1
|
Matar IK, Dong Z, Matta CF. Exploring the Chemical Space of Mycobacterial Oxidative Phosphorylation Inhibitors Using Molecular Modeling. ChemMedChem 2024; 19:e202400303. [PMID: 39302818 PMCID: PMC11581423 DOI: 10.1002/cmdc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/28/2024] [Indexed: 09/22/2024]
Abstract
Mycobacteria are opportunistic intracellular pathogens that have plagued humans and other animals throughout history and still are today. They manipulate and hijack phagocytic cells of immune systems, enabling them to occupy this peculiar infection niche. Mycobacteria exploit a plethora of mechanisms to resist antimicrobials (e. g., waxy cell walls, efflux pumps, target modification, biofilms, etc.) thereby evolving into superbugs, such as extensively drug-resistant tuberculosis (XDR TB) bacilli and the emerging pathogenic Mycobacterium abscessus complex. This review summarizes the mechanisms of action of some of the surging antimycobacterial strategies. Exploiting the fact that mycobacteria are obligate aerobes and the differences between their oxidative phosphorylation pathways versus their human counterpart opens a promising avenue for drug discovery. The polymorphism of respiratory complexes across mycobacterial pathogens imposes challenges on the repositioning of antimycobacterial agents to battle the rise in nontuberculous mycobacterial infections. In silico strategies exploiting mycobacterial respiratory machinery data to design novel therapeutic agents are touched upon. The potential druggability of mycobacterial respiratory elements is reviewed. Future research addressing the health challenges associated with mycobacterial pathogens is discussed.
Collapse
Affiliation(s)
- Islam K. Matar
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| | - Zhongmin Dong
- Department of BiologySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
| | - Chérif F. Matta
- Department of ChemistrySaint Mary's University923 Robie StreetB3H 3C3Halifax, NSCanada
- Department of Chemistry and PhysicsMount Saint Vincent University166 Bedford HighwayB3M 2J6Halifax, NSCanada
| |
Collapse
|
2
|
Jürgens DC, Winkeljann B, Kolog Gulko M, Jin Y, Möller J, Winkeljann J, Sheshachala S, Anger A, Hörner A, Adams NBP, Urbanetz N, Merkel OM. Efficient and Targeted siRNA Delivery to M2 Macrophages by Smart Polymer Blends for M1 Macrophage Repolarization as a Promising Strategy for Future Cancer Treatment. ACS Biomater Sci Eng 2024; 10:166-177. [PMID: 37978912 DOI: 10.1021/acsbiomaterials.3c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cancer remains an issue on a global scale. It is estimated that nearly 10 million people succumbed to cancer worldwide in 2020. New treatment options are urgently needed. A promising approach is a conversion of tumor-promoting M2 tumor-associated macrophages (TAMs) as part of the tumor microenvironment to tumor-suppressive M1 TAMs by small interfering RNA (siRNA). In this work, we present a well-characterized polymeric nanocarrier system capable of targeting M2 TAMs by a ligand-receptor interaction. Therefore, we developed a blended PEI-based polymeric nanoparticle system conjugated with mannose, which is internalized after interaction with macrophage mannose receptors (MMRs), showing low cytotoxicity and negligible IL-6 activation. The PEI-PCL-PEI (5 kDa-5 kDa-5 kDa) and Man-PEG-PCL (2 kDa-2 kDa) blended siRNA delivery system was optimized for maximum targeting capability and efficient endosomal escape by evaluation of different polymer and N/P ratios. The nanoparticles were formulated by surface acoustic wave-assisted microfluidics, achieving a size of ∼80 nm and a zeta potential of approximately +10 mV. Special attention was given to the endosomal escape as the so-called bottleneck of RNA drug delivery. To estimate the endosomal escape capability of the nanocarrier system, we developed a prediction method by evaluating the particle stability via the inflection temperature. Our predictions were then verified in an in vitro setting by applying confocal microscopy. For cellular experiments, however, human THP-1 cells were polarized to M2 macrophages by cytokine treatment and validated through MMR expression. To show the efficiency of the nanoparticle system, GAPDH and IκBα knockdown was performed in the presence or absence of an MMR blocking excess of mannan. Cellular uptake, GAPDH knockdown, and NF-κB western blot confirmed efficient mannose targeting. Herein, we presented a well-characterized nanoparticle delivery system and a promising approach for targeting M2 macrophages by a mannose-MMR interaction.
Collapse
Affiliation(s)
- David C Jürgens
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich 80799, Germany
| | | | - Yao Jin
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
| | - Judith Möller
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
| | - Joshua Winkeljann
- Department of Experimental Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| | | | - Alina Anger
- Nanotemper Technologies GmbH, Flößergasse 4, Munich 81369, Germany
| | - Andreas Hörner
- Department of Experimental Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| | - Nathan B P Adams
- Nanotemper Technologies GmbH, Flößergasse 4, Munich 81369, Germany
| | - Nora Urbanetz
- Daiichi Sankyo Europe GmbH, Pfaffenhofen an der Ilm 85276, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich 80799, Germany
| |
Collapse
|
3
|
Kim YJ, Park EJ, Lee SH, Silwal P, Kim JK, Yang JS, Whang J, Jang J, Kim JM, Jo EK. Dimethyl itaconate is effective in host-directed antimicrobial responses against mycobacterial infections through multifaceted innate immune pathways. Cell Biosci 2023; 13:49. [PMID: 36882813 PMCID: PMC9993662 DOI: 10.1186/s13578-023-00992-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Itaconate, a crucial immunometabolite, plays a critical role in linking immune and metabolic functions to influence host defense and inflammation. Due to its polar structure, the esterified cell-permeable derivatives of itaconate are being developed to provide therapeutic opportunities in infectious and inflammatory diseases. Yet, it remains largely uncharacterized whether itaconate derivatives have potentials in promoting host-directed therapeutics (HDT) against mycobacterial infections. Here, we report dimethyl itaconate (DMI) as the promising candidate for HDT against both Mycobacterium tuberculosis (Mtb) and nontuberculous mycobacteria by orchestrating multiple innate immune programs. RESULTS DMI per se has low bactericidal activity against Mtb, M. bovis Bacillus Calmette-Guérin (BCG), and M. avium (Mav). However, DMI robustly activated intracellular elimination of multiple mycobacterial strains (Mtb, BCG, Mav, and even to multidrug-resistant Mtb) in macrophages and in vivo. DMI significantly suppressed the production of interleukin-6 and -10, whereas it enhanced autophagy and phagosomal maturation, during Mtb infection. DMI-mediated autophagy partly contributed to antimicrobial host defenses in macrophages. Moreover, DMI significantly downregulated the activation of signal transducer and activator of transcription 3 signaling during infection with Mtb, BCG, and Mav. CONCLUSION Together, DMI has potent anti-mycobacterial activities in macrophages and in vivo through promoting multifaceted ways for innate host defenses. DMI may bring light to new candidate for HDT against Mtb and nontuberculous mycobacteria, both of which infections are often intractable with antibiotic resistance.
