1
|
Lyberger K, Farner JE, Couper L, Mordecai EA. Plasticity in mosquito size and thermal tolerance across a latitudinal climate gradient. J Anim Ecol 2024. [PMID: 39030760 DOI: 10.1111/1365-2656.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/12/2024] [Indexed: 07/22/2024]
Abstract
Variation in heat tolerance among populations can determine whether a species is able to cope with ongoing climate change. Such variation may be especially important for ectotherms whose body temperatures, and consequently, physiological processes, are regulated by external conditions. Additionally, differences in body size are often associated with latitudinal clines, thought to be driven by climate gradients. While studies have begun to explore variation in body size and heat tolerance within species, our understanding of these patterns across large spatial scales, particularly regarding the roles of plasticity and genetic differences, remains incomplete. Here, we examine body size, as measured by wing length, and thermal tolerance, as measured by the time to immobilisation at high temperatures ("thermal knockdown"), in populations of the mosquito Aedes sierrensis collected from across a large latitudinal climate gradient spanning 1300 km (34-44° N). We find that mosquitoes collected from lower latitudes and warmer climates were more tolerant of high temperatures than those collected from higher latitudes and colder climates. Moreover, body size increased with latitude and decreased with temperature, a pattern consistent with James' rule, which appears to be a result of plasticity rather than genetic variation. Our results suggest that warmer environments produce smaller and more thermally tolerant populations.
Collapse
Affiliation(s)
- Kelsey Lyberger
- Department of Biology, Stanford University, Stanford, California, USA
| | - Johannah E Farner
- Department of Biology, Stanford University, Stanford, California, USA
| | - Lisa Couper
- Department of Environmental Health Sciences, University of California Berkeley, Berkeley, California, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Vea IM, Wilcox AS, Frankino WA, Shingleton AW. Genetic Variation in Sexual Size Dimorphism Is Associated with Variation in Sex-Specific Plasticity in Drosophila. Am Nat 2023; 202:368-381. [PMID: 37606943 DOI: 10.1086/725420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractThe difference in body size between females and males, or sexual size dimorphism (SSD), is ubiquitous, yet we have a poor understanding of the developmental genetic mechanisms that generate it and how these mechanisms may vary within and among species. Such an understanding of the genetic architecture of SSD is important if we are to evaluate alternative models of SSD evolution, but the genetic architecture is difficult to describe because SSD is a characteristic of populations, not individuals. Here, we overcome this challenge by using isogenic lineages of Drosophila to measure SSD for 196 genotypes. We demonstrate extensive genetic variation for SSD, primarily driven by higher levels of genetic variation for body size among females than among males. While we observe a general increase in SSD with sex-averaged body size (pooling for sex) among lineages, most of the variation in SSD is independent of sex-averaged body size and shows a strong genetic correlation with sex-specific plasticity, such that increased female-biased SSD is associated with increased body size plasticity in females. Our data are consistent with the condition dependence hypothesis of sexual dimorphism and suggest that SSD in Drosophila is a consequence of selection on the developmental genetic mechanisms that regulate the plasticity of body size.
Collapse
|
3
|
Toyama KS, Mahler DL, Goodman RM. Climate shapes patterns of sexual size and shape dimorphism across the native range of the green anole lizard, Anolis carolinensis (Squamata: Dactyloidae). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
Geographical variation in sexual size dimorphism (SSD) can result from the combined effects of environmental and sexual selection. To understand the determinants of SSD across geographical landscapes, we tested for relationships between SSD and climatic variables in the widespread lizard Anolis carolinensis. To distinguish alternative hypotheses for observed patterns of variation in SSD, we also examined sex-specific patterns of body size evolution and asked whether SSD was associated with certain patterns of sexual shape dimorphism. We found strong evidence for Rensch’s rule (an increase in male-biased SSD with average body size) in A. carolinensis and evidence for the reversed version of Bergmann’s rule (an increase in body size towards warmer environments) in males. Across populations, SSD was positively related to temperature; however, female body size was not related to any climatic variable, suggesting that the latitudinal gradient of SSD might be driven by a gradient in the intensity of sexual selection acting on males. Sexual size dimorphism was positively correlated with sexual dimorphism in head shape and negatively correlated with limb length dimorphism, suggesting that sexual selection in males might drive the evolution of SSD and that differences in size and limb shape between sexes might represent alternative strategies to avoid competition for the same resources.
Collapse
Affiliation(s)
- Ken S Toyama
- Department of Ecology and Evolutionary Biology, University of Toronto , ON , Canada M5S 3B2
| | - D Luke Mahler
- Department of Ecology and Evolutionary Biology, University of Toronto , ON , Canada M5S 3B2
| | - Rachel M Goodman
- Biology Department, Hampden-Sydney College , Hampden-Sydney, VA , USA
| |
Collapse
|
4
|
Kellermann V, Overgaard J, Sgrò CM, Hoffmann AA. Phylogenetic and environmental patterns of sex differentiation in physiological traits across Drosophila species. J Evol Biol 2022; 35:1548-1557. [PMID: 36196885 PMCID: PMC9828785 DOI: 10.1111/jeb.14104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023]
Abstract
Sex-based differences in physiological traits may be influenced by both evolutionary and environmental factors. Here we used male and female flies from >80 Drosophila species reared under common conditions to examine variance in a number of physiological traits including size, starvation, desiccation and thermal tolerance. Sex-based differences for desiccation and starvation resistance were comparable in magnitude to those for size, with females tending to be relatively more resistant than males. In contrast thermal resistance showed low divergence between the sexes. Phylogenetic signal was detected for measures of divergence between the sexes, such that species from the Sophophora clade showed larger differences between the sexes than species from the Drosophila clade. We also found that sex-based differences in desiccation resistance, body size and starvation resistance were weakly associated with climate (annual mean temperature/precipitation seasonality) but the direction and association with environment depended on phylogenetic position. The results suggest that divergence between the sexes can be linked to environmental factors, while an association with phylogeny suggests sex-based differences persist over long evolutionary time-frames.
Collapse
Affiliation(s)
| | | | - Carla M. Sgrò
- School of Biological SciencesMonash UniversityMelbourneVic.Australia
| | - Ary A. Hoffmann
- School of BioSciences, Bio21 InstituteThe University of MelbourneMelbourneVic.Australia
| |
Collapse
|
5
|
Meisel RP. Ecology and the evolution of sex chromosomes. J Evol Biol 2022; 35:1601-1618. [PMID: 35950939 DOI: 10.1111/jeb.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes are common features of animal genomes, often carrying a sex determination gene responsible for initiating the development of sexually dimorphic traits. The specific chromosome that serves as the sex chromosome differs across taxa as a result of fusions between sex chromosomes and autosomes, along with sex chromosome turnover-autosomes becoming sex chromosomes and sex chromosomes 'reverting' back to autosomes. In addition, the types of genes on sex chromosomes frequently differ from the autosomes, and genes on sex chromosomes often evolve faster than autosomal genes. Sex-specific selection pressures, such as sexual antagonism and sexual selection, are hypothesized to be responsible for sex chromosome turnovers, the unique gene content of sex chromosomes and the accelerated evolutionary rates of genes on sex chromosomes. Sex-specific selection has pronounced effects on sex chromosomes because their sex-biased inheritance can tilt the balance of selection in favour of one sex. Despite the general consensus that sex-specific selection affects sex chromosome evolution, most population genetic models are agnostic as to the specific sources of these sex-specific selection pressures, and many of the details about the effects of sex-specific selection remain unresolved. Here, I review the evidence that ecological factors, including variable selection across heterogeneous environments and conflicts between sexual and natural selection, can be important determinants of sex-specific selection pressures that shape sex chromosome evolution. I also explain how studying the ecology of sex chromosome evolution can help us understand important and unresolved aspects of both sex chromosome evolution and sex-specific selection.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Wrozyna C, Mischke S, Hoehle M, Gross M, Piller WE. Large-Scale Geographic Size Variability of Cyprideis torosa (Ostracoda) and Its Taxonomic and Ecologic Implications. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.857499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Body-size variability results from a variety of extrinsic and intrinsic factors (environmental and biological influences) underpinned by phylogeny. In ostracodes it is assumed that body size is predominantly controlled by ecological conditions, but investigations have mostly focused on local or regional study areas. In this study, we investigate the geographical size variability (length, height, and width) of Holocene and Recent valves of the salinity-tolerant ostracode species Cyprideis torosa within a large geographical area (31°–51° latitude, and 12°–96° longitude). It is shown that distant local size clusters of Cyprideis torosa are framed within two large-scale geographical patterns. One pattern describes the separation of two different size classes (i.e., morphotypes) at around ∼42° N. The co-occurrence of both size morphotypes in the same habitats excludes an environmental control on the distribution of the morphotypes but rather could point to the existence of two differentiated lineages. Generally, correlations between valve size and environmental parameters (salinity, geographical positions) strongly depend on the taxonomic resolution. While latitude explains the overall size variability of C. torosa sensu lato (i.e., undifferentiated for morphotypes), salinity-size correlations are restricted to the morphotype scale. Another large-scale pattern represents a continuous increase in valve size of C. torosa with latitude according to the macroecological pattern referred as Bergmann trend. Existing explanations for Bergmann trends insufficiently clarify the size cline of C. torosa which might be because these models are restricted to intraspecific levels. The observed size-latitude relationship of C. torosa may, therefore, result from interspecific divergence (i.e., size ordered spatially may result from interspecific divergence sorting) while environmental influence is of minor importance. Our results imply that geographical body-size patterns of ostracodes are not straightforward and are probably not caused by universal mechanisms. Consideration of phylogenetic relationships of ostracodes is therefore necessary before attempting to identify the role of environmental controls on body size variability.
