1
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
2
|
Huang S, Liu D, Han L, Deng J, Wang Z, Jiang J, Zeng L. Decoding the potential role of regulatory T cells in sepsis-induced immunosuppression. Eur J Immunol 2024; 54:e2350730. [PMID: 38430202 DOI: 10.1002/eji.202350730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Sepsis, a multiorgan dysfunction with high incidence and mortality, is caused by an imbalanced host-to-infection immune response. Organ-support therapy improves the early survival rate of sepsis patients. In the long term, those who survive the "cytokine storm" and its secondary damage usually show higher susceptibility to secondary infections and sepsis-induced immunosuppression, in which regulatory T cells (Tregs) are evidenced to play an essential role. However, the potential role and mechanism of Tregs in sepsis-induced immunosuppression remains elusive. In this review, we elucidate the role of different functional subpopulations of Tregs during sepsis and then review the mechanism of sepsis-induced immunosuppression from the aspects of regulatory characteristics, epigenetic modification, and immunometabolism of Tregs. Thoroughly understanding how Tregs impact the immune system during sepsis may shed light on preclinical research and help improve the translational value of sepsis immunotherapy.
Collapse
Affiliation(s)
- Siyuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Lei Han
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Zhen Wang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Roghani SA, Lotfi R, Soleymani B, Samimi Z, Feizollahi P, Asar S, Abdan Z, Khorasanizadeh A, Taghadosi M. Investigating the correlation of the NF-κB and FoxP3 gene expression with the plasma levels of pro- and anti-inflammatory cytokines in rheumatoid arthritis patients. Clin Rheumatol 2023; 42:1443-1450. [PMID: 36737515 DOI: 10.1007/s10067-023-06521-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic inflammatory systemic autoimmune disease. Cytokines regulate a wide range of inflammatory processes involved in RA pathogenesis. Anti-inflammatory cytokines (i.e., TGF-β and lL-10) and pro-inflammatory cytokines, like IL-6, were found to be potentially implicated in RA pathogenesis. Besides, NF-κB and FoxP3 are critical transcription factors regulating the inflammatory events occurring in RA patients. This study intends to assess the plasma levels of IL-6, IL-10, and TGF-β1 cytokines, as well as the expression of NF-κB and FoxP3 genes in RA patients, compared to the healthy controls. METHODS Peripheral blood was collected from 50 RA patients (25 new case and 25 under-treatment) and 25 age- and gender-matched healthy subjects. The disease activity was determined using the DAS-28 and ESR criteria. Also, plasma levels of TGF-β1, lL-10, and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA) technique, and the gene expression of NF-κB and FoxP3 was evaluated using the real-time PCR method. RESULTS Our results showed a significant up-regulation of Rel-A and NF-κB1, and also a down-regulation of FoxP3 gene expression in under-treatment RA patients compared to the controls (P=0.031, P=0.014, and P=0.011, respectively). Moreover, there was a significant reduction of Rel-A and FoxP3 in the under-treatment RA patients compared to new case RA patients (P=0.005 and P=0.015, respectively). Also, plasma levels of TGF-β1 were significantly increased in both the new case and under-treatment RA patients relative to controls (P<0.001). CONCLUSION In conclusion, classical NF-κB (P65/P50) and FoxP3 may have significant pro- and anti-inflammatory roles in RA pathogenesis, respectively. Key Point • NF-κB (P65/P50) has a contribution to the early phase of RA.
Collapse
Affiliation(s)
- Seyed Askar Roghani
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bijan Soleymani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Samimi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Feizollahi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Asar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abdan
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Khorasanizadeh
- Student Research Committee, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
PD-L1 is expressed on human activated naive effector CD4+ T cells. Regulation by dendritic cells and regulatory CD4+ T cells. PLoS One 2021; 16:e0260206. [PMID: 34793567 PMCID: PMC8601581 DOI: 10.1371/journal.pone.0260206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
The T cell expression of various co-signalling receptors from the CD28 immunoglobulin superfamily (Inducible T cell co-stimulator (ICOS), Programmed cell death 1(PD-1), cytotoxic T lymphocyte associated protein 4 (CTLA-4), B and T lymphocyte attenuator (BTLA) or from the tumour necrosis factor receptor superfamily (glucocorticoid-induced TNFR family related (GITR), 4-1BB, and CD27), is essential for T cell responses regulation. Other receptors (such as T cell immunoglobulin and mucin domain-containing protein 3, T cell immunoglobulin and T cell immunoglobulin and ITIM domain (TIGIT), and lymphocyte activation gene 3) are also involved in this regulation. Disturbance of the balance between activating and inhibitory signals can induce autoimmunity. We have developed an in vitro assay to simultaneously assess the function of naive CD4+ effector T cells (TEFFs), dendritic cells (DCs) and regulatory T cells (TREGs) and the expression of co-signalling receptors. By running the assay on cells from healthy adult, we investigated the regulation of activated T cell proliferation and phenotypes. We observed that TEFFs activated by DCs mainly expressed BTLA, ICOS and PD-1, whereas activated TREGs mainly expressed TIGIT, ICOS, and CD27. Strikingly, we observed that programmed death-ligand 1 (PD-L1) was significantly expressed on both activated TEFFs and TREGs. Moreover, high PD-L1 expression on activated TEFFs was correlated with a higher index of proliferation. Lastly, and in parallel to the TREG-mediated suppression of TEFF proliferation, we observed the specific modulation of the surface expression of PD-L1 (but not other markers) on activated TEFFs. Our results suggest that the regulation of T cell proliferation is correlated with the specific expression of PD-L1 on activated TEFFs.
Collapse
|
5
|
Bhaumik S, Mickael ME, Moran M, Spell M, Basu R. RORγt Promotes Foxp3 Expression by Antagonizing the Effector Program in Colonic Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:2027-2038. [PMID: 34518282 DOI: 10.4049/jimmunol.2100175] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/04/2021] [Indexed: 02/02/2023]
Abstract
RORγt is the master transcription factor for the Th17 cells. Paradoxically, in the intestine, RORγt is coexpressed in peripherally induced regulatory T cells (pTregs) together with Foxp3, the master transcription factor for Tregs. Unexpectedly, by an unknown mechanism, colonic RORγt+ Tregs show an enhanced suppressor function and prevent intestinal inflammation more efficiently than RORγt-nonexpressing pTregs. Although studies have elucidated the function of RORγt in Th17 cells, how RORγt regulates pTreg function is not understood. In our attempt to understand the role of RORγt in controlling Treg function, we discovered a RORγt-driven pathway that modulates the regulatory (suppressor) function of colonic Tregs. We found that RORγt plays an essential role in maintaining Foxp3 expression. RORγt-deficient Tregs failed to sustain Foxp3 expression with concomitant upregulation of T-bet and IFN-γ expressions. During colitis induced by adoptive transfer of CD45RBhi cells in Rag1 -/- mice, RORγt-deficient colonic Tregs transitioned to a Th1-like effector phenotype and lost their suppressor function, leading to severe colitis with significant mortality. Accordingly, Foxp3-expressing, RORγt-deficient Tregs showed impaired therapeutic efficacy in ameliorating colitis that is not due to their reduced survival. Moreover, using the Treg-specific RORγt and T-bet double-deficient gene knockout mouse, we demonstrate that deletion of T-bet from RORγt-deficient Tregs restored Foxp3 expression and suppression function as well as prevented onset of severe colitis. Mechanistically, our study suggests that RORγt-mediated repression of T-bet is critical to regulating the immunosuppressive function of colonic Tregs during the inflammatory condition.
Collapse
Affiliation(s)
- Suniti Bhaumik
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Monica Moran
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL; and
| | - Marion Spell
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, AL
| | - Rajatava Basu
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL;
| |
Collapse
|
6
|
Wandmacher AM, Mehdorn AS, Sebens S. The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers (Basel) 2021; 13:4932. [PMID: 34638420 PMCID: PMC8508450 DOI: 10.3390/cancers13194932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at advanced stages and most anti-cancer therapies have failed to substantially improve prognosis of PDAC patients. As a result, PDAC is still one of the deadliest tumors. Tumor heterogeneity, manifesting at multiple levels, provides a conclusive explanation for divergent survival times and therapy responses of PDAC patients. Besides tumor cell heterogeneity, PDAC is characterized by a pronounced inflammatory stroma comprising various non-neoplastic cells such as myofibroblasts, endothelial cells and different leukocyte populations which enrich in the tumor microenvironment (TME) during pancreatic tumorigenesis. Thus, the stromal compartment also displays a high temporal and spatial heterogeneity accounting for diverse effects on the development, progression and therapy responses of PDAC. Adding to this heterogeneity and the impact of the TME, the microbiome of PDAC patients is considerably altered. Understanding this multi-level heterogeneity and considering it for the development of novel therapeutic concepts might finally improve the dismal situation of PDAC patients. Here, we outline the current knowledge on PDAC cell heterogeneity focusing on different stromal cell populations and outline their impact on PDAC progression and therapy resistance. Based on this information, we propose some novel concepts for treatment of PDAC patients.