Collapse
Affiliation(s)
- Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Brain Korea 21 FOUR Project for Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungbuk, South Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Jeong Seong Yang
- Department of Research and Development, Korea Mycobacterium Resource Center (KMRC), The Korean Institute of Tuberculosis, Osong, 28158, South Korea
| | - Jake Whang
- Department of Research and Development, Korea Mycobacterium Resource Center (KMRC), The Korean Institute of Tuberculosis, Osong, 28158, South Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Pathology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea. .,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.
| |
Collapse
|
4
|
Winkeljann B, Keul DC, Merkel OM. Engineering poly- and micelleplexes for nucleic acid delivery - A reflection on their endosomal escape. J Control Release 2023; 353:518-534. [PMID: 36496051 PMCID: PMC9900387 DOI: 10.1016/j.jconrel.2022.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022]
Abstract
For the longest time, the field of nucleic acid delivery has remained skeptical whether or not polycationic drug carrier systems would ever make it into clinical practice. Yet, with the disclosure of patents on polyethyleneimine-based RNA carriers through leading companies in the field of nucleic acid therapeutics such as BioNTech SE and the progress in clinical studies beyond phase I trials, this aloofness seems to regress. As one of the most striking characteristics of polymer-based vectors, the extraordinary tunability can be both a blessing and a curse. Yet, knowing about the adjustment screws and how they impact the performance of the drug carrier provides the formulation scientist committed to its development with a head start. Here, we equip the reader with a toolbox - a toolbox that should advise and support the developer to conceptualize a cutting-edge poly- or micelleplex system for the delivery of therapeutic nucleic acids; to be specific, to engineer the vector towards maximum endosomal escape performance at minimum toxicity. Therefore, after briefly sketching the boundary conditions of polymeric vector design, we will dive into the topic of endosomal trafficking. We will not only discuss the most recent knowledge of the endo-lysosomal compartment but further depict different hypotheses and mechanisms that facilitate the endosomal escape of polyplex systems. Finally, we will combine the different facets introduced in the previous chapters with the fundamental building blocks of polymer vector design and evaluate the advantages and drawbacks. Throughout the article, a particular focus will be placed on cellular peculiarities, not only as an additional barrier, but also to give inspiration to how such cell-specific traits might be capitalized on.
Collapse
Affiliation(s)
- Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany,Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany
| | - David C. Keul
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany
| | - Olivia M. Merkel
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, 81377 Munich, Germany,Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, 80799 Munich, Germany,Corresponding author at: Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, Haus B, 81377 München, Germany
| |
Collapse
|
5
|
van der Zande HJP, Nitsche D, Schlautmann L, Guigas B, Burgdorf S. The Mannose Receptor: From Endocytic Receptor and Biomarker to Regulator of (Meta)Inflammation. Front Immunol 2021; 12:765034. [PMID: 34721436 PMCID: PMC8551360 DOI: 10.3389/fimmu.2021.765034] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/27/2021] [Indexed: 01/27/2023] Open
Abstract
The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and internalize a variety of endogenous and pathogen-associated ligands. Because of these properties, its role in endocytosis as well as antigen processing and presentation has been studied intensively. Recently, it became clear that the mannose receptor can directly influence the activation of various immune cells. Cell-bound mannose receptor expressed by antigen-presenting cells was indeed shown to drive activated T cells towards a tolerogenic phenotype. On the other hand, serum concentrations of a soluble form of the mannose receptor have been reported to be increased in patients suffering from a variety of inflammatory diseases and to correlate with severity of disease. Interestingly, we recently demonstrated that the soluble mannose receptor directly promotes macrophage proinflammatory activation and trigger metaflammation. In this review, we highlight the role of the mannose receptor and other CLECs in regulating the activation of immune cells and in shaping inflammatory responses.
Collapse
Affiliation(s)
| | - Dominik Nitsche
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Laura Schlautmann
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Sven Burgdorf
- Cellular Immunology, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Nontuberculous Mycobacteria, Macrophages, and Host Innate Immune Response. Infect Immun 2021; 89:e0081220. [PMID: 34097459 DOI: 10.1128/iai.00812-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Although nontuberculous mycobacteria (NTM) are considered opportunistic infections, incidence and prevalence of NTM infection are increasing worldwide becoming a major public health threat. Innate immunity plays an essential role in mediating the initial host response against these intracellular bacteria. Specifically, macrophages phagocytose and eliminate NTM and act as antigen-presenting cells, which trigger downstream activation of cellular and humoral adaptive immune responses. Identification of macrophage receptors, mycobacterial ligands, phagosome maturation, autophagy/necrosis, and escape mechanisms are important components of this immunity network. The role of the macrophage in mycobacterial disease has mainly been studied in tuberculosis (TB), but limited information exists on its role in NTM. In this review, we focus on NTM immunity, the role of macrophages, and host interaction in NTM infection.
