1
|
Jiang Y, Yin C, Mo J, Wang X, Wang T, Li G, Zhou Q. Recent progress in carbon dots for anti-pathogen applications in oral cavity. Front Cell Infect Microbiol 2023; 13:1251309. [PMID: 37780847 PMCID: PMC10540312 DOI: 10.3389/fcimb.2023.1251309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Background Oral microbial infections are one of the most common diseases. Their progress not only results in the irreversible destruction of teeth and other oral tissues but also closely links to oral cancers and systemic diseases. However, traditional treatment against oral infections by antibiotics is not effective enough due to microbial resistance and drug blocking by oral biofilms, along with the passive dilution of the drug on the infection site in the oral environment. Aim of review Besides the traditional antibiotic treatment, carbon dots (CDs) recently became an emerging antimicrobial and microbial imaging agent because of their excellent (bio)physicochemical performance. Their application in treating oral infections has received widespread attention, as witnessed by increasing publication in this field. However, to date, there is no comprehensive review available yet to analyze their effectiveness and mechanism. Herein, as a step toward addressing the present gap, this review aims to discuss the recent advances in CDs against diverse oral pathogens and thus propose novel strategies in the treatment of oral microbial infections. Key scientific concepts of review In this manuscript, the recent progress of CDs against oral pathogens is summarized for the first time. We highlighted the antimicrobial abilities of CDs in terms of oral planktonic bacteria, intracellular bacteria, oral pathogenic biofilms, and fungi. Next, we introduced their microbial imaging and detection capabilities and proposed the prospects of CDs in early diagnosis of oral infection and pathogen microbiological examination. Lastly, we discussed the perspectives on clinical transformation and the current limitations of CDs in the treatment of oral microbial infections.
Collapse
Affiliation(s)
- Yuying Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Chuqiang Yin
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianning Mo
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xiaoyu Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Ting Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Guotai Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
2
|
Su BY, Chen ZJ, Lv JC, Wang ZG, Huang FW, Liu Y, Luo E, Wang J, Xu JZ, Li ZM. Scalable Fabrication of Polymeric Composite Microspheres to Inhibit Oral Pathogens and Promote Osteogenic Differentiation of Periodontal Membrane Stem Cells. ACS Biomater Sci Eng 2023; 9:4431-4441. [PMID: 37452570 DOI: 10.1021/acsbiomaterials.3c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Periodontitis is a worldwide bacterial infectious disease, resulting in the resorption of tooth-supporting structures. Biodegradable polymeric microspheres are emerging as an appealing local therapy candidate for periodontal defect regeneration but suffer from tedious procedures and low yields. Herein, we developed a facile yet scalable approach to prepare polylactide composite microspheres with outstanding drug-loading capability. It was realized by blending equimolar polylactide enantiomers at the temperature between the melting point of homocrystallites and stereocomplex (sc) crystallites, enabling the precipitation of sc crystallites in the form of microspheres. Meanwhile, epigallocatechin gallate (EGCG) and nano-hydroxyapatite were encapsulated in the microspheres in the designated amount. Such an assembly allowed the fast and sustained release of EGCG and Ca2+ ions. The resultant hybrid composite microspheres not only exhibited strong antimicrobial activity against typical oral pathogens (Porphyromonas gingivalis and Enterococcus faecalis), but also directly promoted osteogenic differentiation of periodontal ligament stem cells with good cytocompatibility. These dual-functional composite microspheres offer a desired drug delivery platform to address the practical needs for periodontitis treatment.
Collapse
Affiliation(s)
- Biao-Yao Su
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zi-Jian Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Cheng Lv
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Wang
- West China School of Nursing, Sichuan University/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fu-Wen Huang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jing Wang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Zhuang Xu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Khan SF, Shetty B, Fazal I, Khan AM, Mir FM, Moothedath M, Reshma VJ, Muhamood M. Licorice as a herbal extract in periodontal therapy. Drug Target Insights 2023; 17:70-77. [PMID: 37288311 PMCID: PMC10243202 DOI: 10.33393/dti.2023.2583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 03/07/2024] Open
Abstract
Periodontal disease is caused by specific pathogens which results in inflammation of the tooth-supporting structures and subsequently causes the continued breakdown of alveolar bone and periodontal ligament. Licorice (Glycyrrhiza glabra) is a perennial herb with substantial medicinal value. Licorice extract is derived from dried, unpeeled stolons and roots of Glycyrrhiza uralensis and G. glabra. The bioactive ingredients in licorice extract such as glycyrrhizin, licoricidin, glabridin, licochalcone A, and licorisoflavan A have anti-inflammatory, antimicrobial, and anti-adherence effects that are beneficial against periodontal disease. Since periodontal disease has a complex etiology that includes the host response and microorganisms, licorice phytochemicals offer a therapeutic advantage due to their dual functionality. The aim of this review was to enumerate the bioactive compounds present in herbal licorice extract and to elucidate the beneficial effects of licorice and its derivatives in periodontal therapy. Literature review and clinical trials evaluating the effect of licorice on periodontopathogens and periodontal disease are included in this article.
Collapse
Affiliation(s)
- Safiya Fatima Khan
- Department of Periodontology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bangalore - India
| | - Bhavya Shetty
- Department of Periodontology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bangalore - India
| | - Ibrahim Fazal
- Department of Periodontology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bangalore - India
| | - Asim Mustafa Khan
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam - Saudi Arabia
| | - Faheem Muzaffar Mir
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam - Saudi Arabia
| | - Muhamood Moothedath
- Department of Oral and Dental Health, College of Applied Health Sciences in Arrass, Qassim University, Buraidah - Saudi Arabia
| | - V J Reshma
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam - Saudi Arabia
| | - Muhaseena Muhamood
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam - Saudi Arabia
| |
Collapse
|
4
|
Khan SF, Shetty B, Fazal I, Khan AM, Mir FM, Moothedath M, Reshma VJ, Muhamood M. Licorice as a herbal extract in periodontal therapy. Drug Target Insights 2023; 17:70-77. [PMID: 37288311 PMCID: PMC10243202 DOI: 10.33393/dti.2022.2583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Periodontal disease is caused by specific pathogens which results in inflammation of the tooth-supporting structures and subsequently causes the continued breakdown of alveolar bone and periodontal ligament. Licorice (Glycyrrhiza glabra) is a perennial herb with substantial medicinal value. Licorice extract is derived from dried, unpeeled stolons and roots of Glycyrrhiza uralensis and G. glabra. The bioactive ingredients in licorice extract such as glycyrrhizin, licoricidin, glabridin, licochalcone A, and licorisoflavan A have anti-inflammatory, antimicrobial, and anti-adherence effects that are beneficial against periodontal disease. Since periodontal disease has a complex etiology that includes the host response and microorganisms, licorice phytochemicals offer a therapeutic advantage due to their dual functionality. The aim of this review was to enumerate the bioactive compounds present in herbal licorice extract and to elucidate the beneficial effects of licorice and its derivatives in periodontal therapy. Literature review and clinical trials evaluating the effect of licorice on periodontopathogens and periodontal disease are included in this article.
Collapse
Affiliation(s)
- Safiya Fatima Khan
- Department of Periodontology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bangalore - India
| | - Bhavya Shetty
- Department of Periodontology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bangalore - India
| | - Ibrahim Fazal
- Department of Periodontology, Faculty of Dental Sciences, Ramaiah University of Applied Sciences, Bangalore - India
| | - Asim Mustafa Khan
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam - Saudi Arabia
| | - Faheem Muzaffar Mir
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam - Saudi Arabia
| | - Muhamood Moothedath
- Department of Oral and Dental Health, College of Applied Health Sciences in Arrass, Qassim University, Buraidah - Saudi Arabia
| | - V J Reshma
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam - Saudi Arabia
| | - Muhaseena Muhamood
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam - Saudi Arabia
| |
Collapse
|
5
|
Vaillancourt K, Ben Lagha A, Grenier D. Effects of a Berry Polyphenolic Fraction on the Pathogenic Properties of Porphyromonas gingivalis. FRONTIERS IN ORAL HEALTH 2022; 3:923663. [PMID: 35784661 PMCID: PMC9245044 DOI: 10.3389/froh.2022.923663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis expresses a broad array of virulence factors that enable it to play a central role in the etiopathogenesis of periodontitis. The objective of the present study was to assess the effects of a berry polyphenolic fraction (Orophenol®) composed of extracts from cranberry, wild blueberry, and strawberry on the main pathogenic determinants of P. gingivalis. Orophenol® attenuated the growth of P. gingivalis and decreased its hemolytic activity, its adherence to a basement membrane matrix model, and its proteinase activities. The berry polyphenolic fraction also impaired the production of reactive oxygen species (ROS) by oral keratinocytes stimulated with P. gingivalis. Lastly, using an in vitro model of oral keratinocyte barrier, the fraction exerted a protective effect against the damages mediated by P. gingivalis. In conclusion, the berry polyphenolic fraction investigated in the present study attenuated several pathogenic properties of P. gingivalis. Although future clinical investigations are required, our study provided evidence that the polyphenols contained in this fraction may represent bioactive molecules of high interest for the prevention and/or treatment of periodontal disease.
Collapse
|
6
|
Peron D, Prates RA, Antonio EL, Teixeira ILA, de Oliveira HA, Mansano BSDM, Bergamo A, Almeida DR, Dariolli R, Tucci PJF, Serra AJ. A common oral pathogen Porphyromonas gingivalis induces myocarditis in rats. J Clin Periodontol 2022; 49:506-517. [PMID: 35066916 DOI: 10.1111/jcpe.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
AIM To evaluate whether Porphyromonas gingivalis (P. gingivalis) inoculation could induce cardiac remodelling in rats. MATERIALS AND METHODS The study was conducted on 33 Wistar rats, which were distributed in the following experimental groups: not inoculated; inoculated with 1 × 108 CFU/ml of bacteria; inoculated with 3 × 108 CFU/ml of bacteria. The animals were inoculated at baseline and on the 15th day of follow-up. Blood collection was performed at baseline and 60 min after each inoculation. At 29 days, the animals were subjected to echocardiography and at 30 days to haemodynamic studies before sacrificing them. RESULTS Impact of the bacteria was more evident in rats that received higher P. gingivalis concentration. Thus, 3 × 108 CFU/ml of bacteria increased the rectal temperature and water content in the lung as well as myocardial necrosis and fibrosis. P. gingivalis induced the intensification of DNA fragmentation and increased the levels of malondialdehyde, oxidized proteins, and macrophage expression in the myocardium. These findings were associated with lower LV isovolumetric relaxation time, +dP/dt, -dP/dt, and higher end-diastolic pressure. CONCLUSIONS P. gingivalis bacteraemia is significantly associated with adverse cardiac remodelling and may play a biological role in the genesis of heart failure.