Collapse
Affiliation(s)
| | - Anna Maxi Wandmacher
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany;
| | - Anne-Sophie Mehdorn
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany;
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany
| |
Collapse
|
7
|
Zhong Y, Lu TT, Liu XM, Liu BL, Hu Y, Liu S, Wang J, Li GQ, Mao XM. High Levels of Thyroid Hormone Impair Regulatory T Cell Function Via Reduced PD-1 Expression. J Clin Endocrinol Metab 2021; 106:2738-2753. [PMID: 33758937 DOI: 10.1210/clinem/dgab191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT Regulatory T cell (Treg) dysfunction plays an important role in the development and progression of Graves' disease (GD). Programmed cell death 1 (PD-1) prompts FoxP3 in Treg expression and enhances the suppressive activity of Tregs. Whether abnormal expression of PD-1 contributes to the breakdown of Tregs and the role of thyroid hormone in the PD-1 expression of Tregs in GD remain substantially undefined. OBJECTIVE To evaluate the role of PD-1 in Treg function and triiodothyronine (T3) in PD-1 expression in patients with GD and mice treated with T3. METHODS We recruited 30 patients with GD and 30 healthy donors. PD-1 expression in Tregs and Treg function were determined. To evaluate the effects of thyroid hormone on PD-1 expression in Tregs, we used T3 for the treatment of human peripheral blood mononuclear cells (PBMCs). We then treated mice with T3 to confirm the effect of thyroid hormone on PD-1 expression in Tregs and Tregs function in vivo. RESULTS PD-1 expression in Tregs and the suppressive function of Tregs significantly decreased in patients with GD. T3 reduced PD-1 expression in human Tregs in a concentration- and time-dependent manner in vitro. High levels of circulating T3 reduced PD-1 expression in Tregs, impaired Treg function, and disrupted T-helper cell (Th1 and Th2) balance in mice treated with T3. CONCLUSION Treg dysfunction in GD patients might be due to downregulation of PD-1 expression in Tregs induced by high levels of serum T3.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ting-Ting Lu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Mei Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bing-Li Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Hu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shu Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guo-Qing Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Ming Mao
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Bavananthasivam J, Alizadeh M, Astill J, Alqazlan N, Matsuyama-Kato A, Shojadoost B, Taha-Abdelaziz K, Sharif S. Effects of administration of probiotic lactobacilli on immunity conferred by the herpesvirus of turkeys vaccine against challenge with a very virulent Marek's disease virus in chickens. Vaccine 2021; 39:2424-2433. [PMID: 33781599 DOI: 10.1016/j.vaccine.2021.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
Several vaccines have been used to control Marek's disease (MD) in chickens. However, the emergence of new strains of Marek's disease virus (MDV) imposes a threat to vaccine efficacy. Therefore, the current study was carried out to investigate whether concurrent administration of probiotics with the herpesvirus of turkeys (HVT) vaccine enhances its protective efficacy against MDV infection. In this regard, a cocktail comprised of four Lactobacillus species was administered with HVT to chicken embryos at embryonic day 18 (ED18) and/or from day 1 to day 4 post-hatch. The results revealed that the administration of a probiotic Lactobacillus with HVT at ED18 followed by oral gavage with the same lactobacilli cocktail to newly hatched chicks for the first 4 days post-hatch increased the expression of major histocompatibility complex (MHC) II on macrophages and B cells in spleen and decreased the number of CD4+CD25+ T regulatory cells in the spleen. Subsequently, chicks were infected with MDV. The chickens that received in ovo HVT and lactobacilli or HVT had higher expression of IFN-α at 21dpi in the spleen compared to the chickens that were challenged with MDV. Also, the expression of IFN-β in cecal tonsils at 10dpi was higher in the groups that received in ovo HVT and lactobacilli and oral lactobacilli compared to the group that received in ovo HVT alone. Moreover, the expression of tumor growth factor (TGF)-β4 at 4 days post-infection was reduced in the group that received both HVT and probiotics at ED18. Additionally, concurrent probiotics administration reduced tumor incidence by half when compared to HVT vaccine alone indicating enhancing effect of lactobacilli with HVT vaccine on host immune responses. In conclusion, these findings suggest the potential use of probiotic lactobacilli as adjuvants with the HVT vaccine against MDV infection in chickens.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah 62511, Beni-Suef, Egypt
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
9
|
Zhang L, Zhang M, Xu J, Li S, Chen Y, Wang W, Yang J, Li S, Gu M. The role of the programmed cell death protein-1/programmed death-ligand 1 pathway, regulatory T cells and T helper 17 cells in tumor immunity: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1526. [PMID: 33313271 PMCID: PMC7729304 DOI: 10.21037/atm-20-6719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor immunotherapy, especially that involving programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) immunosuppressive checkpoint inhibitors, has become an important part of tumor treatment strategy in the past decade. Blocking PD-1/PD-L1 signaling pathway can reduce the inhibitory effect of PD-1 pathway on T cells, promote the anti-tumor activity of activated T cells, and prolong the remission period of tumor. While PD-1/PD-L1 immunotherapy is effective in the treatment of solid malignant tumors, it also has shortcomings, due to the complexity of the tumor microenvironment (TME). Regulatory T cells (Tregs) and T helper 17 (Th17) cells play an important role in the TME and are closely related to the occurrence and development of tumors. Tregs can inhibit the anti-tumor immune effect, while Th17 cells play a dual role in tumor immunity, which not only promotes tumorigenesis but also promotes anti-tumor immunity. In the occurrence and development of tumor, PD-1/PD-L1 pathway, Tregs and Th17 cells are interrelated. However, the complicated relationship between the PD-1/PD-L1 pathway, Tregs, and Th17 cells has not been fully clarified. Here, we summarize the immunoregulation mechanisms and discuss the crosstalk between the PD-1/PD-L1 pathway, Tregs, and Th17 cells, with the aim of providing novel insights for future cancer treatment.
Collapse
Affiliation(s)
- Lanfang Zhang
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Mingjuan Zhang
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Jinxiu Xu
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Shan Li
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Yu Chen
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Wenjing Wang
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Juntian Yang
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Shengyun Li
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| | - Meiling Gu
- Department of Chemotherapy Unit 2, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, China
| |
Collapse
|
10
|
Nejatbakhsh Samimi L, Farhadi E, Tahmasebi MN, Jamshidi A, Sharafat Vaziri A, Mahmoudi M. NF-κB signaling in rheumatoid arthritis with focus on fibroblast-like synoviocytes. AUTOIMMUNITY HIGHLIGHTS 2020. [PMCID: PMC7414649 DOI: 10.1186/s13317-020-00135-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The nuclear factor-κB (NF-κB) signaling pathway regulates multiple processes in innate and adaptive immune cells. This pathway is involved in inflammation through the regulation of cytokines, chemokines, and adhesion molecules expression. The NF-κB transcription factor also participates in the survival, proliferation, and differentiation of cells. Therefore, deregulated NF-κB activation contributes to the pathogenesis of inflammatory diseases. Rheumatoid arthritis (RA) is classified as a heterogeneous and complex autoimmune inflammatory disease. Although different immune and non-immune cells contribute to the RA pathogenesis, fibroblast-like synoviocytes (FLSs) play a crucial role in disease progression. These cells are altered during the disease and produce inflammatory mediators, including inflammatory cytokines and matrix metalloproteinases, which result in joint and cartilage erosion. Among different cell signaling pathways, it seems that deregulated NF-κB activation is associated with the inflammatory picture of RA. NF-κB activation can also promote the proliferation of RA-FLSs as well as the inhibition of FLS apoptosis that results in hyperplasia in RA synovium. In this review, the role of NF-κB transcription factor in immune and non-immune cells (especially FLSs) that are involved in RA pathogenesis are discussed.
Collapse
|
11
|
BxPC-3-Derived Small Extracellular Vesicles Induce FOXP3+ Treg through ATM-AMPK-Sirtuins-Mediated FOXOs Nuclear Translocations. iScience 2020; 23:101431. [PMID: 32798974 PMCID: PMC7452591 DOI: 10.1016/j.isci.2020.101431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/27/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy in pancreatic ductal adenocarcinoma (PDAC) treatment faces serious challenges, due particularly to the poor immunogenicity. Cancer cell-derived small extracellular vesicles (sEVs) play important roles in damaging the immune system. However, the effects of pancreatic cancer-derived sEVs on T lymphocytes are unknown. Here we investigated changes in phenotypes and signal transduction pathways in sEVs-treated T lymphocytes. We identified the overexpression of immune checkpoint proteins PD-1, PD-L1, CTLA4, and Tim-3 and the enrichment of FOXP3+ Treg cluster in sEVs-treated T lymphocytes by CyTOF. Gene set enrichment analysis revealed that DNA damage response and metabolic pathways might be involved in sEVs-induced Tregs. ATM, AMPK, SIRT1, SIRT2, and SIRT6 were activated sequentially in sEVs-treated T lymphocytes and essential for sEVs-upregulated expressions of FOXO1A, FOXO3A, and FOXP3. Our study reveals the impact and mechanism of pancreatic cancer cell-derived sEVs on T lymphocytes and may provide insights into developing immunotherapy strategies for PDAC treatment. Human pancreatic cancer cells-derived sEVs induce Treg promotion DNA damage responses and metabolism are altered in sEVs-stimulated T lymphocytes ATM-AMPK-SIRT1/2/6-FOXO1A/3A axis plays a role in sEVs-induced Treg FOXO1A, FOXO3A, and FOXP3 are highly expressed in pancreatic cancer-involved lymph nodes
Collapse
|
12
|
Analysis of regulatory T cells and CTLA-4 expression in pregnant women according to seropositivity to Toxoplasma gondii. Parasitology 2020; 147:810-815. [PMID: 32183924 DOI: 10.1017/s0031182020000475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pregnancy is considered a period in which immunomodulation occurs, although it is important for the maintenance of the foetus, could contribute to infections as Toxoplasma gondii. Immune response cells such as regulatory T cells participate in this immunomodulation, and surface molecules such as CTLA-4 develop an immunosuppressive role, could contribute to the establishment of the parasite. This study aimed to evaluate the presence of regulatory T cells and the expression of CTLA-4 in parturient and non-pregnant seropositive and seronegative for anti-T. gondii antibodies. Sixty-two participants were evaluated, 14 parturient with negative serology, 23 parturient with positive serology, 16 non-pregnant women seronegative and 9 non-pregnant women seropositive. Immunophenotyping was performed for characterize TCD4+Foxp3+ cells, T CD4+CD25-Foxp3+, TCD4+CD25highFoxp3+, TCD4+CTLA-4+, TCD4+CD25-CTLA-4+ and TCD4+CD25highCTLA-4+. We observed a lower level of CD4+CD25highFoxp3+ cells from seropositive parturient compared with seropositive non-pregnant cells. Significative levels of CD4+CD25-Foxp3+ cells from seronegative pregnant were observed compared with seropositive pregnant cells. Furthermore, the higher level of CD4+CD25-CTLA-4+ cells populations was detected in seropositive pregnant cells compared with seropositive non-pregnant. Although a significant increase in CTLA-4 cells was observed in pregnant women positive for anti-T. gondii antibodies, this increase did not cause a risk of reactivation of the infection.
