1
|
Kim B, Swain JWR, Fowler MJ, Yang CY, Vohidona D, Hartgerink JD, Veiseh O. Rapid method to screen biomaterial angiogenesis in vivo using fluorescence imaging in mice. Biomater Sci 2024; 12:5824-5833. [PMID: 39412699 DOI: 10.1039/d4bm00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Effective vascularization is crucial for repairing and enhancing the longevity of engineered tissues and organs. As the field advances, there is a vital need for efficient and reliable methods for assessing vascularization in real-time. The integration and performance of constructed biomaterials in living organisms rely on angiogenesis and vascularization, making it essential to evaluate vascular development and networks within biomaterials. Current histology-based methods are limited and labor-intensive. On the other hand, fluorescence imaging offers promise for efficient, real-time evaluation of angiogenesis, reducing the time needed for screening many compounds and offering a high-throughput alternative to histology-based methods. Here, we investigated a novel, non-invasive method for quick and repeated analysis of the angiogenic and vascularization process in biomaterials via fluorescence IVIS imaging. Multi-domain peptides (MDPs), self-assembling peptide hydrogels that can possess pro-angiogenic properties depending on their primary sequence, were synthesized and utilized as angiogenic biomaterials and screened with a fluorescence IVIS probe to demonstrate real-time rapid angiogenesis in vivo. The fluorescence-based imaging showed the influence of the peptide chemistry, volume, and concentration on angiogenesis, with one particular MDP, SLanc, promoting robust angiogenesis after one week at 2 w/v%. Through this method, we were able to identify the optimal peptide for rapid and sustained angiogenesis. This approach enables real-time monitoring of angiogenic responses and vascularization processes in the same living subject. It promotes the development of new biomaterials that facilitate vascularization and validates an advanced in vivo screening technique for angiogenesis.
Collapse
Affiliation(s)
- Boram Kim
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Martha J Fowler
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| | - Claire Y Yang
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | | | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Shekatkar M, Kheur S, Deshpande S, Sakhare S, Sanap A, Kheur M, Bhonde R. Critical appraisal of the chorioallantoic membrane model for studying angiogenesis in preclinical research. Mol Biol Rep 2024; 51:1026. [PMID: 39340708 DOI: 10.1007/s11033-024-09956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Angiogenesis, the biological mechanism by which new blood vessels are generated from existing ones, plays a vital role in growth and development. Effective preclinical screening is necessary for the development of medications that may enhance or inhibit angiogenesis in the setting of different disorders. Traditional in vitro and, in vivo models of angiogenesis are laborious and time-consuming, necessitating advanced infrastructure for embryo culture. MAIN BODY A challenge encountered by researchers studying angiogenesis is the lack of appropriate techniques to evaluate the impact of regulators on the angiogenic response. An ideal test should possess reliability, technical simplicity, easy quantifiability, and, most importantly, physiological relevance. The CAM model, leveraging the extraembryonic membrane of the chicken embryo, offers a unique combination of accessibility, low cost, and rapid development, making it an attractive option for angiogenesis assays. This review evaluates the strengths and limitations of the CAM model in the context of its anatomical and physiological properties, and its relevance to human pathophysiological conditions. Its abundant capillary network makes it a common choice for studying angiogenesis. The CAM assay serves as a substitute for animal models and offers a natural setting for developing blood vessels and the many elements involved in the intricate interaction with the host. Despite its advantages, the CAM model's limitations are notable. These include species-specific responses that may not always extrapolate to humans and the ethical considerations of using avian embryos. We discuss methodological adaptations that can mitigate some of these limitations and propose future directions to enhance the translational relevance of this model. This review underscores the CAM model's valuable role in angiogenesis research and aims to guide researchers in optimizing its use for more predictive and robust preclinical studies. CONCLUSION The highly vascularized chorioallantoic membrane (CAM) of fertilized chicken eggs is a cost-effective and easily available method for screening angiogenesis, in comparison to other animal models.
Collapse
Affiliation(s)
- Madhura Shekatkar
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Supriya Kheur
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India.
| | - Shantanu Deshpande
- Department of Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed to be University), Dental College and Hospital, Navi Mumbai, India
| | - Swapnali Sakhare
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Mohit Kheur
- Department of Prosthodontics, M.A. Rangoonwala College of Dental Sciences and Research Centre, Pune, Maharashtra, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
3
|
Doyle SE, Pannella M, Onofrillo C, Bellotti C, Di Bella C, O’Connell CD, Pirogova E, Lucarelli E, Duchi S. NEST3D printed bone-mimicking scaffolds: assessment of the effect of geometrical design on stiffness and angiogenic potential. Front Cell Dev Biol 2024; 12:1353154. [PMID: 38516128 PMCID: PMC10955058 DOI: 10.3389/fcell.2024.1353154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Tissue-engineered implants for bone regeneration require consideration regarding their mineralization and vascularization capacity. Different geometries, such as biomimetic designs and lattices, can influence the mechanical properties and the vascularization capacity of bone-mimicking implants. Negative Embodied Sacrificial Template 3D (NEST3D) printing is a versatile technique across a wide range of materials that enables the production of bone-mimicking scaffolds. In this study, different scaffold motifs (logpile, Voronoi, and trabecular bone) were fabricated via NEST3D printing in polycaprolactone to determine the effect of geometrical design on stiffness (10.44 ± 6.71, 12.61 ± 5.71, and 25.93 ± 4.16 MPa, respectively) and vascularization. The same designs, in a polycaprolactone scaffold only, or when combined with gelatin methacryloyl, were then assessed for their ability to allow the infiltration of blood vessels in a chick chorioallantoic membrane (CAM) assay, a cost-effective and time-efficient in ovo assay to assess vascularization. Our findings showed that gelatin methacrylolyl alone did not allow new chorioallantoic membrane tissue or blood vessels to infiltrate within its structure. However, polycaprolactone on its own or when combined with gelatin methacrylolyl allowed tissue and vessel infiltration in all scaffold designs. The trabecular bone design showed the greatest mineralized matrix production over the three designs tested. This reinforces our hypothesis that both biomaterial choice and scaffold motifs are crucial components for a bone-mimicking scaffold.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Carmine Onofrillo
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Claudia Di Bella
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering. RMIT University, Melbourne, VIC, Australia
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Serena Duchi
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent’s Hospital Melbourne, Fitzroy, VIC, Australia
- Department of Surgery, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
4
|
Li Z, Li Q, Zhou C, Lu K, Liu Y, Xuan L, Wang X. Organoid-on-a-chip: Current challenges, trends, and future scope toward medicine. BIOMICROFLUIDICS 2023; 17:051505. [PMID: 37900053 PMCID: PMC10613095 DOI: 10.1063/5.0171350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023]
Abstract
In vitro organoid models, typically defined as 3D multicellular aggregates, have been extensively used as a promising tool in drug screening, disease progression research, and precision medicine. Combined with advanced microfluidics technique, organoid-on-a-chip can flexibly replicate in vivo organs within the biomimetic physiological microenvironment by accurately regulating different parameters, such as fluid conditions and concentration gradients of biochemical factors. Since engineered organ reconstruction has opened a new paradigm in biomedicine, innovative approaches are increasingly required in micro-nano fabrication, tissue construction, and development of pharmaceutical products. In this Perspective review, the advantages and characteristics of organoid-on-a-chip are first introduced. Challenges in current organoid culture, extracellular matrix building, and device manufacturing techniques are subsequently demonstrated, followed by potential alternative approaches, respectively. The future directions and emerging application scenarios of organoid-on-a-chip are finally prospected to further satisfy the clinical demands.
Collapse
Affiliation(s)
- Zhangjie Li
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinyu Li
- Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, 999077 Hong Kong, China
| | - Chenyang Zhou
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kangyi Lu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijun Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lian Xuan
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
5
|
Turrini E, Maffei F, Fimognari C. Ten Years of Research on Fucoidan and Cancer: Focus on Its Antiangiogenic and Antimetastatic Effects. Mar Drugs 2023; 21:md21050307. [PMID: 37233501 DOI: 10.3390/md21050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Angiogenesis and metastasis represent two challenging targets to combat cancer development in the later stages of its progression. Numerous studies have indicated the important role of natural products in blocking tumor angiogenesis signaling pathways in several advanced tumors. In recent years, the marine polysaccharides fucoidans emerged as promising anticancer compounds showing potent antitumor activity in both in vitro and in vivo models of different types of cancers. The objective of this review is to focus on the antiangiogenic and antimetastatic activities of fucoidans with special emphasis on preclinical studies. Independently from their source, fucoidans inhibit several angiogenic regulators, primarily vascular endothelial growth factor (VEGF). A glance towards fucoidans' ongoing clinical trials and pharmacokinetic profile is provided to present the main challenges that still need to be addressed for their bench-to-bedside translation.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, University of Bologna-C.so d'Augusto, 237, 47921 Rimini, Italy
| | - Francesca Maffei
- Department for Life Quality Studies, University of Bologna-C.so d'Augusto, 237, 47921 Rimini, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna-C.so d'Augusto, 237, 47921 Rimini, Italy
| |
Collapse
|
6
|
Hautanen V, Toimela T, Paparella M, Heinonen T. A Human Cell-based Assay to Assess the Induction of Vasculature Formation for Non-genotoxic Carcinogenicity Testing Purposes: A Pilot Study. Altern Lab Anim 2023:2611929231171165. [PMID: 37125451 DOI: 10.1177/02611929231171165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The induction of vasculature formation is proposed to be a significant mechanism behind the non-genotoxic carcinogenicity of a chemical. The vasculature formation model used in this study is based on the coculture of human primary HUVECs and hASCs. This model was used to develop an assay to assess the induction of vasculature formation. Three assay protocols, based on different conditions, were developed and compared in order to identify the optimal conditions required. Some serum supplements and growth factors were observed to be essential for initiating vasculature formation. Of the studied putative positive reference chemicals, aspartame, sodium nitrite, bisphenol A and nicotine treatment led to a clear induction of vasculature formation, but arsenic and cadmium treatment only led to a slight increase. This human cell-based assay has the potential to be used as one test within a next generation testing battery, to assess the non-genotoxic carcinogenicity of a chemical through the mechanism of vasculature formation induction.