Collapse
|
7
|
Kirubakar G, Schäfer H, Rickerts V, Schwarz C, Lewin A. Mutation on lysX from Mycobacterium avium hominissuis impacts the host-pathogen interaction and virulence phenotype. Virulence 2020; 11:132-144. [PMID: 31996090 PMCID: PMC6999840 DOI: 10.1080/21505594.2020.1713690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/18/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
The lysX gene from Mycobacterium avium hominissuis (MAH) is not only involved in cationic antimicrobial resistance but also regulates metabolic activity. An MAH lysX deficient mutant was shown to exhibit a metabolic shift at the extracellular state preadapting the bacteria to the conditions inside host-cells. It further showed stronger growth in human monocytes. In the present study, the LysX activity on host-pathogen interactions were analyzed. The lysX mutant from MAH proved to be more sensitive toward host-mediated stresses such as reactive oxygen species. Further, the lysX mutant exhibited increased inflammatory response in PBMC and multinucleated giant cell (MGC) formation in human macrophages during infection studies. Coincidentally, the lysX mutant strain revealed to be more reproductive in the Galleria mellonella infection model. Together, these data demonstrate that LysX plays a role in regulating the bacillary load in host organisms and the lack of lysX gene facilitates MAH adaptation to intracellular host-habitat, thereby suggesting an essential role of LysX in the modulation of host-pathogen interaction.
Collapse
Affiliation(s)
- Greana Kirubakar
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Hubert Schäfer
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Volker Rickerts
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Carsten Schwarz
- Pediatric Pneumology, Immunology and Intensive Care Medicine, Division of Cystic Fibrosis, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Astrid Lewin
- Division 16, Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
8
|
Carranza C, Chavez-Galan L. Several Routes to the Same Destination: Inhibition of Phagosome-Lysosome Fusion by Mycobacterium tuberculosis. Am J Med Sci 2019; 357:184-194. [DOI: 10.1016/j.amjms.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
|
9
|
Mycobacterium avium: an overview. Tuberculosis (Edinb) 2019; 114:127-134. [PMID: 30711152 DOI: 10.1016/j.tube.2018.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 01/15/2023]
Abstract
Mycobacterium avium is an environmental microorganism found in soil and water sources worldwide. It is the most prevalent species of nontuberculous mycobacteria that causes infectious diseases, especially in immunocompromised individuals. This review discusses and highlights key topics about M. avium, such as epidemiology, pathogenicity, glycopeptidolipids, laboratory identification, genotyping, antimicrobial therapy and antimicrobial resistance. Additionally, the main comorbidities associated with M. avium infection are discussed.
Collapse
|
10
|
Sampath P, Moideen K, Ranganathan UD, Bethunaickan R. Monocyte Subsets: Phenotypes and Function in Tuberculosis Infection. Front Immunol 2018; 9:1726. [PMID: 30105020 PMCID: PMC6077267 DOI: 10.3389/fimmu.2018.01726] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
Monocytes are critical defense components that play an important role in the primary innate immune response. The heterogeneous nature of monocytes and their ability to differentiate into either monocyte-derived macrophages or monocyte-derived dendritic cells allows them to serve as a bridge between the innate and adaptive immune responses. Current studies of monocytes based on immunofluorescence, single-cell RNA sequencing and whole mass spectrometry finger printing reveals different classification systems for monocyte subsets. In humans, three circulating monocyte subsets are classified based on relative expression levels of CD14 and CD16 surface proteins, namely classical, intermediate and non-classical subsets. Transcriptomic analyses of these subsets help to define their distinct functional properties. Tuberculosis (TB) is a disease instigated by the deadly pathogen Mycobacterium tuberculosis. Current research on monocytes in TB has indicated that there are alterations in the frequency of intermediate and non-classical subsets suggesting their impact in bacterial persistence. In this review, we will focus on these monocyte subsets, including their classification, frequency distribution, cytokine profiles, role as a biomarker and will comment on future directions for understanding the salient phenotypic and functional properties relevant to TB pathogenesis.
Collapse
Affiliation(s)
- Pavithra Sampath
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai, India
| | - Kadar Moideen
- International Center of Excellence in Research, National Institute for Research in Tuberculosis, National Institutes for Health, Chennai, India
| | - Uma Devi Ranganathan
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai, India
| | | |
Collapse
|
11
|
Polando RE, Jones BC, Ricardo C, Whitcomb J, Ballhorn W, McDowell MA. Mannose receptor (MR) and Toll-like receptor 2 (TLR2) influence phagosome maturation during Leishmania infection. Parasite Immunol 2018; 40:e12521. [PMID: 29512160 DOI: 10.1111/pim.12521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/11/2018] [Indexed: 11/29/2022]
Abstract
Leishmania enter macrophages through receptor-mediated phagocytosis and survive the harsh environment of a phagolysosome. Here, we investigated the interaction between mannose receptor (MR), Toll-like receptor 2 (TLR2), and Leishmania, and the subsequent impact on phagosome maturation. Leishmania parasites are able to delay phagosome maturation, not reaching full maturation until 5 hours post-engulfment. Here, maturation of Leishmania major- and Leishmania donovani-containing phagosomes proceeded as expected in the WT macrophages becoming LAMP1 positive by 6 hours. Interestingly, MR-/- macrophages become LAMP1 positive by ~2 hours and ~4 hours post-infection Leishmania-containing phagosomes lost LAMP1 expression and gained the early marker EEA1. LAMP1 expression was again observed by 6 hours. Leishmania LPG was essential for the delay in both WT and MR-/- macrophages but was not essential for the early maturation (2 hours) observed in MR-/- macrophages. Serum opsonization of Leishmania prior to infection induced identical phagosome maturation patterns in WT and MR-/- macrophages. In the absence of MyD88 or TLR2 on macrophages, Leishmania phagosomes matured significantly faster, becoming LAMP1 positive by ~1-2 hours. These studies add to the knowledge that phagosome maturation is influenced by multiple receptor-ligand interactions and signalling pathways.
