1
|
Fujii T, Kuzuya T, Kondo N, Funasaka K, Ohno E, Hirooka Y, Tochio T. Altered intestinal Streptococcus anginosus and 5α-reductase gene levels in patients with hepatocellular carcinoma and elevated Bacteroides stercoris in atezolizumab/bevacizumab non-responders. J Med Microbiol 2024; 73. [PMID: 39240069 DOI: 10.1099/jmm.0.001878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Introduction. Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide.Gap statement. Monitoring of HCC and predicting its immunotherapy responses are challenging.Aim. This study explored the potential of the gut microbiome for HCC monitoring and predicting HCC immunotherapy responses.Methods. DNA samples were collected from the faeces of 22 patients with HCC treated with atezolizumab/bevacizumab (Atz/Bev) and 85 healthy controls. The gut microbiome was analysed using 16S rRNA next-generation sequencing and quantitative PCR (qPCR).Results. The microbiomes of patients with HCC demonstrated significant enrichment of Lactobacillus, particularly Lactobacillus fermentum, and Streptococcus, notably Streptococcus anginosus. Comparative analysis between Atz/Bev responders (R) and non-responders (NR) revealed a higher abundance of Bacteroides stercoris in the NR group and Bacteroides coprocola in the R group. Using qPCR analysis, we observed elevated levels of S. anginosus and reduced levels of 5α-reductase genes, essential for the synthesis of isoallolithocholic acid, in HCC patients compared to controls. Additionally, the analysis confirmed a significantly lower abundance of B. stercoris in the Atz/Bev R group relative to the NR group.Conclusions. The gut microbiome analysis and specific gene quantification via qPCR could provide a rapid, less invasive, and cost-effective approach for assessing the increased risk of HCC, monitoring patient status, and predicting immunotherapy responses.
Collapse
Affiliation(s)
- Tadashi Fujii
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Aichi, Japan
- BIOSIS Lab. Co. Ltd., Aichi, Japan
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
| | | | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Aichi, Japan
- BIOSIS Lab. Co. Ltd., Aichi, Japan
| | - Takumi Tochio
- Department of Gastroenterology and Hepatology, Fujita Health University, Aichi, Japan
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Aichi, Japan
- BIOSIS Lab. Co. Ltd., Aichi, Japan
| |
Collapse
|
2
|
Xue X, Wang S, Li Y, Liu Z, Zhang J, Hu Z, Fan C, Zhang X, Li H, Li J. A comparative study of sampling methods in the detection of esophageal cancer-related microbiota. Microbiol Spectr 2024; 12:e0038924. [PMID: 38980013 PMCID: PMC11302015 DOI: 10.1128/spectrum.00389-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Esophageal cancer (EC) is a multifaceted disease. Our understanding of the involvement of esophageal microbiota in its pathogenesis and progression is limited, which is due to the lack of proper endoscopic sampling methods. Hereby, we conducted a comparative analysis of paired samples obtained through endoscopic brushing and cytosponge, aiming at assessing the feasibility of using cytosponge as a minimally invasive sampling way for studying esophageal microbiota. Our findings suggest that cytosponge sampling yielded significantly superior community richness and diversity compared to endoscopic brushing in both controls (non-cancerous) and EC individuals. The analysis of beta-diversity revealed distinct microbial community pattern in the genus diversity between the two sampling methods, underscoring the importance of selecting appropriate sampling methods to effectively characterize the esophageal microbiota. Specifically, Lactococcus and Serratia showed higher abundance in the samples collected by endoscopic brushing, while Alloprevotella and Leptotrichia were more enriched in the samples collected by cytosponge. These differences in dominant microbes were associated with metabolic pathways that particularly were related to host inflammation, such as pyruvate and glucose metabolisms. Notably, the phylogenetic levels of the microbiota indicated varied explanatory power for different detection purposes. This study underscores the substantial impact of sampling method selection on the acquisition of esophageal microbiota associated with the EC development, encompassing considerations of both abundance and diversity. This highlights the significance of selecting an appropriate sampling method for investigating the esophageal microbial status and studying the micro-environment in EC-related individuals. IMPORTANCE This study addresses a critical issue in esophageal cancer study by comparing two different sampling methods, endoscopic brushing and cytosponge, for investigating the esophageal microbiota. Our work highlights the suitability of the cytosponge technique as a minimally invasive sampling method for studying the esophageal microbiota and emphasizes the importance of selecting an appropriate sampling method to characterize the microbial community. Our findings have significant implications for advancing the understanding of the role of the esophageal microbiota in cancer development and will inform future research and clinical approaches in this field.
Collapse
Affiliation(s)
- Xia Xue
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyu Wang
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yi Li
- Henan Key Laboratory of Helicobacter pylori & Microbiota and Gastrointestinal Cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenzhen Liu
- Department of Endoscopy Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jun Zhang
- Department of Endoscopy Center, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Ziqing Hu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, Indiana, USA
| | - Chengcheng Fan
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xiaojuan Zhang
- Scientific Research and Discipline Management Office, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongle Li
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jun Li
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
3
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
4
|
Senthil Kumar S, Gunda V, Reinartz DM, Pond KW, Thorne CA, Santiago Raj PV, Johnson MDL, Wilson JE. Oral streptococci S. anginosus and S. mitis induce distinct morphological, inflammatory, and metabolic signatures in macrophages. Infect Immun 2024; 92:e0053623. [PMID: 38289109 DOI: 10.1128/iai.00536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 03/13/2024] Open
Abstract
Oral streptococci, key players in oral biofilm formation, are implicated in oral dysbiosis and various clinical conditions, including dental caries, gingivitis, periodontal disease, and oral cancer. Specifically, Streptococcus anginosus is associated with esophageal, gastric, and pharyngeal cancers, while Streptococcus mitis is linked to oral cancer. However, no study has investigated the mechanistic links between these Streptococcus species and cancer-related inflammatory responses. As an initial step, we probed the innate immune response triggered by S. anginosus and S. mitis in RAW264.7 macrophages. These bacteria exerted time- and dose-dependent effects on macrophage morphology without affecting cell viability. Compared with untreated macrophages, macrophages infected with S. anginosus exhibited a robust proinflammatory response characterized by significantly increased levels of inflammatory cytokines and mediators, including TNF, IL-6, IL-1β, NOS2, and COX2, accompanied by enhanced NF-κB activation. In contrast, S. mitis-infected macrophages failed to elicit a robust inflammatory response. Seahorse Xfe96 analysis revealed an increased extracellular acidification rate in macrophages infected with S. anginosus compared with S. mitis. At the 24-h time point, the presence of S. anginosus led to reduced extracellular itaconate, while S. mitis triggered increased itaconate levels, highlighting distinct metabolic profiles in macrophages during infection in contrast to aconitate decarboxylase expression observed at the 6-h time point. This initial investigation highlights how S. anginosus and S. mitis, two Gram-positive bacteria from the same genus, can prompt distinct immune responses and metabolic shifts in macrophages during infection.IMPORTANCEThe surge in head and neck cancer cases among individuals devoid of typical risk factors such as Human Papilloma Virus (HPV) infection and tobacco and alcohol use sparks an argumentative discussion around the emerging role of oral microbiota as a novel risk factor in oral squamous cell carcinoma (OSCC). While substantial research has dissected the gut microbiome's influence on physiology, the oral microbiome, notably oral streptococci, has been underappreciated during mucosal immunopathogenesis. Streptococcus anginosus, a viridans streptococci group, has been linked to abscess formation and an elevated presence in esophageal cancer and OSCC. The current study aims to probe the innate immune response to S. anginosus compared with the early colonizer Streptococcus mitis as an important first step toward understanding the impact of distinct oral Streptococcus species on the host immune response, which is an understudied determinant of OSCC development and progression.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- The University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Venugopal Gunda
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Dakota M Reinartz
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- The University of Arizona Cancer Center, Tucson, Arizona, USA
| | - Kelvin W Pond
- The University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Curtis A Thorne
- The University of Arizona Cancer Center, Tucson, Arizona, USA
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Arizona, USA
| | | | - Michael D L Johnson
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- Valley Fever Center for Excellence, The University of Arizona Health Sciences, Tucson, Arizona, USA
- BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
- Asthma and Airway Disease Research Center, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Justin E Wilson
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
- The University of Arizona Cancer Center, Tucson, Arizona, USA
| |
Collapse
|
5
|
Aghili S, Rahimi H, Hakim LK, Karami S, Soufdoost RS, Oskouei AB, Alam M, Badkoobeh A, Golkar M, Abbasi K, Heboyan A, Hosseini ZS. Interactions Between Oral Microbiota and Cancers in the Aging Community: A Narrative Review. Cancer Control 2024; 31:10732748241270553. [PMID: 39092988 PMCID: PMC11378226 DOI: 10.1177/10732748241270553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The oral microbiome potentially wields significant influence in the development of cancer. Within the human oral cavity, an impressive diversity of more than 700 bacterial species resides, making it the second most varied microbiome in the body. This finely balanced oral microbiome ecosystem is vital for sustaining oral health. However, disruptions in this equilibrium, often brought about by dietary habits and inadequate oral hygiene, can result in various oral ailments like periodontitis, cavities, gingivitis, and even oral cancer. There is compelling evidence that the oral microbiome is linked to several types of cancer, including oral, pancreatic, colorectal, lung, gastric, and head and neck cancers. This review discussed the critical connections between cancer and members of the human oral microbiota. Extensive searches were conducted across the Web of Science, Scopus, and PubMed databases to provide an up-to-date overview of our understanding of the oral microbiota's role in various human cancers. By understanding the possible microbial origins of carcinogenesis, healthcare professionals can diagnose neoplastic diseases earlier and design treatments accordingly.