Collapse
Affiliation(s)
- Veera Hautanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Toimela
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Tuula Heinonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
7
|
Hydroxyurea as a promising ADAM17 inhibitor. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Annese T, Tamma R, Ribatti D. IKOSA ® CAM Assay Application to Quantify Blood Vessels on Chick Chorioallantoic Membrane (CAM). Methods Mol Biol 2023; 2572:129-139. [PMID: 36161413 DOI: 10.1007/978-1-0716-2703-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Among in vivo angiogenesis assays, chick chorioallantoic membrane (CAM) assay has allowed meaningful progress in elucidating the mechanism of the vasoproliferative response to several pro- and antiangiogenic factors, thanks to its low costs, relatively easy management, and lower ethical concerns compared to other animal in vivo models.Here, we present a method to quantify angiogenesis and antiangiogenesis processes in the CAM based on the segmentation of microscopic images of blood vessels. Images captured from in vivo CAM samples can be analyzed for their vascularization with IKOSA CAM Assay to measure their total area, length, mean thickness, and the number of branching points. This chapter presents a detailed protocol to perform a CAM assay and analysis, and the IKOSA CAM Assay output is described.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
9
|
Trac N, Oh HS, Jones LI, Caliliw R, Ohtake S, Shuch B, Chung EJ. CD70-Targeted Micelles Enhance HIF2α siRNA Delivery and Inhibit Oncogenic Functions in Patient-Derived Clear Cell Renal Carcinoma Cells. Molecules 2022; 27:molecules27238457. [PMID: 36500549 PMCID: PMC9738223 DOI: 10.3390/molecules27238457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The majority of clear cell renal cell carcinomas (ccRCCs) are characterized by mutations in the Von Hippel−Lindau (VHL) tumor suppressor gene, which leads to the stabilization and accumulation of the HIF2α transcription factor that upregulates key oncogenic pathways that promote glucose metabolism, cell cycle progression, angiogenesis, and cell migration. Although FDA-approved HIF2α inhibitors for treating VHL disease-related ccRCC are available, these therapies are associated with significant toxicities such as anemia and hypoxia. To improve ccRCC-specific drug delivery, peptide amphiphile micelles (PAMs) were synthesized incorporating peptides targeted to the CD70 marker expressed by ccRCs and anti-HIF2α siRNA, and the ability of HIF2α-CD27 PAMs to modulate HIF2α and its downstream targets was evaluated in human ccRCC patient-derived cells. Cell cultures were derived from eight human ccRCC tumors and the baseline mRNA expression of HIF2A and CD70, as well as the HIF2α target genes SLC2A1, CCND1, VEGFA, CXCR4, and CXCL12 were first determined. As expected, each gene was overexpressed by at least 63% of all samples compared to normal kidney proximal tubule cells. Upon incubation with HIF2α-CD27 PAMs, a 50% increase in ccRCC-binding was observed upon incorporation of a CD70-targeting peptide into the PAMs, and gel shift assays demonstrated the rapid release of siRNA (>80% in 1 h) under intracellular glutathione concentrations, which contributed to ~70% gene knockdown of HIF2α and its downstream genes. Further studies demonstrated that knockdown of the HIF2α target genes SLC2A1, CCND1, VEGFA, CXCR4, and CXCL12 led to inhibition of their oncogenic functions of glucose transport, cell proliferation, angiogenic factor release, and cell migration by 50−80%. Herein, the development of a nanotherapeutic strategy for ccRCC-specific siRNA delivery and its potential to interfere with key oncogenic pathways is presented.
Collapse
Affiliation(s)
- Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hyun Seok Oh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Leila Izzy Jones
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Randy Caliliw
- Institute of Urologic Oncology, University of California, Los Angeles, CA 90095, USA
| | - Shinji Ohtake
- Institute of Urologic Oncology, University of California, Los Angeles, CA 90095, USA
| | - Brian Shuch
- Institute of Urologic Oncology, University of California, Los Angeles, CA 90095, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
10
|
Jabbar ZR, Sahib HB. The Effects of Abscisic Acid on Angiogenesis in Both ex vivo and in vivo Assays. Asian Pac J Cancer Prev 2022; 23:4193-4203. [PMID: 36580002 PMCID: PMC9971465 DOI: 10.31557/apjcp.2022.23.12.4193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Angiogenesis is a complex biological process wherein novel capillary blood vessels mature from pre-existing vasculature for delivering tissues with oxygen and nutrients. Natural molecules that have anti-angiogenic activity and toxicity can raise the focus on using plant sources as essential therapeutic agent. OBJECTIVE The current research was intended to estimate the probable anti-angiogenic activity of abscisic acid alone and in combination with prednisolone, a well-known angiostatic glucocorticoid. METHODS two months old albino rats were used in this study. ABA and prednisolone stock solutions were prepared and added after embedding aortic rings in growth media. The ex vivo rat aorta ring assay (RAR) was applied to explore the anti-angiogenic effect of ABA. The in vivo chorioallantoic membrane assay (CAM) was applied to quantify the blood vessels inhibition zone by ABA effect. That zone was calculated as the mean inhibition region on eggs in mm ± SD. RESULTS Abscisic acid screened byex vivo and in vivo assays, revealed a significant dose-dependent blood vessels inhibition in comparison to the negative control with IC50= 7.5µg/ml and a synergism effect when combined with prednisolone. CONCLUSION The synergism activity of ABA with prednisolone can significantly inhibit blood vessels growth in RAR and CAM assays. These results shed the light on the potential clinic values of ABA, and prednisolone combination in angiogenesis-dependent tumors.
Collapse
Affiliation(s)
| | - Hayder B Sahib
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| |
Collapse
|
11
|
Chick embryo chorioallantoic membrane: a biomaterial testing platform for tissue engineering applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Laschke MW, Gu Y, Menger MD. Replacement in angiogenesis research: Studying mechanisms of blood vessel development by animal-free in vitro, in vivo and in silico approaches. Front Physiol 2022; 13:981161. [PMID: 36060683 PMCID: PMC9428454 DOI: 10.3389/fphys.2022.981161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/10/2023] Open
Abstract
Angiogenesis, the development of new blood vessels from pre-existing ones, is an essential process determining numerous physiological and pathological conditions. Accordingly, there is a high demand for research approaches allowing the investigation of angiogenic mechanisms and the assessment of pro- and anti-angiogenic therapeutics. The present review provides a selective overview and critical discussion of such approaches, which, in line with the 3R principle, all share the common feature that they are not based on animal experiments. They include in vitro assays to study the viability, proliferation, migration, tube formation and sprouting activity of endothelial cells in two- and three-dimensional environments, the degradation of extracellular matrix compounds as well as the impact of hemodynamic forces on blood vessel formation. These assays can be complemented by in vivo analyses of microvascular network formation in the chorioallantoic membrane assay and early stages of zebrafish larvae. In addition, the combination of experimental data and physical laws enables the mathematical modeling of tissue-specific vascularization, blood flow patterns, interstitial fluid flow as well as oxygen, nutrient and drug distribution. All these animal-free approaches markedly contribute to an improved understanding of fundamental biological mechanisms underlying angiogenesis. Hence, they do not only represent essential tools in basic science but also in early stages of drug development. Moreover, their advancement bears the great potential to analyze angiogenesis in all its complexity and, thus, to make animal experiments superfluous in the future.
Collapse
|
13
|
Halogenated Flavonoid Derivatives Display Antiangiogenic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154757. [PMID: 35897938 PMCID: PMC9331694 DOI: 10.3390/molecules27154757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Antiangiogenic agents attenuate tumours' growth and metastases and are therefore beneficial as an adjuvant or standalone cancer regimen. Drugs with dual antiproliferative and antiangiogenic activities can achieve anticancer efficacy and overcome acquired resistance. In this study, synthetic flavones (5a,b) with reported anticancer activity, and derivatives (4b and 6a), exhibited significant inhibition of endothelial cell tube formation (40-55%, 12 h) at 1 µM, which is comparable to sunitinib (50% inhibition at 1 µM, 48 h). Flavones (4b, 5a,b and 6a) also showed 25-37% reduction in HUVECs migration at 10 µM. In a Western blotting assay, 5a and 5b subdued VEGFR2 phosphorylation by 37% and 57%, respectively, suggesting that VEGFR2 may be their main antiangiogenic target. 5b displayed the best docking fit with VEGFR2 in an in silico study, followed by 5a, emphasizing the importance of the 7-hydroxyl group accompanied by a 4-C=S for activity. Conversely, derivatives with a 4-carbonyl moiety fitted poorly into the target's binding pocket, suggesting that their antiangiogenic activity depends on a different target. This study provides valuable insight into the Structure Activity Relationships (SAR) and modes of action of halogenated flavones with VEGFR2 and highlights their therapeutic potential as antiangiogenic/anticancer lead compounds.
Collapse
|
14
|
Chen J, Liu J, Xu B, Cao Y, Liang X, Wu F, Shen X, Ma X, Liu J. Ethoxy-erianin phosphate and afatinib synergistically inhibit liver tumor growth and angiogenesis via regulating VEGF and EGFR signaling pathways. Toxicol Appl Pharmacol 2022; 438:115911. [PMID: 35143806 DOI: 10.1016/j.taap.2022.115911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/27/2022]
Abstract
The therapeutic efficacy of tyrosine kinase inhibitors (TKIs) on solid tumors is limited by drug resistance and side effects. Currently, the combination therapy comprises of TKIs and angiogenesis inhibitors have been corroborated as an effective approach in cancer therapy. Ethoxy-erianin phosphate (EBTP) is an anti-angiogenic compound with low toxicity obtained by structural modification of the natural product erianin. Here, we aimed to evaluate whether EBTP can cooperate with TKIs to inhibit the proliferation and angiogenesis of tumor cells and reduce toxic effects. First, CCK-8 results showed that EBTP can effectively inhibit the proliferation of liver cancer cell line HepG2. We combined EBTP with four TKIs (Bosutinib, Apatinib, Afatinib and Erlotinib) to treat HepG2 cells and CompuSyn software analysis suggested that EBTP/Afatinib(Afa)shows the best synergistic inhibitory effect. Meanwhile, EBTP/Afa can significantly suppress the proliferation, invasion, migration and angiogenesis of HepG2 and HUVECs. ELISA results revealed that EBTP/Afa inhibits the secretion of VEGF in HepG2. EBTP/Afa down-regulates the expression of VEGF, p-VEGFR1, p-VEGFR2 and p-EGFR in both HepG2 and HUVECs. Further, the supernatant of HepG2 cells treated with EBTP/Afa blocks the intracellular downstream signal transduction shared by VEGF and EGFR in HUVECs. Finally, EBTP/Afa significantly inhibits tumor growth and angiogenesis in vivo. To conclude, EBTP/Afa targets VEGF and EGFR signaling pathways in liver cancer cells and tumor vasculature, thereby inhibiting the proliferation, motion and angiogenesis of liver cancer cells. Overall, this study provides a new combined strategy for the clinical treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jingyun Chen
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jiajun Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Baixue Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yiou Cao
- Department of Surgery, Minhang Hospital, Fudan University, China; Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, China
| | - Xin Liang
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai 201418, China
| | - Xiaodong Shen
- Department of Surgery, Minhang Hospital, Fudan University, China; Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, China.