Collapse
Affiliation(s)
- Daniele Peron
- Biophotonics Applied to Health Science, Nove de Julho University, São Paulo, Brazil
| | - Renato Araujo Prates
- Biophotonics Applied to Health Science, Nove de Julho University, São Paulo, Brazil
| | - Ednei Luiz Antonio
- Department of Medicine, Cardiology Division, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Alexandre Bergamo
- Biophotonics Applied to Health Science, Nove de Julho University, São Paulo, Brazil
| | | | - Rafael Dariolli
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,PluriCell Biotech, São Paulo, Brazil
| | | | - Andrey Jorge Serra
- Department of Medicine, Cardiology Division, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Roy A, Ben Lagha A, Gonçalves R, Grenier D. Effects of Saliva From Periodontally Healthy and Diseased Subjects on Barrier Function and the Inflammatory Response in in vitro Models of the Oral Epithelium. FRONTIERS IN ORAL HEALTH 2022; 2:815728. [PMID: 35048079 PMCID: PMC8757859 DOI: 10.3389/froh.2021.815728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Periodontitis is a multifactorial, bacteria-mediated chronic inflammatory disease that results in the progressive destruction of the tooth-supporting tissues. It is well-known that saliva from subjects suffering from this disease generally contains higher levels of pro-inflammatory mediators, matrix metalloproteinases (MMP), and bacteria-derived toxic products. The aim of this study was to investigate and compare the effects of saliva from periodontally healthy and diseased subjects on the barrier function and inflammatory response in in vitro models of the oral epithelium. Methods: Unstimulated saliva samples from two groups of subjects, one with a healthy periodontium (n = 12) and one with severe generalized periodontitis (n = 11), were filter-sterilized. All the saliva samples were analyzed using an immunological multiplex assay to determine the levels of various cytokines and MMPs relevant to periodontitis. The impact of saliva on epithelial barrier integrity was assessed by monitoring transepithelial electrical resistance (TER) in an oral epithelium model using the B11 keratinocyte cell line. GMSM-K oral epithelial cells were treated with saliva from both groups to determine their ability to induce the secretion of interleukin-6 (IL-6) and interleukin-8 (IL-8), as determined by an enzyme-linked immunosorbent assay (ELISA). Results: Saliva from the periodontitis subjects contained significantly higher concentrations of matrix metalloproteinase-8 (MMP-8), matrix metalloproteinase-9 (MMP-9), IL-8, and C-X-C motif chemokine ligand 1 (CXCL1) compared to saliva from the healthy subjects. Saliva from the healthy and periodontitis subjects affected cytokine secretion and TER in a similar manner. More specifically, saliva from both groups increased TER and induced IL-6 and IL-8 secretion in the in vitro oral epithelium models used. Conclusion: Independently of the presence or absence of periodontitis, saliva can increase the relative TER and the secretion of IL-6 and IL-8 in in vitro models of the oral epithelium.
Collapse
Affiliation(s)
- Antoine Roy
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Reginaldo Gonçalves
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
8
|
Isola G, Polizzi A, Patini R, Ferlito S, Alibrandi A, Palazzo G. Association among serum and salivary A. actinomycetemcomitans specific immunoglobulin antibodies and periodontitis. BMC Oral Health 2020; 20:283. [PMID: 33059645 PMCID: PMC7565341 DOI: 10.1186/s12903-020-01258-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this study was to assess the association between serum and salivary Immunoglobulin (Ig) Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) specific antibodies in healthy controls (HC) and periodontitis (PT) patients. Furthermore, the objectives were to determine whether PT influenced serum A. actinomycetemcomitans specific antibodies and whether serum or salivary antibodies against A. actinomycetemcomitans IgG were mediated by serum high-sensitivity c-reactive protein (hs-CRP). METHODS Fifty-three patients with periodontitis and 48 HC were enrolled in the present study. Patients were regularly examined and characterized by clinical, salivary and blood samples analyses. A. actinomycetemcomitans IgA and IgG antibodies and hs-CRP were evaluated using a commercially available kit. The Spearman Correlation Test and Jonckheere-Terpstra Test were applied in order to assess the interdependence between serum A. actinomycetemcomitans IgG antibodies and clinical periodontal parameters. To evaluate the dependence of the serum and salivary A. actinomycetemcomitans IgG levels from possible confounders, univariate and multivariable linear regression analyses were performed. RESULTS Compared to HC, patients with PT had significantly higher IgA [serum: PT, 1.89 (1.2-2.2) EU vs HC, 1.37 (0.9-1.8) EU (p = 0.022); saliva: PT, 1.67 (1.4-2.1) EU vs HC, 1.42 (0.9-1.6) EU (p = 0.019)] and A. actinomycetemcomitans IgG levels [serum: PT, 2.96 (2.1-3.7) EU vs HC, 2.18 (1.8-2.1) EU (p < 0.001); saliva, PT, 2.19 (1.8-2.5) EU vs HC, 1.84 (1.4-2) EU (p = 0.028)]. In PT patients, serum A. actinomycetemcomitans IgG were associated with a proportional extent of PT and tooth loss (P-trend value< 0.001). The univariate regression analysis demonstrated that PT (p = 0.013) and high hs-CRP (p < 0.001) had a significant negative effect on serum and salivary A. actinomycetemcomitans IgG levels. The multivariate regression analysis showed that PT (p = 0.033), hs-CRP (p = 0.014) and BMI (p = 0.017) were significant negative predictors of serum A. actinomycetemcomitans IgG while hs-CRP (p < 0.001) and BMI (P = 0.025) were significant negative predictors of salivary A. actinomycetemcomitans IgG. CONCLUSIONS PT patients presented a significantly higher serum and salivary A. actinomycetemcomitans IgA and IgG compared to HC. There was a significant increase in serum A. actinomycetemcomitans IgG when patients presented a progressive extent of PT. Moreover, PT and hs-CRP were significant negative predictors of increased salivary and serum A. actinomycetemcomitans IgG levels. TRIAL REGISTRATION The study was retrospectively registered at clinicaltrials.gov ( NCT04417322 ).
Collapse
Affiliation(s)
- Gaetano Isola
- grid.8158.40000 0004 1757 1969Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| | - Alessandro Polizzi
- grid.8158.40000 0004 1757 1969Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| | - Romeo Patini
- grid.8142.f0000 0001 0941 3192Fondazione Policlinico Universitario A. Gemelli IRCCS, Institute of Dentistry and Maxillofacial Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sebastiano Ferlito
- grid.8158.40000 0004 1757 1969Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| | - Angela Alibrandi
- grid.10438.3e0000 0001 2178 8421Department of Economical, Business and Environmental Sciences and Quantitative Methods, University of Messina, Messina, Italy
| | - Giuseppe Palazzo
- grid.8158.40000 0004 1757 1969Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia 78, 95124 Catania, Italy
| |
Collapse
|
9
|
Gingipains promote RANKL-induced osteoclastogenesis through the enhancement of integrin β3 in RAW264.7 cells. J Mol Histol 2020; 51:147-159. [PMID: 32193744 DOI: 10.1007/s10735-020-09865-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/10/2020] [Indexed: 01/10/2023]
Abstract
As a crucial virulence factor of Porphyromonas gingivalis, gingipains play an important role in periodontal destruction. This study aimed to investigate the effect of gingipains on osteoclastogenesis. We used RAW264.7 cells as osteoclast precursors in our study. In experimental groups, cells were treated with gingipains and/or receptor activator of nuclear factor-κB ligand (RANKL). Tartrate-resistant acid phosphatase (TRAP) activity staining assay showed osteoclast precursors and RANKL-induced mature osteoclasts were increased in a gingipains dose-dependent manner. Real-time reverse transcription polymerase chain reaction analysis demonstrated that gingipains upregulated osteoclastic genes including the protease cathepsin K (Ctsk), matrix metalloprotein 9 (Mmp9), nuclear factor of activated T cells 1 (Nfatc1) and acid phosphatase 5, tartrate resistant (Acp5) in a time-dependent manner. Western blotting assays presented upregulated expressions of TNF receptor-activating factor 6 (TRAF6) and integrin β3 induced by gingipains and RANKL compared to RANKL alone. Enhanced integrin-related signaling was also demonstrated by elevated phosphorylations of FAK and paxillin compared to control. Moreover, the pit resorption assays showed that gingipains augmented bone resorptive function of osteoclasts induced by RANKL. When we used Cilengitide to block integrin αvβ3, gingipains reversed the reduction of formation and resorptive function in RANKL-induced osteoclasts, as they enhanced integrin αvβ3 levels more than RANKL treatment alone. In conclusion, our data suggest that gingipains augmented the differentiation and function of mature osteoclasts induced by RANKL through the increase in integrin αvβ3.
Collapse
|
10
|
Zhang XM, Li Y, Gu YX, Zhang CN, Lai HC, Shi JY. Ta-Coated Titanium Surface With Superior Bacteriostasis And Osseointegration. Int J Nanomedicine 2019; 14:8693-8706. [PMID: 31806965 PMCID: PMC6842742 DOI: 10.2147/ijn.s218640] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Although tantalum (Ta)-based coatings have been proven to have good antibacterial activity, the underlying mechanism and in vivo biological performance remain unclear, which are essential for the clinical application of Ta-coated biomaterials as dental implants. Purpose The main objective of this study is to investigate the antibacterial activity of Ta-modified titanium (Ti) implants against peri-implantitis-related microbes and the potential molecular mechanisms. Methods Fusobacterium nucleatum and Porphyromonas gingivalis were selected to evaluate the antibacterial activity and potential antibacterial mechanism of Ta modification. The in vivo biocompatibility of Ta-modified implants was also evaluated. Results The results showed that Ta-modified surface performed excellent antimicrobial activity against Fusobacterium nucleatum and Porphyromonas gingivalis. Micro galvanic might be formed between the incorporated Ta and the Ti base, which could consume the protons and result in decreased ATP synthesis and increased ROS generation. The gene expression of bacterial virulence factors associated with cellular attachment, invasion and viability as the target of ROS was downregulated. Importantly, in vivo biological studies showed that Ta modification significantly promoted the osseointegration of implants by stimulating the expression of bone-forming proteins. Conclusion This study may provide some insights into clinical applications of Ta-coated Ti implants, especially in possibly infected situations.
Collapse
Affiliation(s)
- Xiao-Meng Zhang
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yuan Li
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Ying-Xin Gu
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Chu-Nan Zhang
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Hong-Chang Lai
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Jun-Yu Shi
- Department of Implant Dentistry, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
11
|
Fusobacterium nucleatum Facilitates Apoptosis, ROS Generation, and Inflammatory Cytokine Production by Activating AKT/MAPK and NF- κB Signaling Pathways in Human Gingival Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1681972. [PMID: 31737164 PMCID: PMC6815639 DOI: 10.1155/2019/1681972] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/24/2019] [Accepted: 06/02/2019] [Indexed: 12/20/2022]
Abstract
Fusobacterium nucleatum (F. nucleatum) plays key roles in the initiation and progression of periodontitis. However, the pathogenic effect of F. nucleatum on human oral tissues and cells has not been fully evaluated. In this study, we aimed to analyze the pathogenic effects of F. nucleatum on human gingival fibroblasts (GFs) and clarify the potential mechanisms. RNA-sequencing analysis confirmed that F. nucleatum significantly altered the gene expression of GF as the stimulation time increased. Cell counting and EdU-labeling assays indicated that F. nucleatum inhibited GF proliferation and promoted cell apoptosis in a time- and dose-dependent manner. In addition, cell apoptosis, intracellular reactive oxygen species (ROS) generation, and proinflammatory cytokine production were dramatically elevated after F. nucleatum stimulation. Furthermore, we found that the AKT/MAPK and NF-κB signaling pathways were significantly activated by F. nucleatum infection and that a large number of genes related to cellular proliferation, apoptosis, ROS, and inflammatory cytokine production downstream of AKT/MAPK and NF-κB signaling pathways were significantly altered in F. nucleatum-stimulated GFs. These findings suggest that F. nucleatum inhibits GF proliferation and promotes cell apoptosis, ROS generation, and inflammatory cytokine production partly by activating the AKT/MAPK and NF-κB signaling pathways. Our study opens a new window for understanding the pathogenic effects of periodontal pathogens on the host oral system.