Collapse
Affiliation(s)
- Sara Aghili
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hussein Rahimi
- Student Research Committee, School of Dentistry, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | | | | | - Asal Bagherzadeh Oskouei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Artak Heboyan
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | | |
Collapse
|
6
|
Pratap Singh R, Kumari N, Gupta S, Jaiswal R, Mehrotra D, Singh S, Mukherjee S, Kumar R. Intratumoral Microbiota Changes with Tumor Stage and Influences the Immune Signature of Oral Squamous Cell Carcinoma. Microbiol Spectr 2023; 11:e0459622. [PMID: 37409975 PMCID: PMC10434029 DOI: 10.1128/spectrum.04596-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/11/2023] [Indexed: 07/07/2023] Open
Abstract
Characterization of the oral microbiota profile through various studies has shown an association between the microbiome and oral cancer; however, stage-specific determinants of dynamic changes in microbial communities of oral cancer remain elusive. Additionally, the influence of the intratumoral microbiota on the intratumoral immune system remains largely unexplored. Therefore, this study aims to stratify microbial abundance in the early-onset and subsequent stages of oral cancer and analyze their influence on clinical-pathological and immunological features. The microbiome composition of tissue biopsy samples was identified using 16S rRNA amplicon sequencing, while intratumoral and systemic immune profiling was done with flow cytometry and immunohistochemistry-based analysis. The bacterial composition differed significantly among precancer, early cancer, and late cancer stages with the enrichment of genera Capnocytophaga, Fusobacterium, and Treponema in the cancer group, while Streptococcus and Rothia were enriched in the precancer group. Late cancer stages were significantly associated with Capnocytophaga with high predicting accuracy, while Fusobacterium was associated with early stages of cancer. A dense intermicrobial and microbiome-immune network was observed in the precancer group. At the cellular level, intratumoral immune cell infiltration of B cells and T cells (CD4+ and CD8+) was observed with enrichment of the effector memory phenotype. Naive and effector subsets of tumor-infiltrating lymphocytes (TILs) and related gene expression were found to be distinctly associated with bacterial communities; most importantly, highly abundant bacterial genera of the tumor microenvironment were either negatively correlated or not associated with the effector lymphocytes, which led to the conclusion that the tumor microenvironment favors an immunosuppressive and nonimmunogenic microbiota. IMPORTANCE The gut microbiome has been explored extensively for its importance in the modulation of systemic inflammation and immune response; in contrast, the intratumoral microbiome is less studied for its influence on immunity in cancer. Given the established correlation between intratumoral lymphocyte infiltration and patient survival in cases of solid tumors, it was pertinent to explore the extrinsic factor influencing immune cell infiltration in the tumor. Modulation of intratumoral microbiota could have a beneficial effect on the antitumor immune response. This study stratifies the microbial profile of oral squamous cell carcinoma starting from precancer to late-stage cancer and provides evidence for their immunomodulatory role in the tumor microenvironment. Our results suggest combining microbiome study with immunological signatures of tumors for their prognostic and diagnostic application.
Collapse
Affiliation(s)
- Raghwendra Pratap Singh
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Naina Kumari
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Riddhi Jaiswal
- Department of Pathology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Sudhir Singh
- Department of Radiology, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Souvik Mukherjee
- Human Microbiome Research Laboratory, National Institute of Biomedical Genomics, Kalyani, West-Bengal, India
| | - Rashmi Kumar
- Immunology Laboratory, Council for Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
7
|
Li Z, Fu R, Huang X, Wen X, Zhang L. A decade of progress: bibliometric analysis of trends and hotspots in oral microbiome research (2013-2022). Front Cell Infect Microbiol 2023; 13:1195127. [PMID: 37249977 PMCID: PMC10213461 DOI: 10.3389/fcimb.2023.1195127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Background Over the past decade, a plethora of studies have delved into the oral microbiome. Our objective was to evaluate the trends in oral microbiome research employing a quantitative approach. Materials and methods We extracted clinical studies on the oral microbiome published between 2013 and 2022 from the Web of Science database, yielding 3024 articles. The assembled literature was visually scrutinized using VOSviewer 1.6.18, Citespace 6.1.6, Pajek, Scimago Graphica, and other specialized software to assess authors, institutions, countries, journals, co-cited literature, keywords, genes, and diseases. Results Our analysis identified a total of 3024 articles. The volume and rate of annual publications steadily increased, with research interest in the oral microbiome progressively intensifying. The United States, China, and the UK contributed the highest number of publications. Growth rates of publications varied among countries over time. The Forsyth Institute emerged as the most collaborative institution, boasting the highest number of relevant papers (135) and securing the top rank, followed by Sichuan University and Harvard University. Paster Bruce J, Zhou Xuedong, and He Xuesong were pioneers in the field of oral microbiome research. This analysis demonstrates that the homeostatic balance of the oral microbiome, advanced microbial sequencing technology, connections with gut microbiota, and tumorigenesis, including oral cancer, have become emerging topics in the oral microbiome field. Conclusions This study delineated a comprehensive landscape of hotspots and frontiers in oral microbiome research, thus facilitating the identification of interdisciplinary advancements. We sincerely hope that our bibliometric analysis will enable researchers to leverage the oral microbiome to ultimately improve human oral health.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Rao Fu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
- Shanghai Center of Head and Neck Oncology Clinical and Translational Science, Shanghai, China
| |
Collapse
|
8
|
Li R, Xiao L, Gong T, Liu J, Li Y, Zhou X, Li Y, Zheng X. Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis. Mol Oral Microbiol 2023; 38:9-22. [PMID: 36420924 DOI: 10.1111/omi.12403] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Squamous cell carcinoma is the most common malignant tumor of the oral cavity and its adjacent sites, which endangers the physical and mental health of patients and has a complex etiology. Chronic infection is considered to be a risk factor in cancer development. Evidence suggests that periodontal pathogens, such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Treponema denticola, are associated with oral squamous cell carcinoma (OSCC). They can stimulate tumorigenesis by promoting epithelial cells proliferation while inhibiting apoptosis and regulating the inflammatory microenvironment. Candida albicans promotes OSCC progression and metastasis through multiple mechanisms. Moreover, oral human papillomavirus (HPV) can induce oropharyngeal squamous cell carcinoma (OPSCC). There is evidence that HPV16 can integrate with host cells' DNA and activate oncogenes. Additionally, oral dysbiosis and synergistic effects in the oral microbial communities can promote cancer development. In this review, we will discuss the biological characteristics of oral microbiome associated with OSCC and OPSCC and then highlight the mechanisms by which oral microbiome is involved in oral oncogenesis, tumor progression, and metastasis. These findings may have positive implications for early diagnosis and treatment of oral cancer.