Collapse
|
7
|
An Overview of Interlocation Sexual Shape Dimorphism in Caquetaia kraussi (Perciformes: Cichlidae) A Geometric Morphometric Approach. FISHES 2022. [DOI: 10.3390/fishes7040146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
C. kraussii is an endemic fish species from Colombia and Venezuela and represents a valuable food resource for local human communities. Due to its economic importance, the management and captive breeding of this species are of special interest. However, the anatomical similarities between sexes have been a problem for visual identification. It is also important to indicate that C. kraussii has cryptic morphological behavior between sexes, a topic that has been one of the main problems for the implementation of management plans. The following research studied individuals from three different localities along the Canal del Dique, Bolívar Department in Colombia, in which the body shape of C. kraussii was analyzed using geometric morphometric analysis. The analyses detected the presence of intralocality sexual dimorphism in two of the three localities analyzed, showing a low morphological variability among males, presenting conserved body shape, as well as a greater morphological disparity among females. This sexual shape dimorphism may be associated with the environmental variation among different locations. These results suggest the presence of two evolutionary forces acting asymmetrically between the sexes of C. kraussii, with males mostly subject to sexual selection pressure, while females are mainly subject to environmental pressures.
Collapse
|
8
|
Luzyanin S, Saveliev A, Ukhova N, Vorobyova I, Solodovnikov I, Anciferov A, Shagidullin R, Teofilova T, Nogovitsyna S, Brygadyrenko V, Alexanov V, Sukhodolskaya R. Modeling Sexual Differences of Body Size Variation in Ground Beetles in Geographical Gradients: A Case Study of Pterostichus melanarius (Illiger, 1798) (Coleoptera, Carabidae). Life (Basel) 2022; 12:112. [PMID: 35054505 PMCID: PMC8781924 DOI: 10.3390/life12010112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to test the steepness of body size variation in males and females in the widespread ground beetle Pterostichus melanarius in geographical gradients. Beetles were sampled in 15 regions of Europe and Asia, and sampling territories differed 17° in latitude and 121° in longitude. We measured six linear traits in every captured beetle and formed a data set that included 2154 individuals. Body size variation in all traits in general was sawtooth, both in latitude and in longitude gradients. Regression analysis showed slight trends: in the latitude gradient, elytra parameters increased, pronotum length did not change but the width increased, and head parameters decreased. In the longitude gradient, the changes were as follows: elytra length increased, but its width did not change; pronotum length did not change, but its width increased; the head parameters decreased. Thus, we observed the elytra length increase and the head parameters decrease northwards and eastwards. We compared female and male regression curves (trait size on latitude/longitude): p-levels were significant only in four cases out of 12. Thus, we conclude that, in general, there is no evidence for the steepness in trait variation in males compared with females.
Collapse
Affiliation(s)
- Sergey Luzyanin
- Department of Ecology and Environmental Science, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Anatoly Saveliev
- Institute of Ecology and Environmental Science, Kazan (Volga Region) Federal University, 420000 Kazan, Russia;
| | | | - Iraida Vorobyova
- Department of Biology, Mariy State University, 424000 Yoshkar-Ola, Russia;
| | - Igor Solodovnikov
- Department of Zoology and Botany, Vitebsk State University Named after P. M. Masherov, 210038 Vitebsk, Belarus;
| | | | - Rifgat Shagidullin
- Institute of Ecology and Mineral Resource Management, Academy of Sciences of Tatarstan Republic, Tatarstan, 420000 Kazan, Russia;
| | - Teodora Teofilova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria;
| | - Sargylana Nogovitsyna
- Institute for Biological Problems of Cryolithozone Siberian Branch Russian Academy of Sciences, 677980 Yakutsk, Russia;
| | - Viktor Brygadyrenko
- Department of Zoology and Ecology, Dnipro State Agrarian and Economic University, 49600 Dnipro, Ukraine;
| | - Viktor Alexanov
- State Budgetary Institution of Kaluga Region “Parks Directorate”, 248000 Kaluga, Russia;
| | - Raisa Sukhodolskaya
- Institute of Ecology and Mineral Resource Management, Academy of Sciences of Tatarstan Republic, Tatarstan, 420000 Kazan, Russia;
| |
Collapse
|
9
|
Durán F, Méndez MA, Correa C. The Atacama toad (Rhinella atacamensis) exhibits an unusual clinal pattern of decreasing body size towards more arid environments. BMC ZOOL 2021; 6:25. [PMID: 37170376 PMCID: PMC10127348 DOI: 10.1186/s40850-021-00090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The causes of geographic variation of body size in ectotherms have generally been attributed to environmental variables. Research in amphibians has favored mechanisms that involve water availability as an explanation for the geographic variation of body size. However, there are few studies at intraspecific level on amphibians that inhabit desert or semi-desert environments, where hydric restrictions are stronger. Here, we describe and inquire as to the causes of the geographic variation of body size in the semi-desert toad Rhinella atacamensis, a terrestrial anuran that is distributed over 750 km along a latitudinal aridity gradient from the southern extreme of the Atacama Desert to the Mediterranean region of central Chile. We measured the snout-vent length of 315 adults from 11 representative localities of the entire distribution of the species. Then, using an information-theoretic approach, we evaluate whether the data support eight ecogeographic hypotheses proposed in literature.
Results
Rhinella atacamensis exhibits a gradual pattern of decrease in adult body size towards the north of its distribution, where the climate is more arid, which conforms to a Bergmann’s cline. The best model showed that the data support the mean annual precipitation as predictor of body size, favoring the converse water availability hypothesis.
Conclusions
Most studies in amphibians show that adult size increases in arid environments, but we found a converse pattern to expected according to the hydric constraints imposed by this type of environment. The evidence in R. atacamensis favors the converse water availability hypothesis, whose mechanism proposes that the foraging activity determined by the precipitation gradient has produced the clinal pattern of body size variation. The variation of this trait could also be affected by the decreasing productivity that exists towards the north of the species distribution. In addition, we found evidence that both pattern and mechanism are independent of sex. Lastly, we suggest that behavioral traits, such as nocturnal habits, might also play an important role determining this differential response to aridity. Therefore, the support for the converse water availability hypothesis found in this study shows that amphibians can respond in different ways to water restrictions imposed by arid environments.
Collapse
|
10
|
Juarez BH, Adams DC. Evolutionary allometry of sexual dimorphism of jumping performance in anurans. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10132-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Adhikari K, Son JH, Rensink AH, Jaweria J, Bopp D, Beukeboom LW, Meisel RP. Temperature-dependent effects of house fly proto-Y chromosomes on gene expression could be responsible for fitness differences that maintain polygenic sex determination. Mol Ecol 2021; 30:5704-5720. [PMID: 34449942 DOI: 10.1111/mec.16148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/20/2021] [Indexed: 12/21/2022]
Abstract
Sex determination, the developmental process by which sexually dimorphic phenotypes are established, evolves fast. Evolutionary turnover in a sex determination pathway may occur via selection on alleles that are genetically linked to a new master sex determining locus on a newly formed proto-sex chromosome. Species with polygenic sex determination, in which master regulatory genes are found on multiple different proto-sex chromosomes, are informative models to study the evolution of sex determination and sex chromosomes. House flies are such a model system, with male determining loci possible on all six chromosomes and a female-determiner on one of the chromosomes as well. The two most common male-determining proto-Y chromosomes form latitudinal clines on multiple continents, suggesting that temperature variation is an important selection pressure responsible for maintaining polygenic sex determination in this species. Temperature-dependent fitness effects could be manifested through temperature-dependent gene expression differences across proto-Y chromosome genotypes. These gene expression differences may be the result of cis regulatory variants that affect the expression of genes on the proto-sex chromosomes, or trans effects of the proto-Y chromosomes on genes elswhere in the genome. We used RNA-seq to identify genes whose expression depends on proto-Y chromosome genotype and temperature in adult male house flies. We found no evidence for ecologically meaningful temperature-dependent expression differences of sex determining genes between male genotypes, but we were probably not sampling an appropriate developmental time-point to identify such effects. In contrast, we identified many other genes whose expression depends on the interaction between proto-Y chromosome genotype and temperature, including genes that encode proteins involved in reproduction, metabolism, lifespan, stress response, and immunity. Notably, genes with genotype-by-temperature interactions on expression were not enriched on the proto-sex chromosomes. Moreover, there was no evidence that temperature-dependent expression is driven by chromosome-wide cis-regulatory divergence between the proto-Y and proto-X alleles. Therefore, if temperature-dependent gene expression is responsible for differences in phenotypes and fitness of proto-Y genotypes across house fly populations, these effects are driven by a small number of temperature-dependent alleles on the proto-Y chromosomes that may have trans effects on the expression of genes on other chromosomes.
Collapse
Affiliation(s)
- Kiran Adhikari
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jae Hak Son
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Anna H Rensink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jaweria Jaweria
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
12
|
Chelini MC, Brock K, Yeager J, Edwards DL. Environmental drivers of sexual dimorphism in a lizard with alternative mating strategies. J Evol Biol 2021; 34:1241-1255. [PMID: 34101919 DOI: 10.1111/jeb.13881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
Understanding the relative importance of sexual and natural selection in shaping morphological traits is a long-standing goal of evolutionary ecology. Male-biased sexual size dimorphism (SSD) is typically associated with male-male competition. Similarly, male polymorphisms are considered a consequence of competitive social interactions. This classic paradigm overlooks the fact that environmental factors mediate social interactions and can lead to ecological adaptations. Common side-blotched lizards, Uta stansburiana, are a model system for this paradigm due to well-known rock-paper-scissors social dynamics between male morphs. SSD in this species has been considered primarily a consequence of social interactions, with male size resulting from the number of morphs in each population and female size being constrained through fecundity benefits. We test if the environment explains intraspecific variation in SSD and number of male morphs in U. stansburiana. By compiling data from 49 populations, we show that environmental variables are stronger predictors of SSD than the number of male morphs. Similarly, we show that the environment mediates SSD and potentially contributes to morph loss in colder environments. We propose that the environment favours smaller males in areas of high seasonality. Our results demonstrate the importance of the environment as a mediator of SSD.