Collapse
|
13
|
Mbongue JC, Rawson J, Garcia PA, Gonzalez N, Cobb J, Kandeel F, Ferreri K, Husseiny MI. Reversal of New Onset Type 1 Diabetes by Oral Salmonella-Based Combination Therapy and Mediated by Regulatory T-Cells in NOD Mice. Front Immunol 2019; 10:320. [PMID: 30863412 PMCID: PMC6400227 DOI: 10.3389/fimmu.2019.00320] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/07/2019] [Indexed: 12/27/2022] Open
Abstract
Autoimmune diseases such as type 1 diabetes (T1D) involve the loss of regulatory mechanisms resulting in increased tissue-specific cytotoxicity. The result is destruction of pancreatic insulin-producing β-cells and loss of glucose homeostasis. We are developing a novel oral vaccine using live attenuated Salmonella to deliver TGFβ, IL10, and the diabetic autoantigen preproinsulin combined with low-doses of anti-CD3 mAb. Here we show that oral administration of Salmonella-based anti-CD3 mAb combined therapy reverses new-onset T1D in non-obese diabetic (NOD) mice. The therapeutic effect of the combined therapy was associated with induction of immune suppressive CD4+CD25+Foxp3+ Treg and CD4+CD49b+LAG3+ Tr1 cells. In adoptive transfer experiments, adding or depleting Treg or Tr1 cells indicated that both are important for preventing diabetes in combined therapy-treated mice, but that Tr1 cells may have a more central role. Furthermore, induced Tr1 cells were found to be antigen-specific responding to peptide stimulation by secreting tolerance inducing IL10. These preclinical data demonstrate a role for Treg and Tr1 cells in combined therapy-mediated induction of tolerance in NOD mice. These results also demonstrate the potential of oral Salmonella-based combined therapy in the treatment of early T1D.
Collapse
Affiliation(s)
- Jacques C Mbongue
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Pablo A Garcia
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Jacob Cobb
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Kevin Ferreri
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Mohamed I Husseiny
- Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, United States.,Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Izadi Z, Hajizadeh-Saffar E, Hadjati J, Habibi-Anbouhi M, Ghanian MH, Sadeghi-Abandansari H, Ashtiani MK, Samsonchi Z, Raoufi M, Moazenchi M, Izadi M, Nejad ASSH, Namdari H, Tahamtani Y, Ostad SN, Akbari-Javar H, Baharvand H. Tolerance induction by surface immobilization of Jagged-1 for immunoprotection of pancreatic islets. Biomaterials 2018; 182:191-201. [DOI: 10.1016/j.biomaterials.2018.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/25/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
|
15
|
Gianchecchi E, Fierabracci A. Inhibitory Receptors and Pathways of Lymphocytes: The Role of PD-1 in Treg Development and Their Involvement in Autoimmunity Onset and Cancer Progression. Front Immunol 2018; 9:2374. [PMID: 30386337 PMCID: PMC6199356 DOI: 10.3389/fimmu.2018.02374] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Regulatory T (Treg) cells represent a subpopulation of suppressor CD4+ T cells critically involved in the establishment of peripheral tolerance through the inhibition of effector T (Teff) cells and the suppression of the immune-mediated tissue destruction toward self-antigens. Treg generation, their suppressive properties and also Treg-Teff cell interactions could be modulated at least in part by programmed cell death-1 (PD-1) expression on their surface and through binding between PD-1 and programmed cell death ligand-1 (PD-L1). Defects involving PD-1 and Tregs can lead to the development of pathological conditions, including autoimmune disorders or promote cancer progression by favoring tumor evasion from the host immune response. At the same time, PD-1 and Tregs could represent attractive targets for treatment, as demonstrated by the therapeutic blockade of PD-L1 applied for the management of different cancer conditions in humans. In the present Review, we focus specifically the role of PD-1/PD-L1 on Treg development and activity.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy.,VisMederi S.r.l., Siena, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Rome, Italy
| |
Collapse
|
16
|
Ferrandino F, Grazioli P, Bellavia D, Campese AF, Screpanti I, Felli MP. Notch and NF-κB: Coach and Players of Regulatory T-Cell Response in Cancer. Front Immunol 2018; 9:2165. [PMID: 30364244 PMCID: PMC6193072 DOI: 10.3389/fimmu.2018.02165] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The Notch signaling pathway plays multiple roles in driving T-cell fate decisions, proliferation, and aberrant growth. NF-κB is a cell-context key player interconnected with Notch signaling either in physiological or in pathological conditions. This review focuses on how the multilayered crosstalk between different Notches and NF-κB subunits may converge on Foxp3 gene regulation and orchestrate CD4+ regulatory T (Treg) cell function, particularly in a tumor microenvironment. Notably, Treg cells may play a pivotal role in the inhibition of antitumor immune responses, possibly promoting tumor growth. A future challenge is represented by further dissection of both Notch and NF-κB pathways and consequences of their intersection in tumor-associated Treg biology. This may shed light on the molecular mechanisms regulating Treg cell expansion and migration to peripheral lymphoid organs thought to facilitate tumor development and still to be explored. In so doing, new opportunities for combined and/or more selective therapeutic approaches to improve anticancer immunity may be found.
Collapse
Affiliation(s)
| | - Paola Grazioli
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Diana Bellavia
- Department of Molecular Medicine, La Sapienza University, Rome, Italy
| | | | | | - Maria Pia Felli
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| |
Collapse
|
17
|
Tono Y, Ishihara M, Miyahara Y, Tamaru S, Oda H, Yamashita Y, Tawara I, Ikeda H, Shiku H, Mizuno T, Katayama N. Pertuzumab, trastuzumab and eribulin mesylate therapy for previously treated advanced HER2-positive breast cancer: a feasibility study with analysis of biomarkers. Oncotarget 2018; 9:14909-14921. [PMID: 29599915 PMCID: PMC5871086 DOI: 10.18632/oncotarget.24504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
The standard treatment for advanced human epidermal growth factor receptor 2 (HER2)-positive breast cancer is the triple combination of pertuzumab, trastuzumab and docetaxel, but some patients cannot tolerate taxane. To explore a non-taxane triple therapy, we conducted a feasibility study of pertuzumab, trastuzumab and eribulin mesylate (PTE) therapy for previously treated advanced HER2-positive breast cancer with analyses of quality of life and biomarkers. Ten patients were enrolled, two of whom had a history of docetaxel allergy. The median number of prior regimens was 3. The most common Grade 3 toxicities were leukopenia (70%) and neutropenia (70%). Grade 4 or 5 adverse events were not observed. An improving trend for the Functional Assessment of Cancer Therapy-Breast (FACT-B) score at 3 months was observed. Eight cases were included in the biomarker analysis. The peripheral CD8+ T cell/ CD4+Foxp3+ regulatory T cells (Tregs) ratio was significantly increased (p = 0.039). The frequency of peripheral Tregs was associated with the trastuzumab trough concentration (p = 0.019). In a non-clinical analysis, Eribulin mesylate significantly inhibited Ser473 Akt phosphorylation in PIK3CA wild-type cells and mutated cells. These results suggest that PTE therapy is a feasible and promising option for advanced HER2-positive breast cancer. Further investigation is warranted.
Collapse
Affiliation(s)
- Yasutaka Tono
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 514-8507 Mie, Japan.,Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Mikiya Ishihara
- Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Yoshihiro Miyahara
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 514-8507 Mie, Japan
| | - Satoshi Tamaru
- Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Hiroyasu Oda
- Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Yoshiki Yamashita
- Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 514-8507 Mie, Japan
| | - Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 514-8507 Mie, Japan.,Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 852-8523 Nagasaki, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, 514-8507 Mie, Japan
| | - Toshiro Mizuno
- Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| | - Naoyuki Katayama
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 514-8507 Mie, Japan.,Department of Medical Oncology, Mie University Hospital, 514-8507 Mie, Japan
| |
Collapse
|
18
|
Yu X, Zhang N, Lin W, Wang C, Gu W, Ling C, Feng Y, Su Y. Regulatory effects of four ginsenoside monomers in humoral immunity of systemic lupus erythematosus. Exp Ther Med 2017; 15:2097-2103. [PMID: 29434811 DOI: 10.3892/etm.2017.5657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
Ginsenosides Rb1, Rh1, Rg1 and Rg3 are known as the main active components extracted from the roots of the Panax ginseng C.A. Meyer, and were reported to have immunoregulatory effects. Disruption of B-cell immune regulation during the pathogenesis of systemic lupus erythematosus (SLE) may lead to the production of large amounts of antibodies. The present study investigated the effects of the four ginsenoside monomers on B-cell immune regulation and observed that they inhibited the proliferation and secretion of B cells induced by LPS, caused an upregulation of the expression of apoptosis-associated proteins Fas/Fas ligand and caspase-3, the expression of FcγRIIB (CD32) as well as the proportion of inactive B cells (CD19+CD27-). These results indicate that Rb1, Rh1, Rg1 and Rg3 inhibit the humoral immunity of SLE, among which Rh1 exhibited the most obvious inhibitory effect.