Collapse
|
12
|
Lee HA, Song YR, Park MH, Chung HY, Na HS, Chung J. Catechin ameliorates Porphyromonas gingivalis-induced inflammation via the regulation of TLR2/4 and inflammasome signaling. J Periodontol 2019; 91:661-670. [PMID: 31473995 DOI: 10.1002/jper.18-0004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Porphyromonas gingivalis is a major periodontopathogen found in patients with chronic periodontitis that can lead to alveolar bone or tooth loss. Interleukin-1β (IL-1β), a proinflammatory cytokine, is most relevant to the pathogenesis of periodontitis. Catechin is one of the main polyphenol compounds found in green tea and possesses a range of health benefits. This study examined the anti-inflammatory effects of catechin in THP-1-derived macrophages infected with P. gingivalis as well as its effects on P. gingivalis-induced periodontitis in a mouse model. METHODS The cytokine levels and relevant protein expression in THP-1 cells were measured using an enzyme-linked immunosorbent assay and Western blot analysis, respectively. An apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) pyroptosome formation was measured by confocal laser scanning microscopy. Micro-computed tomography was used to determine the level of bone loss induced by a P. gingivalis oral infection. RESULTS Catechin attenuated the production of IL-1β by inhibiting pro-IL-1β expression via the downregulation of nuclear factor-κB, p38 mitogen-activated protein kinase, and Toll-like receptor signaling. In addition, catechin inhibited the activation of inflammasomes induced by P. gingivalis, but did not affect the growth of P. gingivalis. Catechin reduced the level of alveolar bone loss in a P. gingivalis-induced periodontitis mouse model. CONCLUSION Catechin possesses anti-inflammatory properties by reducing the level of IL-1β production, suggesting that it can potentially be used for the prevention and treatment of periodontal inflammation caused by P. gingivalis.
Collapse
Affiliation(s)
- Hyun Ah Lee
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Yu Ri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea.,Oral Genomics Research Center, Pusan National University, Yangsan, Korea
| | - Mi Hee Park
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea.,Oral Genomics Research Center, Pusan National University, Yangsan, Korea
| | - Hae-Young Chung
- Department of Biochemistry, School of Pharmacy, Pusan National University, Busan, Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea.,Oral Genomics Research Center, Pusan National University, Yangsan, Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Korea.,Oral Genomics Research Center, Pusan National University, Yangsan, Korea
| |
Collapse
|
13
|
Xia MY, Xie Y, Yu CH, Chen GY, Li YH, Zhang T, Peng Q. Graphene-based nanomaterials: the promising active agents for antibiotics-independent antibacterial applications. J Control Release 2019; 307:16-31. [PMID: 31185232 DOI: 10.1016/j.jconrel.2019.06.011] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
Abstract
Graphene-based nanomaterials, such as graphene oxide (GO) and reduced graphene oxide (rGO), have shown great potentials in drug delivery and photodynamic/photothermal therapy due to their featured structure and physicochemical properties. In recent years, their antibacterial potentials have also been exploited. The commonly recognized antibacterial mechanisms include sharp edge-mediated cutting effect, oxidative stress and cell entrapment. This antibacterial activity is very important for human health. As we know, infection with the pathogenic bacteria, especially the drug-resistant ones, is a great threat to human lives. Thus, the development of the antibiotics-independent and drug-free antibacterial agents is of great importance and significance. Graphene-based nanomaterials are a kind of such antibacterial agents. An insight into their properties and antibacterial mechanisms is necessary before they are developed into real products. Herein, we provide a comprehensive understanding of the antibacterial application of graphene-based nanomaterials via summarizing their antibacterial activities against some typical microbial species and discussing their unique mechanisms. In addition, the side-effects and problems in using these nanomaterials are also discussed.
Collapse
Affiliation(s)
- Meng-Ying Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chen-Hao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ge-Yun Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuan-Hong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Bloch S, Tomek MB, Friedrich V, Messner P, Schäffer C. Nonulosonic acids contribute to the pathogenicity of the oral bacterium Tannerella forsythia. Interface Focus 2019; 9:20180064. [PMID: 30842870 PMCID: PMC6388019 DOI: 10.1098/rsfs.2018.0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2018] [Indexed: 12/15/2022] Open
Abstract
Periodontitis is a polymicrobial, biofilm-caused, inflammatory disease affecting the tooth-supporting tissues. It is not only the leading cause of tooth loss worldwide, but can also impact systemic health. The development of effective treatment strategies is hampered by the complicated disease pathogenesis which is best described by a polymicrobial synergy and dysbiosis model. This model classifies the Gram-negative anaerobe Tannerella forsythia as a periodontal pathogen, making it a prime candidate for interference with the disease. Tannerella forsythia employs a protein O-glycosylation system that enables high-density display of nonulosonic acids via the bacterium's two-dimensional crystalline cell surface layer. Nonulosonic acids are sialic acid-like sugars which are well known for their pivotal biological roles. This review summarizes the current knowledge of T. forsythia's unique cell envelope with a focus on composition, biosynthesis and functional implications of the cell surface O-glycan. We have obtained evidence that glycobiology affects the bacterium's immunogenicity and capability to establish itself in the polymicrobial oral biofilm. Analysis of the genomes of different T. forsythia isolates revealed that complex protein O-glycosylation involving nonulosonic acids is a hallmark of pathogenic T. forsythia strains and, thus, constitutes a valuable target for the design of novel anti-infective strategies to combat periodontitis.
Collapse
|
15
|
Efficacy of β-caryophyllene for periodontal disease related factors. Arch Oral Biol 2019; 100:113-118. [DOI: 10.1016/j.archoralbio.2019.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 11/20/2022]
|
16
|
Izumi S, Yoshinaga Y, Nakamura H, Takamori A, Takamori Y, Ukai T, Shiraishi C, Hara Y. A histopathologic study of the controlling role of T cells on experimental periodontitis in rats. J Dent Sci 2019; 13:87-96. [PMID: 30895102 PMCID: PMC6388841 DOI: 10.1016/j.jds.2017.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/07/2017] [Indexed: 12/21/2022] Open
Abstract
Background/purpose The onset and progression of periodontitis involve bacterial infection and the immune response. T cells function in the immune response and reportedly induce bone resorption in inflammatory bone loss. However, the exact role of T cells in periodontal destruction remains unclear. Using our experimental model of periodontitis, we aimed to investigate the influence of T cells on periodontal destruction. Materials and methods Male athymic nude (Nu) and euthymic wild-type (WT) rats were divided into the immunized (I-Nu and I-WT), non-immunized (nI-Nu and nI-WT). The immunized groups were immunized intraperitoneally with lipopolysaccharide (LPS). The non-immunized groups received phosphate-buffered saline (PBS). Nothing was administered to the non-treated groups. LPS was applied to the right palatal gingival sulcus in the immunized and non-immunized groups daily for 20 days. Loss of attachment, numbers of inflammatory cells and osteoclasts, and levels of alveolar bone were investigated histopathologically and histometrically. Osteoclasts were stained with tartrate-resistant acid phosphatase. The numbers of IL-4-positive cells were evaluated immunohistologically. Results Loss of attachment, numbers of inflammatory cells, levels of alveolar bone, and the number of osteoclasts were significantly increased in the nI-WT group compared with the nI-Nu group. However, the parameters were significantly increased in the I-Nu group compared with the I-WT group. The number of IL-4-positive cells was greater in the I-WT group than in the I-Nu group. Conclusion T cells promote inflammation in non-immunized animals; however, they regulate these processes in immunized animals.
Collapse
Affiliation(s)
- Satoshi Izumi
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasunori Yoshinaga
- Section of Periodontology, Department of Odontology, Fukuoka Dental College, Fukuoka, Japan
| | - Hirotaka Nakamura
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akiko Takamori
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuzo Takamori
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Ukai
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chiaki Shiraishi
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshitaka Hara
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
17
|
Therapeutic benefits of liquorice in dentistry. J Ayurveda Integr Med 2018; 11:82-88. [PMID: 30391123 PMCID: PMC7125382 DOI: 10.1016/j.jaim.2017.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/22/2017] [Accepted: 12/30/2017] [Indexed: 12/22/2022] Open
Abstract
Oral health influences general well-being and quality of life. Oral diseases can be debilitating and are a major heath concern worldwide. Medicinal plants have been used for thousands of years for treating human diseases. Considering the emergence of multi-drug resistant pathogens and financial difficulties in developing countries, there is an urgent need for developing new antimicrobial compounds which are safe, efficient and cost effective. Liquorice also known as yashtimadhu, sweetwood or mulhatti is one such herbal remedy which has shown to have immense potential in treatment of orofacial diseases. Liquorice is rich in secondary metabolites which are used in cosmetics, foods, traditional and modern medicine. It has well known properties such as antiviral, glucocorticoid, anti-inflammatory, antioxidant, anti-ulcerative, anti-carcinogenic and many more. Liquorice extracts and liquorice bioactive ingredients such as glabridin, licoricidin, licorisoflavan A, licochalcone A, and glycyrrhizin have shown beneficial effects in preventing and treating oral diseases. This paper reviews the effects of liquorice and its constituents on oral diseases such as dental caries, periodontitis, gingivitis, candidiasis, recurrent aphthous ulcer and oral cancer and its use as a root canal medicament and summarizes the results of clinical trials that investigated the potential beneficial effects of liquorice and its constituents as a prevention and treatment modality in oral diseases. Clinical trials, case reports and review of literature evaluating the effect of liquorice on oral microorganisms and oral diseases are included. Literature pertaining to the effects of liquorice on systemic diseases have been excluded from this review of literature.