Collapse
Affiliation(s)
| | - Kinsey Brock
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Justin Yeager
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Danielle L Edwards
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| |
Collapse
|
13
|
Poikela N, Tyukmaeva V, Hoikkala A, Kankare M. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille. BMC Ecol Evol 2021; 21:117. [PMID: 34112109 PMCID: PMC8191109 DOI: 10.1186/s12862-021-01849-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Tracing the association between insect cold tolerance and latitudinally and locally varying environmental conditions, as well as key morphological traits and molecular mechanisms, is essential for understanding the processes involved in adaptation. We explored these issues in two closely-related species, Drosophila montana and Drosophila flavomontana, originating from diverse climatic locations across several latitudes on the coastal and mountainous regions of North America. We also investigated the association between sequence variation in one of the key circadian clock genes, vrille, and cold tolerance in both species. Finally, we studied the impact of vrille on fly cold tolerance and cold acclimation ability by silencing it with RNA interference in D. montana. Results We performed a principal component analysis (PCA) on variables representing bioclimatic conditions on the study sites and used latitude as a proxy of photoperiod. PC1 separated the mountainous continental sites from the coastal ones based on temperature variability and precipitation, while PC2 arranged the sites based on summer and annual mean temperatures. Cold tolerance tests showed D. montana to be more cold-tolerant than D. flavomontana and chill coma resistance (CTmin) of this species showed an association with PC2. Chill coma recovery time (CCRT) of both species improved towards northern latitudes, and in D. flavomontana this trait was also associated with PC1. D. flavomontana flies were darkest in the coast and in the northern mountainous populations, but coloration showed no linkage with cold tolerance. Body size decreased towards cold environments in both species, but only within D. montana populations largest flies showed fastest recovery from cold. Finally, both the sequence analysis and RNAi study on vrille suggested this gene to play an essential role in D. montana cold resistance and acclimation, but not in recovery time. Conclusions Our study demonstrates the complexity of insect cold tolerance and emphasizes the need to trace its association with multiple environmental variables and morphological traits to identify potential agents of natural selection. It also shows that a circadian clock gene vrille is essential both for short- and long-term cold acclimation, potentially elucidating the connection between circadian clock system and cold tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01849-y.
Collapse
Affiliation(s)
- Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Venera Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.,Centre d'Ecologie Fonctionelle et Evolutive, CNRS, Montpellier, France
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
14
|
Ananina T, Sukhodolskaya R, Saveliev A, Avtaeva T. Sexual size dimorphism variation in altitude gradients in ground beetles (Coleoptera, Carabidae). BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213500005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study, we verified the theory about the greatest steepness in body size variation in insects males compared with females in altitude gradients. As the model, ground beetles took as the appreciated bioindicators. We sampled three species of carabids at two regions: Carabus odoratus and Pterostihusmontanus were sampled at four elevations at Barguzin Ridge (N 54° 20’; E 109° 30’, Russia) and Carabus exaratus – at three elevations in mountainous terrain in Chechnya Republic (42088’N 46044’E Russia). We measured more than 1000 individuals by six linear traits and construct regression models of females’ and males’ size variation along elevation gradients. The regression slopes in the majority of the overwhelming case (14 models out of 18) were sex-biased. In P. montanus elytra length variation and C. exaratus traits width variation, the slopes differed in males and females only: In the first case, trait value in females significantly increased and in the second traits values varied in opposite directions. Therefore, we did not find evidence of greater steepness in male traits variation in ground beetles.
Collapse
|
15
|
Zhao W, Zhao Y, Guo R, Qi Y, Wang X, Li N. Age and annual growth rate cause spatial variation in body size in Phrynocephalus przewalskii (Agamid). Ecol Evol 2020; 10:14189-14195. [PMID: 33391709 PMCID: PMC7771167 DOI: 10.1002/ece3.7013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 03/08/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022] Open
Abstract
Whether or not biogeographic rules dealing with spatial patterns of animal body sizes are valid for ectotherms is controversial. As the ectotherms grow all their lives, we explored the role of age and annual growth rate in body size variation in Phrynocephalus przewalskii in northern China. Morphological data were collected from 11 populations across a broad geographic gradient. Correlations between age, sex, climatic factors, and body size were analyzed using generalized linear model (GLM) and generalized linear mixed model (GLMM). GLM analysis indicated that the general body size of both sexes and the appendage size of females increased significantly with increasing temperature; however, the coefficient of determination was very small. GLMM analysis indicated that body size only correlated with age, whereas appendage size was affected by age, temperature, rainfall, and sunshine. Annual growth rates were positively correlated with temperature. We concluded that body size variation was mainly caused by age structure and plasticity of the growth rate in P. przewalskii and did not follow Bergmann's rule; however, females followed Allen's rule. Future studies to investigate the effect of energy restriction are needed to further understand the relationship between growth rate and body size. We also suggest that further studies on thermal advantage and sexual selection may be helpful to understand appendage size variation in P. przewalskii.
Collapse
Affiliation(s)
- Wei Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionSchool of Life SciencesLanzhou UniversityLanzhouChina
| | - Yangyang Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionSchool of Life SciencesLanzhou UniversityLanzhouChina
| | - Rui Guo
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionSchool of Life SciencesLanzhou UniversityLanzhouChina
- College of life sciencesHainan Normal UniversityHaikouChina
| | - Yue Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionSchool of Life SciencesLanzhou UniversityLanzhouChina
| | - Xiaoning Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionSchool of Life SciencesLanzhou UniversityLanzhouChina
| | - Na Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental PollutionSchool of Life SciencesLanzhou UniversityLanzhouChina
| |
Collapse
|
16
|
Kaňuch P, Kiehl B, Cassel-Lundhagen A, Laugen AT, Low M, Berggren Å. Gene flow relates to evolutionary divergence among populations at the range margin. PeerJ 2020; 8:e10036. [PMID: 33150060 PMCID: PMC7585721 DOI: 10.7717/peerj.10036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022] Open
Abstract
Background Morphological differentiation between populations resulting from local adaptations to environmental conditions is likely to be more pronounced in populations with increasing genetic isolation. In a previous study a positive clinal variation in body size was observed in isolated Roesel’s bush-cricket, Metrioptera roeselii, populations, but were absent from populations within a continuous distribution at the same latitudinal range. This observational study inferred that there was a phenotypic effect of gene flow on climate-induced selection in this species. Methods To disentangle genetic versus environmental drivers of population differences in morphology, we measured the size of four different body traits in wild-caught individuals from the two most distinct latitudinally-matched pairs of populations occurring at about 60°N latitude in northern Europe, characterised by either restricted or continuous gene flow, and corresponding individuals raised under laboratory conditions. Results Individuals that originated from the genetically isolated populations were always bigger (femur, pronotum and genital appendages) when compared to individuals from latitudinally-matched areas characterised by continuous gene flow between populations. The magnitude of this effect was similar for wild-caught and laboratory-reared individuals. We found that previously observed size cline variation in both male and female crickets was likely to be the result of local genetic adaptation rather than phenotypic plasticity. Conclusions This strongly suggests that restricted gene flow is of major importance for frequencies of alleles that participate in climate-induced selection acting to favour larger phenotypes in isolated populations towards colder latitudes.
Collapse
Affiliation(s)
- Peter Kaňuch
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Berrit Kiehl
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.,Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Ane T Laugen
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Bioeconomy Research Team, Novia University of Applied Sciences, Ekenäs, Finland.,Department of Natural Sciences, University of Agder, Kristiansand, Norway
| | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Åsa Berggren
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
17
|
Nakadera Y, Thornton Smith A, Daupagne L, Coutellec MA, Koene JM, Ramm SA. Divergence of seminal fluid gene expression and function among natural snail populations. J Evol Biol 2020; 33:1440-1451. [PMID: 32697880 DOI: 10.1111/jeb.13683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
Seminal fluid proteins (SFPs) can trigger drastic changes in mating partners, mediating post-mating sexual selection and associated sexual conflict. Also, cross-species comparisons have demonstrated that SFPs evolve rapidly and hint that post-mating sexual selection drives their rapid evolution. In principle, this pattern should be detectable within species as rapid among-population divergence in SFP expression and function. However, given the multiple other factors that could vary among populations, isolating divergence in SFP-mediated effects is not straightforward. Here, we attempted to address this gap by combining the power of a common garden design with functional assays involving artificial injection of SFPs in the simultaneously hermaphroditic freshwater snail, Lymnaea stagnalis. We detected among-population divergence in SFP gene expression, suggesting that seminal fluid composition differs among four populations collected in Western Europe. Furthermore, by artificially injecting seminal fluid extracted from these field-derived snails into standardized mating partners, we also detected among-population divergence in the strength of post-mating effects induced by seminal fluid. Both egg production and subsequent sperm transfer of partners differed depending on the population origin of seminal fluid, with the response in egg production seemingly closely corresponding to among-population divergence in SFP gene expression. Our results thus lend strong intraspecific support to the notion that SFP expression and function evolve rapidly, and confirm L. stagnalis as an amenable system for studying processes driving SFP evolution.