Collapse
Affiliation(s)
- Xin Yu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Na Zhang
- Department of Traditional Chinese Medicine, 401 Hospital of The Chinese People's Liberation Army, Qingdao, Shandong 266071, P.R. China
| | - Wanfu Lin
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chen Wang
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Wei Gu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Changquan Ling
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yinglu Feng
- Department of Traditional Chinese Medicine, 401 Hospital of The Chinese People's Liberation Army, Qingdao, Shandong 266071, P.R. China
| | - Yonghua Su
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
19
|
Frydrychowicz M, Boruczkowski M, Kolecka-Bednarczyk A, Dworacki G. The Dual Role of Treg in Cancer. Scand J Immunol 2017; 86:436-443. [PMID: 28941312 DOI: 10.1111/sji.12615] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) represent a small subpopulation of CD4+ cells. Tregs are characterized by the expression of transcription factor Forkhead box protein 3 (FoxP3), also known as scurfin. Tregs are modulators of adaptive immune responses and play an important role in maintaining tolerance to self-antigens, providing the suppression associated with tumour microenvironment as well. These immunomodulatory properties are the main reason for the development of numerous therapeutic strategies, designed to inhibit the activity of cancer cells. However, due to Treg subpopulation diversity and its many functional pathways, the role of these cells in the cancer development and progression is still not fully understood.
Collapse
Affiliation(s)
- M Frydrychowicz
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - M Boruczkowski
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - A Kolecka-Bednarczyk
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - G Dworacki
- Department of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
20
|
Diverse continuum of CD4 + T-cell states is determined by hierarchical additive integration of cytokine signals. Proc Natl Acad Sci U S A 2017; 114:E6447-E6456. [PMID: 28716917 DOI: 10.1073/pnas.1615590114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During cell differentiation, progenitor cells integrate signals from their environment that guide their development into specialized phenotypes. The ways by which cells respond to complex signal combinations remain difficult to analyze and model. To gain additional insight into signal integration, we systematically mapped the response of CD4+ T cells to a large number of input cytokine combinations that drive their differentiation. We find that, in response to varied input combinations, cells differentiate into a continuum of cell fates as opposed to a limited number of discrete phenotypes. Input cytokines hierarchically influence the cell population, with TGFβ being most dominant followed by IL-6 and IL-4. Mathematical modeling explains these results using additive signal integration within hierarchical groups of input cytokine combinations and correctly predicts cell population response to new input conditions. These findings suggest that complex cellular responses can be effectively described using a segmented linear approach, providing a framework for prediction of cellular responses to new cytokine combinations and doses, with implications to fine-tuned immunotherapies.
Collapse
|
21
|
Abstract
Genetic and cellular studies of type 1 diabetes in patients and in the nonobese diabetic mouse model of type 1 diabetes point to an imbalance between effector T cells and regulatory T cells (Tregs) as a driver of the disease. The imbalance may arise as a consequence of genetically encoded defects in thymic deletion of islet antigen-specific T cells, induction of islet antigen-specific thymic Tregs, unfavorable tissue environment for peripheral Treg induction, and failure of islet antigen-specific Tregs to survive in the inflamed islets secondary to insufficient IL-2 signals. These understandings are the foundation for rationalized design of new therapeutic interventions to restore the balance by selectively targeting effector T cells and boosting Tregs.
Collapse
Affiliation(s)
- Allyson Spence
- Department of Surgery and UCSF Diabetes Center, University of California, 513 Parnassus HSE-520, Box 0780, San Francisco, CA, 94143, USA
| | - Qizhi Tang
- Department of Surgery and UCSF Diabetes Center, University of California, 513 Parnassus HSE-520, Box 0780, San Francisco, CA, 94143, USA.
| |
Collapse
|
22
|
Ramelyte E, Schindler SA, Dummer R. The safety of anti PD-1 therapeutics for the treatment of melanoma. Expert Opin Drug Saf 2016; 16:41-53. [PMID: 27737598 DOI: 10.1080/14740338.2016.1248402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The introduction of immunotherapies into clinical practice has substantially improved the prognosis of metastatic melanoma patients as well as patients suffering from other cancers. The two FDA-approved checkpoint inhibitors against PD-1 (nivolumab and pembrolizumab) have been shown to significantly improve patient survival while being less toxic than previous treatment options. Areas covered: The current scientific literature on safety and adverse events (AEs) related to anti-PD-1 therapies has been investigated with special attention to case reports and to the latest results announced at the major clinical cancer and melanoma meetings, including ASCO (American Society of Clinical Oncology), ESMO (European Society of medical Oncology) and EADO (European Association of Dermato-Oncology) annual meetings. Expert opinion: Even though anti-PD-1 therapies are better tolerated than conventional chemo- or other immune-therapies, they still induce a plethora of AEs. Given the mechanism of action, it is supposed that most if not all of them are immune related. Fortunately, the majority are mild and manageable. However, due to the increase in patients' life expectancy, there is a substantial need to understand and prevent severe cutaneous, pulmonary, neurological and other AEs which have major impact on the quality of life. The safety profile after long term use of these medications is still unclear. In addition, non-steroid based immune interventions to control autoimmunity are still to be developed.
Collapse
Affiliation(s)
- Egle Ramelyte
- a Department of Dermatology , University Hospital Zurich , Zurich , Switzerland.,b Centre of Dermatovenereology , Vilnius University Hospital Santariskiu klinikos , Vilnius , Lithuania
| | - Sabrina A Schindler
- a Department of Dermatology , University Hospital Zurich , Zurich , Switzerland
| | - Reinhard Dummer
- a Department of Dermatology , University Hospital Zurich , Zurich , Switzerland
| |
Collapse
|
23
|
Hilger N, Glaser J, Müller C, Halbich C, Müller A, Schwertassek U, Lehmann J, Ruschpler P, Lange F, Boldt A, Stahl L, Sack U, Oelkrug C, Emmrich F, Fricke S. Attenuation of graft-versus-host-disease in NOD scid IL-2Rγ(-/-) (NSG) mice by ex vivo modulation of human CD4(+) T cells. Cytometry A 2016; 89:803-15. [PMID: 27560708 DOI: 10.1002/cyto.a.22930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/17/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023]
Abstract
NOD.Cg-Prkdc(scid) IL-2rg(tm1Wjl) /SzJ (NSG) mice are a valuable tool for studying Graft-versus-Host-Disease (GvHD) induced by human immune cells. We used a model of acute GvHD by transfer of human peripheral blood mononuclear cells (PBMCs) into NSG mice. The severity of GvHD was reflected by weight loss and was associated with engraftment of human cells and the expansion of leukocytes, particularly granulocytes and monocytes. Pre-treatment of PBMCs with the anti-human CD4 antibody MAX.16H5 IgG1 or IgG4 attenuated GvHD. The transplantation of 2 × 10(7) PBMCs without anti-human CD4 pre-treatment induced a severe GvHD (0% survival). In animals receiving 2 × 10(7) PBMCs pre-incubated with MAX.16H5 IgG1 or IgG4, GvHD development was reduced and survival was increased. Immune reconstitution was measured by flow cytometry and confirmed for human leukocytes (CD45), CD3(+) /CD8(+) cytotoxic T cells and CD3(+) /CD4(+) T helper cells. Human B cells (CD19) and monocytes (CD14) could not be detected. Histopathological analysis (TUNEL assay) of the gut of recipient animals showed significantly less apoptotic crypt cells in animals receiving a MAX.16H5 IgG1 pre-incubated graft. These findings indicate that pre-incubation of an allogeneic graft with an anti-human CD4 antibody may decrease the frequency and severity of GvHD after hematopoietic stem cell transplantation (HSCT) and the need of conventional immunosuppressive drugs. Moreover, this approach most probably provides a safer HSCT that must be confirmed in appropriate clinical trials in the future. © 2016 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Jakob Glaser
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.
| | - Claudia Müller
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Christoph Halbich
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Anne Müller
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Ulla Schwertassek
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Jörg Lehmann
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Peter Ruschpler
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Franziska Lange
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Andreas Boldt
- Institute for Clinical Immunology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Lilly Stahl
- Institute for Clinical Immunology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Ulrich Sack
- Institute for Clinical Immunology, Medical Faculty of Leipzig University, Leipzig, Germany
| | - Christopher Oelkrug
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Frank Emmrich
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| |
Collapse
|
24
|
Choudhury S, Gupta P, Ghosh S, Mukherjee S, Chakraborty P, Chatterji U, Chattopadhyay S. Arsenic-induced dose-dependent modulation of the NF-κB/IL-6 axis in thymocytes triggers differential immune responses. Toxicology 2016; 357-358:85-96. [PMID: 27289040 DOI: 10.1016/j.tox.2016.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/22/2022]
Abstract
Arsenic contamination of drinking water is a matter of global concern. Arsenic intake impairs immune responses and leads to a variety of pathological conditions including cancer. In order to understand the intricate tuning of immune responses elicited by chronic exposure to arsenic, a mouse model was established by subjecting mice to different environmentally relevant concentrations of arsenic in drinking water for 30days. Detailed study of the thymus, a primary immune organ, revealed arsenic-mediated tissue damage in both histological specimens and scanning electron micrographs. Analysis of molecular markers of apoptosis by Western blot revealed a dose-dependent activation of the apoptotic cascade. Enzymatic assays supported oxidative stress as an instigator of cell death. Interestingly, assessment of inflammatory responses revealed disparity in the NF-κB/IL-6/STAT3 axis, where it was found that in animals consuming higher amounts of arsenic NF-κB activation did not lead to the classical IL-6 upregulation response. This deviation from the canonical pathway was accompanied with a significant rise in numbers of CD4+ CD25+ FoxP3 expressing cells in the thymus. The cytokine profile of the animals exposed to higher doses of arsenic also indicated an immune-suppressed milieu, thus validating that arsenic shapes the immune environment in context to its dose of exposure and that at higher doses it leads to immune-suppression. Our study establishes a novel role of arsenic in regulating immune homeostasis in context to its dose, where, at higher doses, arsenic related upregulation of NF-κB cascade takes on an alternative role that is correlated with increased immune-suppression.