Collapse
Affiliation(s)
- R E Polando
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - B C Jones
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - C Ricardo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - J Whitcomb
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - W Ballhorn
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - M A McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
12
|
Vanderwall AG, Noor S, Sun MS, Sanchez JE, Yang XO, Jantzie LL, Mellios N, Milligan ED. Effects of spinal non-viral interleukin-10 gene therapy formulated with d-mannose in neuropathic interleukin-10 deficient mice: Behavioral characterization, mRNA and protein analysis in pain relevant tissues. Brain Behav Immun 2018; 69:91-112. [PMID: 29113923 PMCID: PMC5857419 DOI: 10.1016/j.bbi.2017.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/20/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022] Open
Abstract
Studies show that spinal (intrathecal; i.t.) interleukin-10 (IL-10) gene therapy reverses neuropathic pain in animal models, and co-administration with the mannose receptor (MR; CD206) ligand d-mannose (DM) greatly improves therapeutic efficacy. However, the actions of endogenous IL-10 may be required for enduring pain control observed following i.t. IL-10 gene therapy, potentially narrowing the application of this non-viral transgene delivery approach. Here, we show that i.t. application of naked plasmid DNA expressing the IL-10 transgene co-injected with DM (DM/pDNA-IL-10) for the treatment of peripheral neuropathic pain in IL-10 deficient (IL-10 KO) mice results in a profound and prolonged bilateral pain suppression. Neuropathic pain is induced by unilateral sciatic chronic constriction injury (CCI), and while enduring relief of light touch sensitivity (mechanical allodynia) in both wild type (WT) and IL-10 KO mice was observed following DM/pDNA-IL-10 co-therapy, transient reversal from allodynia was observed following i.t. DM alone. In stably pain-relieved IL-10 KO mice given DM/pDNA-IL-10, mRNA for the IL-10 transgene is detected in the cauda equina and ipsilateral dorsal root ganglia (DRG), but not the lumbar spinal cord. Further, DM/pDNA-IL-10 application increases anti-inflammatory TGF-β1 and decreases pro-inflammatory TNF mRNA in the ipsilateral DRG compared to allodynic controls. Additionally, DM/pDNA-IL-10 treated mice exhibit decreased spinal pro-inflammatory mRNA expression for TNF, CCL2 (MCP-1), and for the microglial-specific marker TMEM119. Similarly, DM/pDNA-IL-10 treatment decreases immunoreactivity for the astrocyte activation marker GFAP in lumbar spinal cord dorsal horn. Despite transient reversal and early return to allodynia in DM-treated mice, lumbar spinal cord revealed elevated TNF, CCL2 and TMEM119 mRNA levels. Both MR (CD206) and IL-10 receptor mRNAs are increased in the DRG following CCI manipulation independent of injection treatment, suggesting that pathological conditions stimulate upregulation and availability of relevant receptors in critical anatomical regions required for the therapeutic actions of the DM/pDNA-IL-10 co-therapy. Taken together, the current report demonstrates that non-viral DM/pDNA-IL-10 gene therapy does not require endogenous IL-10 for enduring relief of peripheral neuropathic pain and does not require direct contact with the spinal cord dorsal horn for robust and enduring relief of neuropathic pain. Spinal non-viral DM/pDNA-IL-10 co-therapy may offer a framework for the development of non-viral gene therapeutic approaches for other diseases of the central nervous system.
Collapse
Affiliation(s)
- Arden G Vanderwall
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Melody S Sun
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Jacob E Sanchez
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Lauren L Jantzie
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Pediatrics, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Nikolaos Mellios
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA; Department of Anesthesiology & Critical Care Medicine, University of New Mexico School of Medicine, UNM Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| |
Collapse
|
13
|
Roux AL, Viljoen A, Bah A, Simeone R, Bernut A, Laencina L, Deramaudt T, Rottman M, Gaillard JL, Majlessi L, Brosch R, Girard-Misguich F, Vergne I, de Chastellier C, Kremer L, Herrmann JL. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol 2017; 6:rsob.160185. [PMID: 27906132 PMCID: PMC5133439 DOI: 10.1098/rsob.160185] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium abscessus is a pathogenic, rapidly growing mycobacterium responsible for pulmonary and cutaneous infections in immunocompetent patients and in patients with Mendelian disorders, such as cystic fibrosis (CF). Mycobacterium abscessus is known to transition from a smooth (S) morphotype with cell surface-associated glycopeptidolipids (GPL) to a rough (R) morphotype lacking GPL. Herein, we show that M. abscessus S and R variants are able to grow inside macrophages and are present in morphologically distinct phagosomes. The S forms are found mostly as single bacteria within phagosomes characterized by a tightly apposed phagosomal membrane and the presence of an electron translucent zone (ETZ) surrounding the bacilli. By contrast, infection with the R form leads to phagosomes often containing more than two bacilli, surrounded by a loose phagosomal membrane and lacking the ETZ. In contrast to the R variant, the S variant is capable of restricting intraphagosomal acidification and induces less apoptosis and autophagy. Importantly, the membrane of phagosomes enclosing the S forms showed signs of alteration, such as breaks or partial degradation. Although not frequently encountered, these events suggest that the S form is capable of provoking phagosome-cytosol communication. In conclusion, M. abscessus S exhibits traits inside macrophages that are reminiscent of slow-growing mycobacterial species.