Collapse
Affiliation(s)
- Yumi Nakadera
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany.,Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Léa Daupagne
- Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Joris M Koene
- Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
18
|
García-Roa R, Garcia-Gonzalez F, Noble DWA, Carazo P. Temperature as a modulator of sexual selection. Biol Rev Camb Philos Soc 2020; 95:1607-1629. [PMID: 32691483 DOI: 10.1111/brv.12632] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
A central question in ecology and evolution is to understand why sexual selection varies so much in strength across taxa; it has long been known that ecological factors are crucial to this. Temperature is a particularly salient abiotic ecological factor that modulates a wide range of physiological, morphological and behavioural traits, impacting individuals and populations at a global taxonomic scale. Furthermore, temperature exhibits substantial temporal variation (e.g. daily, seasonally and inter-seasonally), and hence for most species in the wild sexual selection will regularly unfold in a dynamic thermal environment. Unfortunately, studies have so far almost completely neglected the role of temperature as a modulator of sexual selection. Here, we outline the main pathways through which temperature can affect the intensity and form (i.e. mechanisms) of sexual selection, via: (i) direct effects on secondary sexual traits and preferences (i.e. trait variance, opportunity for selection and trait-fitness covariance), and (ii) indirect effects on key mating parameters, sex-specific reproductive costs/benefits, trade-offs, demography and correlated abiotic factors. Building upon this framework, we show that, by focusing exclusively on the first-order effects that environmental temperature has on traits linked with individual fitness and population viability, current global warming studies may be ignoring eco-evolutionary feedbacks mediated by sexual selection. Finally, we tested the general prediction that temperature modulates sexual selection by conducting a meta-analysis of available studies experimentally manipulating temperature and reporting effects on the variance of male/female reproductive success and/or traits under sexual selection. Our results show a clear association between temperature and sexual selection measures in both sexes. In short, we suggest that studying the feedback between temperature and sexual selection processes may be vital to developing a better understanding of variation in the strength of sexual selection in nature, and its consequences for population viability in response to environmental change (e.g. global warming).
Collapse
Affiliation(s)
- Roberto García-Roa
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/Americo Vespucio, 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Daniel W A Noble
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 2061, Australia
| | - Pau Carazo
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| |
Collapse
|
19
|
Adams DC, Glynne E, Kaliontzopoulou A. Interspecific allometry for sexual shape dimorphism: Macroevolution of multivariate sexual phenotypes with application to Rensch's rule. Evolution 2020; 74:1908-1922. [PMID: 32578880 DOI: 10.1111/evo.14049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Allometric trends in the degree of sexual dimorphism with body size have long fascinated evolutionary biologists. Many male-biased clades display more prominent sexual dimorphism in larger taxa (Rensch's rule), with most examples documenting this pattern for body size dimorphism. Although sexual dimorphism in traits other than body size is equally functionally relevant, characterizing allometric patterns of sexual dimorphism in such traits is hampered by lack of an analytical framework that can accommodate multivariate phenotypes. In this article, we derive a multivariate equivalency for investigating trends in sexual dimorphism-relative to overall body size-across taxa and provide a generalized test to determine whether such allometric patterns correspond with Rensch's rule. For univariate linear traits such as body size, our approach yields equivalent results to those from standard procedures, but our test is also capable of detecting trends in multivariate datasets such as shape. Computer simulations reveal that the method displays appropriate statistical properties, and an empirical example in Mediterranean lizards provides the first demonstration of Rensch's rule in a multivariate phenotype (head shape). Our generalized procedure substantially extends the analytical toolkit for investigating macroevolutionary patterns of sexual dimorphism and seeking a better understanding of the processes that underlie them.
Collapse
Affiliation(s)
- Dean C Adams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | - Elizabeth Glynne
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, 50011
| | - Antigoni Kaliontzopoulou
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus de Vairão, Vila do Conde, Porto, 4099-002, Portugal
| |
Collapse
|
20
|
Roitberg ES, Orlova VF, Bulakhova NA, Kuranova VN, Eplanova GV, Zinenko OI, Arribas O, Kratochvíl L, Ljubisavljević K, Starikov VP, Strijbosch H, Hofmann S, Leontyeva OA, Böhme W. Variation in body size and sexual size dimorphism in the most widely ranging lizard: testing the effects of reproductive mode and climate. Ecol Evol 2020; 10:4531-4561. [PMID: 32551042 PMCID: PMC7297768 DOI: 10.1002/ece3.6077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 11/23/2022] Open
Abstract
Reproductive mode, ancestry, and climate are hypothesized to determine body size variation in reptiles but their effects have rarely been estimated simultaneously, especially at the intraspecific level. The common lizard (Zootoca vivipara) occupies almost the entire Northern Eurasia and includes viviparous and oviparous lineages, thus representing an excellent model for such studies. Using body length data for >10,000 individuals from 72 geographically distinct populations over the species' range, we analyzed how sex-specific adult body size and sexual size dimorphism (SSD) is associated with reproductive mode, lineage identity, and several climatic variables. Variation in male size was low and poorly explained by our predictors. In contrast, female size and SSD varied considerably, demonstrating significant effects of reproductive mode and particularly seasonality. Populations of the western oviparous lineage (northern Spain, south-western France) exhibited a smaller female size and less female-biased SSD than those of the western viviparous (France to Eastern Europe) and the eastern viviparous (Eastern Europe to Far East) lineages; this pattern persisted even after controlling for climatic effects. The phenotypic response to seasonality was complex: across the lineages, as well as within the eastern viviparous lineage, female size and SSD increase with increasing seasonality, whereas the western viviparous lineage followed the opposing trends. Altogether, viviparous populations seem to follow a saw-tooth geographic cline, which might reflect the nonmonotonic relationship of body size at maturity in females with the length of activity season. This relationship is predicted to arise in perennial ectotherms as a response to environmental constraints caused by seasonality of growth and reproduction. The SSD allometry followed the converse of Rensch's rule, a rare pattern for amniotes. Our results provide the first evidence of opposing body size-climate relationships in intraspecific units.
Collapse
Affiliation(s)
| | - Valentina F. Orlova
- Zoological Research MuseumMoscow M.V. Lomonosov State UniversityMoscowRussia
| | - Nina A. Bulakhova
- Institute of Biological Problems of the NorthMagadanRussia
- Research Institute of Biology and BiophysicsTomsk State UniversityTomskRussia
| | | | | | | | | | | | | | | | | | - Sylvia Hofmann
- Helmholtz‐Centre for Environmental Research – UfZLeipzigGermany
| | - Olga A. Leontyeva
- Department of BiogeographyMoscow M. V. Lomonosov State UniversityMoscowRussia
| | | |
Collapse
|
21
|
Günter F, Beaulieu M, Freiberg KF, Welzel I, Toshkova N, Žagar A, Simčič T, Fischer K. Genotype-environment interactions rule the response of a widespread butterfly to temperature variation. J Evol Biol 2020; 33:920-929. [PMID: 32243031 DOI: 10.1111/jeb.13623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/04/2020] [Accepted: 03/22/2020] [Indexed: 11/28/2022]
Abstract
Understanding how organisms adapt to complex environments is a central goal of evolutionary biology and ecology. This issue is of special interest in the current era of rapidly changing climatic conditions. Here, we investigate clinal variation and plastic responses in life history, morphology and physiology in the butterfly Pieris napi along a pan-European gradient by exposing butterflies raised in captivity to different temperatures. We found clinal variation in body size, growth rates and concomitant development time, wing aspect ratio, wing melanization and heat tolerance. Individuals from warmer environments were more heat-tolerant and had less melanised wings and a shorter development, but still they were larger than individuals from cooler environments. These findings suggest selection for rapid growth in the warmth and for wing melanization in the cold, and thus fine-tuned genetic adaptation to local climates. Irrespective of the origin of butterflies, the effects of higher developmental temperature were largely as expected, speeding up development; reducing body size, potential metabolic activity and wing melanization; while increasing heat tolerance. At least in part, these patterns likely reflect adaptive phenotypic plasticity. In summary, our study revealed pronounced plastic and genetic responses, which may indicate high adaptive capacities in our study organism. Whether this may help such species, though, to deal with current climate change needs further investigation, as clinal patterns have typically evolved over long periods.
Collapse
Affiliation(s)
- Franziska Günter
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Michaël Beaulieu
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Kasimir F Freiberg
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Ines Welzel
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | | | | | | | - Klaus Fischer
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| |
Collapse
|
22
|
Yadav S, Stow A, Dudaniec RY. Elevational partitioning in species distribution, abundance and body size of Australian alpine grasshoppers (Kosciuscola
). AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sonu Yadav
- Department of Biological Sciences; Macquarie University; North Ryde 2109 New South Wales Australia
| | - Adam Stow
- Department of Biological Sciences; Macquarie University; North Ryde 2109 New South Wales Australia
| | - Rachael Y. Dudaniec
- Department of Biological Sciences; Macquarie University; North Ryde 2109 New South Wales Australia
| |
Collapse
|
23
|
Belhaoues F, Breit S, Forstenpointner G, Gardeisen A. Sexual dimorphism in limb long bones of the German Shepherd Dog. Anat Histol Embryol 2020; 49:464-477. [PMID: 32157727 DOI: 10.1111/ahe.12550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 11/30/2022]
Abstract
The study of sexual dimorphism in dog anatomy, especially with regard to skeletal elements, has received little attention. The present work focuses on elements of the canine stylo- and zeugopodium, less documented than the skull or pelvis in the literature. In order to identify only sex-dependent effects, we analysed a single breed: the German Shepherd Dog. Data come from 25 dogs, with a balanced sex ratio (12 males and 13 females). Four skeletal elements of the forelimb and hindlimb (humerus, radius, femur, tibia) were each measured using seven linear morphometric variables. Univariate and multivariate analyses were then performed on these 28 variables. For all measurements, males are on average larger than females, with a mean sexual dimorphism ratio of 1.07. Sexual dimorphism is significant for 92.8% of the variables. Except of femoral measurements, diaphyseal values show the highest grade of sexual dimorphism. The mean level of disparity is higher in the forelimb (1.08) than in the hindlimb (1.05). A significant dimorphism is shown for the first component of principal component analyses conducted on each skeletal element, and for the second component with humerus measurements. Discriminant functions for sex identification give success rates included between 82% for the radius and 93% for the femur, the latter providing the highest reported score for sex identification in dogs from any skeletal element. These complementary statistic methods highlight a more dimorphic forelimb in size and a more dimorphic hindlimb in shape.