Collapse
Affiliation(s)
- Sreetama Choudhury
- Department of Physiology, UCSTA, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Payal Gupta
- Department of Physiology, UCSTA, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Sayan Ghosh
- Department of Physiology, UCSTA, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Sudeshna Mukherjee
- Department of Physiology, UCSTA, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Priyanka Chakraborty
- Department of Physiology, UCSTA, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Urmi Chatterji
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Sreya Chattopadhyay
- Department of Physiology, UCSTA, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| |
Collapse
|
25
|
Wang T, Shi W, Fan T, Wan X, Chen YH, Ruan Q. c-Rel is Required for the Induction of pTregs in the Eye but Not in the Gut Mucosa. Immunol Invest 2016; 45:776-786. [PMID: 27224262 DOI: 10.3109/08820139.2016.1172639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regulatory T (Treg) cells play an integral role in maintaining immune homeostasis and preventing autoimmune diseases. Forkhead box P3 expression marks the commitment of progenitor cells to the Treg lineage. Although the essential function of the nuclear factor (NF)-κB family transcription factor c-Rel in the regulation of natural Treg cells has been firmly established, little is known about whether c-Rel is involved in the in vivo generation of peripheral Treg cells (pTregs), which develop from mature CD4+ conventional T cells outside of the thymus. We sought to answer this question through the induction of pTregs in the eye and gut mucosa using ovalbumin-specific T cell receptor transgenic mice that do or do not express c-Rel. Our results showed that Tregs can be induced in the eye in a c-Rel-dependent manner when immune-mediated inflammation occurs. However, c-Rel is dispensable for the induction of pTregs in the gut mucosa after oral antigen administration. Thus, c-Rel may play distinct roles in regulating the development of pTregs in different organs. Abbreviations ACAID: Anterior Chamber-Associated Immune Deviation; ATF: activating transcription factor; CREB: cAMP responsive element-binding protein; DMEM: Dulbecco minimum essential medium; HBSS: Hanks Balanced Salt Solution; NFAT: Nuclear Factor of Activated T cells; PBS: Phosphate-buffered saline; PE: Phycoerythrin; WT: wild type.
Collapse
Affiliation(s)
- Ting Wang
- a Shandong Eye Institute , Qingdao , People's Republic of China
| | - Weiyun Shi
- a Shandong Eye Institute , Qingdao , People's Republic of China
| | - Tingting Fan
- b Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , People's Republic of China
| | - Xiaochun Wan
- b Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , People's Republic of China
| | - Youhai H Chen
- c Department of Pathology and Laboratory of Medicine , University of Pennsylvania School of Medicine , Philadelphia , PA , USA
| | - Qingguo Ruan
- b Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen , People's Republic of China
| |
Collapse
|
26
|
Carlos D, Yaochite JNU, Rocha FA, Toso VD, Malmegrim KCR, Ramos SG, Jamur MC, Oliver C, Camara NO, Andrade MVM, Cunha FQ, Silva JS. Mast cells control insulitis and increase Treg cells to confer protection against STZ-induced type 1 diabetes in mice. Eur J Immunol 2015; 45:2873-85. [DOI: 10.1002/eji.201545498] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/09/2015] [Accepted: 07/23/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Daniela Carlos
- Departments of Biochemistry and Immunology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Juliana N. U. Yaochite
- Departments of Biochemistry and Immunology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Fernanda A. Rocha
- Departments of Biochemistry and Immunology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Vanina D. Toso
- Molecular and Cellular Biology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Kelen C. R. Malmegrim
- Department of Clinical; Toxicological and Bromatological Analysis; School of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Simone G. Ramos
- Pathology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Maria C. Jamur
- Molecular and Cellular Biology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Constance Oliver
- Molecular and Cellular Biology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - Niels O. Camara
- Department of Immunology; Institute of Biomedical Science (ICB); University of São Paulo; São Paulo SP Brazil
| | - Marcus V. M. Andrade
- Department of Medical Clinical; School of Medicine; Federal University of Minas Gerais; Belo Horizonte MG Brazil
| | - Fernando Q. Cunha
- Pharmacology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - João S. Silva
- Departments of Biochemistry and Immunology; School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
27
|
Fukazawa T, Hiraiwa N, Umemura T, Mise-Omata S, Obata Y, Doi T. Egress of Mature Murine Regulatory T Cells from the Thymus Requires RelA. THE JOURNAL OF IMMUNOLOGY 2015; 194:3020-8. [DOI: 10.4049/jimmunol.1302756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Okamura T, Sumitomo S, Morita K, Iwasaki Y, Inoue M, Nakachi S, Komai T, Shoda H, Miyazaki JI, Fujio K, Yamamoto K. TGF-β3-expressing CD4+CD25(-)LAG3+ regulatory T cells control humoral immune responses. Nat Commun 2015; 6:6329. [PMID: 25695838 DOI: 10.1038/ncomms7329] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
Autoantibodies induce various autoimmune diseases, including systemic lupus erythematosus (SLE). We previously described that CD4(+)CD25(-)LAG3(+) regulatory T cells (LAG3(+) Treg) are regulated by Egr2, a zinc-finger transcription factor required for the induction of T-cell anergy. We herein demonstrate that LAG3(+) Treg produce high amounts of TGF-β3 in an Egr2- and Fas-dependent manner. LAG3(+) Treg require TGF-β3 to suppress B-cell responses in a murine model of lupus. Moreover, TGF-β3- and LAG3(+) Treg-mediated suppression requires PD-1 expression on B cells. We also show that TGF-β3-expressing human LAG3(+) Treg suppress antibody production and that SLE patients exhibit decreased frequencies of LAG3(+) Treg. These results clarify the mechanism of B-cell regulation and suggest therapeutic strategies.
Collapse
Affiliation(s)
- Tomohisa Okamura
- 1] Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan [2] Max Planck-The University of Tokyo Center for Integrative Inflammology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Shuji Sumitomo
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kaoru Morita
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yukiko Iwasaki
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mariko Inoue
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shinichiro Nakachi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshihiko Komai
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Jun-Ichi Miyazaki
- Division of Stem Cell Regulation Research, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
29
|
Abstract
BACKGROUND CTLA-4 immunoglobulin fusion proteins (CTLA4-Ig) suppress immune reactions by blocking the T-cell costimulatory CD28-CD80-86 pathway and are used in clinical trials for diseases featuring exaggerated T-cell reactivity including autoimmune diseases and allograft rejection. However, because CTLA4-Ig has been suspected to interfere with T regulatory (Treg) cell homeostasis and function, recently, substantial concerns on CTLA4-Ig's potentially antitolerogenic effects have been raised. METHODS We tested immunoregulatory CTLA4-Ig explicitly for its effect on Treg cell numbers, frequencies and function in an in vitro murine major histocompatibility complex mismatched setting using C57BL/6 bone marrow-derived dendritic cells as stimulators of allogeneic Balb/c Foxp3 T cells, which allowed for tracing Treg cells in a straightforward fashion. RESULTS The presence of CTLA4-Ig in mixed leukocyte reactions-while dampening the global proliferative response of allostimulated Balb/c T cells-resulted in a relative increase of the frequency of thymus-derived CD4CD25Foxp3 Treg cells with intact suppressive activity. This relative increase was caused by a selective inhibitory effect of CTLA4-Ig on proliferating conventional T cells, whereas the proliferative capacity of Treg cells in cell cultures remained unaffected. Additionally, in the presence of CTLA4-Ig, the frequency of apoptosis was decreased in these cells. CONCLUSION Our findings unequivocally demonstrate that CTLA4-Ig does not negatively affect Treg cell frequencies and function in vitro.
