4 Canada
| | - Andrew P. Hendry
- Department of Biology; McGill University; 1205 Docteur Penfield Avenue Montreal Quebec H3A 1B1 Canada
- Redpath Museum; McGill University; 859 Sherbrooke West Montreal Quebec H3A 0C4 Canada
| |
Collapse
|
42
|
Physical Alignments Between Plumage Carotenoid Spectra and Cone Sensitivities in Ultraviolet-Sensitive (UVS) Birds (Passerida: Passeriformes). Evol Biol 2014. [DOI: 10.1007/s11692-014-9273-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Ng J, Kelly AL, MacGuigan DJ, Glor RE. The role of heritable and dietary factors in the sexual signal of a Hispaniolan Anolis lizard, Anolis distichus. ACTA ACUST UNITED AC 2013; 104:862-73. [PMID: 24078680 DOI: 10.1093/jhered/est060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The diversity of sexual signals is astounding, and divergence in these traits is believed to be associated with the early stages of speciation. An increasing number of studies also suggest a role for natural selection in driving signal divergence for effective transmission in heterogeneous environments. Both speciation and adaptive divergence, however, are contingent on the sexual signal being heritable, yet this often remains assumed and untested. It is particularly critical that the heritability of carotenoid-based sexual signals is investigated because such traits may instead be phenotypically plastic indicators of an individual's quality that exhibit no or little heritable variation. We present the first study to investigate the relative contribution of genetic and environmental factors to the striking diversity of dewlap color and pattern in Anolis lizards. Using a breeding experiment with Anolis distichus populations exhibiting different dewlap phenotypes, we raise F1 offspring in a common garden experiment to assess whether dewlap color is inherited. We follow this with carotenoid supplementation to investigate the influence of dietary pigments to dewlap color variation. We find significant differences in several aspects of dewlap color and pattern to persist to the F1 generation (fathers: N = 19; F1 males: N = 50; P < 0.01) with no change in dewlap phenotype with carotenoid supplementation (N = 52; P > 0.05). These results strongly support that genetic differences underlie dewlap color variation, thereby satisfying a key requirement of natural selection. Our findings provide an important stepping-stone to understanding the evolution of an incredibly diverse signal important for sexual selection and species recognition.
Collapse
Affiliation(s)
- Julienne Ng
- the Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627. Richard Glor is now at the Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| | | | | | | |
Collapse
|
44
|
Lai YT, Kekäläinen J, Kortet R. Male Ornamentation in the European Minnow (Phoxinus phoxinus) Signals Swimming Performance. Ethology 2013. [DOI: 10.1111/eth.12167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Te Lai
- Department of Biology; University of Eastern Finland; Joensuu Finland
| | - Jukka Kekäläinen
- Department of Biology; University of Eastern Finland; Joensuu Finland
| | - Raine Kortet
- Department of Biology; University of Eastern Finland; Joensuu Finland
| |
Collapse
|
45
|
Negative correlation between male ornament size and female preference intensity in a wild guppy population. Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1600-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Rahman MM, Kelley JL, Evans JP. Condition-dependent expression of pre- and postcopulatory sexual traits in guppies. Ecol Evol 2013; 3:2197-213. [PMID: 23919162 PMCID: PMC3728957 DOI: 10.1002/ece3.632] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 02/03/2023] Open
Abstract
Female choice can impose persistent directional selection on male sexually selected traits, yet such traits often exhibit high levels of phenotypic variation. One explanation for this paradox is that if sexually selected traits are costly, only the fittest males are able to acquire and allocate the resources required for their expression. Furthermore, because male condition is dependent on resource allocation, condition dependence in sexual traits is expected to underlie trade-offs between reproduction and other life-history functions. In this study we test these ideas by experimentally manipulating diet quality (carotenoid levels) and quantity in the guppy (Poecilia reticulata), a livebearing freshwater fish that is an important model for understanding relationships between pre- and post-copulatory sexually selected traits. Specifically, we test for condition dependence in the expression of pre- and postcopulatory sexual traits (behavior, ornamentation, sperm traits) and determine whether diet manipulation mediates relationships among these traits. Consistent with prior work we found a significant effect of diet quantity on the expression of both pre- and postcopulatory male traits; diet-restricted males performed fewer sexual behaviors and exhibited significant reductions in color ornamentation, sperm quality, sperm number, and sperm length than those fed ad libitum. However, contrary to our expectations, we found no significant effect of carotenoid manipulation on the expression of any of these traits, and no evidence for a trade-off in resource allocation between pre- and postcopulatory episodes of sexual selection. Our results further underscore the sensitivity of behavioral, ornamental, and ejaculate traits to dietary stress, and highlight the important role of condition dependence in maintaining the high variability in male sexual traits.
Collapse
Affiliation(s)
- Md Moshiur Rahman
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia Crawley, 6009, Western Australia, Australia
| | | | | |
Collapse
|
47
|
Matsumasa M, Murai M, Christy JH. A low-cost sexual ornament reliably signals male condition in the fiddler crab Uca beebei. Anim Behav 2013. [DOI: 10.1016/j.anbehav.2013.03.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Ruell EW, Handelsman CA, Hawkins CL, Sofaer HR, Ghalambor CK, Angeloni L. Fear, food and sexual ornamentation: plasticity of colour development in Trinidadian guppies. Proc Biol Sci 2013; 280:20122019. [PMID: 23466982 DOI: 10.1098/rspb.2012.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of male ornamentation often reflects compromises between sexual and natural selection, but it may also be influenced by phenotypic plasticity. We investigated the developmental plasticity of male colour ornamentation in Trinidadian guppies in response to two environmental variables that covary in nature: predation risk and food availability. We found that exposure to chemical predator cues delayed the development of pigment-based colour elements, which are conspicuous to visual-oriented predators. Predator cues also reduced the size of colour elements at the time of maturity and caused adult males to be less colourful. To the best of our knowledge, these findings provide the first example of a plastic reduction in the development of a sexually selected male ornament in response to predator cues. The influence of predator cues on ornamentation probably affects individual fitness by reducing conspicuousness to predators, but could reduce attractiveness to females. Reduced food availability during development caused males to delay the development of colour elements and mature later, probably reflecting a physiological constraint, but their coloration at maturity and later in adulthood was largely unaffected, suggesting that variation in food quantity without variation in quality does not contribute to condition dependence of the trait.
Collapse
Affiliation(s)
- E W Ruell
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Devigili A, Kelley JL, Pilastro A, Evans JP. Expression of pre- and postcopulatory traits under different dietary conditions in guppies. Behav Ecol 2012. [DOI: 10.1093/beheco/ars204] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
50
|
Ingleby FC, Hosken DJ, Flowers K, Hawkes MF, Lane SM, Rapkin J, Dworkin I, Hunt J. Genotype-by-environment interactions for cuticular hydrocarbon expression in Drosophila simulans. J Evol Biol 2012; 26:94-107. [DOI: 10.1111/jeb.12030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/16/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022]
Affiliation(s)
- F. C. Ingleby
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - D. J. Hosken
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - K. Flowers
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - M. F. Hawkes
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - S. M. Lane
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - J. Rapkin
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| | - I. Dworkin
- Program in Ecology, Evolutionary Biology and Behavior; Department of Zoology; Michigan State University; East Lansing MI USA
| | - J. Hunt
- Centre for Ecology and Conservation; School of Biosciences; University of Exeter; Tremough Penryn UK
| |
Collapse
|