Collapse
Affiliation(s)
- Fabien Belhaoues
- UMR 5140 Archaeology of Mediterranean Societies, French National Center for Scientific Research (CNRS), LabEx ARCHIMEDE, IA-ANR-11-LABX-0032-01 program, University Paul-Valéry Montpellier 3, Montpellier, France
| | - Sabine Breit
- Department of Pathobiology, Institute of Topographic Anatomy, University of Veterinary Medicine, Vienna, Austria
| | - Gerhard Forstenpointner
- Department of Pathobiology, Institute of Topographic Anatomy, University of Veterinary Medicine, Vienna, Austria
| | - Armelle Gardeisen
- UMR 5140 Archaeology of Mediterranean Societies, French National Center for Scientific Research (CNRS), LabEx ARCHIMEDE, IA-ANR-11-LABX-0032-01 program, University Paul-Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
24
|
Hsu SK, Jakšić AM, Nolte V, Lirakis M, Kofler R, Barghi N, Versace E, Schlötterer C. Rapid sex-specific adaptation to high temperature in Drosophila. eLife 2020; 9:e53237. [PMID: 32083552 PMCID: PMC7034977 DOI: 10.7554/elife.53237] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
The pervasive occurrence of sexual dimorphism demonstrates different adaptive strategies of males and females. While different reproductive strategies of the two sexes are well-characterized, very little is known about differential functional requirements of males and females in their natural habitats. Here, we study the impact environmental change on the selection response in both sexes. Exposing replicated Drosophila populations to a novel temperature regime, we demonstrate sex-specific changes in gene expression, metabolic and behavioral phenotypes in less than 100 generations. This indicates not only different functional requirements of both sexes in the new environment but also rapid sex-specific adaptation. Supported by computer simulations we propose that altered sex-biased gene regulation from standing genetic variation, rather than new mutations, is the driver of rapid sex-specific adaptation. Our discovery of environmentally driven divergent functional requirements of males and females has important implications-possibly even for gender aware medical treatments.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Ana Marija Jakšić
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
| | - Manolis Lirakis
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
- Vienna Graduate School of Population Genetics, Vetmeduni ViennaViennaAustria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
| | - Neda Barghi
- Institut für Populationsgenetik, Vetmeduni ViennaViennaAustria
| | - Elisabetta Versace
- Department of Biological and Experimental Psychology, Queen Mary University of LondonLondonUnited Kingdom
| | | |
Collapse
|
25
|
Kuntner M, Coddington JA. Sexual Size Dimorphism: Evolution and Perils of Extreme Phenotypes in Spiders. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:57-80. [PMID: 31573828 DOI: 10.1146/annurev-ento-011019-025032] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sexual size dimorphism is one of the most striking animal traits, and among terrestrial animals, it is most extreme in certain spider lineages. The most extreme sexual size dimorphism (eSSD) is female biased. eSSD itself is probably an epiphenomenon of gendered evolutionary drivers whose strengths and directions are diverse. We demonstrate that eSSD spider clades are aberrant by sampling randomly across all spiders to establish overall averages for female (6.9 mm) and male (5.6 mm) size. At least 16 spider eSSD clades exist. We explore why the literature does not converge on an overall explanation for eSSD and propose an equilibrium model featuring clade- and context-specific drivers of gender size variation. eSSD affects other traits such as sexual cannibalism, genital damage, emasculation, and monogyny with terminal investment. Coevolution with these extreme sexual phenotypes is termed eSSD mating syndrome. Finally, as costs of female gigantism increase with size, eSSD may represent an evolutionary dead end.
Collapse
Affiliation(s)
- Matjaž Kuntner
- Evolutionary Zoology Laboratory, Department of Organisms and Ecosystems Research, National Institute of Biology, SI-1000 Ljubljana, Slovenia;
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0105, USA;
- Evolutionary Zoology Laboratory, Institute of Biology ZRC SAZU, SI-1001 Ljubljana, Slovenia
| | - Jonathan A Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0105, USA;
| |
Collapse
|
26
|
Gienger CM, Dochtermann NA, Tracy CR. Detecting trends in body size: empirical and statistical requirements for intraspecific analyses. Curr Zool 2019; 65:493-497. [PMID: 31616479 PMCID: PMC6784499 DOI: 10.1093/cz/zoy079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/09/2018] [Indexed: 11/14/2022] Open
Abstract
Attributing biological explanations to observed ecogeographical and ecological patterns require eliminating potential statistical and sampling artifacts as alternative explanations of the observed patterns. Here, we assess the role of sample size, statistical power, and geographic inclusivity on the general validity and statistical significance of relationships between body size and latitude for 3 well-studied species of turtles. We extend those analyses to emphasize the importance of using statistically robust data in determining macroecological patterns. We examined intraspecific trends in body size with latitude in Chelydra serpentina, Chrysemys picta, and Trachemys scripta using Pearson’s correlations, diagnostic tests for influential points, and resampling. Existing data were insufficient to ascertain a latitudinal trend in body size for C. serpentina or T. scripta. There was a significant relationship for C. picta, however, resampling analyses show that, on average, 16 of the 23 available independent populations were needed to demonstrate a significant relationship and that at least 20 of 23 populations were required to obtain a statistically powerful correlation between body size and latitude. Furthermore, restricting the latitudes of populations resampled shows that body size trends of C. picta were largely due to leveraging effects of populations at the edge of the species range. Our results suggest that broad inferences regarding ecological trends in body size should be made with caution until underlying (intraspecific) patterns in body size can be statistically and conclusively demonstrated.
Collapse
Affiliation(s)
- C M Gienger
- Department of Biology, Center of Excellence for Field Biology, Austin Peay State University, Clarksville, TN, USA
- Address correspondence to C. M. Gienger. E-mail:
| | - Ned A Dochtermann
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - C Richard Tracy
- Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
27
|
Günter F, Beaulieu M, Brunetti M, Lange L, Schmitz Ornés A, Fischer K. Latitudinal and altitudinal variation in ecologically important traits in a widespread butterfly. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Understanding how organisms adapt to complex environments lies at the very heart of evolutionary biology and ecology, and is of particular concern in the current era of anthropogenic global change. Variation in ecologically important traits associated with environmental gradients is considered to be strong evidence for adaptive responses. Here, we study phenotypic variation along a latitudinal and an altitudinal cline in 968 field-collected males of the widespread European butterfly Pieris napi. In contrast to our expectations, body size decreased with increasing latitude and altitude, suggesting that warmer rather than cooler conditions may be more beneficial for individual development in this species. Higher altitudes but not latitudes seemed to be associated with increased flight performance, suggesting stronger challenges for flight activity in high-altitude environments (e.g. due to strong wind). Moreover, wing melanization increased while yellow reflectance decreased towards colder environments in both clines. Thus, increased melanization under thermally challenging conditions seems to compromise investment into a sexually selected trait, resulting in a trade-off. Our study, although exclusively based on field-collected males, revealed indications of adaptive patterns along geographical clines. It documents the usefulness of field-collected specimens, and the strength of comparing latitudinal and altitudinal clines to identify traits being potentially under thermal selection.
Collapse
Affiliation(s)
- Franziska Günter
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Michaël Beaulieu
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Massimo Brunetti
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Lena Lange
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | | | - Klaus Fischer
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| |
Collapse
|
28
|
Burbrink FT, Futterman I. Female-biased gape and body-size dimorphism in the New World watersnakes (tribe: Thamnophiini) oppose predictions from Rensch's rule. Ecol Evol 2019; 9:9624-9633. [PMID: 31534680 PMCID: PMC6745821 DOI: 10.1002/ece3.5492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 01/19/2023] Open
Abstract
ABSTRACT Sexual-size dimorphism (SSD) is ubiquitous across animals and often biased in the direction of larger females in snakes and other ectothermic organisms. To understand how SSD evolves across species, Rensch's rule predicts that in taxa where males are larger, SSD increases with body size. In contrast, where females are larger, SSD decreases with body size. While this rule holds for many taxa, it may be ambiguous for others, particularly ectothermic vertebrates. Importantly, this rule suggests that the outcomes of SSD over phylogenetic time scales depend on the direction of dimorphism predicated on the difference in reproductive efforts between males and females. Here, we examine SSD in the context of Rensch's rule in Thamnophiini, the gartersnakes and watersnakes, a prominent group that in many areas comprises the majority of the North American snake biota. Using a dated phylogeny, measurements of gape, body, and tail size, we show that these snakes do not follow Rensch's rule, but rather female-biased SSD increases with body size. We in turn find that this allometry is most pronounced with gape and is correlated with both neonate and litter size, suggesting that acquiring prey of increased size may be directly related to fecundity selection. These changes in SSD are not constrained to any particular clade; we find no evidence of phylogenetic shifts in those traits showing SSD. We suggest several ways forward to better understand the anatomical units of selection for SSD and modularity. OPEN RESEARCH BADGES This article has been awarded Open Data and Open Materials Badges. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.5061/dryad.3pn57h0.