Collapse
|
30
|
Abstract
Although intestinal bacteria live deep within the body, they are topographically on the exterior surface and thus outside the host. According to the classic notion that the immune system targets non-self rather than self, these intestinal bacteria should be considered foreign and therefore attacked and eliminated. While this appears to be true for some commensal bacterial species, recent data suggest that the immune system actively becomes tolerant to many bacterial organisms. The induction or activation of regulatory T (Treg) cells that inhibit, rather than promote, inflammatory responses to commensal bacteria appears to be a central component of mucosal tolerance. Loss of this mechanism can lead to inappropriate immune reactivity toward commensal organisms, perhaps contributing to mucosal inflammation characteristic of disorders such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Teresa L Ai
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | | | | |
Collapse
|
31
|
The immunology of pregnancy: Regulatory T cells control maternal immune tolerance toward the fetus. Immunol Lett 2014; 162:41-8. [DOI: 10.1016/j.imlet.2014.06.013] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/13/2014] [Accepted: 06/24/2014] [Indexed: 01/20/2023]
|
32
|
Kim MJ, Jeong EK, Kwon EY, Joo JY, Lee JY, Choi J. Human CD103(+) dendritic cells promote the differentiation of Porphyromonas gingivalis heat shock protein peptide-specific regulatory T cells. J Periodontal Implant Sci 2014; 44:235-41. [PMID: 25368812 PMCID: PMC4216400 DOI: 10.5051/jpis.2014.44.5.235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/24/2014] [Indexed: 11/15/2022] Open
Affiliation(s)
- Myung-Jin Kim
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Eui-Kyong Jeong
- Department of Molecular Biology, Pusan University College of Natural Sciences, Yangsan, Korea
| | - Eun-Young Kwon
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| | - Jeomil Choi
- Department of Periodontology, Pusan University School of Dentistry, Yangsan, Korea
| |
Collapse
|
33
|
Oelkrug C, Sack U, Boldt A, Nascimento IC, Ulrich H, Fricke S. Antibody- and aptamer-strategies for GvHD prevention. J Cell Mol Med 2014; 19:11-20. [PMID: 25353670 PMCID: PMC4288345 DOI: 10.1111/jcmm.12416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023] Open
Abstract
Prevention of Graft-versus-Host-Disease (GvHD) by preserved Graft-versus-Leukaemia (GvL) effect is one of the major obstacles following allogeneic haematopoietic stem cell transplantation. Currently used drugs are associated with side effects and were not able to separate GvHD from the GvL-effect because of general T-cell suppression. This review focuses on murine models for GvHD and currently available treatment options involving antibodies and applications for the therapeutic use of aptamers as well as strategies for targeting immune responses by allogenic antigens.
Collapse
Affiliation(s)
- Christopher Oelkrug
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Yin Y, Cai X, Chen X, Liang H, Zhang Y, Li J, Wang Z, Chen X, Zhang W, Yokoyama S, Wang C, Li L, Li L, Hou D, Dong L, Xu T, Hiroi T, Yang F, Ji H, Zhang J, Zen K, Zhang CY. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res 2014; 24:1164-80. [PMID: 25223704 PMCID: PMC4185347 DOI: 10.1038/cr.2014.121] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/18/2014] [Accepted: 08/05/2014] [Indexed: 12/30/2022] Open
Abstract
An increased population of CD4(+)CD25(high)Foxp3(+) regulatory T cells (Tregs) in the tumor-associated microenvironment plays an important role in cancer immune evasion. However, the underlying mechanism remains unclear. Here we observed an increased secretion of miR-214 in various types of human cancers and mouse tumor models. Tumor-secreted miR-214 was sufficiently delivered into recipient T cells by microvesicles (MVs). In targeted mouse peripheral CD4(+) T cells, tumor-derived miR-214 efficiently downregulated phosphatase and tensin homolog (PTEN) and promoted Treg expansion. The miR-214-induced Tregs secreted higher levels of IL-10 and promoted tumor growth in nude mice. Furthermore, in vivo studies indicated that Treg expansion mediated by cancer cell-secreted miR-214 resulted in enhanced immune suppression and tumor implantation/growth in mice. The MV delivery of anti-miR-214 antisense oligonucleotides (ASOs) into mice implanted with tumors blocked Treg expansion and tumor growth. Our study reveals a novel mechanism through which cancer cell actively manipulates immune response via promoting Treg expansion.
Collapse
Affiliation(s)
- Yuan Yin
- 1] Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China [2] Wuxi Oncology Institute, the Affiliated Hospital of Jiang Nan University, Wuxi, Jiangsu 214062, China
| | - Xing Cai
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Xi Chen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Hongwei Liang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Yujing Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Jing Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Zuoyun Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Seiji Yokoyama
- Department of Allergy and Immunology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Cheng Wang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Liang Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Limin Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Dongxia Hou
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Lei Dong
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Takachika Hiroi
- Department of Allergy and Immunology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Junfeng Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Ke Zen
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| | - Chen-Yu Zhang
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology (JERC-MBB), State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu 210093, China
| |
Collapse
|
35
|
Abstract
Acute inflammation is traditionally characterized by polymorphonuclear leukocytes (PMN) influx followed by phagocytosing macrophage (Mφs) that clear injurious stimuli leading to resolution and tissue homeostasis. However, using the peritoneal cavity, we found that although innate immune-mediated responses to low-dose zymosan or bacteria resolve within days, these stimuli, but not hyperinflammatory stimuli, trigger a previously overlooked second wave of leukocyte influx into tissues that persists for weeks. These cells comprise distinct populations of tissue-resident Mφs (resMφs), Ly6c(hi) monocyte-derived Mφs (moMφs), monocyte-derived dendritic cells (moDCs), and myeloid-derived suppressor cells (MDSCs). Postresolution mononuclear phagocytes were observed alongside lymph node expansion and increased numbers of blood and peritoneal memory T and B lymphocytes. The resMφs and moMφs triggered FoxP3 expression within CD4 cells, whereas moDCs drive T-cell proliferation. The resMφs preferentially clear apoptotic PMNs and migrate to lymph nodes to bring about their contraction in an inducible nitric oxide synthase-dependent manner. Finally, moMφs remain in tissues for months postresolution, alongside altered numbers of T cells collectively dictating the magnitude of subsequent acute inflammatory reactions. These data challenge the prevailing idea that resolution leads back to homeostasis and asserts that resolution acts as a bridge between innate and adaptive immunity, as well as tissue reprogramming.
Collapse
|
36
|
Pindolia K, Li H, Cardwell C, Wolf B. Characterization and functional analysis of cellular immunity in mice with biotinidase deficiency. Mol Genet Metab 2014; 112:49-56. [PMID: 24630269 DOI: 10.1016/j.ymgme.2014.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 11/30/2022]
Abstract
Biotinidase deficiency is an autosomal recessively inherited metabolic disorder that can be easily and effectively treated with pharmacological doses of the vitamin, biotin. Untreated children with profound biotinidase deficiency may exhibit neurological, cutaneous and cellular immunological abnormalities, specifically candida infections. To better understand the immunological dysfunction in some symptomatic individuals with biotinidase deficiency, we studied various aspects of immunological function in a genetically engineered knock-out mouse with biotinidase deficiency. The mouse has no detectable biotinidase activity and develops neurological and cutaneous symptoms similar to those seen in symptomatic children with the disorder. Mice with profound biotinidase deficiency on a biotin-restricted diet had smaller thymuses and spleens than identical mice fed a biotin-replete diet or wildtype mice on either diet; however, the organ to body weight ratios were not significantly different. Thymus histology was normal. Splenocyte subpopulation study showed a significant increase in CD4 positive cells. In addition, in vitro lymphocyte proliferation assays consistently showed diminished proliferation in response to various immunological stimuli. Not all symptomatic individuals with profound biotinidase deficiency develop immunological dysfunction; however, our results do show significant alterations in cellular immunological function that may contribute and/or provide a mechanism(s) for the cellular immunity abnormalities in individuals with biotinidase deficiency.
Collapse
Affiliation(s)
- Kirit Pindolia
- Department of Medical Genetics, Henry Ford Hospital, Detroit, MI 48202, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Hong Li
- Division of Genetic and Metabolic Disorders, Children's Hospital of Michigan, Detroit, MI 48201, USA; Department of Human Genetics, Emory University School of Medicine, Decatur, GA 30033, USA
| | - Cisley Cardwell
- Department of Medical Genetics, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Barry Wolf
- Department of Medical Genetics, Henry Ford Hospital, Detroit, MI 48202, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
37
|
Boks MA, Kager-Groenland JR, Mousset CM, van Ham SM, ten Brinke A. Inhibition of TNF receptor signaling by anti-TNFα biologicals primes naïve CD4(+) T cells towards IL-10(+) T cells with a regulatory phenotype and function. Clin Immunol 2014; 151:136-45. [PMID: 24568737 DOI: 10.1016/j.clim.2014.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/03/2014] [Accepted: 02/11/2014] [Indexed: 01/09/2023]
Abstract
TNFα is a potent pro-inflammatory cytokine playing a pivotal role in several autoimmune diseases. Little is known about the mechanism of TNFα blocking agents on naïve T cell differentiation. Here, we report that neutralizing TNFα during priming of naïve CD4(+) T cells by dendritic cells favors development of IL-10(+) T helper cells. TNFα counteracts IL-10(+) T cell priming mainly via TNFRI receptor signaling. While initial T cell activation was not affected, neutralization of TNFα negatively affected sustained T cell differentiation in later stages of T cell priming. Whole genome gene expression analysis revealed an extended regulatory gene profile for anti-TNFα-treated T cells. Indeed, neutralizing TNFα during naïve T cell priming enhanced the suppressive function of anti-TNFα-treated T cells. Taken together, inhibition of TNFα-TNFR interaction shifts the balance of Th cell differentiation towards IL-10 expressing suppressive T cells, which may be one of the beneficial mechanisms in TNFα blocking therapies.