Collapse
|
18
|
Kang W, Shang L, Wang T, Liu H, Ge S. Rho-kinase inhibitor Y-27632 downregulates LPS-induced IL-6 and IL-8 production via blocking p38 MAPK and NF-κB pathways in human gingival fibroblasts. J Periodontol 2018; 89:883-893. [DOI: 10.1002/jper.17-0571] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/13/2017] [Accepted: 01/05/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Shandong Jinan China
- Department of Periodontology; School of Stomatology, Shandong University; Shandong Jinan China
| | - Lingling Shang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Shandong Jinan China
- Department of Periodontology; School of Stomatology, Shandong University; Shandong Jinan China
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Shandong Jinan China
- Department of Periodontology; School of Stomatology, Shandong University; Shandong Jinan China
| | - Hongrui Liu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Shandong Jinan China
- Department of Periodontology; School of Stomatology, Shandong University; Shandong Jinan China
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration; School of Stomatology, Shandong University; Shandong Jinan China
- Department of Periodontology; School of Stomatology, Shandong University; Shandong Jinan China
| |
Collapse
|
19
|
On site visual detection of Porphyromonas gingivalis related periodontitis by using a magnetic-nanobead based assay for gingipains protease biomarkers. Mikrochim Acta 2018; 185:149. [PMID: 29594603 DOI: 10.1007/s00604-018-2677-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/12/2018] [Indexed: 12/27/2022]
Abstract
Porphyromonas gingivalis (P. gingivalis) is a pathogen causing periodontitis. A rapid assay is described for the diagnosis of periodontal infections related to P. gingivalis. The method is making use of gingipains, a group of P. gingivalis specific proteases as a detection biomarker. Magnetic-nanobeads were labeled with gingipain-specific peptide substrates and immobilized on a gold biosensing platform via gold-thiol linkage. As a result of this, the color of the gold layer turns black. Upon cleavage of the immobilized substrates by gingipains, the magnetic-nanobeads-peptide fragments were attracted by a magnet so that the golden surface color becomes visible again. This assay is highly sensitive and specific. It is capable of detecting as little as 49 CFU·mL-1 of P. gingivalis within 30 s. Examination of periodontitis patients and healthy control saliva samples showed the potential of the assay. The simplicity and rapidity of the assay makes it an effective point-of-care device. Graphical abstract Schematic of the assay for the detection of P. gingivalis proteases as one of the promising biomarkers associated with periodontal diseases.
Collapse
|
20
|
Kang W, Wang T, Hu Z, Liu F, Sun Y, Ge S. Metformin Inhibits Porphyromonas gingivalis Lipopolysaccharide-Influenced Inflammatory Response in Human Gingival Fibroblasts via Regulating Activating Transcription Factor-3 Expression. J Periodontol 2017; 88:e169-e178. [PMID: 28548885 DOI: 10.1902/jop.2017.170168] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Chronic periodontitis, one of the most prevalent oral diseases, is associated with Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS) infection and has profound effects on type 2 diabetes mellitus (t2DM). Metformin, a well-known antidiabetic agent, has been reported to exert anti-inflammatory effects on various cells. This study aims to investigate the role of metformin on LPS-influenced inflammatory response in human gingival fibroblasts (HGFs). METHODS Dose-dependent additive effects of metformin on LPS-influenced HGFs were detected. Cell-counting assay was used to determine effects of metformin and LPS on viability of HGFs. Enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction (qRT-PCR) were applied to detect levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in differently treated cells. Activating transcription factor-3 (ATF3) small interfering (si)RNA transfection was used to determine the mechanism of metformin action, and the transfection efficiency was observed by fluorescence microscope. Effects of ATF3 knockdown were determined by qRT-PCR and Western blot. RESULTS Results showed that 5 μg/mL Pg LPS and 0.1, 0.5, and 1 mM metformin exhibited no toxicity to HGFs, and metformin inhibited LPS-influenced IL-1β, IL-6, and TNF-α production in a dose-dependent manner. Metformin and LPS could synergistically facilitate ATF3 expression, and ATF3 knockdown abolished inhibitory effects of metformin on LPS-influenced inflammatory cytokine production in HGFs. CONCLUSION The present study confirms that metformin suppresses LPS-enhanced IL-6, IL-1β, and TNF-α production in HGFs via increasing ATF3 expression.
Collapse
Affiliation(s)
- Wenyan Kang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Ting Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Zhekai Hu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China
| | - Feng Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Shandong, Jinan, China.,Department of Periodontology, School of Stomatology, Shandong University
| |
Collapse
|
21
|
O’Brien-Simpson NM, Holden JA, Lenzo JC, Tan Y, Brammar GC, Walsh KA, Singleton W, Orth RKH, Slakeski N, Cross KJ, Darby IB, Becher D, Rowe T, Morelli AB, Hammet A, Nash A, Brown A, Ma B, Vingadassalom D, McCluskey J, Kleanthous H, Reynolds EC. A therapeutic Porphyromonas gingivalis gingipain vaccine induces neutralising IgG1 antibodies that protect against experimental periodontitis. NPJ Vaccines 2016; 1:16022. [PMID: 29263860 PMCID: PMC5707886 DOI: 10.1038/npjvaccines.2016.22] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Porphyromonas gingivalis infected mice with an established P. gingivalis-specific inflammatory immune response were protected from developing alveolar bone resorption by therapeutic vaccination with a chimera (KAS2-A1) immunogen targeting the major virulence factors of the bacterium, the gingipain proteinases. Protection was characterised by an antigen-specific IgG1 isotype antibody and Th2 cell response. Adoptive transfer of KAS2-A1-specific IgG1 or IgG2 expressing B cells confirmed that IgG1-mediated protection. Furthermore, parenteral or intraoral administration of KAS2-A1-specific polyclonal antibodies protected against the development of P. gingivalis-induced bone resorption. The KAS2-A1-specific antibodies neutralised the gingipains by inhibiting: proteolytic activity, binding to host cells/proteins and co-aggregation with other periodontal bacteria. Combining key gingipain sequences into a chimera vaccine produced an effective therapeutic intervention that protected against P. gingivalis-induced periodontitis.
Collapse
Affiliation(s)
- Neil M O’Brien-Simpson
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - James A Holden
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Jason C Lenzo
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Yan Tan
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Gail C Brammar
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Katrina A Walsh
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - William Singleton
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca K H Orth
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Nada Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Keith J Cross
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Ivan B Darby
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Dorit Becher
- CSL Ltd., Bio21 Institute, Parkville, VIC, Australia
| | - Tony Rowe
- CSL Ltd., Bio21 Institute, Parkville, VIC, Australia
| | | | - Andrew Hammet
- CSL Ltd., Bio21 Institute, Parkville, VIC, Australia
| | - Andrew Nash
- CSL Ltd., Bio21 Institute, Parkville, VIC, Australia
| | | | - Bing Ma
- Sanofi Pasteur, Cambridge, MA, USA
| | | | | | | | - Eric C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Sun M, Zhou Z, Dong J, Zhang J, Xia Y, Shu R. Antibacterial and antibiofilm activities of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) against periodontopathic bacteria. Microb Pathog 2016; 99:196-203. [PMID: 27565090 DOI: 10.1016/j.micpath.2016.08.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 01/02/2023]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are two major omega-3 polyunsaturated fatty acids (n-3 PUFAs) with antimicrobial properties. In this study, we evaluated the potential antibacterial and antibiofilm activities of DHA and EPA against two periodontal pathogens, Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum). MTT assay showed that DHA and EPA still exhibited no cytotoxicity to human oral tissue cells when the concentration came to 100 μM and 200 μM, respectively. Against P. gingivalis, DHA and EPA showed the same minimum inhibitory concentration (MIC) of 12.5 μM, and a respective minimum bactericidal concentration (MBC) of 12.5 μM and 25 μM. However, the MIC and MBC values of DHA or EPA against F. nucleatum were both greater than 100 μM. For early-stage bacteria, DHA or EPA displayed complete inhibition on the planktonic growth and biofilm formation of P. gingivalis from the lowest concentration of 12.5 μM. And the planktonic growth of F. nucleatum was slightly but not completely inhibited by DHA or EPA even at the concentration of 100 μM, however, the biofilm formation of F. nucleatum at 24 h was significantly restrained by 100 μM EPA. For exponential-phase bacteria, 100 μM DHA or EPA completely killed P. gingivalis and significantly decreased the viable counts of F. nucleatum. Meanwhile, the morphology of P. gingivalis was apparently damaged, and the virulence factor gene expression of P. gingivalis and F. nucleatum was strongly downregulated. Besides, the viability and the thickness of mature P. gingivalis biofilm, together with the viability of mature F. nucleatum biofilm were both significantly decreased in the presence of 100 μM DHA or EPA. In conclusion, DHA and EPA possessed antibacterial activities against planktonic and biofilm forms of periodontal pathogens, which suggested that DHA and EPA might be potentially supplementary therapeutic agents for prevention and treatment of periodontal diseases.
Collapse
Affiliation(s)
- Mengjun Sun
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Zichao Zhou
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jiachen Dong
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Jichun Zhang
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yiru Xia
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Rong Shu
- Department of Periodontology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| |
Collapse
|
23
|
Ben Lagha A, Grenier D. Black tea theaflavins attenuate Porphyromonas gingivalis virulence properties, modulate gingival keratinocyte tight junction integrity and exert anti-inflammatory activity. J Periodontal Res 2016; 52:458-470. [PMID: 27549582 DOI: 10.1111/jre.12411] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Over the last 10 years, bioactive plant food compounds have received considerable attention in regard to their beneficial effects against periodontal disease. In this study, we investigated the effects of black tea theaflavins (TFs) on the virulence properties of Porphyromonas gingivalis and gingival keratinocyte tight junction integrity. In addition, the effects of black tea TFs on the nuclear factor-κB (NF-κB) signaling pathway and proinflammatory cytokine/matrix metalloproteinase (MMP) secretion by monocytes/macrophages were assessed. MATERIAL AND METHODS Virulence factor gene expression in P. gingivalis was investigated by quantitative real-time PCR. A fluorescence assay was used to determine P. gingivalis adherence to, and invasion of, a gingival keratinocyte monolayer. Tight junction integrity of gingival keratinocytes was assessed by determination of transepithelial electrical resistance. Proinflammatory cytokine and MMP secretion by P. gingivalis-stimulated macrophages was quantified by ELISA. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to monitor NF-κB activation. Gelatin degradation was monitored using a fluorogenic assay. RESULTS Black tea TFs dose-dependently inhibited the expression of genes encoding the major virulence factors of P. gingivalis and attenuated its adherence to gingival keratinocytes. A treatment of gingival keratinocytes with black tea TFs significantly enhanced tight junction integrity and prevented P. gingivalis-mediated tight junction damage as well as bacterial invasion. Black tea TFs reduced the secretion of interleukin (IL)-1β, tumor necrosis factor-α, IL-6, chemokine (C-X-C) ligand 8, MMP-3, MMP-8 and MMP-9 by P. gingivalis-stimulated macrophages and attenuated the P. gingivalis-mediated activation of the NF-κB signaling pathway. Lastly, black tea TFs inhibited gelatin degradation by MMP-9. CONCLUSION This study provides clear evidence that black tea TFs represent promising multifunctional therapeutic agents for prevention and treatment of periodontal disease.