Collapse
Affiliation(s)
- Frank T. Burbrink
- Department of HerpetologyThe American Museum of Natural HistoryNew YorkNYUSA
| | - India Futterman
- Department of HerpetologyThe American Museum of Natural HistoryNew YorkNYUSA
| |
Collapse
|
29
|
Connallon T, Débarre F, Li XY. Linking local adaptation with the evolution of sex differences. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0414. [PMID: 30150215 DOI: 10.1098/rstb.2017.0414] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 01/21/2023] Open
Abstract
Many conspicuous forms of evolutionary diversity occur within species. Two prominent examples include evolutionary divergence between populations differentially adapted to their local environments (local adaptation), and divergence between females and males in response to sex differences in selection (sexual dimorphism sensu lato). These two forms of diversity have inspired vibrant research programmes, yet these fields have largely developed in isolation from one another. Nevertheless, conceptual parallels between these research traditions are striking. Opportunities for local adaptation strike a balance between local selection, which promotes divergence, and gene flow-via dispersal and interbreeding between populations-which constrains it. Sex differences are similarly constrained by fundamental features of inheritance that mimic gene flow. Offspring of each sex inherit genes from same-sex and opposite-sex parents, leading to gene flow between each differentially selected half of the population, and raising the question of how sex differences arise and are maintained. This special issue synthesizes and extends emerging research at the interface between the research traditions of local adaptation and sex differences. Each field can promote understanding of the other, and interactions between local adaptation and sex differences can generate new empirical predictions about the evolutionary consequences of selection that varies across space, time, and between the sexes.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Florence Débarre
- CNRS, UMR 7241 Centre Interdisciplinaire de Recherche en Biologie (CIRB), Collège de France, Paris, France
| | - Xiang-Yi Li
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
30
|
Baranovská E, Tajovský K, Knapp M. Changes in the Body Size of Carabid Beetles Along Elevational Gradients: A Multispecies Study of Between- and Within-Population Variation. ENVIRONMENTAL ENTOMOLOGY 2019; 48:583-591. [PMID: 30986299 DOI: 10.1093/ee/nvz036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Geographic variation in body size has fascinated biologists since the 19th century as it can provide insight into the evolution of the body size of various organisms. In this study, we investigated body size variation in eight carabid species/subspecies (Coleoptera: Carabidae) along elevational gradients in six Central European mountain ranges. First, we examined elevational variation in body size and whether female and male body sizes differed in their responses to elevation. Second, we examined intrapopulation variation in body size along an elevational gradient, and we compared the degrees of intrapopulation variation between males and females. The investigated species either followed a converse Bergmann's cline (Carabus auronitens auronitens Fabricius 1792; Carabus linnei Panzer 1810; Pterostichus melanarius (Illiger, 1798); Pterostichus pilosus (Host, 1789)) or their size was unaffected by elevation (Carabus auronitens escheri Palliardi, 1825; Carabus sylvestris sylvestris Panzer, 1796; Carabus sylvestris transsylvanicus Dejean, 1826; Pterostichus burmeisteri Heer, 1838). Females were the larger sex in all the investigated species, but the degree of sexual size dimorphism differed between species. In general, the degree of sexual size dimorphism showed no change with elevation. The degree of intrapopulation variation in body size slightly increased with elevation in C. sylvestris sylvestris and P. pilosus. Overall, the intrapopulation variation in body size significantly differed among the investigated carabid species. The existing literature on intrapopulation variation in the body size of insects is limited, but further investigation of this issue could provide a better understanding of the mechanisms that generate geographical clines.
Collapse
Affiliation(s)
- Eliška Baranovská
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká, Praha - Suchdol, Czech Republic
| | - Karel Tajovský
- Department of Soil Zoology, Institute of Soil Biology, Biology Centre of the Czech Academy of Sciences, Na Sádkách, České Budějovice, Czech Republic
| | - Michal Knapp
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká, Praha - Suchdol, Czech Republic
| |
Collapse
|
31
|
A synthesis of major environmental-body size clines of the sexes within arthropod species. Oecologia 2019; 190:343-353. [PMID: 31161468 PMCID: PMC6571078 DOI: 10.1007/s00442-019-04428-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/28/2019] [Indexed: 12/02/2022]
Abstract
Body size at maturity often varies with environmental conditions, as well as between males and females within a species [termed Sexual Size Dimorphism (SSD)]. Variation in body size clines between the sexes can determine the degree to which SSD varies across environmental gradients. We use a meta-analytic approach to investigate whether major biogeographical and temporal (intra-annually across seasons) body size clines differ systematically between the sexes in arthropods. We consider 329 intra-specific environmental gradients in adult body size across latitude, altitude and with seasonal temperature variation, representing 126 arthropod species from 16 taxonomic orders. On average, we observe greater variability in male than female body size across latitude, consistent with the hypothesis that, over evolutionary time, directional selection has acted more strongly on male than female size. In contrast, neither sex exhibits consistently greater proportional changes in body size than the other sex across altitudinal or seasonal gradients, akin to earlier findings for plastic temperature-size responses measured in the laboratory. Variation in the degree to which body size gradients differ between the sexes cannot be explained by a range of potentially influential factors, including environment type (aquatic vs. terrestrial), voltinism, mean species’ body size, degree of SSD, or gradient direction. Ultimately, if we are to make better sense of the patterns (or lack thereof) in SSD across environmental gradients, we require a more detailed understanding of the underlying selective pressures driving clines in body size. Such understanding will provide a more comprehensive hypothesis-driven approach to explaining biogeographical and temporal variation in SSD.
Collapse
|
32
|
Satomi D, Koshio C, Tatsuta H, Kudo S, Takami Y. Latitudinal variation and coevolutionary diversification of sexually dimorphic traits in the false blister beetle Oedemera sexualis. Ecol Evol 2019; 9:4949-4957. [PMID: 31031956 PMCID: PMC6476772 DOI: 10.1002/ece3.5101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 11/25/2022] Open
Abstract
Sexual traits are subject to evolutionary forces that maximize reproductive benefits and minimize survival costs, both of which can depend on environmental conditions. Latitude explains substantial variation in environmental conditions. However, little is known about the relationship between sexual trait variation and latitude, although body size often correlates with latitude. We examined latitudinal variation in male and female sexual traits in 22 populations of the false blister beetle Oedemera sexualis in the Japanese Archipelago. Males possess massive hind legs that function as a female-grasping apparatus, while females possess slender hind legs that are used to dislodge mounting males. Morphometric analyses revealed that male and female body size (elytron length), length and width of the hind femur and tibia, and allometric slopes of these four hind leg dimensions differed significantly among populations. Of these, three traits showed latitudinal variation, namely, male hind femur was stouter; female hind tibia was slenderer, and female body was smaller at lower latitudes than at higher latitudes. Hind leg sizes and shapes, as measured by principal component analysis of these four hind leg dimensions in each sex, covaried significantly between sexes, suggesting coevolutionary diversification in sexual traits. Covariation between sexes was weaker when variation in these traits with latitude was removed. These results suggest that coevolutionary diversification between male and female sexual traits is mediated by environmental conditions that vary with latitude.
Collapse
Affiliation(s)
- Daisuke Satomi
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Chiharu Koshio
- Department of BiologyNaruto University of EducationTokushimaJapan
| | - Haruki Tatsuta
- Faculty of AgricultureUniversity of the RyukyusOkinawaJapan
| | - Shin‐ichi Kudo
- Department of BiologyNaruto University of EducationTokushimaJapan
| | - Yasuoki Takami
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| |
Collapse
|
33
|
Rossi M, Haga E. Testing Rensch’s rule in Acanthoscelides macrophthalmus, a seed-feeding beetle infesting Leucaena leucocephala plants. CAN J ZOOL 2019. [DOI: 10.1139/cjz-2018-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rensch’s rule states that males vary more in size than females when body size increases. The main cause of Rensch’s rule has been credited to sexual selection. However, different degrees of plasticity between the sexes have also been proven to be useful for describing variations in sexual size dimorphism, particularly within an intraspecific context. For insects, in general, this rule has rarely been tested within species. Here, we tested whether Acanthoscelides macrophthalmus (Schaeffer, 1907) (Coleoptera: Chrysomelidae: Bruchinae) followed Rensch’s rule when individuals emerged from seeds immediately after fruit collection and when they were reared for one generation, by measuring three morphological traits. Rensch’s rule was not followed for any of the morphological traits. Variations in body size were similar in males and females for bruchines that first emerged from seeds and for those that were reared for one generation. These findings suggest that environmental conditions (e.g., temperature, humidity, and seasonality) are unlikely to drive differential plasticity in males and females of this seed-feeding beetle. It is possible that changes in the body size of A. macrophthalmus have a genetic basis. However, regardless of whether variations in body size have a genetic basis, our findings provide no support for Rensch’s rule.
Collapse
Affiliation(s)
- M.N. Rossi
- Department of Ecology and Evolutionary Biology, Laboratório de Ecologia Populacional (LEPOP), Federal University of São Paulo (Unifesp), Diadema, São Paulo, 09972-270, Brazil
- Department of Ecology and Evolutionary Biology, Laboratório de Ecologia Populacional (LEPOP), Federal University of São Paulo (Unifesp), Diadema, São Paulo, 09972-270, Brazil
| | - E.B. Haga
- Department of Ecology and Evolutionary Biology, Laboratório de Ecologia Populacional (LEPOP), Federal University of São Paulo (Unifesp), Diadema, São Paulo, 09972-270, Brazil
- Department of Ecology and Evolutionary Biology, Laboratório de Ecologia Populacional (LEPOP), Federal University of São Paulo (Unifesp), Diadema, São Paulo, 09972-270, Brazil
| |
Collapse
|
34
|
Vesović N, Ivanović A, Ćurčić S. Sexual size and shape dimorphism in two ground beetle taxa, Carabus (Procrustes) coriaceus cerisyi and C. (Morphocarabus) kollari praecellens (Coleoptera: Carabidae) - A geometric morphometric approach. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 49:1-9. [PMID: 30710632 DOI: 10.1016/j.asd.2019.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/04/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
We investigated morphometric variation in size and shape of the head, pronotum, and abdomen between the taxa and sexes of two ground beetles, Carabus coriaceus cerisyi Dejean, 1826 and C. kollari praecellens Palliardi, 1825. These two taxa differ in overall size, and both of them are characterized by significant sexual size dimorphism. In many taxa, allometry, the relationship between changes in shape and changes in size, can be a major component of intra- and interspecific variation in body shape. In the present study, we applied landmark-based geometric morphometrics to explore allometric and non-allometric components of shape variation between the taxa and more importantly between sexes within the taxa. We were able to show that the differences of shape between the taxa cannot be explained by allometric changes, as allometry explains only a small amount of total shape variation between the taxa, which was expected due to the fact that the taxa belong to separate subgenera. Between the sexes, on the other hand, allometry contributes largely to the variation, particularly in abdomen shape. However, the differences of head and pronotum shape between the sexes cannot be entirely explained in terms of allometric scaling. Our results indicate that allometry contributes largely to differences of body shape between the sexes, while differences between the taxa are influenced by other factors and processes.