Collapse
Affiliation(s)
- Martine A Boks
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Judith R Kager-Groenland
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Charlotte M Mousset
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Anja ten Brinke
- Department of Immunopathology, Sanquin Blood Supply, Division Research and Landsteiner Laboratory, University of Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Alijotas-Reig J, Llurba E, Gris JM. Potentiating maternal immune tolerance in pregnancy: a new challenging role for regulatory T cells. Placenta 2014; 35:241-8. [PMID: 24581729 DOI: 10.1016/j.placenta.2014.02.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 02/08/2023]
Abstract
The maternal immune system needs to adapt to tolerate the semi-allogeneic conceptus. Since maternal allo-reactive lymphocytes are not fully depleted, other local/systemic mechanisms play a key role in altering the immune response. The Th1/Th2 cytokine balance is not essential for a pregnancy to be normal. The immune cells, CD4+CD25+Foxp3+, also known as regulatory T cells (Tregs), step in to regulate the allo-reactive Th1 cells. In this review we discuss the role of Tregs in foeto-maternal immune tolerance and in recurrent miscarriage as well as their potential use as a new target for infertility treatment. Animal and human experiments showed Treg cell number and/or function to be diminished in miscarriages. Murine miscarriage can be prevented by transferring Tregs from normal pregnant mice. Tregs at the maternal-fetal interface prevented fetal allo-rejection by creating a "tolerant" microenvironment characterised by the expression of IL-10, TGF-β and haem oxygenase isoform 1 (HO-1) rather than by lowering Th1 cytokines. Tregs increase placental HO-1. In turn, HO-1 may lead to up-regulation of TGF-β, IL-10 and CTLA-4. In vivo experiments showed Tregs sensitisation from paternal antigens to be essential for maternal-fetal tolerance. Tregs increase throughout pregnancy and diminish in late puerperium. Recent data also support the capacity of Tregs to block maternal effector T cells, thereby reducing the maternal-fetal pathological responses to paternal antigens. These findings also permit us to consider new strategies for improving pregnancy outcomes, i.e., anti-TNF blockers and granulocyte-colony stimulating factors as well as novel approaches to therapeutically exploiting Treg + cell memory.
Collapse
Affiliation(s)
- J Alijotas-Reig
- Systemic Autoimmune Disease Unit, Department of Internal Medicine I, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain; Department of Medicine, Faculty of Medicine, Universitat Autonoma, Barcelona, Spain.
| | - E Llurba
- High Obstetric Risk Unit, Obstetric Department, Vall d'Hebron University Hospital, Universitat Autonoma, Barcelona, Spain
| | - J Ma Gris
- Reproductive Medicine Unit, Obstetric Department, Vall d'Hebron University Hospital, Universitat Autonoma, Barcelona, Spain
| |
Collapse
|
39
|
Eric Gershwin M, Shoenfeld Y. Abul Abbas: An epitome of scholarship. J Autoimmun 2013; 45:1-6. [DOI: 10.1016/j.jaut.2013.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/14/2013] [Indexed: 11/29/2022]
|
40
|
Martínez-Llordella M, Esensten JH, Bailey-Bucktrout SL, Lipsky RH, Marini A, Chen J, Mughal M, Mattson MP, Taub DD, Bluestone JA. CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response. ACTA ACUST UNITED AC 2013; 210:1603-19. [PMID: 23878307 PMCID: PMC3727315 DOI: 10.1084/jem.20122387] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The transcription factor DEC1 is induced by CD28 ligation and is required for optimal CD4+ T cell responses and the development of EAE. During the initial hours after activation, CD4+ T cells experience profound changes in gene expression. Co-stimulation via the CD28 receptor is required for efficient activation of naive T cells. However, the transcriptional consequences of CD28 co-stimulation are not completely understood. We performed expression microarray analysis to elucidate the effects of CD28 signals on the transcriptome of activated T cells. We show that the transcription factor DEC1 is highly induced in a CD28-dependent manner upon T cell activation, is involved in essential CD4+ effector T cell functions, and participates in the transcriptional regulation of several T cell activation pathways, including a large group of CD28-regulated genes. Antigen-specific, DEC1-deficient CD4+ T cells have cell-intrinsic defects in survival and proliferation. Furthermore, we found that DEC1 is required for the development of experimental autoimmune encephalomyelitis because of its critical role in the production of the proinflammatory cytokines GM-CSF, IFN-γ, and IL-2. Thus, we identify DEC1 as a critical transcriptional mediator in the activation of naive CD4+ T cells that is required for the development of a T cell–mediated autoimmune disease.
Collapse
|
41
|
Knoechel B, Lohr JG. Genomics of lymphoid malignancies reveal major activation pathways in lymphocytes. J Autoimmun 2013; 45:15-23. [PMID: 23880067 DOI: 10.1016/j.jaut.2013.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 01/21/2023]
Abstract
Breakdown of tolerance leads to autoimmunity due to emergence of autoreactive T or B cell clones. Autoimmune diseases predispose to lymphoid malignancies and lymphoid malignancies, conversely, can manifest as autoimmune diseases. While it has been clear for a long time that a competitive advantage and uncontrolled growth of lymphocytes contribute to the pathogenesis of both lymphoid malignancies as well as autoimmune diseases, the overlap of the underlying mechanisms has been less well described. Next generation sequencing has led to massive expansion of the available genomic data in many diseases over the last five years. These data allow for comparison of the molecular pathogenesis between autoimmune diseases and lymphoid malignancies. Here, we review the similarities between autoimmune diseases and lymphoid malignancies: 1) Both, autoimmune diseases and lymphoid malignancies are characterized by activation of the same T and B cell signaling pathways, and dysregulation of these pathways can occur through genetic or epigenetic events. 2) In both scenarios, clonal and subclonal evolution of lymphocytes contribute to disease. 3) Development of both diseases not only depends on T or B cell intrinsic factors, such as germline or somatic mutations, but also on environmental factors. These include infections, the presence of other immune cells in the microenvironment, and the cytokine milieu. A better mechanistic understanding of the parallels between lymphomagenesis and autoimmunity may help the development of precision treatment strategies with rationally designed therapeutic agents.
Collapse
Affiliation(s)
- Birgit Knoechel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
42
|
Klatka M, Grywalska E, Partyka M, Charytanowicz M, Rolinski J. Impact of methimazole treatment on magnesium concentration and lymphocytes activation in adolescents with Graves' disease. Biol Trace Elem Res 2013; 153:155-70. [PMID: 23661330 PMCID: PMC3667385 DOI: 10.1007/s12011-013-9690-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/29/2013] [Indexed: 12/20/2022]
Abstract
The aim of this research was to assess plasma magnesium (Mg) concentration, the frequencies of activated T CD4+ and T CD8+ lymphocytes and B lymphocytes in adolescents with hyperthyroidism due to Graves' disease (GD), and to assess changes in the above-mentioned parameters during methimazole (MMI) treatment. The frequencies of activated T and B cells were measured by flow cytometry method and plasma Mg concentration was determined by spectrophotometry method in 60 adolescents at the time of GD diagnosis and after receiving the normalisation of the thyroid hormones levels. The control group consisted of 20 healthy volunteers. We observed lower plasma Mg concentration, and higher frequencies of activated T and B lymphocytes in the study group before the treatment in comparison with healthy controls, and with study group in MMI-induced euthyreosis (p < 0.01).Statistically significant negative correlations between the percentages of activated T CD3+, T CD4+, T CD8+ and B CD19+ lymphocytes, and plasma Mg concentration before the treatment were found (r < -0.335, p < 0.002). After the treatment no vital differences in plasma Mg concentration, and in percentages of activated cells between GD patients and controls were found, except CD8+CD25+ cells (p = 0.03). The present study demonstrates that both activated T and B cells might play an important role in the pathogenesis of GD, and activation is related to Mg plasma level. The use of MMI in treatment of hyperthyroidism due to GD leads to decrease the frequencies of activated lymphocytes and normalisation of Mg levels.
Collapse
Affiliation(s)
- Maria Klatka
- Department of Pediatric Endocrinology and Diabetology, Medical University of Lublin, Lublin, Poland
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Malgorzata Partyka
- Department of Jaw Orthopedics, Medical University of Lublin, Lublin, Poland
| | - Malgorzata Charytanowicz
- Institute of Mathematics and Computer Science, The John Paul II Catholic University, Lublin, Poland
| | - Jacek Rolinski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| |
Collapse
|
43
|
Olson BM, McNeel DG. Monitoring regulatory immune responses in tumor immunotherapy clinical trials. Front Oncol 2013; 3:109. [PMID: 23653893 PMCID: PMC3644716 DOI: 10.3389/fonc.2013.00109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/21/2013] [Indexed: 12/31/2022] Open
Abstract
While immune monitoring of tumor immunotherapy often focuses on the generation of productive Th1-type inflammatory immune responses, the importance of regulatory immune responses is often overlooked, despite the well-documented effects of regulatory immune responses in suppressing anti-tumor immunity. In a variety of malignancies, the frequency of regulatory cell populations has been shown to correlate with disease progression and a poor prognosis, further emphasizing the importance of characterizing the effects of immunotherapy on these populations. This review focuses on the role of suppressive immune populations (regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages) in inhibiting anti-tumor immunity, how these populations have been used in the immune monitoring of clinical trials, the prognostic value of these responses, and how the monitoring of these regulatory responses can be improved in the future.