Collapse
Affiliation(s)
- Anne-Laure Roux
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France.,Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Aïcha Bah
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
| | - Roxane Simeone
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Audrey Bernut
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France
| | - Laura Laencina
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Therese Deramaudt
- UMR1179, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Martin Rottman
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Jean-Louis Gaillard
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Laleh Majlessi
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Roland Brosch
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Fabienne Girard-Misguich
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Isabelle Vergne
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France .,INSERM, CPBS, 34293 Montpellier, France
| | - Jean-Louis Herrmann
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| |
Collapse
|
14
|
Lykov AP, Korolenko TA, Sakhno LV, Poveshchenko OV, Bondarenko NA, Surovtseva MA, Goncharova NV. Effects of Anti-CD206 Antibodies on Macrophage Functions in Male CBF1 Mice with Lipidemia. Bull Exp Biol Med 2016; 162:237-239. [PMID: 27909959 DOI: 10.1007/s10517-016-3584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Indexed: 10/20/2022]
Abstract
The effects of anti-CD208 antibodies (mannose receptor) on functional characteristics of peritoneal macrophages were studied in intact mice and mice with lipidemia induced by poloxamer-407. Lipidemia was associated with suppression of phagocytosis and increase in spontaneous proliferative potential and NO production by macrophages. Anti-CD206 antibodies suppressed NO production by macrophages in mice with lipidemia.
Collapse
Affiliation(s)
- A P Lykov
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia.
| | - T A Korolenko
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| | - L V Sakhno
- Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - O V Poveshchenko
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| | - N A Bondarenko
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| | - M A Surovtseva
- Research Institute of Clinical and Experimental Lymphology, Novosibirsk, Russia
| | - N V Goncharova
- Research Institute of Physiology and Fundamental Medicine, Novosibirsk, Russia
| |
Collapse
|
15
|
Gonzalez-Perez M, Murcia M, Parra-Lopez C, Blom J, Tauch A. Deciphering the virulence factors of the opportunistic pathogen Mycobacterium colombiense. New Microbes New Infect 2016; 14:98-105. [PMID: 27818776 PMCID: PMC5072152 DOI: 10.1016/j.nmni.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/02/2016] [Accepted: 09/06/2016] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium avium complex (MAC) contains clinically important nontuberculous mycobacteria worldwide and is the second largest medical complex in the Mycobacterium genus after the Mycobacterium tuberculosis complex. MAC comprises several species that are closely phylogenetically related but diverse regarding their host preference, course of disease, virulence and immune response. In this study we provided immunologic and virulence-related insights into the M. colombiense genome as a model of an opportunistic pathogen in the MAC. By using bioinformatic tools we found that M. colombiense has deletions in the genes involved in p-HBA/PDIM/PGL, PLC, SL-1 and HspX production, and loss of the ESX-1 locus. This information not only sheds light on our understanding the virulence mechanisms used by opportunistic MAC pathogens but also has great potential for the designing of species-specific diagnostic tools.
Collapse
Affiliation(s)
- M.N. Gonzalez-Perez
- Microbiology Department, School of Medicine, National University of Colombia, Bogotá, Colombia
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Corresponding author: M. N. Gonzalez-Perez, Microbiology Department, School of Medicine, National University of Colombia, Bogotá, ColombiaMicrobiology DepartmentSchool of MedicineNational University of ColombiaBogotáColombia
| | - M.I. Murcia
- Microbiology Department, School of Medicine, National University of Colombia, Bogotá, Colombia
| | - C. Parra-Lopez
- Microbiology Department, School of Medicine, National University of Colombia, Bogotá, Colombia
| | - J. Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - A. Tauch
- Microbiology Department, School of Medicine, National University of Colombia, Bogotá, Colombia
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
16
|
Quadri LEN. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit Rev Biochem Mol Biol 2014; 49:179-211. [DOI: 10.3109/10409238.2014.896859] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
The novel human MRC1 gene polymorphisms are associated with susceptibility to pulmonary tuberculosis in Chinese Uygur and Kazak populations. Mol Biol Rep 2013; 40:5073-83. [PMID: 23653008 DOI: 10.1007/s11033-013-2610-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
The MRC1 gene, encoding the human mannose receptor (MR), is a member of the C-type lectin receptors family. MR can recognize and bind to Mycobacterium tuberculosis by the extracellular structure, and play a role in antigen-presenting and maintaining a stable internal environment. This study aimed to investigate potential associations of SNPs in exon 7 of the MRC1 gene with pulmonary tuberculosis (TB). G1186A, G1195A, T1212C, C1221G, C1303T and C1323T were genotyped using PCR and DNA sequencing in 595 Chinese Uygur and 513 Kazak subjects. In the Uygur, the frequency of allele G (P=0.031, OR=1.29, 95% CI=1.02-1.62) and AA genotype (P=0.033, OR=1.64, 95% CI=1.04-2.60) for G1186A was lower in the pulmonary TB than healthy control and were significantly correlated with pulmonary TB. After adjustment for age and gender, G1186A was found to be additive models in association with pulmonary TB (P=0.04, OR=1.27, 95% CI=1.01-1.60). By calculating linkage disequilibrium, the frequency of haplotype GGTCCT (P=0.032, OR=0.75, 95% CI=0.57-0.97) and GGTCCC (P=0.044, OR=0.57, 95% CI=0.33-0.99) was significantly associated with pulmonary TB. No association was found between other SNPs and pulmonary TB. In the Kazak, all SNPs were not associated with pulmonary TB. Our results suggest that genetic factors play an important role in susceptibility to pulmonary TB at the individual level, and provide an experimental basis to clarify the pathogenesis of pulmonary TB.