Collapse
Affiliation(s)
- A Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| | - D Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Laval University, Quebec City, QC, Canada
| |
Collapse
|
24
|
Porphyromonas gulae Has Virulence and Immunological Characteristics Similar to Those of the Human Periodontal Pathogen Porphyromonas gingivalis. Infect Immun 2016; 84:2575-85. [PMID: 27354442 DOI: 10.1128/iai.01500-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is a significant problem in companion animals, and yet little is known about the disease-associated microbiota. A major virulence factor for the human periodontal pathogen Porphyromonas gingivalis is the lysyl- and arginyl-specific proteolytic activity of the gingipains. We screened several Porphyromonas species isolated from companion animals-P. asaccharolytica, P. circumdentaria, P. endodontalis, P. levii, P. gulae, P. macacae, P. catoniae, and P. salivosa-for Lys- and Arg-specific proteolytic activity and compared the epithelial and macrophage responses and induction of alveolar bone resorption of the protease active species to that of Porphyromonas gingivalis Only P. gulae exhibited Lys-and Arg-specific proteolytic activity. The genes encoding the gingipains (RgpA/B and Kgp) were identified in the P. gulae strain ATCC 51700 and all publicly available 12 draft genomes of P. gulae strains. P. gulae ATCC 51700 induced levels of alveolar bone resorption in an animal model of periodontitis similar to those in P. gingivalis W50 and exhibited a higher capacity for autoaggregation and binding to oral epithelial cells with induction of apoptosis. Macrophages (RAW 264.7) were found to phagocytose P. gulae ATCC 51700 and the fimbriated P. gingivalis ATCC 33277 at similar levels. In response to P. gulae ATCC 51700, macrophages secreted higher levels of cytokines than those induced by P. gingivalis ATCC 33277 but lower than those induced by P. gingivalis W50, except for the interleukin-6 response. Our results indicate that P. gulae exhibits virulence characteristics similar to those of the human periodontal pathogen P. gingivalis and therefore may play a key role in the development of periodontitis in companion animals.
Collapse
|
25
|
Healthy and Inflamed Gingival Fibroblasts Differ in Their Inflammatory Response to Porphyromonas gingivalis Lipopolysaccharide. Inflammation 2016; 39:1842-52. [DOI: 10.1007/s10753-016-0421-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Miklossy J, McGeer PL. Common mechanisms involved in Alzheimer's disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation. Aging (Albany NY) 2016; 8:575-88. [PMID: 26961231 PMCID: PMC4925815 DOI: 10.18632/aging.100921] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/20/2016] [Indexed: 12/30/2022]
Abstract
Strong epidemiologic evidence and common molecular mechanisms support an association between Alzheimer's disease (AD) and type 2-diabetes. Local inflammation and amyloidosis occur in both diseases and are associated with periodontitis and various infectious agents. This article reviews the evidence for the presence of local inflammation and bacteria in type 2 diabetes and discusses host pathogen interactions in chronic inflammatory disorders. Chlamydophyla pneumoniae, Helicobacter pylori and spirochetes are demonstrated in association with dementia and brain lesions in AD and islet lesions in type 2 diabetes. The presence of pathogens in host tissues activates immune responses through Toll-like receptor signaling pathways. Evasion of pathogens from complement-mediated attack results in persistent infection, inflammation and amyloidosis. Amyloid beta and the pancreatic amyloid called amylin bind to lipid bilayers and produce Ca(2+) influx and bacteriolysis. Similarly to AD, accumulation of amylin deposits in type 2 diabetes may result from an innate immune response to chronic bacterial infections, which are known to be associated with amyloidosis. Further research based on an infectious origin of both AD and type 2 diabetes may lead to novel treatment strategies.
Collapse
Affiliation(s)
- Judith Miklossy
- International Alzheimer Research Centre, Prevention Alzheimer International Foundation, Martigny-Croix, Switzerland
| | - Patrick L. McGeer
- Kinsmen Laboratory of Neurological Research, The University of British Columbia, Vancouver, B.C, Canada
| |
Collapse
|
27
|
Song B, Zhang YL, Chen LJ, Zhou T, Huang WK, Zhou X, Shao LQ. The role of Toll-like receptors in periodontitis. Oral Dis 2016; 23:168-180. [PMID: 26923115 DOI: 10.1111/odi.12468] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/08/2016] [Accepted: 02/21/2016] [Indexed: 12/14/2022]
Abstract
Periodontitis is a common infectious disease. Recent studies have indicated that the progression of periodontitis may be regulated by interactions between host immunity and periodontopathic bacteria. Although periodontopathic bacteria can destroy periodontal tissue, a dysfunctional host immune response triggered by the bacteria can lead to more severe and persistent destruction. Toll-like receptors (TLRs), a type of pattern recognition receptor (PRR) that recognizes pathogens, have been implicated in host innate immune responses to periodontopathic bacteria and in the activation of adaptive immunity. TLR-targeted drugs may hold promise to treat periodontal disease. This review summarizes recent studies on the role of TLRs in periodontitis and discusses areas needing further research. We believe TLRs may be an effective biomarker for the prevention, diagnosis, and treatment of periodontitis in the near future.
Collapse
Affiliation(s)
- B Song
- Guizhou Provincial People's Hospital, Guiyang, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y L Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L J Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - T Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - W K Huang
- Guizhou Provincial People's Hospital, Guiyang, China
| | - X Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - L Q Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Gui MJ, Dashper SG, Slakeski N, Chen YY, Reynolds EC. Spheres of influence: Porphyromonas gingivalis outer membrane vesicles. Mol Oral Microbiol 2015; 31:365-78. [PMID: 26466922 DOI: 10.1111/omi.12134] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 12/15/2022]
Abstract
Outer membrane vesicles (OMVs) are asymmetrical single bilayer membranous nanostructures produced by Gram-negative bacteria important for bacterial interaction with the environment. Porphyromonas gingivalis, a keystone pathogen associated with chronic periodontitis, produces OMVs that act as a virulence factor secretion system contributing to its pathogenicity. Despite their biological importance, the mechanisms of OMV biogenesis have not been fully elucidated. The ~14 times more curvature of the OMV membrane than cell outer membrane (OM) indicates that OMV biogenesis requires energy expenditure for significant curvature of the OMV membrane. In P. gingivalis, we propose that this may be achieved by upregulating the production of certain inner or outer leaflet lipids, which causes localized outward curvature of the OM. This results in selection of anionic lipopolysaccharide (A-LPS) and associated C-terminal domain (CTD) -family proteins on the outer surface due to their ability to accommodate the curvature. Deacylation of A-LPS may further enable increased curvature leading to OMV formation. Porphyromonas gingivalis OMVs that are selectively enriched in CTD-family proteins, largely the gingipains, can support bacterial coaggregation, promote biofilm development and act as an intercessor for the transport of non-motile bacteria by motile bacteria. The P. gingivalis OMVs are also believed to contribute to host interaction and colonization, evasion of immune defense mechanisms, and destruction of periodontal tissues. They may be crucial for both micro- and macronutrient capture, especially heme and probably other assimilable compounds for its own benefit and that of the wider biofilm community.
Collapse
Affiliation(s)
- M J Gui
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Vic, Australia
| | - S G Dashper
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Vic, Australia
| | - N Slakeski
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Vic, Australia
| | - Y-Y Chen
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Vic, Australia
| | - E C Reynolds
- Oral Health Cooperative Research Centre, Melbourne Dental School, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Vic, Australia
| |
Collapse
|
29
|
Presence of Periodontopathic Bacteria DNA in Atheromatous Plaques from Coronary and Carotid Arteries. BIOMED RESEARCH INTERNATIONAL 2015; 2015:825397. [PMID: 26504835 PMCID: PMC4609377 DOI: 10.1155/2015/825397] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 01/19/2023]
Abstract
Objectives. Interest in periodontitis as a potential risk factor for atherosclerosis and its complications resulted from the fact that the global prevalence of periodontal diseases is significant and periodontitis may induce a chronic inflammatory response. Many studies have analyzed the potential impact of the Porphyromonas gingivalis, major pathogen of periodontitis, on general health. The purpose of this study was to find the presence of the Porphyromonas gingivalis DNA in the atherosclerotic plaques of coronary and carotid arteries and in the periodontal pockets in patients with chronic periodontitis, who underwent surgery because of vascular diseases. Methods and Results. The study population consisted of 91 patients with coronary artery disease or scheduled for carotid endarterectomy. The presence of Porphyromonas gingivalis DNA in atheromatous plaques and in subgingival samples was determined by PCR. Bacterial DNA was found in 21 of 91 (23%) samples taken from vessels and in 47 of 63 (74.6%) samples from periodontal pockets. Conclusions. Porphyromonas gingivalis DNA is frequently found in atheromatous plaques of patients with periodontitis. That is why more research should be conducted to prove if this periopathogen may have an impact on endothelium of patients at risk of atherosclerosis.
Collapse
|
30
|
Grenier D, Morin MP, Fournier-Larente J, Chen H. Vitamin D inhibits the growth of and virulence factor gene expression by Porphyromonas gingivalis and blocks activation of the nuclear factor kappa B transcription factor in monocytes. J Periodontal Res 2015; 51:359-65. [PMID: 26297053 DOI: 10.1111/jre.12315] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Increasing evidence suggests that 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ), a fat-soluble secosteroid hormone, has a positive impact on periodontal health through diverse mechanisms. The present study was aimed at investigating the effect of 1,25(OH)2 D3 on the growth of and virulence factor gene expression by the periodontopathogenic bacterium Porphyromonas gingivalis. The effect of 1,25(OH)2 D3 on P. gingivalis-mediated activation of nuclear factor kappa B (NF-κB) transcription factor in monocytes was also assessed. MATERIAL AND METHODS A broth microdilution assay was used to determine the antibacterial activity of 1,25(OH)2 D3 . The modulation of virulence factor gene expression in P. gingivalis was assessed by quantitative reverse transcription-polymerase chain reaction. NF-κB activation was assessed using a human monocytic cell line stably transfected with a luciferase reporter containing NF-κB binding sites. RESULTS Minimal inhibitory concentrations of 1,25(OH)2 D3 against P. gingivalis ranged from 3.125 to 6.25 μg/mL. Moreover, a partial synergistic effect was observed when 1,25(OH)2 D3 was used in association with metronidazole. 1,25(OH)2 D3 attenuated the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including adhesins (fimA, hagA and hagB) and proteinases (rgpA, rgpB and kgp). 1,25(OH)2 D3 dose-dependently prevented P. gingivalis-induced NF-κB activation in a monocyte model. CONCLUSION Our study suggested that 1,25(OH)2 D3 selectively inhibits the growth of and virulence factor gene expression by P. gingivalis, in addition to attenuating NF-κB activation by this periodontopathogen. This dual action on P. gingivalis and the inflammatory response of host cells may be of particular interest with a view to developing a novel and inexpensive preventive/therapeutic strategy.