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, People's Republic of China.
| |
Collapse
|
15
|
In Vitro Co-culture of Fibroblast and Endothelial Cells to Assess Angiogenesis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:277-286. [PMID: 35099744 DOI: 10.1007/978-1-0716-2059-5_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Angiogenesis relies on the spatial and temporal coordination of endothelial migration and proliferation to form new blood vessels. This occurs through synchronous activation of multiple downstream pathways which facilitate vascular development. Proangiogenic growth factors and supporting extracellular matrix allow the formation of capillary-like tubules, reminiscent of microvascular beds, in vitro. In this chapter, we describe a methodology for the establishment of vascular networks by co-culture of endothelial cells and fibroblasts to facilitate the study of tubulogenic and angiogenic potential. We detail the use of siRNA mediated knockdown to deplete target genes of interest, in either the endothelial or fibroblast cells, to allow the assessment of their role in angiogenesis. Finally, we detail how these vascular networks may be stained using immunofluorescence to allow quantification of angiogenic potential in vitro.
Collapse
|
16
|
Ramadan Q, Zourob M. 3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 2:607648. [PMID: 35047890 PMCID: PMC8757855 DOI: 10.3389/fmedt.2020.607648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
3D printing technology has emerged as a key driver behind an ongoing paradigm shift in the production process of various industrial domains. The integration of 3D printing into tissue engineering, by utilizing life cells which are encapsulated in specific natural or synthetic biomaterials (e.g., hydrogels) as bioinks, is paving the way toward devising many innovating solutions for key biomedical and healthcare challenges and heralds' new frontiers in medicine, pharmaceutical, and food industries. Here, we present a synthesis of the available 3D bioprinting technology from what is found and what has been achieved in various applications and discussed the capabilities and limitations encountered in this technology.
Collapse
Affiliation(s)
- Qasem Ramadan
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohammed Zourob
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Engineering pro-angiogenic biomaterials via chemoselective extracellular vesicle immobilization. Biomaterials 2021; 281:121357. [PMID: 34999538 DOI: 10.1016/j.biomaterials.2021.121357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022]
Abstract
Nanoscale extracellular vesicles (EVs) represent a unique cellular derivative that reflect the therapeutic potential of mesenchymal stem cells (MSCs) toward tissue engineering and injury repair without the logistical and safety concerns of utilizing living cells. However, upon systemic administration in vivo,EVs undergo rapid clearance and typically lack controlled targeted delivery, thus reducing their effectiveness in therapeutic regenerative therapies. Here, we describe a strategy that enables long-term in vivo spatial EV retention by chemoselective immobilization of metabolically incoporated azido ligand-bearing EVs (azido-EVs) within a dibenzocyclooctyne-modified collagen hydrogel. MSC-derived azido-EVs exhibit comparable morphological and functional properties as their non-labeled EV counterparts and, when immobilized within collagen hydrogel implants via click chemistry, they elicited more robust host cell infiltration, angiogenic and immunoregulatory responses including vascular ingrowth and macrophage recruitment compared to ten times the higher dose required by non-immobilized EVs. We envision this technology will enable a wide range of applications to spatially promote vascularization and host integration relevant to tissue engineering and regenerative medicine applications.
Collapse
|
18
|
Proangiogenic Effect of Affinin and an Ethanolic Extract from Heliopsis longipes Roots: Ex Vivo and In Vivo Evidence. Molecules 2021; 26:molecules26247670. [PMID: 34946751 PMCID: PMC8706137 DOI: 10.3390/molecules26247670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, underlies tissue development and repair. Some medicinal plant-derived compounds can modulate the angiogenic response. Heliopsis longipes, a Mexican medicinal plant, is widely used because of its effects on pain and inflammation. The main bioactive phytochemicals from H. longipes roots are alkamides, where affinin is the most abundant. Scientific studies show various medical effects of organic extracts of H. longipes roots and affinin that share some molecular pathways with the angiogenesis process, with the vasodilation mechanism of action being the most recent. This study investigates whether pure affinin and the ethanolic extract from Heliopsis longipes roots (HLEE) promote angiogenesis. Using the aortic ring rat assay (ex vivo method) and the direct in vivo angiogenesis assay, where angioreactors were implanted in CD1 female mice, showed that affinin and the HLEE increased vascular growth in a dose-dependent manner in both bioassays. This is the first study showing the proangiogenic effect of H. longipes. Further studies should focus on the mechanism of action and its possible therapeutic use in diseases characterized by insufficient angiogenesis.
Collapse
|
19
|
Bhagavatheeswaran S, Ramachandran V, Shanmugam S, Balakrishnan A. Isopimpinellin extends antiangiogenic effect through overexpression of miR-15b-5p and downregulating angiogenic stimulators. Mol Biol Rep 2021; 49:279-291. [PMID: 34709570 DOI: 10.1007/s11033-021-06870-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Angiogenesis is the formation of new blood vessels from an existing vasculature through a series of processes such as activation, proliferation, and directed migration of endothelial cells. Angiogenesis is instrumental in the metastatic spread of tumors. Isopimpinellin, a furanocoumarin group of phytochemicals, is an anticarcinogenic agent. However, no studies have proven its antiangiogenic effects. The current study thus aimed to screen the antiangiogenic effect of isopimpinellin. METHODS AND RESULTS Human Umblical Vein Endothelial Cell (HUVEC) as an in vitro model and zebrafish embryos as an in vivo model was used in this study. The experimental results showed that isopimpinellin effectively inhibited HUVEC proliferation, invasion, migration, and tube formation, which are the key steps in angiogenesis by markedly suppressing the expression of pro-angiogenic genes VEGF, AKT, and HIF-1α. In addition, isopimpinellin exerts its anti-angiogenic effect through the regulation of miR-15b-5p and miR-542-3p. Furthermore, in zebrafish embryos, isopimpinellin inhibited the development of intersegmental vessels (ISVs) through the significant downregulation of all pro-angiogenic genes vegf, vegfr2, survivin, angpt-1, angpt-2, and tie-2. CONCLUSION Collectively, these experimental findings offer novel insights into the antiangiogenic nature of isopimpinellin and open new avenues for therapeutic approaches.
Collapse
Affiliation(s)
| | - Vinu Ramachandran
- Department of Genetics, Dr. ALM PG IBMS, University of Madras, Chennai, Tamilnadu, 600113, India
| | - Sambantham Shanmugam
- Department of Pharmacology and Neuro Science, Texas Tech University Health Sciences, Lubbock, TX, 79430, USA
| | - Anandan Balakrishnan
- Department of Genetics, Dr. ALM PG IBMS, University of Madras, Chennai, Tamilnadu, 600113, India.
| |
Collapse
|
20
|
Alsaigh T, Di Bartolo BA, Mulangala J, Figtree GA, Leeper NJ. Bench-to-Bedside in Vascular Medicine: Optimizing the Translational Pipeline for Patients With Peripheral Artery Disease. Circ Res 2021; 128:1927-1943. [PMID: 34110900 PMCID: PMC8208504 DOI: 10.1161/circresaha.121.318265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peripheral arterial disease is a growing worldwide problem with a wide spectrum of clinical severity and is projected to consume >$21 billion per year in the United States alone. While vascular researchers have brought several therapies to the clinic in recent years, few of these approaches have leveraged advances in high-throughput discovery screens, novel translational models, or innovative trial designs. In the following review, we discuss recent advances in unbiased genomics and broader omics technology platforms, along with preclinical vascular models designed to enhance our understanding of disease pathobiology and prioritize targets for additional investigation. Furthermore, we summarize novel approaches to clinical studies in subjects with claudication and ischemic ulceration, with an emphasis on streamlining and accelerating bench-to-bedside translation. By providing a framework designed to enhance each aspect of future clinical development programs, we hope to enrich the pipeline of therapies that may prevent loss of life and limb for those with peripheral arterial disease.
Collapse
Affiliation(s)
- Tom Alsaigh
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Belinda A. Di Bartolo
- Cardiothoracic and Vascular Health, Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia
| | | | - Gemma A. Figtree
- Cardiothoracic and Vascular Health, Kolling Institute and Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Australia
| | - Nicholas J. Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
21
|
Šalandová M, van Hengel IAJ, Apachitei I, Zadpoor AA, van der Eerden BCJ, Fratila‐Apachitei LE. Inorganic Agents for Enhanced Angiogenesis of Orthopedic Biomaterials. Adv Healthc Mater 2021; 10:e2002254. [PMID: 34036754 PMCID: PMC11469191 DOI: 10.1002/adhm.202002254] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/30/2021] [Indexed: 01/02/2023]
Abstract
Aseptic loosening of a permanent prosthesis remains one of the most common reasons for bone implant failure. To improve the fixation between implant and bone tissue as well as enhance blood vessel formation, bioactive agents are incorporated into the surface of the biomaterial. This study reviews and compares five bioactive elements (copper, magnesium, silicon, strontium, and zinc) with respect to their effect on the angiogenic behavior of endothelial cells (ECs) when incorporated on the surface of biomaterials. Moreover, it provides an overview of the state-of-the-art methodologies used for the in vitro assessment of the angiogenic properties of these elements. Two databases are searched using keywords containing ECs and copper, magnesium, silicon, strontium, and zinc. After applying the defined inclusion and exclusion criteria, 59 articles are retained for the final assessment. An overview of the angiogenic properties of five bioactive elements and the methods used for assessment of their in vitro angiogenic potential is presented. The findings show that silicon and strontium can effectively enhance osseointegration through the simultaneous promotion of both angiogenesis and osteogenesis. Therefore, their integration onto the surface of biomaterials can ultimately decrease the incidence of implant failure due to aseptic loosening.