Collapse
Affiliation(s)
- Brian M Olson
- Department of Medicine, University of Wisconsin Carbone Cancer Center Madison, WI, USA
| | | |
Collapse
|
44
|
Valatas V, He J, Rivollier A, Kolios G, Kitamura K, Kelsall BL. Host-dependent control of early regulatory and effector T-cell differentiation underlies the genetic susceptibility of RAG2-deficient mouse strains to transfer colitis. Mucosal Immunol 2013; 6:601-11. [PMID: 23149660 PMCID: PMC4557611 DOI: 10.1038/mi.2012.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
De novo differentiation of CD4(+)Foxp3(+) regulatory T cells (induced (i) Tregs) occurs preferentially in the gut-associated lymphoid tissues (GALT). We addressed the contribution of background genetic factors in affecting the balance of iTreg, T helper type 1 (Th1), and Th17 cell differentiation in GALT in vivo following the transfer of naive CD4(+)CD45RB(high) T cells to strains of RAG2-deficient mice with differential susceptibility to inflammatory colitis. iTregs represented up to 5% of CD4(+) T cells in mesenteric lymph nodes of less-susceptible C57BL/6 RAG2(-/-) mice compared with <1% in highly susceptible C57BL/10 RAG2(-/-) mice 2 weeks following T-cell transfer before the onset of colitis. Early Treg induction was correlated inversely with effector cell expansion and the severity of colitis development, was controlled primarily by host and not T-cell-dependent factors, and was strongly associated with interleukin-12 (IL-12)/23 production by host CD11c(+)CD103(+) dendritic cells. These data highlight the importance of genetic factors regulating IL-12/23 production in controlling the balance between iTreg differentiation and effector-pathogenic CD4(+) T-cell expansion in lymphopenic mice and indicate a direct role for iTregs in the regulation of colonic inflammation in vivo.
Collapse
|
45
|
McPherson SW, Heuss ND, Gregerson DS. Local "on-demand" generation and function of antigen-specific Foxp3+ regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4971-81. [PMID: 23585681 DOI: 10.4049/jimmunol.1202625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extrathymically derived regulatory T cells (iTregs) protect against autoimmunity to tissue-specific Ags. However, whether Ag-specific iTreg generation and function is limited to secondary lymphoid tissue or whether it can occur within the tissue-specific local environment of the cognate Ag remains unresolved. Mice expressing β-galactosidase (βgal) on a retina-specific promoter (βgal mice) in conjunction with mice expressing GFP and diphtheria toxin (DTx) receptor (DTR) under control of the Foxp3 promoter, and βgal-specific TCR transgenic (BG2) mice were used to examine this question. Local depletion (ocular DTx), but not systemic depletion (i.p. DTx), of βgal-specific iTregs enhanced experimental autoimmune uveoretinitis induced by activated βgal-specific effector T cells. Injections of small amounts of βgal into the anterior chamber of the eye produced similar numbers of βgal-specific iTregs in the retina whether the mouse was depleted of pre-existing, circulating Tregs. Taken together, these results suggest that protection from tissue-specific autoimmunity depends on the function of local Ag-specific iTregs and that the retina is capable of local, "on-demand" iTreg generation that is independent of circulating Tregs.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
46
|
Evaluation of Food Allergy in Patients with Atopic Dermatitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2013; 1:22-8. [DOI: 10.1016/j.jaip.2012.11.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/12/2012] [Accepted: 11/13/2012] [Indexed: 11/22/2022]
|
47
|
Epling-Burnette PK, McDaniel J, Wei S, List AF. Emerging immunosuppressive drugs in myelodysplastic syndromes. Expert Opin Emerg Drugs 2012; 17:519-41. [PMID: 23163589 DOI: 10.1517/14728214.2012.736487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are characterized by dysplastic morphologic features and ineffective hematopoiesis. Pathophysiological characteristics change over time making therapeutic development a major challenge. In early MDS, cytopenias arise or are exacerbated by humoral and cellular immune-mediators that suppress hematopoietic progenitor survival and alter the bone marrow microenvironment. AREAS COVERED In this review, current immunosuppressive regimens are described. To identify new therapies that may enhance immunosuppressive therapy (IST) response and identify pharmacodynamic biomarkers for patient selection, the inflammasome, cytokines, metabolic pathways and signaling events are described. EXPERT OPINION Agents with the potential to induce early, durable hematologic remissions are needed and many new immunosuppressive agents are available for investigation. An immune-mediated mechanism is likely to contribute to MDS early after diagnosis. New approaches that interfere with inflammatory pathways in the bone marrow microenvironment may move closer toward sustained disease control in MDS.
Collapse
Affiliation(s)
- Pearlie K Epling-Burnette
- H. Lee Moffitt Cancer Center & Research Institute, Immunology Department, SRB 23033, 12902 Magnolia Dr, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
48
|
Chabot S, Fakhfakh A, Béland K, Lamarre A, Oldstone MBA, Alvarez F, Djilali-Saiah I. Mouse liver-specific CD8(+) T-cells encounter their cognate antigen and acquire capacity to destroy target hepatocytes. J Autoimmun 2012; 42:19-28. [PMID: 23137675 DOI: 10.1016/j.jaut.2012.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/13/2012] [Indexed: 12/30/2022]
Abstract
CD8(+) T-cell immune response to liver antigens is often functionally diminished or absent. This may occur via deletion of these autoaggressive T-cells, through the acquisition of an anergic phenotype, or via active suppression mediated by other cell populations. We generated a double transgenic model in which mice express CD8(+) T-cells specific for the lymphocytic choriomeningitis virus nucleoprotein (LCMV-NP) and LCMV-NP as a hepatic neo-autoantigen, to study the immunological response of potentially liver antigen autoaggressive CD8(+) T-cells. Autoreactive transgenic CD8(+) T-cells were analyzed for functionality and cytotoxic effector status. Despite severe peripheral deletion of liver-specific CD8(+) T-cells, a fraction of autoreactive NP-specific CD8(+) T-cells accumulate in liver, resulting in hepatocyte injury and production of auto-antibodies in both male and female mice. NP-specific intrahepatic T-cells showed capacity to proliferate, produce cytokines and up-regulate activation markers. These data provide in vivo evidence that autoreactive CD8(+) T-cells are activated in the liver and developed an inflammatory process, but require additional factors to cause severe autoimmune destruction of hepatocytes. Our new model will provide a valuable tool for further exploration of the immunological response involved in inflammatory liver diseases, including autoimmune hepatitis.
Collapse
Affiliation(s)
- Sylvie Chabot
- Gastroenterology, Hepatology and Nutrition Division, CHU Sainte-Justine, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Suen JL, Chiang BL. CD4(+)FoxP3(+) regulatory T-cells in human systemic lupus erythematosus. J Formos Med Assoc 2012; 111:465-70. [PMID: 23021502 DOI: 10.1016/j.jfma.2012.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 05/09/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of immune tolerance to self antigens and by the persistent production of pathogenic autoantibodies. Recent studies have suggested a dysregulation of regulatory T-cells (Tregs), particularly CD4(+)CD25(high)FoxP3(+) (forkhead box P3) Tregs, as one of the major factors conferring the risk for expression of human autoimmune diseases, including SLE. However, detailed studies of CD4(+)FoxP3(+) T-cells in patients with SLE remain limited. We attempt here to integrate the current experimental evidence to delineate the role of CD4(+)CD25(high) and other subsets of CD4(+)FoxP3(+) T-cells in human SLE.
Collapse
Affiliation(s)
- Jau-Ling Suen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| | | |
Collapse
|
50
|
Venigalla RKC, Guttikonda PJ, Eckstein V, Ho AD, Sertel S, Lorenz HM, Tretter T. Identification of a human Th1-like IFNγ-secreting Treg subtype deriving from effector T cells. J Autoimmun 2012; 39:377-87. [PMID: 22824211 DOI: 10.1016/j.jaut.2012.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 06/20/2012] [Accepted: 06/27/2012] [Indexed: 02/04/2023]
Abstract
Characteristics and function of effector T-cells with regulatory properties (induced Treg, "iTreg") in humans are ill defined. Here we report that a proportion of activated, initially CD4(+)CD25(-)CD127(+) effector T-cells from human peripheral blood can convert into T-cells with regulatory activity while concomitantly secreting IFNγ. Upon short-term culture in vitro these cells expressed a panel of common Treg markers, including FOXP3, CD25, GITR, HLA-DR and CTLA-4 in parallel with the Th1-specific transcription factor T-bet. Despite their own IFNγ secretion they effectively suppressed IFNγ secretion in effector T cells in parallel with inhibition of their proliferation. Highly purified IFNγ(+)iTreg shared many functional properties with nTreg: Their suppressive activity was antigen-independent, contact-mediated and cytokine-independent. Of note, in contrast to nTreg an inhibitor of TGF-β1 signalling promoted the proliferation of IFNγ(+)iTreg, without abrogating their suppressive function. In addition in vivo in tonsils of patients with chronic tonsillitis an IFNγ-secreting subpopulation of the CD4(+)CD25(-)CD127(+)CD45RA(-) memory T helper cell population was detected, which exhibited regulatory properties as well. Our results support the existence of Th1-like adaptive Tregs in humans that express a robust regulatory phenotype, comparable to nTreg and at the same time share characteristics of Th1 cells. According to our in vitro data IFNγ(+)iTreg can emerge from activated effector T cells and downregulate Th1-mediated immune responses, supporting the hypothesis of effector T cell plasticity as a means for proper initiation and self regulation of inflammatory processes. This report characterizes a new subpopulation of human adaptive regulatory T-cells that derive from effector Th-cells and concomitantly express Th1-specific T-bet and IFNγ with Foxp3.
Collapse
|