Collapse
|
18
|
Tatham E, Sundaram Chavadi S, Mohandas P, Edupuganti UR, Angala SK, Chatterjee D, Quadri LEN. Production of mycobacterial cell wall glycopeptidolipids requires a member of the MbtH-like protein family. BMC Microbiol 2012; 12:118. [PMID: 22726990 PMCID: PMC3537567 DOI: 10.1186/1471-2180-12-118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/07/2012] [Indexed: 12/22/2022] Open
Abstract
Background Glycopeptidolipids (GPLs) are among the major free glycolipid components of the outer membrane of several saprophytic and clinically-relevant Mycobacterium species. The architecture of GPLs is based on a constant tripeptide-amino alcohol core of nonribosomal peptide synthetase origin that is N-acylated with a 3-hydroxy/methoxy acyl chain synthesized by a polyketide synthase and further decorated with variable glycosylation patterns built from methylated and acetylated sugars. GPLs have been implicated in many aspects of mycobacterial biology, thus highlighting the significance of gaining an understanding of their biosynthesis. Our bioinformatics analysis revealed that every GPL biosynthetic gene cluster known to date contains a gene (referred herein to as gplH) encoding a member of the MbtH-like protein family. Herein, we sought to conclusively establish whether gplH was required for GPL production. Results Deletion of gplH, a gene clustered with nonribosomal peptide synthetase-encoding genes in the GPL biosynthetic gene cluster of Mycobacterium smegmatis, produced a GPL deficient mutant. Transformation of this mutant with a plasmid expressing gplH restored GPL production. Complementation was also achieved by plasmid-based constitutive expression of mbtH, a paralog of gplH found in the biosynthetic gene cluster for production of the siderophore mycobactin of M. smegmatis. Further characterization of the gplH mutant indicated that it also displayed atypical colony morphology, lack of sliding motility, altered capacity for biofilm formation, and increased drug susceptibility. Conclusions Herein, we provide evidence formally establishing that gplH is essential for GPL production in M. smegmatis. Inactivation of gplH also leads to a pleiotropic phenotype likely to arise from alterations in the cell envelope due to the lack of GPLs. While genes encoding MbtH-like proteins have been shown to be needed for production of siderophores and antibiotics, our study presents the first case of one such gene proven to be required for production of a cell wall component. Furthermore, our results provide the first example of a mbtH-like gene with confirmed functional role in a member of the Mycobacterium genus. Altogether, our findings demonstrate a critical role of gplH in mycobacterial biology and advance our understanding of the genetic requirements for the biosynthesis of an important group of constituents of the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Elizabeth Tatham
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Mukherjee R, Chatterji D. Glycopeptidolipids: immuno-modulators in greasy mycobacterial cell envelope. IUBMB Life 2012; 64:215-25. [PMID: 22252955 DOI: 10.1002/iub.602] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/10/2011] [Indexed: 11/12/2022]
Abstract
Species of opportunistic mycobacteria are the major causative agent for disseminating pulmonary infections in immuno-compromised individuals. These naturally resistant strains recruit a unique type of glycolipid known as glycopeptidolipids (GPLs), noncovalently attached to the outer surface of their thick lipid rich cell envelope. Species specific GPLs constitute the chemical determinants of most nontuberculous mycobacterial serotypes, and their absence from the cell surface confers altered colony morphology, hydrophobicity, and inability to grow as biofilms. The objective of this review is to present a comprehensive account and highlight the renewed interest on this much neglected group of pleiotropic molecules with respect to their structural diversity and biosynthesis. In addition, the role of GPLs in mycobacterial survival, both intracellular and in the environment is also discussed. It also explores the possibility of identifying new targets for intervening Mycobacterium avium complex-related infections. These antigenic molecules have been considered to play a pivotal role in immune suppression and can also induce various cytokine mediated innate immune responses, the molecular mechanism of which remains obscure.
Collapse
Affiliation(s)
- Raju Mukherjee
- Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | | |
Collapse
|
20
|
Kreer C, Rauen J, Zehner M, Burgdorf S. Cross-presentation: how to get there - or how to get the ER. Front Immunol 2012; 2:87. [PMID: 22566876 PMCID: PMC3341993 DOI: 10.3389/fimmu.2011.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/16/2011] [Indexed: 11/13/2022] Open
Abstract
Antigen cross-presentation enables dendritic cells (DCs) to present extracellular antigens on major histocompatibility complex (MHC) I molecules, a process that plays an important role in the induction of immune responses against viruses and tumors and in the induction of peripheral tolerance. In order to allow intracellular processing for cross-presentation, internalized antigens are targeted by distinct endocytic receptors toward specific endosomal compartments, where they are protected from rapid lysosomal degradation. From these compartments, antigens are processed for loading onto MHC I molecules. Such processing generally includes antigen transport into the cytoplasm, a process that is regulated by members of the ER-associated degradation (ERAD) machinery. After proteasomal degradation in the cytoplasm, antigen-derived peptides have been shown to be re-imported into the same endosomal compartment by endosomal transporter associated with antigen processing, another ER protein, which is recruited toward the endosomes after DC maturation. In our review, we highlight the recent advances on the molecular mechanisms of cross-presentation. We focus on the necessity of such antigen storage compartments and point out important parallels to MHC I-restricted presentation of endogenous antigens. We discuss the composition of such endosomes and the targeting of extracellular antigens into this compartment by specific endocytic receptors. Finally, we highlight recent advances on the recruitment of the cross-presentation machinery, like the members of the MHC I loading complex and the ERAD machinery, from the ER toward these storage compartments, a process that can be induced by antigen encounter or by activation of the dendritic cell after contact with endotoxins.