Collapse
Affiliation(s)
- Ruohan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis. Semin Cancer Biol 2022; 86:633-642. [PMID: 34743032 DOI: 10.1016/j.semcancer.2021.11.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023]
Abstract
Despite decades of research, cancer continues to be a major global health concern. In recent years, the role played by microorganisms in the development and progression of cancer has come under increased scrutiny. The aim of the present review is to highlight the main associations between members of the human oral microbiota and various cancers. The PubMed database was searched for available literature to outline the current state of understanding regarding the role of the oral microbiota and a variety of human cancers. Oral squamous cell carcinoma (OSCC) is associated with carriage of a number of oral bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.), certain viruses (e.g., human papilloma virus, human herpes virus 8, herpes simplex virus 1 and Epstein-Barr virus) and yeast (Candida albicans). Moreover, members of the oral microbiota are associated with cancers of the esophagus, stomach, pancreas, colon/rectum and lung. Furthermore, the present review outlines a number of the carcinogenic mechanisms underlying the presented microbial associations with cancer. Such information may one day help clinicians to diagnose neoplastic diseases at earlier stages and prescribe treatments that take into account the possible microbial nature of carcinogenesis.
Collapse
Affiliation(s)
- Mark Stasiewicz
- Research Group of Medical Microbiology, Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| | - Tomasz M Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland.
| |
Collapse
|
10
|
Kuryłek A, Stasiak M, Kern-Zdanowicz I. Virulence factors of Streptococcus anginosus - a molecular perspective. Front Microbiol 2022; 13:1025136. [PMID: 36386673 PMCID: PMC9643698 DOI: 10.3389/fmicb.2022.1025136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 07/21/2023] Open
Abstract
Streptococcus anginosus together with S. constellatus and S. intermedius constitute the Streptococcus anginosus group (SAG), until recently considered to be benign commensals of the human mucosa isolated predominantly from oral cavity, but also from upper respiratory, intestinal, and urogenital tracts. For years the virulence potential of SAG was underestimated, mainly due to complications in correct species identification and their assignment to the physiological microbiota. Still, SAG representatives have been associated with purulent infections at oral and non-oral sites resulting in abscesses formation and empyema. Also, life threatening blood infections caused by SAG have been reported. However, the understanding of SAG as potential pathogen is only fragmentary, albeit certain aspects of SAG infection seem sufficiently well described to deserve a systematic overview. In this review we summarize the current state of knowledge of the S. anginosus pathogenicity factors and their mechanisms of action.
Collapse
|
11
|
Zi M, Zhang Y, Hu C, Zhang S, Chen J, Yuan L, Cheng X. A literature review on the potential clinical implications of streptococci in gastric cancer. Front Microbiol 2022; 13:1010465. [PMID: 36386672 PMCID: PMC9643750 DOI: 10.3389/fmicb.2022.1010465] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/03/2022] [Indexed: 10/29/2023] Open
Abstract
Streptococcus is widely found in nature and the human body, and most species are not pathogenic. In recent years, studies have found that Streptococcus is associated with gastric cancer. Streptococcus was found to be enriched in the oral cavity, stomach and intestine of gastric cancer patients and found to be increased in gastric cancer tissues, suggesting that Streptococcus may be the pathogenic bacteria underlying gastric cancer. This review discusses the discovery of Streptococcus, the relationship between Streptococcus and gastric cancer, and the possible carcinogenic mechanism of Streptococcus and summarizes the progress of the research on the role of Streptococcus in gastric cancer to provide new ideas for the early detection, diagnosis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Mengli Zi
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanqiang Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Can Hu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jinxia Chen
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
12
|
Song X, Greiner-Tollersrud OK, Zhou H. Oral Microbiota Variation: A Risk Factor for Development and Poor Prognosis of Esophageal Cancer. Dig Dis Sci 2022; 67:3543-3556. [PMID: 34505256 DOI: 10.1007/s10620-021-07245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that oral microbiota play an important role in the esophageal cancer (EC) initiation and progression, suggesting that oral microbiota is a new risk factor for EC. The composition of the microbes inhabiting the oral cavity could be perturbed with continuous factors such as smoking, alcohol consumption, and inflammation. The microbial alteration involves the decrease of beneficial species and the increase of pathogenic species. Experimental evidences suggest a significant role of oral commensal organisms in protecting hosts against EC. By contrast, oral pathogens, especially Porphyromonas gingivalis and Fusobacterium nucleatum, give rise to the risk for developing EC through their pro-inflammatory and pro-tumorigenic activities. The presences of oral dysbiosis, microbial biofilm, and periodontitis in EC patients are found to be associated with invasive cancer phenotypes and poor prognosis. The mechanism of oral bacteria in EC progression is complex, which involves a combination of cytokines, chemokines, oncogenic signaling pathways, cell surface receptors, the degradation of extracellular matrix, and cell apoptosis. From a clinical perspective, good oral hygiene, professional oral care, and rational use of antibiotics bring positive impacts on oral microbial balance, thus helping individuals reduce the risk of EC, inhibiting postoperative complications among EC patients, and improving the efficiency of chemoradiotherapy. However, current oral hygiene practices mainly focus on the oral bacteria-based predictive and preventive purposes. It is still far from implementing microbiota-dependent regulation as a therapy for EC. Further explorations are needed to render oral microbiota a potential target for treating EC.
Collapse
Affiliation(s)
- Xiaobo Song
- Department of Microbiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China.,Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Ole K Greiner-Tollersrud
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
13
|
Pignatelli P, Romei FM, Bondi D, Giuliani M, Piattelli A, Curia MC. Microbiota and Oral Cancer as A Complex and Dynamic Microenvironment: A Narrative Review from Etiology to Prognosis. Int J Mol Sci 2022; 23:ijms23158323. [PMID: 35955456 PMCID: PMC9368704 DOI: 10.3390/ijms23158323] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
A complex balanced equilibrium of the bacterial ecosystems exists in the oral cavity that can be altered by tobacco smoking, psychological stressors, bad dietary habit, and chronic periodontitis. Oral dysbiosis can promote the onset and progression of oral squamous cell carcinoma (OSCC) through the release of toxins and bacterial metabolites, stimulating local and systemic inflammation, and altering the host immune response. During the process of carcinogenesis, the composition of the bacterial community changes qualitatively and quantitatively. Bacterial profiles are characterized by targeted sequencing of the 16S rRNA gene in tissue and saliva samples in patients with OSCC. Capnocytophaga gingivalis, Prevotella melaninogenica, Streptococcus mitis, Fusobacterium periodonticum, Prevotella tannerae, and Prevotella intermedia are the significantly increased bacteria in salivary samples. These have a potential diagnostic application to predict oral cancer through noninvasive salivary screenings. Oral lactic acid bacteria, which are commonly used as probiotic therapy against various disorders, are valuable adjuvants to improve the response to OSCC therapy.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Via Caserta 6, 00161 Rome, Italy
- Correspondence:
| | - Federica Maria Romei
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Michele Giuliani
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences (Unicamillus), 00131 Rome, Italy;
- Fondazione Villa Serena per la Ricerca, 65013 Città Sant’Angelo, Italy
- Casa di Cura Villa Serena, 65013 Città Saint’Angelo, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (F.M.R.); (M.C.C.)