Collapse
Affiliation(s)
- Monika Šalandová
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Ingmar A. J. van Hengel
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Iulian Apachitei
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Amir A. Zadpoor
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| | - Bram C. J. van der Eerden
- Department of Internal MedicineErasmus Medical CenterDoctor Molewaterplein 40Rotterdam3015 GDThe Netherlands
| | - Lidy E. Fratila‐Apachitei
- Additive Manufacturing LaboratoryDepartment of Biomechanical EngineeringFaculty of Mechanical, Maritime, and Materials EngineeringDelft University of TechnologyMekelweg 2Delft2628 CDThe Netherlands
| |
Collapse
|
22
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
23
|
Lopes SV, Collins MN, Reis RL, Oliveira JM, Silva-Correia J. Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS APPLIED BIO MATERIALS 2021; 4:2941-2956. [DOI: 10.1021/acsabm.1c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Soraia V. Lopes
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Rui L. Reis
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
24
|
Fuselier C, Quemener S, Dufay E, Bour C, Boulagnon-Rombi C, Bouland N, Djermoune EH, Devy J, Martiny L, Schneider C. Anti-Tumoral and Anti-Angiogenic Effects of Low-Diluted Phenacetinum on Melanoma. Front Oncol 2021; 11:597503. [PMID: 33747916 PMCID: PMC7966719 DOI: 10.3389/fonc.2021.597503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/07/2021] [Indexed: 01/11/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer and the most rapidly expanding cancer in terms of worldwide incidence. If primary cutaneous melanoma is mostly treated with a curative wide local excision, malignant melanoma has a poor prognosis and needs other therapeutic approaches. Angiogenesis is a normal physiological process essential in growth and development, but it also plays a crucial role in crossing from benign to advanced state in cancer. In melanoma progression, angiogenesis is widely involved during the vertical growth phase. Currently, no anti-angiogenic agents are efficient on their own, and combination of treatments will probably be the key to success. In the past, phenacetin was used as an analgesic to relieve pain, causing side effects at large dose and tumor-inducing in humans and animals. By contrast, Phenacetinum low-dilution is often used in skin febrile exanthema, patches profusely scattered on limbs, headache, or flushed face without side effects. Herein are described the in vitro, in vivo, and ex vivo anti-angiogenic and anti-tumoral potentials of Phenacetinum low-dilution in a B16F1 tumor model and endothelial cells. We demonstrate that low-diluted Phenacetinum inhibits in vivo tumor growth and tumor vascularization and thus increases the survival time of B16F1 melanoma induced-C57BL/6 mice. Moreover, Phenacetinum modulates the lung metastasis in a B16F10 induced model. Ex vivo and in vitro, we evidence that low-diluted Phenacetinum inhibits the migration and the recruitment of endothelial cells and leads to an imbalance in the pro-tumoral macrophages and to a structural malformation of the vascular network. All together these results demonstrate highly hopeful anti-tumoral, anti-metastatic, and anti-angiogenic effects of Phenacetinum low-dilution on melanoma. Continued studies are needed to preclinically validate Phenacetinum low-dilution as a complementary or therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Camille Fuselier
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Sandrine Quemener
- Université de Lille, Institut Pasteur de Lille, U1011 INSERM, Lille, France
| | - Eleonore Dufay
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Camille Bour
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Camille Boulagnon-Rombi
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
- Centre Hospitalier et Université de Reims Champagne-Ardenne, laboratoire de Biopathologie, Reims, France
| | - Nicole Bouland
- Université de Reims Champagne-Ardenne, laboratoire d’Anatomie Pathologie, Reims, France
| | | | - Jérôme Devy
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Laurent Martiny
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Christophe Schneider
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| |
Collapse
|
25
|
Utilisation of Chick Embryo Chorioallantoic Membrane as a Model Platform for Imaging-Navigated Biomedical Research. Cells 2021; 10:cells10020463. [PMID: 33671534 PMCID: PMC7926796 DOI: 10.3390/cells10020463] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The fertilised chick egg and particularly its chorioallantoic membrane (CAM) have drawn continuing interest in biomedicine and bioengineering fields, especially for research on vascular study, cancer, drug screening and development, cell factors, stem cells, etc. This literature review systemically introduces the CAM's structural evolution, functions, vascular features and the circulation system, and cell regulatory factors. It also presents the major and updated applications of the CAM in assays for pharmacokinetics and biodistribution, drug efficacy and toxicology testing/screening in preclinical pharmacological research. The time course of CAM applications for different assays and their advantages and limitations are summarised. Among these applications, two aspects are emphasised: (1) potential utility of the CAM for preclinical studies on vascular-disrupting agents (VDAs), promising for anti-cancer vascular-targeted therapy, and (2) modern imaging technologies, including modalities and their applications for real-time visualisation, monitoring and evaluation of the changes in CAM vasculature as well as the interactions occurring after introducing the tested medical, pharmaceutical and biological agents into the system. The aim of this article is to help those working in the biomedical field to familiarise themselves with the chick embryo CAM as an alternative platform and to utilise it to design and optimise experimental settings for their specific research topics.
Collapse
|
26
|
Choi RJ, Mohamad Zobir SZ, Alexander-Dann B, Sharma N, Ma MK, Lam BY, Yeo GS, Zhang W, Fan TP, Bender A. Combination of Ginsenosides Rb2 and Rg3 Promotes Angiogenic Phenotype of Human Endothelial Cells via PI3K/Akt and MAPK/ERK Pathways. Front Pharmacol 2021; 12:618773. [PMID: 33643049 PMCID: PMC7902932 DOI: 10.3389/fphar.2021.618773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022] Open
Abstract
Shexiang Baoxin Pill (SBP) is an oral formulation of Chinese materia medica for the treatment of angina pectoris. It displays pleiotropic roles in protecting the cardiovascular system. However, the mode of action of SBP in promoting angiogenesis, and in particular the synergy between its constituents is currently not fully understood. The combination of ginsenosides Rb2 and Rg3 were studied in human umbilical vein endothelial cells (HUVECs) for their proangiogenic effects. To understand the mode of action of the combination in more mechanistic detail, RNA-Seq analysis was conducted, and differentially expressed genes (DEGs), pathway analysis and Weighted Gene Correlation Network Analysis (WGCNA) were applied to further identify important genes that a play pivotal role in the combination treatment. The effects of pathway-specific inhibitors were observed to provide further support for the hypothesized mode of action of the combination. Ginsenosides Rb2 and Rg3 synergistically promoted HUVEC proliferation and tube formation under defined culture conditions. Also, the combination of Rb2/Rg3 rescued cells from homocysteine-induced damage. mRNA expression of CXCL8, CYR61, FGF16 and FGFRL1 was significantly elevated by the Rb2/Rg3 treatment, and representative signaling pathways induced by these genes were found. The increase of protein levels of phosphorylated-Akt and ERK42/44 by the Rb2/Rg3 combination supports the notion that it promotes endothelial cell proliferation via the PI3K/Akt and MAPK/ERK signaling pathways. The present study provides the hypothesis that SBP, via ginsenosides Rb2 and Rg3, involves the CXCR1/2 CXCL8 (IL8)-mediated PI3K/Akt and MAPK/ERK signaling pathways in achieving its proangiogenic effects.
Collapse
Affiliation(s)
- Ran Joo Choi
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Siti Zuraidah Mohamad Zobir
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Ben Alexander-Dann
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Nitin Sharma
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| | - Marcella K.L. Ma
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Genomics and Transcriptomics Core, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Brian Y.H. Lam
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Genomics and Transcriptomics Core, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Giles S.H. Yeo
- Medical Research Council (MRC) Metabolic Diseases Unit, University of Cambridge Metabolic Research Laboratories, Wellcome–MRC Institute of Metabolic Science, Genomics and Transcriptomics Core, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Weidong Zhang
- Department of Pharmacy, Second Military Medical University, Shanghai, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Bender
- Department of Chemistry, Center for Molecular Science Informatics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Duzagac F, Saorin G, Memeo L, Canzonieri V, Rizzolio F. Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research. Cancers (Basel) 2021; 13:737. [PMID: 33578886 PMCID: PMC7916612 DOI: 10.3390/cancers13040737] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Organ-like cell clusters, so-called organoids, which exhibit self-organized and similar organ functionality as the tissue of origin, have provided a whole new level of bioinspiration for ex vivo systems. Microfluidic organoid or organs-on-a-chip platforms are a new group of micro-engineered promising models that recapitulate 3D tissue structure and physiology and combines several advantages of current in vivo and in vitro models. Microfluidics technology is used in numerous applications since it allows us to control and manipulate fluid flows with a high degree of accuracy. This system is an emerging tool for understanding disease development and progression, especially for personalized therapeutic strategies for cancer treatment, which provide well-grounded, cost-effective, powerful, fast, and reproducible results. In this review, we highlight how the organoid-on-a-chip models have improved the potential of efficiency and reproducibility of organoid cultures. More widely, we discuss current challenges and development on organoid culture systems together with microfluidic approaches and their limitations. Finally, we describe the recent progress and potential utilization in the organs-on-a-chip practice.
Collapse
Affiliation(s)
- Fahriye Duzagac
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy; (F.D.); (G.S.)
| | - Gloria Saorin
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy; (F.D.); (G.S.)
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), 95029 Catania, Italy;
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, 30123 Venezia, Italy; (F.D.); (G.S.)
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
28
|
Kazerouni AS, Gadde M, Gardner A, Hormuth DA, Jarrett AM, Johnson KE, Lima EAF, Lorenzo G, Phillips C, Brock A, Yankeelov TE. Integrating Quantitative Assays with Biologically Based Mathematical Modeling for Predictive Oncology. iScience 2020; 23:101807. [PMID: 33299976 PMCID: PMC7704401 DOI: 10.1016/j.isci.2020.101807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We provide an overview on the use of biological assays to calibrate and initialize mechanism-based models of cancer phenomena. Although artificial intelligence methods currently dominate the landscape in computational oncology, mathematical models that seek to explicitly incorporate biological mechanisms into their formalism are of increasing interest. These models can guide experimental design and provide insights into the underlying mechanisms of cancer progression. Historically, these models have included a myriad of parameters that have been difficult to quantify in biologically relevant systems, limiting their practical insights. Recently, however, there has been much interest calibrating biologically based models with the quantitative measurements available from (for example) RNA sequencing, time-resolved microscopy, and in vivo imaging. In this contribution, we summarize how a variety of experimental methods quantify tumor characteristics from the molecular to tissue scales and describe how such data can be directly integrated with mechanism-based models to improve predictions of tumor growth and treatment response.
Collapse
Affiliation(s)
- Anum S. Kazerouni
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Manasa Gadde
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea Gardner
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
| | - Angela M. Jarrett
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kaitlyn E. Johnson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ernesto A.B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78712, USA
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Caleb Phillips
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Amy Brock
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
29
|
Shah Mohammadi M, Buchen JT, Pasquina PF, Niklason LE, Alvarez LM, Jariwala SH. Critical Considerations for Regeneration of Vascularized Composite Tissues. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:366-381. [PMID: 33115331 DOI: 10.1089/ten.teb.2020.0223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Effective vascularization is vital for survival and functionality of complex tissue-engineered organs. The formation of the microvasculature, composed of endothelial cells (ECs) alone, has been mostly used to restore the vascular networks in organs. However, recent heterocellular studies demonstrate that co-culturing is a more effective approach in revascularization of engineered organs. This review presents key considerations for manufacturing of artificial vascularized composite tissues. We summarize the importance of co-cultures and the multicellular interactions with ECs, as well as design and use of bioreactors, as critical considerations for tissue vascularization. In addition, as an emerging scaffolding technique, this review also highlights the current caveats and hurdles associated with three-dimensional bioprinting and discusses recent developments in bioprinting strategies such as four-dimensional bioprinting and its future outlook for manufacturing of vascularized tissue constructs. Finally, the review concludes with addressing the critical challenges in the regulatory pathway and clinical translation of artificial composite tissue grafts. Impact statement Regeneration of composite tissues is critical as biophysical and biochemical characteristics differ between various types of tissues. Engineering a vascularized composite tissue has remained unresolved and requires additional evaluations along with optimization of methodologies and standard operating procedures. To this end, the main hurdle is creating a viable vascular endothelium that remains functional for a longer duration postimplantation, and can be manufactured using clinically appropriate source of cell lines that are scalable in vitro for the fabrication of human-scale organs. This review presents key considerations for regeneration and manufacturing of vascularized composite tissues as the field advances.