Collapse
Affiliation(s)
- Nikola Vesović
- Institute of Zoology, University of Belgrade - Faculty of Biology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Ana Ivanović
- Institute of Zoology, University of Belgrade - Faculty of Biology, Studentski Trg 16, 11000 Belgrade, Serbia.
| | - Srećko Ćurčić
- Institute of Zoology, University of Belgrade - Faculty of Biology, Studentski Trg 16, 11000 Belgrade, Serbia.
| |
Collapse
|
35
|
Sexual size dimorphism, allometry and fecundity in a lineage of South American viviparous lizards (Liolaemidae: Phymaturus). ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Morbey YE. Female-biased dimorphism in size and age at maturity is reduced at higher latitudes in lake whitefish Coregonus clupeaformis. JOURNAL OF FISH BIOLOGY 2018; 93:40-46. [PMID: 29882273 DOI: 10.1111/jfb.13675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Female-biased sexual dimorphism in size at maturity is a common pattern observed in freshwater fishes with indeterminate growth, yet can vary in magnitude among populations for reasons that are not well understood. According to sex-specific optimization models, female-biased sexual size dimorphism can evolve due to sexual selection favouring earlier maturation by males, even when sexes are otherwise similar in their growth and mortality regimes. The magnitude of sexual size dimorphism is expected to depend on mortality rate. When mortality rates are low, both males and females are expected to mature at older ages and larger sizes, with size determined by the von Bertalanffy growth equation. The difference between size at maturity in males and females becomes reduced when maturing at older ages, closer to asymptotic size. This phenomenon is called von Bertalanffy buffering. The predicted relationship between the magnitude of female-biased sexual dimorphism in age and size at maturity and mortality rate was tested in a comparative analysis of lake whitefish Coregonus clupeaformis from 26 populations across a broad latitudinal range in North America. Most C. clupeaformis populations displayed female-biased sexual dimorphism in size and age at 50% maturity. As predicted, female-biased sexual size dimorphism was less extreme among lower mortality, high-latitude populations.
Collapse
Affiliation(s)
- Yolanda E Morbey
- Department of Biology, University of Western Ontario, London, Canada
| |
Collapse
|
37
|
Russell AL, Buchmann SL, Sabino WDO, Papaj DR. Brawls Bring Buzz: Male Size Influences Competition and Courtship in Diadasia rinconis (Hymenoptera: Apidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5084941. [PMID: 30165489 PMCID: PMC6113682 DOI: 10.1093/jisesa/iey083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Sexual selection on male body size in species with a female-biased sexual size dimorphism is common yet often poorly understood. In particular, in the majority of bee species, the relative contribution of intrasexual competition and female choice to patterns of male body size is unknown. In this field study, we examined two possible components of male mating success with respect to body size in the solitary bee Diadasia rinconis Cockerell (Hymenoptera: Apidae): 1) ability to procure a mate and 2) the duration of copulation. We found that larger males were better able to procure mates and copulated for shorter periods of time. Although consistent with sperm competition theory, differences in copulation duration were slight; possibly, the shorter copulations of larger males instead reflect in copulo female choice. Consistent with this notion, males engaged in complex courtship while mounted, characterized for the first time in any bee in such detail via audio recordings and high-speed, high-definition video. The number of pulses in male courtship behavior was also positively associated with copulation duration and may have stimulated females to continue copulating, thereby potentially allowing smaller males to transfer a full ejaculate. Females were shown to be potentially polyandrous and although we did not observe precopulatory rejection in the field, captive females frequently rejected copulation attempts by captive males. Our work indicates that intrasexual competition selects for increased body size in a solitary bee.
Collapse
Affiliation(s)
- Avery L Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
- Department of Entomology, University of Arizona, Tucson, AZ
- Graduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, Tucson, AZ
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| | - William de O Sabino
- Museu Paraense Emílio Goeldi, Coordenação de Zoologia, Avenida Perimetral, Belém, PA, Brazil
| | - Daniel R Papaj
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| |
Collapse
|
38
|
Santilli J, Rollinson N. Toward a general explanation for latitudinal clines in body size among chelonians. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jessica Santilli
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Njal Rollinson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Lasne C, Hangartner SB, Connallon T, Sgrò CM. Cross‐sex genetic correlations and the evolution of sex‐specific local adaptation: Insights from classical trait clines in
Drosophila melanogaster. Evolution 2018; 72:1317-1327. [DOI: 10.1111/evo.13494] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/03/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Clémentine Lasne
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| | | | - Tim Connallon
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| | - Carla M. Sgrò
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
40
|
McArthur IW, de Miranda GS, Seiter M, Chapin KJ. Global patterns of sexual dimorphism in Amblypygi. ZOOL ANZ 2018. [DOI: 10.1016/j.jcz.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Agha M, Ennen JR, Nowakowski AJ, Lovich JE, Sweat SC, Todd BD. Macroecological patterns of sexual size dimorphism in turtles of the world. J Evol Biol 2018; 31:336-345. [DOI: 10.1111/jeb.13223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Affiliation(s)
- M. Agha
- Department of Wildlife, Fish, and Conservation Biology; University of California, Davis; Davis CA USA
| | - J. R. Ennen
- Tennessee Aquarium Conservation Institute; Chattanooga TN USA
| | - A. J. Nowakowski
- Department of Wildlife, Fish, and Conservation Biology; University of California, Davis; Davis CA USA
| | - J. E. Lovich
- Southwest Biological Science Center; U.S. Geological Survey; Flagstaff AZ USA
| | - S. C. Sweat
- Tennessee Aquarium Conservation Institute; Chattanooga TN USA
| | - B. D. Todd
- Department of Wildlife, Fish, and Conservation Biology; University of California, Davis; Davis CA USA
| |
Collapse
|
42
|
Baranovská E, Knapp M. Steep converse Bergmann's cline in a carrion beetle: between- and within-population variation in body size along an elevational gradient. J Zool (1987) 2017. [DOI: 10.1111/jzo.12527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- E. Baranovská
- Department of Ecology; Faculty of Environmental Sciences; Czech University of Life Sciences Prague; Praha Czech Republic
| | - M. Knapp
- Department of Ecology; Faculty of Environmental Sciences; Czech University of Life Sciences Prague; Praha Czech Republic
| |
Collapse
|
43
|
Goldberg J, Cardozo D, Brusquetti F, Bueno Villafañe D, Caballero Gini A, Bianchi C. Body size variation and sexual size dimorphism across climatic gradients in the widespread treefrogScinax fuscovarius(Anura, Hylidae). AUSTRAL ECOL 2017. [DOI: 10.1111/aec.12532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Javier Goldberg
- Instituto de Bio y Geociencias del NOA (IBIGEO-CONICET); CCT-Salta; 9 de Julio 14 4405 Rosario de Lerma, Salta Argentina
| | - Darío Cardozo
- Laboratorio de Genética Evolutiva; Instituto de Biología Subtropical (IBS UNaM/CONICET); Posadas Misiones Argentina
| | | | | | | | - Carlos Bianchi
- Instituto de Bio y Geociencias del NOA (IBIGEO-CONICET); CCT-Salta; 9 de Julio 14 4405 Rosario de Lerma, Salta Argentina
| |
Collapse
|
44
|
Monteiro N, Cunha M, Ferreira L, Vieira N, Antunes A, Lyons D, Jones AG. Parabolic variation in sexual selection intensity across the range of a cold-water pipefish: implications for susceptibility to climate change. GLOBAL CHANGE BIOLOGY 2017; 23:3600-3609. [PMID: 28107778 DOI: 10.1111/gcb.13630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
While an understanding of evolutionary processes in shifting environments is vital in the context of rapid ecological change, one of the most potent selective forces, sexual selection, remains curiously unexplored. Variation in sexual selection across a species range, especially across a gradient of temperature regimes, has the potential to provide a window into the possible impacts of climate change on the evolution of mating patterns. Here, we investigated some of the links between temperature and indicators of sexual selection, using a cold-water pipefish as model. We found that populations differed with respect to body size, length of the breeding season, fecundity, and sexual dimorphism across a wide latitudinal gradient. We encountered two types of latitudinal patterns, either linear, when related to body size, or parabolic in shape when considering variables related to sexual selection intensity, such as sexual dimorphism and reproductive investment. Our results suggest that sexual selection intensity increases toward both edges of the distribution and that the large differences in temperature likely play a significant role. Shorter breeding seasons in the north and reduced periods for gamete production in the south certainly have the potential to alter mating systems, breeding synchrony, and mate monopolization rates. As latitude and water temperature are tightly coupled across the European coasts, the observed patterns in traits related to sexual selection can lead to predictions regarding how sexual selection should change in response to climate change. Based on data from extant populations, we can predict that as the worm pipefish moves northward, a wave of decreasing selection intensity will likely replace the strong sexual selection at the northern range margin. In contrast, the southern populations will be followed by heightened sexual selection, which may exacerbate the problem of local extinction at this retreating boundary.