| |
Collapse
|
14
|
Meta-analysis of mucosal microbiota reveals universal microbial signatures and dysbiosis in gastric carcinogenesis. Oncogene 2022; 41:3599-3610. [PMID: 35680985 PMCID: PMC9270228 DOI: 10.1038/s41388-022-02377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/17/2022]
Abstract
The consistency of the associations between gastric mucosal microbiome and gastric cancer across studies remained unexamined. We aimed to identify universal microbial signatures in gastric carcinogenesis through a meta-analysis of gastric microbiome from multiple studies. Compositional and ecological profiles of gastric microbes across stages of gastric carcinogenesis were significantly altered. Meta-analysis revealed that opportunistic pathobionts Fusobacterium, Parvimonas, Veillonella, Prevotella and Peptostreptococcus were enriched in GC, while commensals Bifidobacterium, Bacillus and Blautia were depleted in comparison to SG. The co-occurring correlation strengths of GC-enriched bacteria were increased along disease progression while those of GC-depleted bacteria were decreased. Eight bacterial taxa, including Veillonella, Dialister, Granulicatella, Herbaspirillum, Comamonas, Chryseobacterium, Shewanella and Helicobacter, were newly identified by this study as universal biomarkers for robustly discriminating GC from SG, with an area under the curve (AUC) of 0.85. Moreover, H. pylori-positive samples exhibited reduced microbial diversity, altered microbiota community and weaker interactions among gastric microbes. Our meta-analysis demonstrated comprehensive and generalizable gastric mucosa microbial features associated with histological stages of gastric carcinogenesis, including GC associated bacteria, diagnostic biomarkers, bacterial network alteration and H. pylori influence.
Collapse
|
15
|
Zhou CB, Pan SY, Jin P, Deng JW, Xue JH, Ma XY, Xie YH, Cao H, Liu Q, Xie WF, Zou XP, Sheng JQ, Wang BM, Wang H, Ren JL, Liu SD, Sun YW, Meng XJ, Zhao G, Chen JX, Cui Y, Wang PQ, Guo HM, Yang L, Chen X, Ding J, Yang XN, Wang XK, Qian AH, Hou LD, Wang Z, Chen YX, Fang JY. Fecal Signatures of Streptococcus anginosus and Streptococcus constellatus for Noninvasive Screening and Early Warning of Gastric Cancer. Gastroenterology 2022; 162:1933-1947.e18. [PMID: 35167866 DOI: 10.1053/j.gastro.2022.02.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/25/2022] [Accepted: 02/06/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Most patients with gastric cancer (GCa) are diagnosed at an advanced stage. We aimed to investigate novel fecal signatures for clinical application in early diagnosis of GCa. METHODS This was an observational study that included 1043 patients from 10 hospitals in China. In the discovery cohort, 16S ribosomal RNA gene analysis was performed in paired samples (tissues and feces) from patients with GCa and chronic gastritis (ChG) to determine differential abundant microbes. Their relative abundances were detected using quantitative real-time polymerase chain reaction to test them as bacterial candidates in the training cohort. Their diagnostic efficacy was validated in the validation cohort. RESULTS Significant enrichments of Streptococcus anginosus (Sa) and Streptococcus constellatus (Sc) in GCa tumor tissues (P < .05) and feces (P < .0001) were observed in patients with intraepithelial neoplasia, early and advanced GCa. Either the signature parallel test Sa∪Sc or single signature Sa/Sc demonstrated superior sensitivity (Sa: 75.6% vs 72.1%, P < .05; Sc: 84.4% vs 64.0%, P < .001; and Sa∪Sc: 91.1% vs 81.4%, P < .01) in detecting early GCa compared with advanced GCa (specificity: Sa: 84.0% vs 83.9%, Sc: 70.4% vs 82.3%, and Sa∪Sc: 64.0% vs 73.4%). Fecal signature Sa∪Sc outperformed Sa∪CEA/Sc∪CEA in the discrimination of advanced GCa (sensitivity: 81.4% vs 74.2% and 81.4% vs 72.3%, P < .01; specificity: 73.4% vs 81.0 % and 73.4% vs 81.0%). The performance of Sa∪Sc in the diagnosis of both early and advanced GCa was verified in the validation cohort. CONCLUSION Fecal Sa and Sc are noninvasive, accurate, and sensitive signatures for early warning in GCa. (ClinicalTrials.gov, Number: NCT04638959).
Collapse
Affiliation(s)
- Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Si-Yuan Pan
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Jin
- Department of Gastroenterology, The First Medical Center of Chinese People's Liberation Army General Hospital, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jia-Wen Deng
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Hui Xue
- Department of Clinical Research, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin-Yue Ma
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan-Hong Xie
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Ping Zou
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian-Qiu Sheng
- Department of Gastroenterology, The First Medical Center of Chinese People's Liberation Army General Hospital, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hong Wang
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Si-De Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun-Wei Sun
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Jun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Xian Chen
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Cui
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pei-Qin Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hui-Min Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lang Yang
- Department of Gastroenterology, The First Medical Center of Chinese People's Liberation Army General Hospital, The Seventh Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jia Ding
- Department of Gastroenterology, Shanghai Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Xiao-Ning Yang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Xin-Ke Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ai-Hua Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Dan Hou
- Department of Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; NHC Key Laboratory of Digestive Diseases; State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
16
|
Patel A, Patel S, Patel P, Tanavde V. Saliva Based Liquid Biopsies in Head and Neck Cancer: How Far Are We From the Clinic? Front Oncol 2022; 12:828434. [PMID: 35387114 PMCID: PMC8977527 DOI: 10.3389/fonc.2022.828434] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck cancer (HNC) remains to be a major cause of mortality worldwide because of confounding factors such as late-stage tumor diagnosis, loco-regional aggressiveness and distant metastasis. The current standardized diagnostic regime for HNC is tissue biopsy which fails to determine the thorough tumor dynamics. Therefore, due to the ease of collection, recent studies have focused on the utility of saliva based liquid biopsy approach for serial sampling, early diagnosis, prognosis, longitudinal monitoring of disease progression and treatment response in HNC patients. Saliva collection is convenient, non-invasive, and pain-free and offers repetitive sampling along with real time monitoring of the disease. Moreover, the detection, isolation and analysis of tumor-derived components such as Circulating Tumor Nucleic Acids (CTNAs), Extracellular Vesicles (EVs), Circulating Tumor Cells (CTCs) and metabolites from saliva can be used for genomic and proteomic examination of HNC patients. Although, these circulatory biomarkers have a wide range of applications in clinical settings, no validated data has yet been established for their usage in clinical practice for HNC. Improvements in isolation and detection technologies and next-generation sequencing analysis have resolved many technological hurdles, allowing a wide range of saliva based liquid biopsy application in clinical backgrounds. Thus, in this review, we discussed the rationality of saliva as plausible biofluid and clinical sample for diagnosis, prognosis and therapeutics of HNC. We have described the molecular components of saliva that could mirror the disease status, recent outcomes of salivaomics associated with HNC and current technologies which have the potential to improve the clinical value of saliva in HNC.
Collapse
Affiliation(s)
- Aditi Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Shanaya Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Parina Patel
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Vivek Tanavde
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India.,Bioinformatics Institute, Agency for Science Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
17
|
Sun QH, Zhang J, Shi YY, Zhang J, Fu WW, Ding SG. Microbiome changes in the gastric mucosa and gastric juice in different histological stages of Helicobacter pylori-negative gastric cancers. World J Gastroenterol 2022; 28:365-380. [PMID: 35110955 PMCID: PMC8771614 DOI: 10.3748/wjg.v28.i3.365] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The gastric microbiota in patients with gastric cancer (GC) has received increasing attention, but the profiling of the gastric microbiome through the histological stages of gastric tumorigenesis remains poorly understood, especially for patients with Helicobacter pylori-negative GC (HPNGC).
AIM To characterize microbial profiles of gastric mucosa and juice for HPNGC carcinogenesis and identify distinct taxa in precancerous lesions.