Collapse
Affiliation(s)
- Maziar Shah Mohammadi
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Jack T Buchen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Paul F Pasquina
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Laura E Niklason
- Department of Anesthesia and Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Luis M Alvarez
- Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA.,Lung Biotechnology PBC, Silver Spring, Maryland, USA
| | - Shailly H Jariwala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA.,Department of Physical Medicine and Rehabilitation, The Center for Rehabilitation Sciences Research, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Khater M, Greco F, Osborn HMI. Antiangiogenic Activity of Flavonoids: A Systematic Review and Meta-Analysis. Molecules 2020; 25:E4712. [PMID: 33066630 PMCID: PMC7594036 DOI: 10.3390/molecules25204712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract: An imbalance of angiogenesis contributes to many pathologies such as cancer, arthritis and retinopathy, hence molecules that can modulate angiogenesis are of considerable therapeutic importance. Despite many reports on the promising antiangiogenic properties of naturally occurring flavonoids, no flavonoids have progressed to the clinic for this application. This systematic review and meta-analysis therefore evaluates the antiangiogenic activities of a wide range of flavonoids and is presented in two sections. The first part of the study (Systematic overview) included 402 articles identified by searching articles published before May 2020 using ScienceDirect, PubMed and Web of Science databases. From this initial search, different classes of flavonoids with antiangiogenic activities, related pathologies and use of in vitro and/or in/ex vivo angiogenesis assays were identified. In the second part (Meta-analysis), 25 studies concerning the antiangiogenic evaluation of flavonoids using the in vivo chick chorioallantoic membrane (CAM) assay were included, following a targeted search on articles published prior to June 2020. Meta-analysis of 15 out of the 25 eligible studies showed concentration dependent antiangiogenic activity of six compared subclasses of flavonoids with isoflavones, flavonols and flavones being the most active (64 to 80% reduction of blood vessels at 100 µM). Furthermore, the key structural features required for the antiangiogenic activity of flavonoids were derived from the pooled data in a structure activity relationship (SAR) study. All in all, flavonoids are promising candidates for the development of antiangiogenic agents, however further investigations are needed to determine the key structural features responsible for their activity.
Collapse
Affiliation(s)
- Mai Khater
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Division, National Research Centre, Cairo 12622, Egypt
| | - Francesca Greco
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| |
Collapse
|
31
|
Barberio M, Felli E, Pop R, Pizzicannella M, Geny B, Lindner V, Baiocchini A, Jansen-Winkeln B, Moulla Y, Agnus V, Marescaux J, Gockel I, Diana M. A Novel Technique to Improve Anastomotic Perfusion Prior to Esophageal Surgery: Hybrid Ischemic Preconditioning of the Stomach. Preclinical Efficacy Proof in a Porcine Survival Model. Cancers (Basel) 2020; 12:cancers12102977. [PMID: 33066529 PMCID: PMC7602144 DOI: 10.3390/cancers12102977] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Esophagectomy has a high rate of anastomotic complications thought to be caused by poor perfusion of the gastric graft, which is used to restore the continuity of the gastrointestinal tract. Ischemic gastric preconditioning (IGP), performed by partially destroying preoperatively the gastric vessels either by means of interventional radiology or surgically, might improve the gastric conduit perfusion. Both approaches have downsides. The timing, extent and mechanism of IGP remain unclear. A novel hybrid IGP method combining the advantages of the endovascular and surgical approach was introduced in this study. IGP improves unequivocally the mucosal and serosal blood-flow at the gastric conduit fundus by triggering new vessels formation. The proposed timing and extent of IGP were efficacious and might be easily applied to humans. This novel minimally invasive IGP technique might reduce the anastomotic leak rate of patients undergoing esophagectomy, thus improving their overall oncological outcome. Abstract Esophagectomy often presents anastomotic leaks (AL), due to tenuous perfusion of gastric conduit fundus (GCF). Hybrid (endovascular/surgical) ischemic gastric preconditioning (IGP), might improve GCF perfusion. Sixteen pigs undergoing IGP were randomized: (1) Max-IGP (n = 6): embolization of left gastric artery (LGA), right gastric artery (RGA), left gastroepiploic artery (LGEA), and laparoscopic division (LapD) of short gastric arteries (SGA); (2) Min-IGP (n = 5): LGA-embolization, SGA-LapD; (3) Sham (n = 5): angiography, laparoscopy. At day 21 gastric tubulation occurred and GCF perfusion was assessed as: (A) Serosal-tissue-oxygenation (StO2) by hyperspectral-imaging; (B) Serosal time-to-peak (TTP) by fluorescence-imaging; (C) Mucosal functional-capillary-density-area (FCD-A) index by confocal-laser-endomicroscopy. Local capillary lactates (LCL) were sampled. Neovascularization was assessed (histology/immunohistochemistry). Sham presented lower StO2 and FCD-A index (41 ± 10.6%; 0.03 ± 0.03 respectively) than min-IGP (66.2 ± 10.2%, p-value = 0.004; 0.22 ± 0.02, p-value < 0.0001 respectively) and max-IGP (63.8 ± 9.4%, p-value = 0.006; 0.2 ± 0.02, p-value < 0.0001 respectively). Sham had higher LCL (9.6 ± 4.8 mL/mol) than min-IGP (4 ± 3.1, p-value = 0.04) and max-IGP (3.4 ± 1.5, p-value = 0.02). For StO2, FCD-A, LCL, max- and min-IGP did not differ. Sham had higher TTP (24.4 ± 4.9 s) than max-IGP (10 ± 1.5 s, p-value = 0.0008) and min-IGP (14 ± 1.7 s, non-significant). Max- and min-IGP did not differ. Neovascularization was confirmed in both IGP groups. Hybrid IGP improves GCF perfusion, potentially reducing post-esophagectomy AL.
Collapse
Affiliation(s)
- Manuel Barberio
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France; (E.F.); (R.P.); (M.P.); (V.A.)
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany; (B.J.-W.); (Y.M.); (I.G.)
- Physiology Institute, EA 3072, University of Strasbourg, 67000 Strasbourg, France;
- Correspondence:
| | - Eric Felli
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France; (E.F.); (R.P.); (M.P.); (V.A.)
- Physiology Institute, EA 3072, University of Strasbourg, 67000 Strasbourg, France;
| | - Raoul Pop
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France; (E.F.); (R.P.); (M.P.); (V.A.)
| | - Margherita Pizzicannella
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France; (E.F.); (R.P.); (M.P.); (V.A.)
| | - Bernard Geny
- Physiology Institute, EA 3072, University of Strasbourg, 67000 Strasbourg, France;
| | - Veronique Lindner
- Department of Pathology, University Hospital of Strasbourg, 67000 Strasbourg, France;
| | - Andrea Baiocchini
- Department of Surgical Pathology, San Camillo Hospital, 00152 Rome, Italy;
| | - Boris Jansen-Winkeln
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany; (B.J.-W.); (Y.M.); (I.G.)
| | - Yusef Moulla
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany; (B.J.-W.); (Y.M.); (I.G.)
| | - Vincent Agnus
- IHU-Strasbourg, Institute of Image-Guided Surgery, 67000 Strasbourg, France; (E.F.); (R.P.); (M.P.); (V.A.)
| | - Jacques Marescaux
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France; (J.M.); (M.D.)
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany; (B.J.-W.); (Y.M.); (I.G.)
| | - Michele Diana
- Research Institute against Digestive Cancer (IRCAD), 67000 Strasbourg, France; (J.M.); (M.D.)
| |
Collapse
|
32
|
Sun HH, Feng XM, Wang JC, Cai J. Allicin can suppress the activity of vascular endothelial cells probably by regulating JAK2/STAT3 pathway. Mol Cell Biochem 2020; 476:435-441. [PMID: 32975696 DOI: 10.1007/s11010-020-03919-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/19/2020] [Indexed: 11/26/2022]
Abstract
Whether allicin can suppress the angiogenesis via inhibiting the activity of vascular endothelial cells (VECs) in preventing epidural hypertrophic scars remains unknown. VECs were treated by allicin at a gradient of concentrations. Cell activity was measured by CCK-8 assay, scratch assay and flow cytometry. Reverse-transcription PCR and Western Blot were used to measure the expression levels of relevant genes and proteins. After treated with allicin at concentrations of 0, 25, 50 and 100 mg/L, the viability of VECs significantly decreased at 24 h (p < 0.001*) and 48 h (p < 0.001*), and migration rate significantly decreased in scratch assay (p = 0.017*) and in Transwell assay (p = 0.021*). As the concentrations of allicin increased, the apoptosis rate of VECs rose up (p = 0.018*). There was no significant difference on cell numbers at S phase (p = 0.25), but cell numbers at G1 phase decreased (p = 0.039*) and at G2 phase increased (p = 0.047*). With the increase of allicin concentrations, the ability of tube formation for VECs significantly decreased (p < 0.001*). Comparing with control group, the expression of PCNA and BCL-2 decreased (p < 0.001*), while the expression of BAX increased significantly (p < 0.001*). Regarding to JAK2/STAT3 pathway, the expression levels of JAK3 and STAT3 decreased significantly with the increase of allicin concentrations (p < 0.001*). Allicin can suppress the activity of VECs probably by regulating JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Hui-Hui Sun
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xin-Min Feng
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing-Cheng Wang
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Department of Spinal Surgery, Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Jun Cai
- Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Department of Spinal Surgery, Department of Orthopedics, Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
33
|
D'Costa K, Kosic M, Lam A, Moradipour A, Zhao Y, Radisic M. Biomaterials and Culture Systems for Development of Organoid and Organ-on-a-Chip Models. Ann Biomed Eng 2020; 48:2002-2027. [PMID: 32285341 PMCID: PMC7334104 DOI: 10.1007/s10439-020-02498-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
The development of novel 3D tissue culture systems has enabled the in vitro study of in vivo processes, thereby overcoming many of the limitations of previous 2D tissue culture systems. Advances in biomaterials, including the discovery of novel synthetic polymers has allowed for the generation of physiologically relevant in vitro 3D culture models. A large number of 3D culture systems, aided by novel organ-on-a-chip and bioreactor technologies have been developed to improve reproducibility and scalability of in vitro organ models. The discovery of induced pluripotent stem cells (iPSCs) and the increasing number of protocols to generate iPSC-derived cell types has allowed for the generation of novel 3D models with minimal ethical limitations. The production of iPSC-derived 3D cultures has revolutionized the field of developmental biology and in particular, the study of fetal brain development. Furthermore, physiologically relevant 3D cultures generated from PSCs or adult stem cells (ASCs) have greatly advanced in vitro disease modelling and drug discovery. This review focuses on advances in 3D culture systems over the past years to model fetal development, disease pathology and support drug discovery in vitro, with a specific focus on the enabling role of biomaterials.