Collapse
Affiliation(s)
- D Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - M-P Morin
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - J Fournier-Larente
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - H Chen
- Department of Stomatology, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
31
|
Grenier D, Chen H, Ben Lagha A, Fournier-Larente J, Morin MP. Dual Action of Myricetin on Porphyromonas gingivalis and the Inflammatory Response of Host Cells: A Promising Therapeutic Molecule for Periodontal Diseases. PLoS One 2015; 10:e0131758. [PMID: 26121135 PMCID: PMC4487256 DOI: 10.1371/journal.pone.0131758] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/07/2015] [Indexed: 12/16/2022] Open
Abstract
Periodontitis that affects the underlying structures of the periodontium, including the alveolar bone, is a multifactorial disease, whose etiology involves interactions between specific bacterial species of the subgingival biofilm and the host immune components. In the present study, we investigated the effects of myricetin, a flavonol largely distributed in fruits and vegetables, on growth and virulence properties of Porphyromonas gingivalis as well as on the P. gingivalis-induced inflammatory response in host cells. Minimal inhibitory concentration values of myricetin against P. gingivalis were in the range of 62.5 to 125 μg/ml. The iron-chelating activity of myricetin may contribute to the antibacterial activity of this flavonol. Myricetin was found to attenuate the virulence of P. gingivalis by reducing the expression of genes coding for important virulence factors, including proteinases (rgpA, rgpB, and kgp) and adhesins (fimA, hagA, and hagB). Myricetin dose-dependently prevented NF-κB activation in a monocyte model. Moreover, it inhibited the secretion of IL-6, IL-8 and MMP-3 by P. gingivalis-stimulated gingival fibroblasts. In conclusion, our study brought clear evidence that the flavonol myricetin exhibits a dual action on the periodontopathogenic bacterium P. gingivalis and the inflammatory response of host cells. Therefore, myricetin holds promise as a therapeutic agent for the treatment/prevention of periodontitis.
Collapse
Affiliation(s)
- Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| | - Huangqin Chen
- Department of Stomatology, Hubei University of Science and Technology, Xianning City, Hubei Province, China
| | - Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
| | - Jade Fournier-Larente
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
| | - Marie-Pierre Morin
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
32
|
Friedrich V, Gruber C, Nimeth I, Pabinger S, Sekot G, Posch G, Altmann F, Messner P, Andrukhov O, Schäffer C. Outer membrane vesicles of Tannerella forsythia: biogenesis, composition, and virulence. Mol Oral Microbiol 2015; 30:451-73. [PMID: 25953484 PMCID: PMC4604654 DOI: 10.1111/omi.12104] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/25/2022]
Abstract
Tannerella forsythia is the only ‘red‐complex’ bacterium covered by an S‐layer, which has been shown to affect virulence. Here, outer membrane vesicles (OMVs) enriched with putative glycoproteins are described as a new addition to the virulence repertoire of T. forsythia. Investigations of this bacterium are hampered by its fastidious growth requirements and the recently discovered mismatch of the available genome sequence (92A2 = ATCC BAA‐2717) and the widely used T. forsythia strain (ATCC 43037). T. forsythia was grown anaerobically in serum‐free medium and biogenesis of OMVs was analyzed by electron and atomic force microscopy. This revealed OMVs with a mean diameter of ~100 nm budding off from the outer membrane while retaining the S‐layer. An LC‐ESI‐TOF/TOF proteomic analysis of OMVs from three independent biological replicates identified 175 proteins. Of these, 14 exhibited a C‐terminal outer membrane translocation signal that directs them to the cell/vesicle surface, 61 and 53 were localized to the outer membrane and periplasm, respectively, 22 were predicted to be extracellular, and 39 to originate from the cytoplasm. Eighty proteins contained the Bacteroidales O‐glycosylation motif, 18 of which were confirmed as glycoproteins. Release of pro‐inflammatory mediators from the human monocytic cell line U937 and periodontal ligament fibroblasts upon stimulation with OMVs followed a concentration‐dependent increase that was more pronounced in the presence of soluble CD14 in conditioned media. The inflammatory response was significantly higher than that caused by whole T. forsythia cells. Our study represents the first characterization of T. forsythia OMVs, their proteomic composition and immunogenic potential.
Collapse
Affiliation(s)
- V Friedrich
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - C Gruber
- Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - I Nimeth
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - S Pabinger
- AIT Austrian Institute of Technology, Health & Environment Department, Molecular Diagnostics, Vienna, Austria
| | - G Sekot
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - G Posch
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - F Altmann
- Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - P Messner
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - O Andrukhov
- Division of Conservative Dentistry and Periodontology, Competence Centre of Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - C Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
33
|
Ohsumi T, Takenaka S, Wakamatsu R, Sakaue Y, Narisawa N, Senpuku H, Ohshima H, Terao Y, Okiji T. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development. PLoS One 2015; 10:e0116647. [PMID: 25635770 PMCID: PMC4312048 DOI: 10.1371/journal.pone.0116647] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/11/2014] [Indexed: 01/21/2023] Open
Abstract
Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.
Collapse
Affiliation(s)
- Tatsuya Ohsumi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- * E-mail:
| | - Rika Wakamatsu
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuuki Sakaue
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Narisawa
- Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Okiji
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
34
|
Azelmat J, Larente JF, Grenier D. The anthraquinone rhein exhibits synergistic antibacterial activity in association with metronidazole or natural compounds and attenuates virulence gene expression in Porphyromonas gingivalis. Arch Oral Biol 2014; 60:342-6. [PMID: 25463909 DOI: 10.1016/j.archoralbio.2014.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/10/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Rhein is a major anthraquinone found in rhubarb root. As a continuation of our ongoing studies aimed to identify beneficial properties of this anthraquinone for periodontal disease, in this study, we investigated the ability of rhein to (i) exhibit antibacterial synergy towards the periodontopathogen Porphyromonas gingivalis when used in combination with metronidazole or polyphenols belonging to different families, and (ii) attenuate virulence factor gene expression in P. gingivalis. METHODS The minimal inhibitory concentrations (MIC) of compounds under investigation were determined by a broth microdilution assay. The synergistic effects of rhein in association with either metronidazole or polyphenols of various families were evaluated using the chequerboard technique to determine the fractional inhibitory concentration index (FICI). The effect of rhein on virulence factor gene expression in P. gingivalis was determined by quantitative RT-PCR. RESULTS Rhein showed a MIC of 2.5 μg/mL, which was similar to that of metronidazole. Except for the association with epigallocatechin-3-gallate that gave an additive effect, all the other combinations (licochalcone A, glabridin, myricetin, and metronidazole) resulted in synergistic effects. The strongest synergy was observed when rhein was used in association with myricetin (FICI=0.12) and licochalcone A (FICI=0.19). At a sub-MIC of rhein (0.5 μg/mL), a significant decrease in the expression of fimA, hagA, and hagB genes, which are involved in host colonization, was observed. Moreover, the expression of rgpA and kgp, two protease genes related to inactivation of host defense mechanisms, tissue destruction, and nutrient acquisition, was also down-regulated. CONCLUSION The data presented in our study indicate that rhein possessed antibacterial activity, which can be potentiated in combination with metronidazole or other polyphenols. In addition, rhein can impair the pathogenicity of P. gingivalis by reducing transcription of genes coding for important virulence factors.
Collapse
Affiliation(s)
- Jabrane Azelmat
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Jade Fournier Larente
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
35
|
Guo M, Wang Z, Fan X, Bian Y, Wang T, Zhu L, Lan J. kgp, rgpA, and rgpB DNA vaccines induce antibody responses in experimental peri-implantitis. J Periodontol 2014; 85:1575-81. [PMID: 24921431 DOI: 10.1902/jop.2014.140240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Peri-implantitis is the key factor for implant failure. This study aims to evaluate kgp, rgpA, and rgpB DNA vaccines to induce an immune response and prevent peri-implantitis. METHODS The kgp, rgpA, and rgpB genes were amplified by polymerase chain reaction (PCR) from Porphyromonas gingivalis (Pg) ATCC 33277 and cloned into the pVAX1 vector. Titanium implants were placed into the mandibular bone of dogs. Three months later, the animals were divided into four groups, immunized with pVAX1-kgp, pVAX1-rgpA, pVAX1-rgpB, or pVAX1. Cotton ligatures infiltrated with Pg were tied around the neck of the implants. Immunoglobulin (Ig)G and IgA antibodies were detected by enzyme-linked immunosorbent assay before and after immunization. RESULTS The kgp, rgpA, and rgpB genes were successfully cloned into the pVAX1 plasmid. Animals immunized with pVAX1-kgp and pVAX1-rgpA showed higher titers of IgG and IgA antibodies compared to those before immunization (P <0.05) and compared to those that were immunized with pVAX1 and pVAX1-rgpB, whereas there were no significant differences in the animals treated with pVAX1 and pVAX1-rgpB. Furthermore, among these, the kgp DNA vaccine was more effective. The bone losses of the groups with pVAX1-kgp and pVAX1-rgpA were significantly attenuated. CONCLUSION pVAX1-kgp and pVAX1-rgpA DNA vaccines enhanced immunity responses and significantly retarded bone loss in experimental peri-implantitis animal models, whereas pVAX1-rgpB was ineffective.
Collapse
Affiliation(s)
- Meihua Guo
- Department of Prosthodontics, Dental School, University of Shandong, Jinan City, Shandong Province, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Radwan-Oczko M, Jaworski A, Duś I, Plonek T, Szulc M, Kustrzycki W. Porphyromonas gingivalis in periodontal pockets and heart valves. Virulence 2014; 5:575-80. [PMID: 24705065 PMCID: PMC4063818 DOI: 10.4161/viru.28657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/10/2014] [Accepted: 03/25/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND There is evidence that advanced infectious chronic periodontal inflammatory disease may have an impact on general health including cardiovascular diseases. The aim of this clinical study was to evaluate the ability of Porphyromonas gingivalis to colonize heart valves and, subsequently, to assess whether there is an association between the presence of the DNA of Porphyromonas gingivalis in periodontal pockets and in degenerated heart valves. MATERIALS AND METHODS Thirty patients were enrolled in the study and 31 valve specimens harvested during cardiac surgery operations were examined. All patients underwent a periodontal examination. To evaluate the periodontal status of the patients the following clinical parameters were recorded: the pocket depth, bleeding on probing (BOP) and aproximal plaque index (API). The presence of P. gingivalis in heart valve specimens and samples from periodontal pockets was analyzed using a single-step PCR method. RESULTS P. gingivalis DNA was detected in periodontal pockets of 15 patients (50%). However, the DNA of this periopathogen was found neither in the aortic nor in the mitral valve specimens. CONCLUSIONS This study suggests that P. gingivalis may not have an influence on the development of the degeneration of aortic and mitral valves.