METHODS The 16S rRNA gene analysis was performed on gastric mucosa from 134 Helicobacter pylori-negative cases, including 56 superficial gastritis (SG), 9 atrophic gastritis (AG), 27 intestinal metaplasia (IM), 29 dysplasia (Dys), and 13 GC cases, to investigate differences in gastric microbial diversity and composition across the disease stages. In addition, paired gastric mucosa and juice samples from 18 SG, 18 IM, and 18 Dys samples were analyzed. α-Diversity was measured by Shannon and Chao1 indexes, and β-diversity was calculated using partial least squares discrimination analysis (PLS-DA). Differences in the microbial composition across disease stages in different sample types were assessed using the linear discriminant analysis effect size.
RESULTS The diversity and composition of the bacterial microbiota in the gastric mucosa changed progressively across stages of gastric carcinogenesis. The diversity of the gastric mucosa microbiota was found to be significantly lower in the IM and Dys groups than in the SG group, and the patients with GC had the lowest bacterial community richness (P < 0.05). Patients with IM and those with Dys had similar gastric mucosa microbiota profiles with Ralstonia and Rhodococcus as the predominant genera. Microbial network analysis showed that there was increasing correlation strength between IM and Dys (|correlation threshold|≥ 0.5, P < 0.05). GC and its precancerous lesions have distinguishable bacterial taxa; our results identified HPNGC-associated bacteria Streptococcaceae and Lactobacillaceae (P < 0.05). Additionally, across precancerous lesion stages from AG to Dys in Helicobacter pylori-negative patients, Burkholderiaceae abundance continuously increased, while Streptococcaceae and Prevotellaceae abundance presented a continuous downward trend. Furthermore, the microbial diversity was higher in gastric juice (P < 0.001) than in the mucosa, while PLS-DA revealed a statistically significant difference between the two groups (ANOSIM, P = 0.001). A significant difference in the microbial structure was identified, with Proteobacteria being more prevalent in the gastric mucosa and Firmicutes being more abundant in gastric juice.
CONCLUSION Our results provide insights into potential taxonomic biomarkers for HPNGC and its precancerous stages and assist in predicting the prognosis of IM and Dys based on the mucosal microbiota profile.
Collapse
Affiliation(s)
- Qing-Hua Sun
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Yan-Yan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 10019, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Wei-Wei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Shi-Gang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
18
|
Jiang Z, Wang J, Shen Z, Zhang Z, Wang S. Characterization of Esophageal Microbiota in Patients With Esophagitis and Esophageal Squamous Cell Carcinoma. Front Cell Infect Microbiol 2021; 11:774330. [PMID: 34858881 PMCID: PMC8632060 DOI: 10.3389/fcimb.2021.774330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial imbalances have been well elucidated in esophageal adenocarcinoma. However, few studies address the microbiota in esophageal squamous cell carcinoma (ESCC) and esophagitis (ES). We aimed to explore the association of esophageal microbiota with these patients. Esophageal tissues were obtained from healthy controls and ES and ESCC patients undergoing upper endoscopy. 16S rRNA gene sequencing was applied to analyze the microbiome. The α and β diversity differences were tested by Tukey test and partial least squares-discriminant analysis (PLS-DA), respectively. Linear discriminant analysis effect size (LEfSe) analysis was performed to assess taxonomic differences between groups. A total of 68 individuals were enrolled (control = 21, ES = 15, ESCC = 32). Microbial diversity was significantly different between the ESCC patients and healthy controls by Chao1 index, Shannon index, and PLS-DA. Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria were the five dominant bacterial phyla among the three groups. Megamonas, Collinsella, Roseburia, and Ruminococcus_2 showed a significantly continuous decreasing trend from the control group to the ESCC group at the genus level. When compared with the control group, decreased Fusobacteria at phylum level and Faecalibacterium, Bacteroides, Curvibacter, and Blautia at genus level were detected. ESCC samples also displayed a striking reduction of Bacteroidetes, Faecalibacterium, Bacteroides, and Blautia in comparison with the ES patients. LEfSe analysis indicated a greater abundance of Streptococcus, Actinobacillus, Peptostreptococcus, Fusobacterium, and Prevotella in the ESCC group. Our study suggests a potential association between esophageal microbiome dysbiosis and ESCC and provides insights into potential screening markers for esophageal cancer.
Collapse
Affiliation(s)
- Zongdan Jiang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Wang
- Department of Gastroenterology and Hepatology, Jinhu County People's Hospital, Huaian, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenyu Zhang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Marongiu L, Landry JJM, Rausch T, Abba ML, Delecluse S, Delecluse H, Allgayer H. Metagenomic analysis of primary colorectal carcinomas and their metastases identifies potential microbial risk factors. Mol Oncol 2021; 15:3363-3384. [PMID: 34328665 PMCID: PMC8637581 DOI: 10.1002/1878-0261.13070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
The paucity of microbiome studies at intestinal tissues has contributed to a yet limited understanding of potential viral and bacterial cofactors of colorectal cancer (CRC) carcinogenesis or progression. We analysed whole-genome sequences of CRC primary tumours, their corresponding metastases and matched normal tissue for sequences of viral, phage and bacterial species. Bacteriome analysis showed Fusobacterium nucleatum, Streptococcus sanguinis, F. Hwasookii, Anaerococcus mediterraneensis and further species enriched in primary CRCs. The primary CRC of one patient was enriched for F. alocis, S. anginosus, Parvimonas micra and Gemella sp. 948. Enrichment of Escherichia coli strains IAI1, SE11, K-12 and M8 was observed in metastases together with coliphages enterobacteria phage φ80 and Escherichia phage VT2φ_272. Virome analysis showed that phages were the most preponderant viral species (46%), the main families being Myoviridae, Siphoviridae and Podoviridae. Primary CRCs were enriched for bacteriophages, showing five phages (Enterobacteria, Bacillus, Proteus, Streptococcus phages) together with their pathogenic hosts in contrast to normal tissues. The most frequently detected, and Blast-confirmed, viruses included human endogenous retrovirus K113, human herpesviruses 7 and 6B, Megavirus chilensis, cytomegalovirus (CMV) and Epstein-Barr virus (EBV), with one patient showing EBV enrichment in primary tumour and metastases. EBV was PCR-validated in 80 pairs of CRC primary tumour and their corresponding normal tissues; in 21 of these pairs (26.3%), it was detectable in primary tumours only. The number of viral species was increased and bacterial species decreased in CRCs compared with normal tissues, and we could discriminate primary CRCs from metastases and normal tissues by applying the Hutcheson t-test on the Shannon indices based on viral and bacterial species. Taken together, our results descriptively support hypotheses on microorganisms as potential (co)risk factors of CRC and extend putative suggestions on critical microbiome species in CRC metastasis.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery – Cancer MetastasisMedical Faculty MannheimRuprecht‐Karls University of HeidelbergMannheimGermany
| | | | - Tobias Rausch
- Genomics Core FacilityEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Mohammed L. Abba
- Department of Experimental Surgery – Cancer MetastasisMedical Faculty MannheimRuprecht‐Karls University of HeidelbergMannheimGermany
| | | | | | - Heike Allgayer
- Department of Experimental Surgery – Cancer MetastasisMedical Faculty MannheimRuprecht‐Karls University of HeidelbergMannheimGermany
| |
Collapse
|
20
|
Singh D, Khan MA, Siddique HR. Therapeutic implications of probiotics in microbiota dysbiosis: A special reference to the liver and oral cancers. Life Sci 2021; 285:120008. [PMID: 34606851 DOI: 10.1016/j.lfs.2021.120008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
The microbiota plays an important role in maintaining the body's homeostasis. Imbalance in the microbiota is referred to as microbiota dysbiosis. Microbiota dysbiosis leads to pro-inflammatory immune response and progression of cancer- one of the leading causes of mortality globally. Accumulating evidence suggest the role of microbiota-dysbiosis in the liver and oral carcinogenesis and the therapeutic role of probiotic strains against these diseases. Probiotics are active microbial strains that have recently gained clinical importance due to their beneficial effects on the human body associated with the prevention and treatment of different diseases, including cancer. Multiple researchers have reported the use of probiotic strains in the modulation of microbiota and immune responses for cancer prevention and management. Clinical trials have also highlighted the efficacy of probiotic strains in reducing the side effects of microbiota dysbiosis related to cancer. In this context, the probiotic-mediated modulation to reverse microbiota dysbiosis is now considered one of the possible novel strategies for cancer prevention and management. In this article, we review the association between microbiota dysbiosis and liver/oral cancer. This review highlights the research advances on the anti-cancer activity of probiotic strains and their metabolites in the management of liver and oral cancers.