Collapse
Affiliation(s)
- Nuno Monteiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, rua Padre Armando Quintas, Vairão, 4485-661, Portugal
- CEBIMED, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, rua Carlos da Maia 296, Porto, 4200-150, Portugal
| | - Mário Cunha
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, rua Padre Armando Quintas, Vairão, 4485-661, Portugal
- Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre, Porto, 4169-007, Portugal
| | - Lídia Ferreira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, rua Padre Armando Quintas, Vairão, 4485-661, Portugal
| | - Natividade Vieira
- Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre, Porto, 4169-007, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, Porto, 4050-123, Portugal
| | - Agostinho Antunes
- Faculdade de Ciências, Universidade do Porto, rua do Campo Alegre, Porto, 4169-007, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas, 289, Porto, 4050-123, Portugal
| | - David Lyons
- National Parks & Wildlife Service, Custom House, Druid Lane, Flood Street, Galway, Ireland
| | - Adam G Jones
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
45
|
Haga EB, Rossi MN. The effect of seed traits on geographic variation in body size and sexual size dimorphism of the seed-feeding beetle Acanthoscelides macrophthalmus. Ecol Evol 2017; 6:6892-6905. [PMID: 28725367 PMCID: PMC5513244 DOI: 10.1002/ece3.2364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/01/2016] [Accepted: 07/15/2016] [Indexed: 01/18/2023] Open
Abstract
Explaining large‐scale patterns of variation in body size has been considered a central question in ecology and evolutionary biology because several life‐history traits are directly linked to body size. For ectothermic organisms, little is known about what processes influence geographic variation in body size. Changes in body size and sexual size dimorphism (SSD) have been associated with environmental variables, particularly for Bruchinae insects, which feed exclusively on seeds during the larval stage. However, the effect of important seed traits on body size variation has rarely been investigated, and whether SSD varies substantially among populations within bruchine species is poorly known. Using the seed‐feeding beetle Acanthoscelides macrophthalmus infesting its host plant Leucaena leucocephala, we investigated whether specific seed traits (hardness, size, water content, carbon/nitrogen ratio, and phenolic content) were determinant in generating geographic variation in body size and SSD of A. macrophthalmus. We also examined the relationships between body size and SSD with latitude and altitude. The body size of both sexes combined was not related to latitude, altitude, and any of the physical and chemical seed traits. However, the female body size tended to vary more in size than the males, generating significant variation in SSD in relation to latitude and altitude. The females were the larger sex at higher latitudes and at lower altitudes, precisely where seed water content was greater. Therefore, our results suggest that water content was the most important seed trait, most severely affecting the females, promoting geographic variation in SSD of A. macrophthalmus.
Collapse
Affiliation(s)
- Eloísa B Haga
- Department of Biological Sciences Laboratório de Ecologia Populacional (LEPOP) Federal University of São Paulo (Unifesp) Diadema São Paulo 09941-510 Brazil
| | - Marcelo N Rossi
- Department of Biological Sciences Laboratório de Ecologia Populacional (LEPOP) Federal University of São Paulo (Unifesp) Diadema São Paulo 09941-510 Brazil
| |
Collapse
|
46
|
Tang J, He H, Chen C, Fu S, Xue F. Latitudinal cogradient variation of development time and growth rate and a negative latitudinal body weight cline in a widely distributed cabbage beetle. PLoS One 2017; 12:e0181030. [PMID: 28704496 PMCID: PMC5507546 DOI: 10.1371/journal.pone.0181030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/25/2017] [Indexed: 11/21/2022] Open
Abstract
The evolutionary and phenotypic responses to environmental gradients are often assumed to be the same, a phenomenon known as “cogradient variation”. However, only a few insect species display cogradient variation in physiological traits along a latitudinal gradient. We found evidence for such a response in the examination of the life history traits of the cabbage beetle Colaphellus bowringi from 6 different geographical populations at 16, 19, 22, 24, 26 and 28°C. Our results showed that larval and pupal development times significantly decreased as rearing temperature increased, and that growth rates were positively correlated with temperature. Body weight tended to decrease with increasing temperature, consistent with the general pattern in ectothermic animals. Larval development time was positively correlated with latitude, whereas the growth rate decreased as latitude increased, showing an example of latitudinal cogradient variation. Body weight significantly decreased with increasing latitude in a stepwise manner, showing a negative latitudinal body weight cline. Females were significantly larger than males, consistent with the female biased sex dimorphism in insects. Body weight tended to decrease with increasing rearing temperature, whereas the differences in sexual size dimorphism (SSD) tended to decrease with increasing body weight, which biased our results toward acceptance of Rensch’s rule. We found that weight loss was an important regulator of SSD, and because male pupae lost significantly more weight at metamorphosis than female pupae, SSD was greater in adults than in pupae. Overall, our data provide a new example that a latitudinal cogradient variation in physiological traits is associated with a negative latitudinal body weight cline.
Collapse
Affiliation(s)
- Jianjun Tang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Haimin He
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Chao Chen
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, United States of America
| | - Shu Fu
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
| | - Fangsen Xue
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, China
- * E-mail:
| |
Collapse
|
47
|
García-Navas V, Noguerales V, Cordero PJ, Ortego J. Ecological drivers of body size evolution and sexual size dimorphism in short-horned grasshoppers (Orthoptera: Acrididae). J Evol Biol 2017; 30:1592-1608. [PMID: 28609564 DOI: 10.1111/jeb.13131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/26/2017] [Accepted: 06/05/2017] [Indexed: 02/03/2023]
Abstract
Sexual size dimorphism (SSD) is widespread and variable in nature. Although female-biased SSD predominates among insects, the proximate ecological and evolutionary factors promoting this phenomenon remain largely unstudied. Here, we employ modern phylogenetic comparative methods on eight subfamilies of Iberian grasshoppers (85 species) to examine the validity of different models of evolution of body size and SSD and explore how they are shaped by a suite of ecological variables (habitat specialization, substrate use, altitude) and/or constrained by different evolutionary pressures (female fecundity, strength of sexual selection, length of the breeding season). Body size disparity primarily accumulated late in the history of the group and did not follow a Brownian motion pattern, indicating the existence of directional evolution for this trait. We found support for the converse of Rensch's rule (i.e. females are proportionally bigger than males in large species) across all taxa but not within the two most speciose subfamilies (Gomphocerinae and Oedipodinae), which showed an isometric pattern. Our results do not provide support for the fecundity or sexual selection hypotheses, and we did not find evidence for significant effects of habitat use. Contrary to that expected, we found that species with narrower reproductive window are less dimorphic in size than those that exhibit a longer breeding cycle, suggesting that male protandry cannot solely account for the evolution of female-biased SSD in Orthoptera. Our study highlights the need to consider alternatives to the classical evolutionary hypotheses when trying to explain why in certain insect groups males remain small.
Collapse
Affiliation(s)
- V García-Navas
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - V Noguerales
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - P J Cordero
- Grupo de Investigación de la Biodiversidad Genética y Cultural, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - J Ortego
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| |
Collapse
|
48
|
Pope BM, Kennedy PK, Mech SG, Kennedy ML. Spatial variation in sexual size dimorphism of the American black bear ( Ursus americanus) in eastern North America. SOUTHWEST NAT 2017. [DOI: 10.1894/0038-4909-62.2.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Brittany M. Pope
- Edward J. Meeman Biological Station and Ecological Research Center, Department of Biological Sciences, University of Memphis, Memphis, TN 38152 (BMP, PKK, MLK)
- Department of Biology, Albright College, Reading, PA 19612-5234 (SGM)
| | - Phyllis K. Kennedy
- Edward J. Meeman Biological Station and Ecological Research Center, Department of Biological Sciences, University of Memphis, Memphis, TN 38152 (BMP, PKK, MLK)
- Department of Biology, Albright College, Reading, PA 19612-5234 (SGM)
| | - Stephen G. Mech
- Edward J. Meeman Biological Station and Ecological Research Center, Department of Biological Sciences, University of Memphis, Memphis, TN 38152 (BMP, PKK, MLK)
- Department of Biology, Albright College, Reading, PA 19612-5234 (SGM)
| | - Michael L. Kennedy
- Edward J. Meeman Biological Station and Ecological Research Center, Department of Biological Sciences, University of Memphis, Memphis, TN 38152 (BMP, PKK, MLK)
- Department of Biology, Albright College, Reading, PA 19612-5234 (SGM)
| |
Collapse
|
49
|
Morita K, Tsuboi JI. Sexual size dimorphism in a landlocked Pacific salmon in relation to breeding habitat features. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9902-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
McKown AD, Klápště J, Guy RD, Soolanayakanahally RY, La Mantia J, Porth I, Skyba O, Unda F, Douglas CJ, El-Kassaby YA, Hamelin RC, Mansfield SD, Cronk QCB. Sexual homomorphism in dioecious trees: extensive tests fail to detect sexual dimorphism in Populus †. Sci Rep 2017; 7:1831. [PMID: 28500332 PMCID: PMC5431824 DOI: 10.1038/s41598-017-01893-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/05/2017] [Indexed: 11/09/2022] Open
Abstract
The evolution of sexual dimorphism and expansion of sex chromosomes are both driven through sexual conflict, arising from differing fitness optima between males and females. Here, we pair work in poplar (Populus) describing one of the smallest sex-determining regions known thus far in complex eukaryotes (~100 kbp) with comprehensive tests for sexual dimorphism using >1300 individuals from two Populus species and assessing 96 non-reproductive functional traits. Against expectation, we found sexual homomorphism (no non-reproductive trait differences between the sexes), suggesting that gender is functionally neutral with respect to non-reproductive features that affect plant survival and fitness. Combined with a small sex-determining region, we infer that sexual conflict may be effectively stymied or non-existent within these taxa. Both sexual homomorphism and the small sex-determining region occur against a background of strong environmental selection and local adaptation in Populus. This presents a powerful hypothesis for the evolution of dioecious species. Here, we suggest that environmental selection may be sufficient to suppress and stymy sexual conflict if it acts orthogonal to sexual selection, thereby placing limitations on the evolution of sexual dimorphism and genomic expansion of sex chromosomes.
Collapse
Affiliation(s)
- Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada.
| | - Jaroslav Klápště
- Department of Dendrology and Forest Tree Breeding, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, 165 21, Czech Republic.,Scion (New Zealand Forest Research Institute Ltd.), Whakarewarewa, Rotorua, 3046, New Zealand
| | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Raju Y Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Jonathan La Mantia
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Corn and Soybean Research, Wooster, OH, 44691, USA
| | - Ilga Porth
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada.,Département des sciences du bois et de la forêt, Faculté de foresterie, de géographie et de géomatique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Oleksandr Skyba
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Faride Unda
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, Vancouver, BC V6T 1Z4, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|