Collapse
Affiliation(s)
- Katya D'Costa
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Milena Kosic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Angus Lam
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Azeen Moradipour
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Yimu Zhao
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
34
|
Dikici S, Claeyssens F, MacNeil S. Bioengineering Vascular Networks to Study Angiogenesis and Vascularization of Physiologically Relevant Tissue Models in Vitro. ACS Biomater Sci Eng 2020; 6:3513-3528. [PMID: 32582840 PMCID: PMC7304666 DOI: 10.1021/acsbiomaterials.0c00191] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Angiogenesis assays are essential for studying aspects of neovascularization and angiogenesis and investigating drugs that stimulate or inhibit angiogenesis. To date, there are several in vitro and in vivo angiogenesis assays that are used for studying different aspects of angiogenesis. Although in vivo assays are the most representative of native angiogenesis, they raise ethical questions, require considerable technical skills, and are expensive. In vitro assays are inexpensive and easier to perform, but the majority of them are only two-dimensional cell monolayers which lack the physiological relevance of three-dimensional structures. Thus, it is important to look for alternative platforms to study angiogenesis under more physiologically relevant conditions in vitro. Accordingly, in this study, we developed polymeric vascular networks to be used to study angiogenesis and vascularization of a 3D human skin model in vitro. Our results showed that this platform allowed the study of more than one aspect of angiogenesis, endothelial migration and tube formation, in vitro when combined with Matrigel. We successfully reconstructed a human skin model, as a representative of a physiologically relevant and complex structure, and assessed the suitability of the developed in vitro platform for studying endothelialization of the tissue-engineered skin model.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Frederik Claeyssens
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Sheila MacNeil
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
35
|
Wu Y, Ravnic DJ, Ozbolat IT. Intraoperative Bioprinting: Repairing Tissues and Organs in a Surgical Setting. Trends Biotechnol 2020; 38:594-605. [PMID: 32407688 PMCID: PMC7666846 DOI: 10.1016/j.tibtech.2020.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/29/2022]
Abstract
3D bioprinting directly into injured sites in a surgical setting, intraoperative bioprinting (IOB), is an effective process, in which the defect information can be rapidly acquired and then repaired via bioprinting on a live subject. In patients needing tissue resection, debridement, traumatic reconstruction, or fracture repair, the ability to scan and bioprint immediately following surgical preparation of the defect site has great potential to improve the precision and efficiency of these procedures. In this opinion article, we provide the reader with current major limitations of IOB from engineering and clinical points of view, as well as possibilities of future translation of bioprinting technologies from bench to bedside, and expound our perspectives in the context of IOB of composite and vascularized tissues.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China; Engineering Science and Mechanics Department, The Pennsylvania State University, State College, PA 16801, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16801, USA
| | - Dino J Ravnic
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, The Pennsylvania State University, State College, PA 16801, USA; The Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA 16801, USA; Department of Biomedical Engineering, Penn State University, University Park, PA 16801, USA; Materials Research Institute, Penn State University, University Park, PA 16801, USA.
| |
Collapse
|
36
|
Wang S, Yamakawa M, Santosa SM, Chawla N, Guo K, Montana M, Hallak JA, Han KY, Ema M, Rosenblatt MI, Chang JH, Azar DT. Quantification of Angiogenesis and Lymphangiogenesis in the Dual ex vivo Aortic and Thoracic Duct Assay. Protein Pept Lett 2020; 27:30-40. [PMID: 31553284 PMCID: PMC6978644 DOI: 10.2174/0929866526666190925145842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 12/22/2022]
Abstract
Abstract: Background Lymphatic vessel formation (lymphangiogenesis) plays important roles in cancer metastasis, organ rejection, and lymphedema, but the underlying molecular events remain unclear. Furthermore, despite significant overlap in the molecular families involved in angiogenesis and lymphangiogenesis, little is known about the crosstalk between these processes. The ex vivo aortic ring assay and lymphatic ring assay have enabled detailed studies of vessel sprouting, but harvesting and imaging clear thoracic duct samples remain challenging. Here we present a modified ex vivo dual aortic ring and thoracic duct assay using tissues from dual fluorescence reporter Prox1-GFP/Flt1-DsRed (PGFD) mice, which permit simultaneous visualization of blood and lymphatic endothelial cells. Objective To characterize the concurrent sprouting of intrinsically fluorescent blood and lymphatic vessels from harvested aorta and thoracic duct samples. Methods Dual aorta and thoracic duct specimens were harvested from PGFD mice, grown in six types of endothelial cell growth media (one control, five that each lack a specific growth factor), and visualized by confocal fluorescence microscopy. Linear mixed models were used to compare the extent of vessel growth and sprouting over a 28-day period. Results Angiogenesis occurred prior to lymphangiogenesis in our assay. The control medium generally induced superior growth of both vessel types compared with the different modified media formulations. The greatest decrease in lymphangiogenesis was observed in vascular endothelial growth factor-C (VEGF-C)-devoid medium, suggesting the importance of VEGF-C in lymphangiogenesis. Conclusion The modified ex vivo dual aortic ring and thoracic duct assay represents a powerful tool for studying angiogenesis and lymphangiogenesis in concert.
Collapse
Affiliation(s)
- Shuangyong Wang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael Yamakawa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Samuel M Santosa
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Neeraj Chawla
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kai Guo
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Mario Montana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Joelle A Hallak
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Kyu-Yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Shia University of Medical Science, Otsu, Japan
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
37
|
Kremer A, Wußmann M, Herrmann M, Raghunath M, Walles H. Ciclopirox olamine promotes the angiogenic response of endothelial cells and mesenchymal stem cells. Clin Hemorheol Microcirc 2020; 73:317-328. [PMID: 31006674 DOI: 10.3233/ch-190559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Prolyl hydroxylase inhibitors (PHIs) are promising compounds to promote angiogenesis by stabilizing hypoxia-inducible factor-1α (HIF-1α), a master regulator of angiogenesis. Increased HIF-1α presence induces expression of proangiogenic genes such as vascular endothelial growth factor (VEGF). OBJECTIVE We investigated the pharmacological induction of hypoxia via the PHI ciclopirox olamine (CPX) as angiogenesis strategy on human dermal microvascular endothelial cell (hd-mvEC) spheroids directly and indirectly via activating human mesenchymal stem cells (hMSCs). METHODS HMSCs were isolated from bone marrow and hd-mvECs from foreskin biopsies. MSC-conditioned medium after CPX stimulation (MSC-CM CPX) was analyzed by VEGF ELISA and Proteome Profiler™ Human Angiogenesis Array. Direct stimulation with CPX and indirect stimulation via MSC-CM CPX were compared in sprouting assays of hd-mvEC spheroids. RESULTS Direct stimulation with CPX significantly increased sprouting of hd-mvEC spheroids. MSC-CM CPX also induced sprouting from hd-mvEC spheroids, which was mediated by angiogenic VEGF and other proangiogenic factors that had been produced by stimulated hMSCs. CONCLUSIONS The stimulation with CPX increased the proangiogenic response of hd-mvECs and hMSCs. The direct stimulation of hd-mvECs with CPX has the potential to replace external VEGF supplementation. Thus, CPX can induce angiogenesis in ECs even in the absence of auxiliary cells demonstrating a promising proangiogenic approach.
Collapse
Affiliation(s)
- Antje Kremer
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maximiliane Wußmann
- Fraunhofer Translational Center Regenerative Therapies TLC-RT, Fraunhofer Institute for Silicate Research ISC, Wuerzburg, Germany
| | - Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Germany.,Orthopedic Center for Musculoskeletal Research, University of Wuerzburg, Wuerzburg, Germany
| | - Michael Raghunath
- Institute of Chemistry and Biotechnology, Zuerich University of Applied Sciences (ZHAW), Waedenswil, Switzerland.,Competence Center Tissue Engineering for Drug Discover (TEDD), ZHAW, Waedenswil, Switzerland
| | - Heike Walles
- Fraunhofer Translational Center Regenerative Therapies TLC-RT, Fraunhofer Institute for Silicate Research ISC, Wuerzburg, Germany
| |
Collapse
|
38
|
Yu CP, Juang JH, Lin YJ, Kuo CW, Hsieh LH, Huang CC. Enhancement of Subcutaneously Transplanted β Cell Survival Using 3D Stem Cell Spheroids with Proangiogenic and Prosurvival Potential. ACTA ACUST UNITED AC 2020; 4:e1900254. [PMID: 32293147 DOI: 10.1002/adbi.201900254] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Indexed: 01/20/2023]
Abstract
Islet transplantation has been demonstrated to be a promising therapy for type 1 diabetes mellitus. Although it is a minimally invasive operating procedure and provides easy access for graft monitoring, subcutaneous transplantation of the islet only has limited therapeutic outcomes, owing to the poor capacity of skin tissue to foster revascularization in a short period. Herein, 3D cell spheroids of clinically accessible umbilical cord blood mesenchymal stem cells and human umbilical vein endothelial cells are formed and employed for codelivery with β cells subcutaneously. The 3D stem cell spheroids, which can secrete multiple proangiogenic and prosurvival growth factors, induce robust angiogenesis and prevent β cell graft death, as indicated by the results of in vivo bioluminescent tracking and histological analysis. These experimental data highlight the efficacy of the 3D stem cell spheroids that are fabricated using translationally applicable cell types in promoting the survival and function of subcutaneously transplanted β cells.