Collapse
Affiliation(s)
- Christoph Kreer
- Life and Medical Sciences Institute, University of Bonn Bonn, Germany
| | | | | | | |
Collapse
|
21
|
Increased frequency and cell death of CD16+ monocytes with Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2011; 91:348-60. [PMID: 21621464 DOI: 10.1016/j.tube.2011.04.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 03/25/2011] [Accepted: 04/09/2011] [Indexed: 02/08/2023]
Abstract
Monocytes from tuberculosis patients exhibit functional and phenotypical alterations compared with healthy controls. To determine whether these discrepancies can be explained by changes in monocyte subsets, the expression of CD14 and CD16 was evaluated in tuberculosis patients and healthy controls; additionally, some markers related to the mononuclear phagocytes maturation, differentiation and function, such as CD1a, CD1c, CD11b, CD11c, CD13, CD33, CD36, CD40, CD64, CD68, CD80, CD83, CD86, HLA-DR, CCR2, CCR5, and non-specific esterases (NSE) were determined in monocyte subsets. Patients had increased percentage of circulating CD14(Hi)CD16(+) and CD14(Lo)CD16(+) monocytes. The percentage of monocytes expressing CD11b, CD36, CD64, CD68, CD80, CD86, CCR2 and NSE was lower in CD14(Hi)CD16(+) and CD14(Lo)CD16(+) cells than in CD14(Hi)CD16(-) monocytes. M. tuberculosis infected CD16(+) monocytes produced more TNF-α and less IL-10 than CD16(-) cells at 6 h post-infection. Isolated CD16(+) monocytes spontaneously underwent apoptosis during differentiation into macrophages; in contrast to CD16(-) monocytes that became differentiated into monocyte-derived macrophages (MDM) with a minimal induction of cell death. In addition, there were more Annexin V and propidium iodide positive monocytes in the CD16(+) subset infected with live M. tuberculosis at 24 h than CD16(-) monocytes. Under the culture conditions established for this study, the monocyte subsets did not differentiate into dendritic cells. These results show that tuberculosis patients have an augmented frequency of CD16(+) circulating monocytes which are more prone to produce TNF-α and to undergo cell death in response to M. tuberculosis infection.
Collapse
|
22
|
Alter A, de Léséleuc L, Van Thuc N, Thai VH, Huong NT, Ba NN, Cardoso CC, Grant AV, Abel L, Moraes MO, Alcaïs A, Schurr E. Genetic and functional analysis of common MRC1 exon 7 polymorphisms in leprosy susceptibility. Hum Genet 2009; 127:337-48. [PMID: 20035344 DOI: 10.1007/s00439-009-0775-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
Abstract
The chromosomal region 10p13 has been linked to paucibacillary leprosy in two independent studies. The MRC1 gene, encoding the human mannose receptor (MR), is located in the 10p13 region and non-synonymous SNPs in exon 7 of the gene have been suggested as leprosy susceptibility factors. We determined that G396S is the only non-synonymous exon 7-encoded polymorphism in 396 unrelated Vietnamese subjects. This SNP was genotyped in 490 simplex and 90 multiplex leprosy families comprising 704 patients (47% paucibacillary; 53% multibacillary). We observed significant under-transmission of the serine allele of the G396S polymorphism with leprosy per se (P = 0.036) and multibacillary leprosy (P = 0.034). In a sample of 384 Brazilian leprosy cases (51% paucibacillary; 49% multibacillary) and 399 healthy controls, we observed significant association of the glycine allele of the G396S polymorphism with leprosy per se (P = 0.016) and multibacillary leprosy (P = 0.023). In addition, we observed a significant association of exon 7 encoded amino acid haplotypes with leprosy per se (P = 0.012) and multibacillary leprosy (P = 0.004). Next, we tested HEK293 cells over-expressing MR constructs (293-MR) with three exon 7 haplotypes of MRC1 for their ability to bind and internalize ovalbumin and zymosan, two classical MR ligands. No difference in uptake was measured between the variants. In addition, 293-MR failed to bind and internalize viable Mycobacterium leprae and BCG. We propose that the MR-M. leprae interaction is modulated by an accessory host molecule of unknown identity.
Collapse
Affiliation(s)
- Andrea Alter
- Department of Medicine, McGill Centre for the Study of Host Resistance, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids. Infect Immun 2009; 78:518-26. [PMID: 19841083 DOI: 10.1128/iai.00257-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of pathogenic mycobacteria to block phagosome-lysosome fusion is critical for its pathogenesis. The molecules expressed by mycobacteria that inhibit phagosome maturation and the mechanism of this inhibition have been extensively studied. Recent work has indicated that mannosylated lipoarabinomannan (ManLAM) isolated from Mycobacterium tuberculosis can function to delay phagosome-lysosome fusion and that this delay requires the interaction of ManLAM with the mannose receptor (MR). However, the molecules expressed by other pathogenic mycobacteria that function to inhibit phagosome maturation have not been well described. In the present study, we show that phagosomes containing silica beads coated with glycopeptidolipids (GPLs), a major surface component of Mycobacterium avium, showed limited acidification and delayed recruitment of late endosomal/lysosomal markers compared to those of phosphatidylcholine-coated beads. The carbohydrate component of the GPLs was required, as beads coated only with the lipopeptide core failed to delay phagosome-lysosome fusion. Moreover, the ability of GPLs to delay phagosome maturation was dependent on the macrophage expression of the MR. Using CHO cells expressing the MR, we confirmed that the GPLs bind this receptor. Finally, human monocyte-derived macrophages knocked down for MR expression showed increased M. avium phagosome-lysosome fusion relative to control cells. Together, the data indicate that GPLs can function to delay phagosome-lysosome fusion and suggest that GPLs, like ManLAM, work through the MR to mediate this activity.
Collapse
|
24
|
Influence of the mannose receptor in host immune responses. Immunobiology 2009; 214:554-61. [PMID: 19162368 DOI: 10.1016/j.imbio.2008.11.004] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 01/22/2023]
Abstract
Mannose receptor (MR) is a C-type lectin primarily expressed by macrophages and dendritic cells. Its three distinct extracellular binding sites recognise a wide range of both endogenous and exogenous ligands, therefore MR has been implicated in both homeostatic processes and pathogen recognition. However, the function of MR in host defence is not yet clearly understood as MR-deficient animals do not display enhanced susceptibility to pathogens bearing MR ligands. This scenario is even more complex when considering the role of MR in innate immune activation as, even though no intracellular signalling motif has been identified at its cytoplasmic tail, MR has been shown to be essential for cytokine production, both pro-inflammatory and anti-inflammatory. Furthermore, MR might interact with other canonical pattern recognition receptors in order to mediate intracellular signalling. In this review, we have summarised recent observations relating to MR function in immune responses and focused on its participation in phagocytosis, antigen processing and presentation, cell migration and intracellular signalling.