Collapse
Affiliation(s)
- Deepti Singh
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afsar Khan
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
21
|
Bakhti SZ, Latifi-Navid S. Oral microbiota and Helicobacter pylori in gastric carcinogenesis: what do we know and where next? BMC Microbiol 2021; 21:71. [PMID: 33663382 PMCID: PMC7934379 DOI: 10.1186/s12866-021-02130-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies causing death worldwide, and Helicobacter pylori is a powerful inducer of precancerous lesions and GC. The oral microbiota is a complex ecosystem and is responsible for maintaining homeostasis, modulating the immune system, and resisting pathogens. It has been proposed that the gastric microbiota of oral origin is involved in the development and progression of GC. Nevertheless, the causal relationship between oral microbiota and GC and the role of H. pylori in this relationship is still controversial. This study was set to review the investigations done on oral microbiota and analyze various lines of evidence regarding the role of oral microbiota in GC, to date. Also, we discussed the interaction and relationship between H. pylori and oral microbiota in GC and the current understanding with regard to the underlying mechanisms of oral microbiota in carcinogenesis. More importantly, detecting the patterns of interaction between the oral cavity microbiota and H. pylori may render new clues for the diagnosis or screening of cancer. Integration of oral microbiota and H. pylori might manifest a potential method for the assessment of GC risk. Hence it needs to be specified the patterns of bacterial transmission from the oral cavity to the stomach and their interaction. Further evidence on the mechanisms underlying the oral microbiota communities and how they trigger GC may contribute to the identification of new prevention methods for GC. We may then modulate the oral microbiota by intervening with oral-gastric bacterial transmission or controlling certain bacteria in the oral cavity.
Collapse
Affiliation(s)
- Seyedeh Zahra Bakhti
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran.
| |
Collapse
|
22
|
Kadam S, Vandana M, Patwardhan S, Kaushik KS. Looking beyond the smokescreen: can the oral microbiome be a tool or target in the management of tobacco-associated oral cancer? Ecancermedicalscience 2021; 15:1179. [PMID: 33777172 PMCID: PMC7987485 DOI: 10.3332/ecancer.2021.1179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Indexed: 11/07/2022] Open
Abstract
A wide range of microbes inhabit the oral cavity, and bacterial and fungal communities most often exist as structured communities or biofilms. The use of tobacco alters the structure of the oral microbiome, including that of potentially malignant lesions, and the altered oral microbiome influences key microenvironmental changes such as chronic inflammation, secretion of carcinogenic toxins, cellular and tissue remodelling and suppression of apoptosis. Given this, it is clear that the bacterial and fungal biofilms in potentially malignant states are likely not passive entities, but could play a critical role in shaping potential malignant and carcinogenic conditions. This holds potential towards leveraging the oral microbiome for the management of tobacco-associated potentially malignant lesions and oral cancer. Here, we explore this line of investigation by reviewing the effects of tobacco in shaping the oral microbiome, and analyse the available evidence in the light of the microbiome of oral potentially malignant and cancerous lesions, and the role of dysbiosis in carcinogenesis. Finally, we discuss possible interventions and approaches using which the oral microbiome could be leveraged towards precision-based oral cancer therapeutics.
Collapse
Affiliation(s)
- Snehal Kadam
- Human-Relevant Infection Biology Group, Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Madhusoodhanan Vandana
- Human-Relevant Infection Biology Group, Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Sudhanshu Patwardhan
- Centre for Health Research and Education, University of Southampton Science Park, Chilworth, Hampshire SO16 7NP, UK
| | - Karishma S Kaushik
- Human-Relevant Infection Biology Group, Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
23
|
Pan F, Xu X, Zhang LL, Luo HJ, Chen Y, Long L, Wang X, Zhuang PT, Li EM, Xu LY. Dietary riboflavin deficiency induces genomic instability of esophageal squamous cells that is associated with gut microbiota dysbiosis in rats. Food Funct 2020; 11:10070-10083. [PMID: 33135706 DOI: 10.1039/d0fo01944e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SCOPE Epidemiologic evidence suggests that riboflavin (RBF) deficiency is a specific nutritional predisposition for esophageal cancer. The aim of this study is to investigate the potential roles of gut microbiota in esophageal tumorigenesis caused by the RBF deficiency. METHODS Male F344 rats were subcutaneously injected with the chemical carcinogen N-nitrosomethylbenzylamine (NMBA, 0.35 mg kg-1). Rats were assigned to 4 groups, denoted as R6 (normal RBF, 6 mg kg-1), R6N (normal RBF combined with NMBA), R6N → R0N (normal RBF conversion to RBF-deficiency), and R0N → R6N (RBF-deficiency conversion to normal RBF). Bacterial communities were analyzed based on high-throughput 16S rRNA gene sequencing. Oxidative DNA damage and double-strand break markers were studied by immunohistochemistry. RESULTS The R6N → R0N diet enhanced the incidence of esophageal intraepithelial neoplasia (EIN, 40 weeks 66.7% vs. 25 weeks 16.7%, P < 0.05). RBF deficiency and replenishment modulated the gut microbiota composition. The gut microbiota (e.g. Caulobacteraceae, Sphingomonas and Bradyrhizobium) affected xenobiotic biodegradation and the genomic instability of the host. Furthermore, the RBF deficiency aggravated oxidative DNA damage and DNA double-strand breaks (immunohistochemistry) in the esophageal epithelium, whereas the RBF replenishment had the opposite effect (P < 0.05, respectively). CONCLUSIONS RBF deficiency promotes NMBA-induced esophageal tumorigenesis, which is associated with gut microbiota-associated genomic instability, and offers new insights into the role of RBF deficiency in esophageal carcinogenesis.
Collapse
Affiliation(s)
- Feng Pan
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int J Mol Sci 2020; 21:ijms21218061. [PMID: 33137960 PMCID: PMC7662318 DOI: 10.3390/ijms21218061] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
Collapse
|
25
|
Preliminary insights into the impact of primary radiochemotherapy on the salivary microbiome in head and neck squamous cell carcinoma. Sci Rep 2020; 10:16582. [PMID: 33024215 PMCID: PMC7538973 DOI: 10.1038/s41598-020-73515-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Squamous cell carcinoma is the most common type of throat cancer. Treatment options comprise surgery, radiotherapy, and/or chemo(immuno)therapy. The salivary microbiome is shaped by the disease, and likely by the treatment, resulting in side effects caused by chemoradiation that severely impair patients’ well-being. High-throughput amplicon sequencing of the 16S rRNA gene provides an opportunity to investigate changes in the salivary microbiome in health and disease. In this preliminary study, we investigated alterations in the bacterial, fungal, and archaeal components of the salivary microbiome between healthy subjects and patients with head and neck squamous cell carcinoma before and close to the end point of chemoradiation (“after”). We enrolled 31 patients and 11 healthy controls, with 11 patients providing samples both before and after chemoradiation. Analysis revealed an effect on the bacterial and fungal microbiome, with a partial antagonistic reaction but no effects on the archaeal microbial community. Specifically, we observed an individual increase in Candida signatures following chemoradiation, whereas the overall diversity of the microbial and fungal signatures decreased significantly after therapy. Thus, our study indicates that the patient microbiome reacts individually to chemoradiation but has potential for future optimization of disease diagnostics and personalized treatments.