Collapse
Affiliation(s)
- Chih-Ping Yu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jyuhn-Huarng Juang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.,Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan.,Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ching-Wen Kuo
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Li-Hung Hsieh
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
39
|
Dikici S, Aldemir Dikici B, Bhaloo SI, Balcells M, Edelman ER, MacNeil S, Reilly GC, Sherborne C, Claeyssens F. Assessment of the Angiogenic Potential of 2-Deoxy-D-Ribose Using a Novel in vitro 3D Dynamic Model in Comparison With Established in vitro Assays. Front Bioeng Biotechnol 2020; 7:451. [PMID: 32010677 PMCID: PMC6978624 DOI: 10.3389/fbioe.2019.00451] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is a highly ordered physiological process regulated by the interaction of endothelial cells with an extensive variety of growth factors, extracellular matrix components and mechanical stimuli. One of the most important challenges in tissue engineering is the rapid neovascularization of constructs to ensure their survival after transplantation. To achieve this, the use of pro-angiogenic agents is a widely accepted approach. The study of angiogenesis has gained momentum over the last two decades. Although there are various in vitro, ex vivo, and in vivo angiogenesis models that enable testing of newly discovered pro-angiogenic agents, the problem with researching angiogenesis is the choice of the most appropriate assay. In vivo assays are the most representative and reliable models, but they are expensive, time-consuming and can cause ethical concerns whereas in vitro assays are relatively inexpensive, practical, and reproducible, but they are usually lack of enabling the study of more than one aspect of angiogenesis, and they do not fully represent the complexity of physiological angiogenesis. Therefore, there is a need for the development of an angiogenesis model that allows the study of angiogenesis under physiologically more relevant, dynamic conditions without causing ethical concerns. Accordingly, in this study, we developed 3D in vitro dynamic angiogenesis model, and we tested the angiogenic potential of 2-deoxy-D-ribose (2dDR) in comparison with vascular endothelial growth factor (VEGF) using newly developed in vitro 3D dynamic model and well-established in vitro models. Our results obtained using conventional in vitro assays demonstrated that 2dDR promoted proliferation, migration and tube formation of human aortic endothelial cells (HAECs) in a dose-dependent manner. Then, the angiogenic activity of 2dDR was further assessed using the newly developed 3D in vitro model, which enabled the monitoring of cell proliferation and infiltration simultaneously under dynamic conditions. Our results showed that the administration of 2dDR and VEGF significantly enhanced the outgrowth of HAECs and the cellular density under either static or dynamic conditions.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Shirin Issa Bhaloo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Bioengineering Department, Institut Quimic de Sarria, Ramon Llull University, Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Colin Sherborne
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
40
|
AGS-30, an andrographolide derivative, suppresses tumor angiogenesis and growth in vitro and in vivo. Biochem Pharmacol 2019; 171:113694. [PMID: 31706845 DOI: 10.1016/j.bcp.2019.113694] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Poor bioavailability and limited efficacy are challenges associated with using andrographolide as a therapeutic agent. We recently synthesized AGS-30, a new andrographolide derivative, in our laboratory. In this study we investigated the potential anti-tumor effect of AGS-30 and the underlying mechanisms, particularly those related to angiogenesis. Results from our in vitro experiments showed that AGS-30 exerted anti-angiogenic effects by inhibiting endothelial cell proliferation, migration, invasion, and tube formation. Phosphorylation and activation of angiogenesis-related signaling molecules (e.g., vascular endothelial growth factor [VEGF] receptor 2, mitogen-activated protein kinase kinase 1/2, extracellular signal-regulated kinase 1/2, mechanistic target of rapamycin [mTOR], protein kinase B [Akt], and p38) were markedly reduced by AGS-30. Meanwhile, AGS-30 potently inhibited cell proliferation and phosphorylation of cell survival-related proteins (e.g., Akt, mTOR, and ERK1/2) and decreased the expression of VEGF in HT-29 colon cancer cells. AGS-30 blocked microvessel sprouting in a rat aortic ring model and blood vessel formation in zebrafish embryos and a mouse Matrigel plug model. Additionally, AGS-30 suppressed tumor growth and angiogenesis in HT-29 colon cancer cell xenografts in nude mice. These effects were not observed when same concentration of andrographolide, the parent compound of AGS-30, was used. Thus, AGS-30 exerted a strong antitumor effect by inhibiting tumor cell growth and angiogenesis and is a candidate compound for the treatment of cancer.
Collapse
|
41
|
Fernando K, Yang HW, Jiang Y, Jeon YJ, Ryu B. Ishige okamurae Extract and Its Constituent Ishophloroglucin A Attenuated In Vitro and In Vivo High Glucose-Induced Angiogenesis. Int J Mol Sci 2019; 20:E5542. [PMID: 31698871 PMCID: PMC6888214 DOI: 10.3390/ijms20225542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetes is associated with vascular complications, such as impaired wound healing and accelerated vascular growth. The different clinical manifestations, such as retinopathy and nephropathy, reveal the severity of enhanced vascular growth known as angiogenesis. This study was performed to evaluate the effects of an extract of Ishige okamurae (IO) and its constituent, Ishophloroglucin A (IPA) on high glucose-induced angiogenesis. A transgenic zebrafish (flk:EGFP) embryo model was used to evaluate vessel growth. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), gap closure, transwell, and Matrigel® assays were used to analyze the proliferation, migration, and capillary formation of EA.hy926 cells. Moreover, protein expression were determined using western blotting. IO extract and IPA suppressed vessel formation in the transgenic zebrafish (flk:EGFP) embryo. IPA attenuated cell proliferation, cell migration, and capillary-like structure formation in high glucose-treated human vascular endothelial cells. Further, IPA down regulated the expression of high glucose-induced vascular endothelial growth factor receptor 2 (VEGFR-2) and downstream signaling molecule cascade. Overall, the IO extract and IPA exhibited anti-angiogenic effects against high glucose-induced angiogenesis, suggesting their potential for use as therapeutic agents in diabetes-related angiogenesis.
Collapse
Affiliation(s)
- K.H.N. Fernando
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea (H.-W.Y.); (Y.J.)
| | - Hye-Won Yang
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea (H.-W.Y.); (Y.J.)
| | - Yunfei Jiang
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea (H.-W.Y.); (Y.J.)
| | - You-Jin Jeon
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea (H.-W.Y.); (Y.J.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - BoMi Ryu
- Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea (H.-W.Y.); (Y.J.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
42
|
Tsui KH, Wu MY, Lin LT, Wen ZH, Li YH, Chu PY, Li CJ. Disruption of mitochondrial homeostasis with artemisinin unravels anti-angiogenesis effects via auto-paracrine mechanisms. Am J Cancer Res 2019; 9:6631-6645. [PMID: 31588240 PMCID: PMC6771251 DOI: 10.7150/thno.33353] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/30/2019] [Indexed: 12/19/2022] Open
Abstract
Rationale: Tumor angiogenesis promotes tumor development, progression, growth, and metastasis. Metronomic chemotherapy involves the frequent administration of low-dose chemotherapeutic agents to block angiogenic activity and reduce side effects. Methods: MDA-MB-231 cells were treated with various concentrations of artemisinin (ART) and vinorelbine (NVB) and the cytotoxic effects of ART/NVB were determined using the CCK-8 assay. Mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (∆Ψm) and mass were assessed using MitoSOX, TMRE and MitoTracker green staining. Western blot analysis was used to quantify the expression of autophagy-related proteins. Herein, by using bioinformatics analysis and experimental verification, we identified CREB as a master in MDA-MB-231 cells. Results: We found that artemisinin (ART), which exhibits anti-angiogenic and anti-cancer effects via mitochondrial regulation, synergized with vinorelbine (NVB) to inhibit MDA-MB-231 cell proliferation. ART and NVB cooperated to regulate mitochondrial biogenesis. CREB acted as a crucial regulator of PGC1α and VEGF, which played critical roles in NVB-dependent growth factor depletion. Moreover, CREB suppression significantly reversed mitochondrial dysfunction following ART/NVB co-treatment. In addition, combination treatment with ART and NVB significantly suppressed tumor growth in a nude mouse xenograft model, with downregulated CREB and PGC1α expression levels observed in tumor biopsies, in agreement with our in vitro and ex vivo data. Conclusions: These findings support the hypothesis that ART affects cancer and endothelial cells by targeting the auto-paracrine effects of VEGF to suppress mitochondrial biogenesis, angiogenesis, and migration between cancer cells and endothelial cells.
Collapse
|
43
|
Synthetic libraries of shark vNAR domains with different cysteine numbers within the CDR3. PLoS One 2019; 14:e0213394. [PMID: 31206542 PMCID: PMC6576789 DOI: 10.1371/journal.pone.0213394] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
The variable domain of New Antigen Receptors (vNAR) from sharks, present special characteristics in comparison to the conventional antibody molecules such as: small size (12–15 kDa), thermal and chemical stability and great tissue penetration, that makes them a good alternative source as therapeutic or diagnostic agents. Therefore, it is essential to improve techniques used for the development and selection of vNAR antibodies that recognize distinct antigens. The development of synthetic antibody libraries offers a fast option for the generation of antibodies with the desired characteristics. In this work three synthetic antibody libraries were constructed; without cysteines (Cys), with one Cys and with two Cys residues within its CDR3, with the objective of determining whether the presence or absence of Cys in the CDR3 favors the isolation of vNAR clones from a synthetic library. The libraries were validated selecting against six mammalian proteins. At least one vNAR was found for each of the antigens, and a clone coming from the library without Cys in the CDR3 was selected with all the antigens. In vitro angiogenesis assay with the isolated anti-VEGF antibodies, suggest that these vNARs are capable of inhibiting in vitro angiogenesis. In silico analysis of anti-VEGF antibodies showed that vNARs from synthetic libraries could rival antibodies with affinity maturation by in silico modeling.
Collapse
|
44
|
Single-Cell Receptor Quantification of an In Vitro Coculture Angiogenesis Model Reveals VEGFR, NRP1, Tie2, and PDGFR Regulation and Endothelial Heterogeneity. Processes (Basel) 2019. [DOI: 10.3390/pr7060356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is essential for both normal development and numerous pathologies. Systems biology has offered a unique approach to study angiogenesis by profiling tyrosine kinase receptors (RTKs) that regulate angiogenic processes and computationally modeling RTK signaling pathways. Historically, this systems biology approach has been applied on ex vivo angiogenesis assays, however, these assays are difficult to quantify and limited in their potential of temporal analysis. In this study, we adopted a simple two-dimensional angiogenesis assay comprised of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) and examined temporal dynamics of a panel of six RTKs and cell heterogeneity up to 17 days. We observed ~2700 VEGFR1 (vascular endothelial growth factor receptor 1) per cell on 24-h-old cocultured HDF plasma membranes, which do not express VEGFR when cultured alone. We observed 4000–8100 VEGFR2 per cell on cocultured HUVEC plasma membranes throughout endothelial tube formation. We showed steady increase of platelet-derived growth factor receptors (PDGFRs) on cocultured HDF plasma membranes, and more interestingly, 1900–2900 PDGFRβ per plasma membrane were found on HUVECs within the first six hours of coculturing. These quantitative findings will offer us insights into molecular regulation during angiogenesis and help assess in vitro tube formation models and their physiological relevance.