Collapse
Affiliation(s)
- Małgorzata Radwan-Oczko
- Department of Periodontology; Unit of Oral Pathology; Wroclaw Medical University; Wroclaw, Poland
| | - Aleksander Jaworski
- Department of Conservative Dentistry and Perodontics; Wroclaw Medical University; Wroclaw, Poland
| | - Irena Duś
- Department of Periodontology; Unit of Oral Pathology; Wroclaw Medical University; Wroclaw, Poland
| | - Tomasz Plonek
- Department of Cardiac Surgery; Wroclaw Medical University; Wroclaw, Poland
| | - Malgorzata Szulc
- Department of Periodontology; Wroclaw Medical University; Wroclaw, Poland
| | | |
Collapse
|
37
|
Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, Radini A, Hancock Y, Tito RY, Fiddyment S, Speller C, Hendy J, Charlton S, Luder HU, Salazar-García DC, Eppler E, Seiler R, Hansen LH, Castruita JAS, Barkow-Oesterreicher S, Teoh KY, Kelstrup CD, Olsen JV, Nanni P, Kawai T, Willerslev E, von Mering C, Lewis CM, Collins MJ, Gilbert MTP, Rühli F, Cappellini E. Pathogens and host immunity in the ancient human oral cavity. Nat Genet 2014; 46:336-44. [PMID: 24562188 PMCID: PMC3969750 DOI: 10.1038/ng.2906] [Citation(s) in RCA: 318] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 02/03/2014] [Indexed: 01/19/2023]
Abstract
Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first, to our knowledge, high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, 'red complex' pathogens and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity and diet, thereby extending direct investigation of common diseases into the human evolutionary past.
Collapse
Affiliation(s)
- Christina Warinner
- 1] Centre for Evolutionary Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland. [2] Department of Anthropology, University of Oklahoma, Norman, Oklahoma, USA
| | - João F Matias Rodrigues
- 1] Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland. [2] Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rounak Vyas
- 1] Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland. [2] Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian Trachsel
- Functional Genomics Center Zürich, University of Zürich/Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Natallia Shved
- Centre for Evolutionary Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zürich, University of Zürich/Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Anita Radini
- 1] BioArCh, Department of Archaeology, University of York, York, UK. [2] University of Leicester Archaeological Services (ULAS), School of Archaeology and Ancient History, University of Leicester, Leicester, UK
| | - Y Hancock
- Department of Physics, University of York, York, UK
| | - Raul Y Tito
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma, USA
| | - Sarah Fiddyment
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Camilla Speller
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Jessica Hendy
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Sophy Charlton
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Hans Ulrich Luder
- Centre of Dental Medicine, Institute of Oral Biology, University of Zürich, Zürich, Switzerland
| | - Domingo C Salazar-García
- 1] Research Group on Plant Foods in Hominin Dietary Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. [2] Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. [3] Department of Prehistory and Archaeology, University of Valencia, Valencia, Spain
| | - Elisabeth Eppler
- 1] Research Group Neuro-Endocrine-Immune Interactions, Institute of Anatomy, University of Zürich, Zürich, Switzerland. [2] Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Roger Seiler
- Centre for Evolutionary Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland
| | - Lars H Hansen
- 1] Department of Biology, Microbiology, University of Copenhagen, Copenhagen, Denmark. [2] Department of Environmental Science, Aarhus Universitet, Roskilde, Denmark
| | | | - Simon Barkow-Oesterreicher
- Functional Genomics Center Zürich, University of Zürich/Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Kai Yik Teoh
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Christian D Kelstrup
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paolo Nanni
- Functional Genomics Center Zürich, University of Zürich/Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Toshihisa Kawai
- 1] Department of Immunology and Infectious Diseases, Forsyth Institute, Cambridge, Massachusetts, USA. [2] Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, Massachusetts, USA
| | - Eske Willerslev
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Christian von Mering
- 1] Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland. [2] Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Cecil M Lewis
- Department of Anthropology, University of Oklahoma, Norman, Oklahoma, USA
| | | | - M Thomas P Gilbert
- 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark. [2] Ancient DNA Laboratory, Murdoch University, Perth, Western Australia, Australia
| | - Frank Rühli
- 1] Centre for Evolutionary Medicine, Institute of Anatomy, University of Zürich, Zürich, Switzerland. [2]
| | - Enrico Cappellini
- 1] Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark. [2]
| |
Collapse
|
38
|
Sarkar J, McHardy IH, Simanian EJ, Shi W, Lux R. Transcriptional responses of Treponema denticola to other oral bacterial species. PLoS One 2014; 9:e88361. [PMID: 24505483 PMCID: PMC3914990 DOI: 10.1371/journal.pone.0088361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
The classic organization by Socransky and coworkers categorized the oral bacteria of the subgingival plaque into different complexes. Treponema denticola, Porphyromonas gingivalis and Tannerella forsythia are grouped into the red complex that is highly correlated with periodontal disease. Socransky's work closely associates red with orange complex species such as Fusobacterium nucleatum and Prevotella intermedia but not with members of the other complexes. While the relationship between species contained by these complexes is in part supported by their ability to physically attach to each other, the physiological consequences of these interactions and associations are less clear. In this study, we employed T. denticola as a model organism to analyze contact-dependent responses to interactions with species belonging to the same complex (P. gingivalis and T. forsythia), the closely associated orange complex (using F. nucleatum and P. intermedia as representatives) and the unconnected yellow complex (using Streptococcus sanguinis and S. gordonii as representatives). RNA was extracted from T. denticola alone as well as after pairwise co-incubation for 5 hrs with representatives of the different complexes, and the respective gene expression profiles were determined using microarrays. Numerous genes related to motility, metabolism, transport, outer membrane and hypothetical proteins were differentially regulated in T. denticola in the presence of the tested partner species. Further analysis revealed a significant overlap in the affected genes and we identified a general response to the presence of other species, those specific to two of the three complexes as well as individual complexes. Most interestingly, many predicted major antigens (e.g. flagella, Msp, CTLP) were suppressed in responses that included red complex species indicating that the presence of the most closely associated species induces immune-evasive strategies. In summary, the data presented here provide an in-depth understanding of the transcriptional responses triggered by contact-dependent interactions between microorganisms inhabiting the periodontal pocket.
Collapse
Affiliation(s)
- Juni Sarkar
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ian H. McHardy
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Emil J. Simanian
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Wenyuan Shi
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Renate Lux
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Santos J, Marquis A, Epifano F, Genovese S, Curini M, Grenier D. Collinin ReducesPorphyromonas gingivalisGrowth and Collagenase Activity and Inhibits the Lipopolysaccharide-Induced Macrophage Inflammatory Response and Osteoclast Differentiation and Function. J Periodontol 2013; 84:704-11. [DOI: 10.1902/jop.2012.120118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Feghali K, Grenier D. Priming effect of fibronectin fragments on the macrophage inflammatory response: potential contribution to periodontitis. Inflammation 2013; 35:1696-705. [PMID: 22696147 DOI: 10.1007/s10753-012-9487-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fibronectin, an extracellular matrix component, is a substrate for multiple host and bacterial proteinases found in inflamed periodontal sites. In the present study, we investigated the potential contribution of various fibronectin fragments to the inflammatory process of periodontitis. Our results showed that the smaller fragments of fibronectin (30 and 45 kDa) were the most potent inflammatory inducers as they dose-dependently increased the secretion of TNF-α, IL-1β, and IL-8 by human macrophages. The 120-kDa fragment did not induce the secretion of all the cytokines tested, while intact fibronectin only increased IL-8 secretion and to a lesser extent TNF-α secretion. Cytokine secretion was associated with increased amounts of phosphorylated ERK1/2, JNK2, and p38α MAPK in treated macrophages. The combination of fibronectin or fibronectin fragments with Porphyromonas gingivalis lipopolysaccharide had an additive effect, but no synergism appeared to occur. It was also demonstrated that gingival crevicular fluid samples recovered from patients with moderate to severe periodontitis contained more fibronectin fragments than samples obtained from healthy subjects. Finally, both Arg- and Lys-gingipains purified from P. gingivalis were found to modulate fibronectin fragmentation. In conclusion, we showed that specific fibronectin fragments that may be present in diseased periodontal sites may contribute to maintaining and amplifying the inflammatory state and that P. gingivalis gingipains may be involved in the production of these fragments.
Collapse
Affiliation(s)
- Karine Feghali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420 Rue de la Terrasse, Quebec City, QC, Canada, G1V 0A6
| | | |
Collapse
|
41
|
Scheres N, Crielaard W. Gingival fibroblast responsiveness is differentially affected by Porphyromonas gingivalis: implications for the pathogenesis of periodontitis. Mol Oral Microbiol 2012; 28:204-18. [PMID: 23279858 DOI: 10.1111/omi.12016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 12/26/2022]
Abstract
In periodontitis, tissue damage results mainly from aberrant host responses to oral microorganisms. Fibroblasts can play an important role in this. Gingival fibroblasts do not develop tolerance against the lipopolysaccharide of Porphyromonas gingivalis, a keystone pathogen in periodontitis, which may partly explain the persistence of inflammation. However, besides lipopolysaccharide, live P. gingivalis possess numerous virulence traits to impair host-responses. We hypothesized that fibroblast-responsiveness to a bacterial challenge could be affected by live P. gingivalis. We investigated if inflammatory responses of gingival fibroblasts to P. gingivalis were altered, when the fibroblasts had encountered P. gingivalis previously. On consecutive days, primary human gingival fibroblasts were challenged twice for 6 h with live P. gingivalis, or fibroblasts were preincubated for 24 h with a lower concentration of live P. gingivalis and re-challenged for 6 h with a higher concentration. As the P. gingivalis capsule and proteases are involved in modulating host responses, we used encapsulated P. gingivalis W83 and a non-encapsulated mutant, and P. gingivalis ATCC33277 and a lys-gingipain and arg-gingipain mutant, to challenge fibroblasts. With all P. gingivalis-strains, interleukin-8 and monocyte chemoattractant protein-1 responses to the second challenge were less strong in fibroblasts that had been challenged with P. gingivalis before. These lower responses might correspond with higher interleukin-1 receptor agonist expression. Fibroblast responses to a second challenge were not influenced by 24 h preincubation. Reduced chemokine responses after consecutive potent P. gingivalis challenges indicate that gingival fibroblast responsiveness is affected by a previous bacterial encounter. In periodontitis, such reduced chemokine responses may impair chemotaxis and clearance of oral microorganisms, thereby leading to prolonged inflammatory responses and tissue damage.
Collapse
Affiliation(s)
- N Scheres
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam, VU University Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
42
|
Feghali K, Feldman M, La VD, Santos J, Grenier D. Cranberry proanthocyanidins: natural weapons against periodontal diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5728-5735. [PMID: 22082264 DOI: 10.1021/jf203304v] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cranberry ( Vaccinium macrocarpon ) is known to have a beneficial effect on several aspects of human health. Proanthocyanidins (PACs), the most abundant flavonoids extracted from red cranberry fruits, have been reported to possess antimicrobial, antiadhesion, antioxidant, and anti-inflammatory properties. Recent in vitro studies have shown that cranberry PACs may be potential therapeutic agents for the prevention and management of periodontitis, an inflammatory disease of bacterial origin affecting tooth-supporting tissues. After presenting an overview of cranberry phytochemicals and their potential for human health benefits, this review will focus on the effects of cranberry PACs on connective tissue breakdown and alveolar bone destruction, as well as their potential for controlling periodontal diseases. Possible mechanisms of action of cranberry PACs include the inhibition of (i) bacterial and host-derived proteolytic enzymes, (ii) host inflammatory response, and (iii) osteoclast differentiation and activity. Given that cranberry PACs have shown interesting properties in in vitro studies, clinical trials are warranted to better evaluate the potential of these molecules for controlling periodontal diseases.