Collapse
|
26
|
Deo PN, Deshmukh R. Oral microbiome and oral cancer - The probable nexus. J Oral Maxillofac Pathol 2020; 24:361-367. [PMID: 33456248 PMCID: PMC7802843 DOI: 10.4103/jomfp.jomfp_20_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/18/2020] [Accepted: 06/08/2020] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma is one of the most common malignancies and is the leading cause of morbidity and mortality. The known risk factors for oral cancer are tobacco, alcohol consumption and betel quid chewing. Nutritional deficiencies and certain microorganisms are also associated with oral cancer. Oral cavity is a host to numerous microorganisms, majority of which are bacterial communities along with fungi and viruses. A possibility of the dysregulation of the oral microbiome cannot be ignored. Oral microbiome is defined as the collective genome of microorganisms that reside in the oral cavity. With the development of culture-independent techniques, the detection and identification of the bacteria which cannot be cultured has become possible. Revolution in technology has led to increased research in this area in an attempt to find the role of microbiome in health and disease. Before identifying the exact role the microbiome plays in the development of oral cancer, it is essential to profile the microbiome in healthy individuals and patients with oral cancer. It is essential to note that oral cancer may sometimes occur without any habit too!! This article is an attempt to review the role of oral microbiome in oral cancer with a focus on the bacteriome, its related studies and in brief about the omics technologies in understanding the microbiome.
Collapse
Affiliation(s)
- Priya Nimish Deo
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth (Deemed to be) University, Dental College and Hospital, Pune, Maharashtra, India
| | - Revati Deshmukh
- Department of Oral Pathology and Microbiology, Bharati Vidyapeeth (Deemed to be) University, Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
27
|
Zhang L, Liu Y, Zheng HJ, Zhang CP. The Oral Microbiota May Have Influence on Oral Cancer. Front Cell Infect Microbiol 2020; 9:476. [PMID: 32010645 PMCID: PMC6974454 DOI: 10.3389/fcimb.2019.00476] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The oral microbiota plays an important role in the human microbiome and human health, and imbalances between microbes and their hosts can lead to oral and systemic diseases and chronic inflammation, which is usually caused by bacteria and contributes to cancer. There may be a relationship between oral bacteria and oral squamous cell carcinoma (OSCC); however, this relationship has not been thoroughly characterized. Therefore, in this study, we compared the microbiota compositions between tumor sites and opposite normal tissues in buccal mucosal of 50 patients with OSCC using the 16S rDNA sequencing. Richness and diversity of bacteria were significantly higher in tumor sites than in the control tissues. Cancer tissues were enriched in six families (Prevotellaceae, Fusobacteriaceae, Flavobacteriaceae, Lachnospiraceae, Peptostreptococcaceae, and Campylobacteraceae) and 13 genera, including Fusobacterium, Alloprevotella and Porphyromonas. At the species level, the abundances of Fusobacterium nucleatum, Prevotella intermedia, Aggregatibacter segnis, Capnocytophaga leadbetteri, Peptostreptococcus stomatis, and another five species were significantly increased, suggesting a potential association between these bacteria and OSCC. Furthermore, the functional prediction revealed that genes involved in bacterial chemotaxis, flagellar assembly and lipopolysaccharide (LPS) biosynthesis which are associated with various pathological processes, were significantly increased in the OSCC group. Overall, oral bacterial profiles showed significant difference between cancer sites and normal tissue of OSCC patients, which might be onsidered diagnostic markers and treatment targets. Our study has been registered in the Chinese clinical trial registry (ChiCTR1900025253, http://www.chictr.org.cn/index.aspx).
Collapse
Affiliation(s)
- Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jun Zheng
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Chen Ping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Yokoyama A, Omori T, Yokoyama T. Changing trends in cancer incidence of upper aerodigestive tract and stomach in Japanese alcohol-dependent men (1993-2018). Cancer Med 2020; 9:837-846. [PMID: 31957322 PMCID: PMC6970038 DOI: 10.1002/cam4.2737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC), head and neck SCC (HNSCC), and gastric adenocarcinoma (GA) are frequently detected at an early stage using endoscopic screening in Japanese alcohol-dependent men. METHODS We performed endoscopic screening with esophageal iodine staining and oropharyngolaryngeal inspection in 7582 Japanese alcohol-dependent men (40-79 years) during 1993-2018, and retrospectively investigated their initial screening results. RESULTS The 2008-2018 screening showed lower detection rates for ESCC (2.6% vs 4.0%, P = .0009) and GA (0.5% vs 1.4%, P < .0001) for all age brackets, compared with the 1993-2007 screening. The HNSCC detection rate did not change (1.0% vs 1.1%). Multiple logistic regression analyses showed that the 2008-2018 screening had a reduced OR (95% CI) for ESCC (0.34 [0.25-0.47]) and GA (0.19 [0.10-0.35]), compared with the 1993-2007 screening. The reduction in H pylori infection is probably the main reason for the decrease in GA detection over time. Declining trends in pack-years and gastric atrophy and increasing trends in age and body mass index (BMI) were found over time. The presence of advanced gastric atrophy increased the risk for ESCC as well as GA. The inactive heterozygous aldehyde dehydrogenase-2*1/*2 genotype was a strong risk factor for ESCC, HNSCC, and GA. Fewer pack-years and a larger BMI decreased the ESCC risk. However, these confounders cannot fully explain why the incidence of ESCC has decreased markedly over the recent decade. CONCLUSIONS The detection rates of ESCC and GA have markedly decreased during the past decade in the alcohol-dependent population. The enigmatic declining trend of ESCC warrants research on this topic.
Collapse
Affiliation(s)
- Akira Yokoyama
- National Hospital Organization Kurihama Medical and Addiction CenterKanagawaJapan
| | - Tai Omori
- Endoscopy CenterKawasaki Municipal Ida HospitalKanagawaJapan
| | - Tetsuji Yokoyama
- Department of Health PromotionNational Institute of Public HealthSaitamaJapan
| |
Collapse
|
29
|
Panda M, Rai AK, Rahman T, Das A, Das R, Sarma A, Kataki AC, Chattopadhyay I. Alterations of salivary microbial community associated with oropharyngeal and hypopharyngeal squamous cell carcinoma patients. Arch Microbiol 2019; 202:785-805. [PMID: 31832691 DOI: 10.1007/s00203-019-01790-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
The highest number (35.1% of global incident cases) of new oropharyngeal (OP) and hypopharyngeal (HP) cancer cases was reported in South-Central Asia. The highest incidence of HP cancer in India was reported in East Khasi Hills District of Meghalaya, Aizawl District of Mizoram, and Kamrup Urban District of Assam. HP and OP cancer showed the highest mortality rate, worst prognoses and the highest rate of nodal metastases and distant metastases. Thus, research is required to detect specific biomarkers for early prevention and diagnosis for these cancers. Oral microbiome signatures in saliva are considered as a potential diagnostic biomarker for OP and HP cancer. Bacterial profile alterations in OP and HP cancer have not been reported in India population, to establish the association of oral bacteria in the progression of OP and HP cancer; we studied bacterial communities in saliva of eight OP and seven HP cancer patients as compared to healthy controls using 16S rRNA V3-V4 region sequencing. The higher abundance of Haemophilus parainfluenzae, Haemophilus influenzae and Prevotella copri and lower abundance of Rothia mucilaginosa, Aggregatibacter segnis, Veillonella dispar, Prevotella nanceiensis, Rothia aeria, Capnocytophaga ochracea, Neisseria bacilliformis, Prevotella nigrescens and Selenomonas noxia in saliva of OP and HP cancer patients may be considered as a non-invasive diagnostic biomarker for OP and HP cancer patients. Streptococcus anginosus may be considered as a non-invasive diagnostic biomarker for OP cancer patients only. Therefore, evaluation of salivary microbial biomarkers may be informative to understand the pathobiology and carcinogenesis of OP and HP cancer.