Collapse
|
45
|
Evaluation of Angiogenesis Assays. Biomedicines 2019; 7:biomedicines7020037. [PMID: 31100863 PMCID: PMC6631830 DOI: 10.3390/biomedicines7020037] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis assays allow for the evaluation of pro- or anti-angiogenic activity of endogenous or exogenous factors (stimulus or inhibitors) through investigation of their pro-or anti- proliferative, migratory, and tube formation effects on endothelial cells. To model the process of angiogenesis and the effects of biomolecules on that process, both in vitro and in vivo methods are currently used. In general, in vitro methods monitor specific stages in the angiogenesis process and are used for early evaluations, while in vivo methods more accurately simulate the living microenvironment to provide more pertinent information. We review here the current state of angiogenesis assays as well as their mechanisms, advantages, and limitations.
Collapse
|
46
|
Jaleel JA, Ashraf SM, Rathinasamy K, Pramod K. Carbon dot festooned and surface passivated graphene-reinforced chitosan construct for tumor-targeted delivery of TNF-α gene. Int J Biol Macromol 2019; 127:628-636. [PMID: 30708020 DOI: 10.1016/j.ijbiomac.2019.01.174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/18/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Gene therapy is a promising alternative that ensures effective treatment and cure for cancer. Here, we report graphene-reinforced chitosan (CS) construct based non-viral vector for tumor-targeted gene therapy. The therapeutic gene, pDNA-TNF-α, was loaded on to chitosan-carboxylated graphene oxide (CS-CGO) construct via electrostatic interaction. The pDNA-TNF-α-CS-CGO thus obtained was further passivated with 4,7,10-trioxa-1,13-tridecanediamine for protecting the vector from the mononuclear phagocyte system that contributes to the prolongation of circulation half-life. The surface passivated carrier (PEG-pDNA-TNF-α-CS-CGO) then festooned with the folic acid derived carbon dots (C-dots) for targeting folate receptors that are overexpressed in most of the cancer cells. The results of TEM images and zeta potential values ensured the occurrence of desired changes in each stage of C-dot-PEG-pDNA-TNF-α-CS-CGO formulation. After 14 days of incubation, the anti-angiogenesis effect was observed for final formulation in the chorioallantoic membrane. The results of in vitro gene expression study in cancer cell line show a comparatively higher transfection efficacy of the developed system (C-dot-PEG-pDNA-TNF-α-CS-CGO) than pDNA-TNF-α. The efficiency of the developed gene delivery system was further confirmed using a developed and validated artificial tumor cell apparatus.
Collapse
Affiliation(s)
- Jumana Abdul Jaleel
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India
| | - Shabeeba M Ashraf
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - K Pramod
- College of Pharmaceutical Sciences, Govt. Medical College, Kozhikode, Kerala, India.
| |
Collapse
|
47
|
Jafarkhani M, Salehi Z, Aidun A, Shokrgozar MA. Bioprinting in Vascularization Strategies. IRANIAN BIOMEDICAL JOURNAL 2019; 23. [PMID: 30458600 PMCID: PMC6305822 DOI: 10.29252/.23.1.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three-dimensional (3D) printing technology has revolutionized tissue engineering field because of its excellent potential of accurately positioning cell-laden constructs. One of the main challenges in the formation of functional engineered tissues is the lack of an efficient and extensive network of microvessels to support cell viability. By printing vascular cells and appropriate biomaterials, the 3D printing could closely mimic in vivo conditions to generate blood vessels. In vascular tissue engineering, many various approaches of 3D printing have been developed, including selective laser sintering and extrusion methods, etc. The 3D printing is going to be the integral part of tissue engineering approaches; in comparison with other scaffolding techniques, 3D printing has two major merits: automation and high cell density. Undoubtedly, the application of 3D printing in vascular tissue engineering will be extended if its resolution, printing speed, and available materials can be improved.
Collapse
Affiliation(s)
- Mahboubeh Jafarkhani
- School of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Zeinab Salehi
- School of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Amir Aidun
- Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran,National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Shokrgozar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran,Corresponding Author: Mohammad Ali Shokrgozar National Cell Bank of Iran, Pasteur Institute of Iran, Tehran 13169435551, Iran; Tel. & Fax.: (+98-21) 66492595; E-mail:
| |
Collapse
|
48
|
Jafarkhani M, Salehi Z, Aidun A, Shokrgozar MA. Bioprinting in Vascularization Strategies. IRANIAN BIOMEDICAL JOURNAL 2019; 23:9-20. [PMID: 30458600 PMCID: PMC6305822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 10/06/2023]
Abstract
Three-dimensional (3D) printing technology has revolutionized tissue engineering field because of its excellent potential of accurately positioning cell-laden constructs. One of the main challenges in the formation of functional engineered tissues is the lack of an efficient and extensive network of microvessels to support cell viability. By printing vascular cells and appropriate biomaterials, the 3D printing could closely mimic in vivo conditions to generate blood vessels. In vascular tissue engineering, many various approaches of 3D printing have been developed, including selective laser sintering and extrusion methods, etc. The 3D printing is going to be the integral part of tissue engineering approaches; in comparison with other scaffolding techniques, 3D printing has two major merits: automation and high cell density. Undoubtedly, the application of 3D printing in vascular tissue engineering will be extended if its resolution, printing speed, and available materials can be improved.
Collapse
Affiliation(s)
- Mahboubeh Jafarkhani
- School of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Zeinab Salehi
- School of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Amir Aidun
- Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
49
|
Shah BB, Baksi R, Chaudagar KK, Nivsarkar M, Mehta AA. Anti-leukemic and anti-angiogenic effects of d-Limonene on K562-implanted C57BL/6 mice and the chick chorioallantoic membrane model. Animal Model Exp Med 2018; 1:328-333. [PMID: 30891583 PMCID: PMC6388054 DOI: 10.1002/ame2.12039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND d-Limonene, a monoterpene from citrus fruit has been found to have chemopreventive and chemotherapeutic activities in various types of cancers. In this study, we evaluated the in vivo effect of d-Limonene on a K562-induced model of chronic myeloid leukemia (CML) in C57BL/6 mice. METHOD The tail vein injection model of K562 cells in immunocompromised C57BL/6 mice was developed and evaluated for characteristics of the disease. The mice were treated with d-Limonene and evaluated for haematological parameters. We also evaluated the effect of d-Limonene on angiogenesis using the chick chorioallantoic membrane (CAM) assay. RESULTS In a complete blood count, a significant dose-dependent reduction in white blood cell, neutrophil and lymphocyte counts, but an elevation in red blood cell count and haemoglobin content was observed with d-Limonene treatment compared to the disease control or untreated group. In the CAM assay, d-Limonene produced a significant dose-dependent reduction in number of blood vessels in treatment groups compared to the vehicle-treated group. CONCLUSION These studies suggest promising anti-leukemic and anti-angiogenic effects of d-Limonene in the treatment of CML.
Collapse
Affiliation(s)
- Bhavini B. Shah
- Department of PharmacologyL. M. College of PharmacyAhmedabadGujaratIndia
| | - Ruma Baksi
- Department of Pharmacology and ToxicologyB. V. Patel Pharmaceutical Education and Research Development CentreAhmedabadGujaratIndia
| | | | - Manish Nivsarkar
- Department of Pharmacology and ToxicologyB. V. Patel Pharmaceutical Education and Research Development CentreAhmedabadGujaratIndia
| | - Anita A. Mehta
- Department of PharmacologyL. M. College of PharmacyAhmedabadGujaratIndia
| |
Collapse
|
50
|
Muedra V, Moreno L, Rodilla V, Arce C, Montó F, Blázquez Á, Pérez P, D’Ocón P. Dexamethasone Preconditioning in Cardiac Procedures Reduces Decreased Antithrombin Activity and Is Associated to Beneficial Outcomes: Role of Endothelium. Front Pharmacol 2018; 9:1014. [PMID: 30319401 PMCID: PMC6167415 DOI: 10.3389/fphar.2018.01014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/20/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction: Decreased antithrombin (AT) activity in patients scheduled for cardiovascular surgery under cardiopulmonary bypass (CPB) is related to increased postoperative complications and hospitalization time. Indirect evidence suggests that glucocorticoids mitigate this decreased AT activity. To better understand the beneficial effects of AT we have analyzed: (i) the clinical relevance of acute dexamethasone (DX) administration before cardiac surgery on AT activity, (ii) the modulation by DX of AT expression in human endothelial cells (hECs), (iii) the activity of AT on migration and angiogenesis of hECs, or on angiogenesis of rat aorta. Methods: A retrospective cohort study in patients undergoing aortic valve replacement surgery was designed to evaluate the effect of DX administration on AT activity at five separate time points: preoperatively, during CPB, at intensive care unit admission and at 12 and 24 h post-intervention. We have analyzed also clinical differences in postoperative outcomes as safety and the length of stay in hospitalization. Changes in mRNA levels of AT induced by DX were determined by qRT-PCR in human coronary (hCEC), aorta (hAEC) and cardiac microvasculature (hCMEC) endothelial cells. AT activity on migration and angiogenesis were also assayed. Angiogenic growth of rat aortic rings incubated in Matrigel® was determined in presence and absence of AT. Results: The cohort comprised 51 patients in the control group and 29 patients in the group receiving dexamethasone. Preoperative DX supplementation reduced intraoperative decrease of AT activity (67.71 ± 10.49% DX treated vs. 58.12 ± 9.11% untreated, p < 0.001) that could be related to a decrease in the hospitalization time (7.59 ± 4.08 days DX treated vs. 13.59 ± 16.00 days untreated, p = 0.014). Treatment of hECs with 500 nM DX slightly increased AT expression. Incubation with 0.5 and 1 IU/mL of AT increased migration and angiogenesis in hCAECs and hAECs, but not in hCMECs. The same concentrations of AT potentiated angiogenic sprouting of new vessels from rat aorta. Conclusion: Preoperative DX supplementation could be an interesting procedure to avoid excessive decrease in AT levels during cardiac surgery. Positive outcomes associated with maintaining adequate AT levels could be related to its potential beneficial effect on endothelial function (migration and angiogenesis).
Collapse
Affiliation(s)
- Vicente Muedra
- Departamento de Anestesiología, Cuidados Críticos y Terapéutica del Dolor, Hospital Universitario de La Ribera, Valencia, Spain
- Departamento de Cirugía, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Lucrecia Moreno
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Vicente Rodilla
- Departamento de Farmacia, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Cristina Arce
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| | - Fermi Montó
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| | - Águeda Blázquez
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia-Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Pilar D’Ocón
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, Valencia, Spain
| |
Collapse
|