Collapse
Affiliation(s)
- Karine Feghali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval , Quebec City, QC, Canada G1V 0A6
| | | | | | | | | |
Collapse
|
43
|
Glew MD, Veith PD, Peng B, Chen YY, Gorasia DG, Yang Q, Slakeski N, Chen D, Moore C, Crawford S, Reynolds EC. PG0026 is the C-terminal signal peptidase of a novel secretion system of Porphyromonas gingivalis. J Biol Chem 2012; 287:24605-17. [PMID: 22593568 DOI: 10.1074/jbc.m112.369223] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein substrates of a novel secretion system of Porphyromonas gingivalis contain a conserved C-terminal domain (CTD) of ∼70-80 amino acid residues that is essential for their secretion and attachment to the cell surface. The CTD itself has not been detected in mature substrates, suggesting that it may be removed by a novel signal peptidase. More than 10 proteins have been shown to be essential for the proper functioning of the secretion system, and one of these, PG0026, is a predicted cysteine proteinase that also contains a CTD, suggesting that it may be a secreted component of the secretion system and a candidate for being the CTD signal peptidase. A PG0026 deletion mutant was constructed along with a PG0026C690A targeted mutant encoding an altered catalytic Cys residue. Analysis of clarified culture fluid fractions by SDS-PAGE and mass spectrometry revealed that the CTD was released intact into the surrounding medium in the wild type strain, but not in the PG0026 mutant strains. Western blot experiments revealed that the maturation of a model substrate was stalled at the CTD-removal step specifically in the PG0026 mutants, and whole cell ELISA experiments demonstrated partial secretion of substrates to the cell surface. The CTD was also shown to be accessible at the cell surface in the PG0026 mutants, suggesting that the CTD was secreted but could not be cleaved. The data indicate that PG0026 is responsible for the cleavage of the CTD signal after substrates are secreted across the OM.
Collapse
Affiliation(s)
- Michelle D Glew
- Oral Health Cooperative Research Centre, Melbourne Dental School, and Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Baek O, Zhu W, Kim HC, Lee SW. Effects of nicotine on the growth and protein expression of Porphyromonas gingivalis. J Microbiol 2012; 50:143-8. [PMID: 22367949 DOI: 10.1007/s12275-012-1212-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 09/15/2011] [Indexed: 11/25/2022]
Abstract
Tobacco smoking is considered one of the most significant environmental risk factors for destructive periodontal disease. The effect of smoking on periodontopathic microbiota has not yet been elucidated, as previous studies failed to identify a concrete relationship between periodontopathic microorganisms and smoking. However, it is likely that smoking, as an environmental stress factor, may affect the behavior of dental plaque microorganisms, ultimately leading to alteration of the host-parasite interaction. The goal of this study was to examine the effect of nicotine, a major component of tobacco, on the growth and protein expression of the crucial periodontal pathogen Porphyromonas gingivalis. The growth of P. gingivalis 381 was measured after bacterial cells were cultivated in liquid broth containing various nicotine concentrations. First, P. gingivalis cells were allowed to grow in the presence of a single dose of nicotine (the single exposure protocol) at 0, 1, 2, 4, and 8 mg/L, respectively. Second, P. gingivalis cells were exposed to five consecutive doses of nicotine (the multiple exposure protocol) at 0, 1, 2, and 4 mg/L, respectively. Bacterial growth was measured by optical density and protein expression was analyzed by SDS-PAGE and 2-D gel electrophoresis. In the single nicotine exposure protocol, it was observed that the growth of P. gingivalis 381 was inhibited by nicotine in a dose-dependent manner. In the multiple nicotine exposure protocol, the growth rate of P. gingivalis increased with each subsequent nicotine exposure, even though bacterial growth was also inhibited in a dose dependent fashion. SDS-PAGE and 2-D gel electrophoresis analyses revealed a minor change in the pattern of protein expression, showing differences in proteins with low molecular weights (around 20 kDa) on exposure to nicotine. The results of this study suggest that nicotine exerts an inhibitory effect on the growth of P. gingivalis, and has a potential to modulate protein expression in P. gingivalis.
Collapse
Affiliation(s)
- Orson Baek
- Division of Periodontics, College of Dental Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
45
|
Kretschmar S, Yin L, Roberts F, London R, Flemmig TT, Arushanov D, Kaiyala K, Chung WO. Protease inhibitor levels in periodontal health and disease. J Periodontal Res 2011; 47:228-35. [PMID: 22029638 DOI: 10.1111/j.1600-0765.2011.01425.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Our previous study showed that protease inhibitors were attenuated by the periodontal pathogen Porphyromonas gingivalis in cultured gingival epithelial cells. We hypothesize that fewer protease inhibitors would be present in more advanced periodontal disease sites, where the level of P. gingivalis may be high. The goal of this study was to investigate the relationship between the protease inhibitor [secretory leukocyte protease inhibitor (SLPI), elastase-specific inhibitor (ELAFIN) and squamous cell carcinoma antigen (SCCA)] levels in gingival crevicular fluid and the number of P. gingivalis micro-organisms in subgingival plaque. MATERIAL AND METHODS Plaque samples from subjects without (n = 18) and with moderate to advanced periodontitis (n = 41) were used to quantify P. gingivalis using real-time PCR. Protease inhibitor levels in the gingival crevicular fluid of all the subjects were determined by ELISA. RESULTS P. gingivalis was detected in 68.3% of patients with periodontitis, while 16.7% of subjects without periodontitis had a detectable level of P. gingivalis. Patients with periodontitis and P. gingivalis in their plaque exhibited lower SLPI and ELAFIN levels (p < 0.001) compared with control subjects without periodontitis. Secretory leukocyte protease inhibitor was also reduced (p < 0.05) in gingival crevicular fluid of periodontitis patients without a detectable level of P. gingivalis. Periodontitis patients with high vs. low levels of P. gingivalis exhibited reciprocal mean levels of SLPI and ELAFIN concentrations. CONCLUSION The reduced concentrations of SLPI and ELAFIN may contribute to the loss of host protective capacity and increase susceptibility to breakdown from chronic infection. The work of this investigation may aid in finding diagnostic and prognostic markers in periodontal health and disease and may also help in finding pharmacological targets directed against periodontal inflammation.
Collapse
Affiliation(s)
- S Kretschmar
- Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Chronic spirochetal infection can cause slowly progressive dementia, cortical atrophy and amyloid deposition in the atrophic form of general paresis. There is a significant association between Alzheimer disease (AD) and various types of spirochete (including the periodontal pathogen Treponemas and Borrelia burgdorferi), and other pathogens such as Chlamydophyla pneumoniae and herpes simplex virus type-1 (HSV-1). Exposure of mammalian neuronal and glial cells and organotypic cultures to spirochetes reproduces the biological and pathological hallmarks of AD. Senile-plaque-like beta amyloid (Aβ) deposits are also observed in mice following inhalation of C. pneumoniae in vivo, and Aβ accumulation and phosphorylation of tau is induced in neurons by HSV-1 in vitro and in vivo. Specific bacterial ligands, and bacterial and viral DNA and RNA all increase the expression of proinflammatory molecules, which activates the innate and adaptive immune systems. Evasion of pathogens from destruction by the host immune reactions leads to persistent infection, chronic inflammation, neuronal destruction and Aβ deposition. Aβ has been shown to be a pore-forming antimicrobial peptide, indicating that Aβ accumulation might be a response to infection. Global attention and action is needed to support this emerging field of research because dementia might be prevented by combined antibiotic, antiviral and anti-inflammatory therapy.
Collapse
|
47
|
Messier C, Epifano F, Genovese S, Grenier D. Licorice and its potential beneficial effects in common oro-dental diseases. Oral Dis 2011; 18:32-9. [PMID: 21851508 DOI: 10.1111/j.1601-0825.2011.01842.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Licorice, the name given to the roots and stolons of Glycyrrhiza species, has been used since ancient times as a traditional herbal remedy. Licorice contains several classes of secondary metabolites with which numerous human health benefits have been associated. Recent research suggests that licorice and its bioactive ingredients such as glycyrrhizin, glabridin, licochalcone A, licoricidin, and licorisoflavan A possess potential beneficial effects in oral diseases. This paper reviews the effects of licorice and licorice constituents on both the oral microbial pathogens and the host immune response involved in common ora-dental diseases (dental caries, periodontitis, candidiasis, and recurrent aphthous ulcers). It also summarizes results of clinical trials that investigated the potential beneficial effects of licorice and its constituents for preventing/treating oro-dental diseases.
Collapse
Affiliation(s)
- C Messier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | | | | | | |
Collapse
|
48
|
Morandini ACDF, Sipert CR, Ramos-Junior ES, Brozoski DT, Santos CF. Periodontal ligament and gingival fibroblasts participate in the production of TGF-β, interleukin (IL)-8 and IL-10. Braz Oral Res 2011; 25:157-62. [DOI: 10.1590/s1806-83242011000200010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 01/16/2011] [Indexed: 11/22/2022] Open
|
49
|
Kunnen A, Van Doormaal JJ, Abbas F, Aarnoudse JG, Van Pampus MG, Faas MM. Review Article: Periodontal disease and pre-eclampsia: a systematic review. J Clin Periodontol 2010; 37:1075-87. [DOI: 10.1111/j.1600-051x.2010.01636.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Bodet C, Grenier D. Synergistic effects of lipopolysaccharides from periodontopathic bacteria on pro-inflammatory cytokine production in an ex vivo whole blood model. Mol Oral Microbiol 2010; 25:102-11. [PMID: 20331798 DOI: 10.1111/j.2041-1014.2010.00566.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia have been strongly associated with chronic periodontitis. This disease is characterized by an accumulation of inflammatory cells in periodontal tissue and subgingival sites. The secretion of high levels of inflammatory cytokines by those cells is believed to contribute to periodontal tissue destruction. The aim of this study was to investigate the inflammatory response of whole blood from periodontitis patients following challenges with whole cells of P. gingivalis, T. denticola, and T. forsythia or their lipopolysaccharides (LPS), individually and in combination. Whole blood collected from seven periodontitis patients was stimulated with whole cells or LPS and the production of interleukin (IL)-1beta, IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) were quantified by enzyme-linked immunosorbent assays. The mono and mixed challenges with whole bacterial cells or LPS induced the secretion of high amounts of IL-1beta, IL-6, IL-8, and TNF-alpha by the mixed leukocyte population from periodontitis patients. In addition, P. gingivalis LPS, T. denticola LPS, and T. forsythia LPS acted in synergy to induce high levels of IL-1beta and TNF-alpha. This study suggests that P. gingivalis, T. denticola, and T. forsythia may contribute to the immunodestructive host response characteristic of periodontitis through synergistic effects of their LPS on the inflammatory response induced by a mixed population of leukocytes.
Collapse
Affiliation(s)
- C Bodet
- Groupe de Recherche en Ecologie Buccale, Faculté de médecine dentaire, Université Laval, Quebec City, Quebec, Canada
| | | |
Collapse
|