Collapse
|
25
|
Schorey JS, Sweet L. The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 2008; 18:832-41. [PMID: 18723691 DOI: 10.1093/glycob/cwn076] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycopeptidolipids (GPLs) are a class of glycolipids produced by several nontuberculosis-causing members of the Mycobacterium genus including pathogenic and nonpathogenic species. GPLs are expressed in different forms with production of highly antigenic, typeable serovar-specific GPLs in members of the Mycobacterium avium complex (MAC). M. avium and M. intracellulare, which comprise this complex, are slow-growing mycobacteria noted for producing disseminated infections in AIDS patients and pulmonary infections in non-AIDS patients. Previous studies have defined the gene cluster responsible for GPL biosynthesis and more recent work has characterized the function of the individual genes. Current research has also focused on the GPL's role in colony morphology, sliding motility, biofilm formation, immune modulation and virulence. These topics, along with new information on the enzymes involved in GPL biosynthesis, are the subject of this review.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health and Infectious Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
26
|
Expression of CD64, CD206, and RAGE in Adherent Cells of Diabetic Patients Infected with Mycobacterium tuberculosis. Arch Med Res 2008; 39:306-11. [DOI: 10.1016/j.arcmed.2007.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/29/2007] [Indexed: 11/23/2022]
|
27
|
Endocytosis mechanisms and the cell biology of antigen presentation. Curr Opin Immunol 2008; 20:89-95. [DOI: 10.1016/j.coi.2007.12.002] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/06/2007] [Indexed: 12/30/2022]
|
28
|
Fujiwara N, Nakata N, Maeda S, Naka T, Doe M, Yano I, Kobayashi K. Structural characterization of a specific glycopeptidolipid containing a novel N-acyl-deoxy sugar from mycobacterium intracellulare serotype 7 and genetic analysis of its glycosylation pathway. J Bacteriol 2006; 189:1099-108. [PMID: 17122347 PMCID: PMC1797286 DOI: 10.1128/jb.01471-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nontuberculous Mycobacterium avium-Mycobacterium intracellulare complex (MAC) is distributed ubiquitously in the environment and is an important cause of respiratory and lymphatic disease in humans and animals. These species produce polar glycopeptidolipids (GPLs), and of particular interest is their serotype-specific antigenicity. Structurally, GPLs contain an N-acylated tetrapeptide-amino alcohol core that is glycosylated at the C terminal with 3,4-di-O-methyl rhamnose and at the d-allo-threonine with a 6-deoxy-talose. This serotype nonspecific GPL is found in all MAC species. The serotype-specific GPLs are further glycosylated with a variable haptenic oligosaccharide at 6-deoxy-talose. At present, 31 distinct serotype-specific GPLs have been identified on the basis of oligosaccharide composition, and the complete structures of 14 serotype-specific GPLs have been defined. It is considered that the modification of the GPL structure plays an important role in bacterial physiology, pathogenesis, and host immune responses. In this study, we defined the complete structure of a novel serotype 7 GPL that has a unique terminal amido sugar. The main molecular mass is 1,874, and attached to the tetrapeptide-amino alcohol core is the serotype 7-specific oligosaccharide unit of 4-2'-hydroxypropanoyl-amido-4,6-dideoxy-2-O-methyl-beta-hexose-(1-->3)-alpha-l-rhamnose-(1-->3)-alpha-l-rhamnose-(1-->3)-alpha-l-rhamnose-(1-->2)-alpha-l-6-deoxy-talose. Moreover, we isolated and characterized the serotype 7-specific gene cluster involved in glycosylation of the oligosaccharide. Nine open reading frames (ORFs) were observed in the cluster. Based on the sequence homology, the ORFs are thought to participate in the biosynthesis of the serotype 7 GPL.
Collapse
Affiliation(s)
- Nagatoshi Fujiwara
- Department of Host Defense, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Osaka 545-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Freeman R, Geier H, Weigel KM, Do J, Ford TE, Cangelosi GA. Roles for cell wall glycopeptidolipid in surface adherence and planktonic dispersal of Mycobacterium avium. Appl Environ Microbiol 2006; 72:7554-8. [PMID: 17012594 PMCID: PMC1694245 DOI: 10.1128/aem.01633-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic pathogen Mycobacterium avium is a significant inhabitant of biofilms in drinking water distribution systems. M. avium expresses on its cell surface serovar-specific glycopeptidolipids (ssGPLs). Studies have implicated the core GPL in biofilm formation by M. avium and by other Mycobacterium species. In order to test this hypothesis in a directed fashion, three model systems were used to examine biofilm formation by mutants of M. avium with transposon insertions into pstAB (also known as nrp and mps). pstAB encodes the nonribosomal peptide synthetase that catalyzes the synthesis of the core GPL. The mutants did not adhere to polyvinyl chloride plates; however, they adhered well to plastic and glass chamber slide surfaces, albeit with different morphologies from the parent strain. In a model that quantified surface adherence under recirculating water, wild-type and pstAB mutant cells accumulated on stainless steel surfaces in equal numbers. Unexpectedly, pstAB mutant cells were >10-fold less abundant in the recirculating-water phase than parent strain cells. These observations show that GPLs are directly or indirectly required for colonization of some, but by no means all, surfaces. Under some conditions, GPLs may play an entirely different role by facilitating the survival or dispersal of nonadherent M. avium cells in circulating water. Such a function could contribute to waterborne M. avium infection.
Collapse
Affiliation(s)
- Robert Freeman
- Seattle Biomedical Research Institute, 307 Westlake Avenue N, Suite 500, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|