Collapse
Affiliation(s)
- Madhusmita Panda
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, India
| | - Avdhesh Kumar Rai
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Tashnin Rahman
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Ashok Das
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Rajjyoti Das
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Anupam Sarma
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Amal Ch Kataki
- Dr. B. Borooah Cancer Institute, A. K. Azad Road, Gopinath Nagar, Guwahati, Assam, 781016, India
| | - Indranil Chattopadhyay
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610005, India.
| |
Collapse
|
30
|
Robayo DAG, Erira HAT, Jaimes FOG, Torres AM, Galindo AIC. Oropharyngeal Squamous Cell Carcinoma: Human Papilloma Virus Coinfection with Streptococcus anginosus. Braz Dent J 2019; 30:626-633. [DOI: 10.1590/0103-6440201902805] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/27/2019] [Indexed: 01/29/2023] Open
Abstract
Abstract Introduction: Human papilloma virus (HPV) and oral bacteria capable of acetaldehyde production from ethanol, such as Streptococcus anginosus, Prevotella melaninogenica, and Fusobacterium naviforme are among oropharyngeal squamous cell carcinoma (OSCC) infectious risk factors. Objective: Determine associations with HPV and S. anginosus, P. melaninogenica, and F. naviforme in patients with and without OSCC. Methods: Presence of HPV and HPV-16 was determined in 26 patients with OSCC and 26 without OSCC by conventional PCR and simultaneous presence of S. anginosus, P. melaninogenica, and F. naviforme quantification through q-PCR. Statistical analysis was carried out using Pearson’s X² and Student’s-t test. Results: Patients with OSCC had HPV and HPV-16 frequencies of 84% and 61.5%, respectively, in contrast for patients without OSCC frequencies were 34.6 and 30.7%. P. melaninogenica, and F. naviforme microorganisms were not present in any participant in this study. S. anginosus frequency in patients with OSC was 38.4% and in patients without OSCC was 30.7%. Patients with OSCC had S. anginosus + HPV co-infection at a 38.4% frequency and S. anginosus + HPV-16 at a 23.1% frequency. For individuals without OSCC S. anginosus + HPV co-infection was 3.8% and S. anginosus + HPV-16 3.8%. A greater frequency of S. anginosus + HPV co-infection and S. anginosus + HPV-16 was observed in patients with OSCC in comparison with individuals without OSCC, suggesting the importance of detecting HPV/HPV-16 and S. anginosus simultaneously in individuals at risk of developing OSCC
Collapse
|
31
|
Abstract
Great attention has been attached to explore the association between oral bacteria and oral cancer. Recently, four common inhabitants of oral cavity, Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Streptococcus anginosus, have been identified as potential etiologic bacterial agents for oral carcinogenesis. They might promote the oncogenesis and progression of oral cancer by induction of chronic inflammation, enhancement of migration and invasiveness, inhibition of cell apoptosis, augment of cell proliferation, suppression of immune system and production of carcinogenic substances. Thus, this review will focus on the possible mechanisms of these oral bacteria contributing to occurrence and development of oral cancer, and the potential clinical implications of utilizing oral bacteria on the diagnosis, prevention and treatment of oral cancer will be discussed.
Collapse
|
32
|
Cogdill AP, Gaudreau PO, Arora R, Gopalakrishnan V, Wargo JA. The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. Trends Immunol 2019; 39:900-920. [PMID: 30392721 DOI: 10.1016/j.it.2018.09.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/04/2023]
Abstract
The human microbiome is a complex aggregate of microorganisms, and their genomes exert a number of influences crucial to the metabolic, immunologic, hormonal, and homeostatic function of the host. Recent work, both in preclinical mouse models and human studies, has shed light on the impact of gut and tumor microbiota on responses to systemic anticancer therapeutics. In light of this, strategies to target the microbiome to improve therapeutic responses are underway, including efforts to target gut and intratumoral microbes. Here, we discuss mechanisms by which microbiota may impact systemic and antitumor immunity, in addition to outstanding questions in the field. A deeper understanding of these is critical as we devise putative strategies to target the microbiome.
Collapse
Affiliation(s)
- Alexandria P Cogdill
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pierre Olivier Gaudreau
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vancheswaran Gopalakrishnan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; These authors contributed equally to this work
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA; These authors contributed equally to this work.
| |
Collapse
|
33
|
Zhang Y, Niu Q, Fan W, Huang F, He H. Oral microbiota and gastrointestinal cancer. Onco Targets Ther 2019; 12:4721-4728. [PMID: 31417273 PMCID: PMC6592037 DOI: 10.2147/ott.s194153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
The microbiota inhabiting the oral cavity is a complex ecosystem and responsible for resisting pathogens, maintaining homeostasis, and modulating the immune system. Some components of the oral microbiota contribute to the etiology of some oral diseases. Accumulating evidence suggests that the human oral microbiota is implicated in the development and progression of gastrointestinal cancer. In this review, we described the current understanding of possible roles and mechanisms of oral microbiota in the gastrointestinal cancers studied to date. The perspectives for oral microbiota as the biomarkers for early detection and new therapeutic targets were also discussed.
Collapse
Affiliation(s)
- Yangyang Zhang
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
- The Oral Medicine Clinical Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Qiaoli Niu
- The Oral Medicine Clinical Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| | - Wenguo Fan
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fang Huang
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hongwen He
- Guanghua School of Stomatology, Institute of Stomatological Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
34
|
Robledo‐Sierra J, Ben‐Amy DP, Varoni E, Bavarian R, Simonsen JL, Paster BJ, Wade WG, Kerr AR, Peterson DE, Frandsen Lau E. World Workshop on Oral Medicine VII: Targeting the oral microbiome Part 2: Current knowledge on malignant and potentially malignant oral disorders. Oral Dis 2019; 25 Suppl 1:28-48. [DOI: 10.1111/odi.13107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/19/2019] [Accepted: 04/11/2019] [Indexed: 02/06/2023]
Affiliation(s)
| | - Dalit Porat Ben‐Amy
- Oral Medicine Unit Department of Oral & Maxillofacial Surgery The Baruch Padeh Medical Center Poriya Israel
| | - Elena Varoni
- Department of Biomedical, Surgical and Dental Sciences University of Milan Milan Italy
| | - Roxanne Bavarian
- Division of Oral Medicine and Dentistry Brigham and Women's Hospital Boston Massachusetts
- Department of Oral Medicine, Infection, and Immunity Harvard School of Dental Medicine, Harvard University Cambridge Massachusetts
| | - Janne L. Simonsen
- Aarhus University Library – Health Sciences Aarhus University Aarhus Denmark
| | | | - William G. Wade
- Centre for Host‐Microbiome Interactions Faculty of Dentistry, Oral & Craniofacial Sciences King's College London London UK
| | - Alexander R. Kerr
- Department of Oral and Maxillofacial Pathology, Radiology and Medicine New York University College of Medicine New York City New York
| | - Douglas E. Peterson
- Oral Medicine Section School of Dental Medicine UConn Health University of Connecticut Mansfield Connecticut
| | - Ellen Frandsen Lau
- Section for Periodontology Department of Dentistry and Oral Health Faculty of Health Aarhus University Aarhus Denmark
| |
Collapse
|
35
|
Lim YK, Park SN, Shin JH, Chang YH, Shin Y, Paek J, Kim H, Kook JK. Streptococcus periodonticum sp. nov., Isolated from Human Subgingival Dental Plaque of Periodontitis Lesion. Curr Microbiol 2019; 76:835-841. [PMID: 31053905 DOI: 10.1007/s00284-019-01695-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
A novel facultative anaerobic and Gram-stain-positive coccus, designated strain ChDC F135T, was isolated from human subgingival dental plaque of periodontitis lesion and was characterized by polyphasic taxonomic analysis. The 16S rRNA gene (16S rDNA) sequence of strain ChDC F135T was closest to that of Streptococcus sinensis HKU4T (98.2%), followed by Streptococcus intermedia SK54T (97.0%), Streptococcus constellatus NCTC11325T (96.0%), and Streptococcus anginosus NCTC 10713T (95.7%). In contrast, phylogenetic analysis based on the superoxide dismutase gene (sodA) and the RNA polymerase beta-subunit gene (rpoB) showed that the nucleotide sequence similarities of strain ChDC F135T were highly similar to the corresponding genes of S. anginosus NCTC 10713T (99.2% and 97.6%, respectively), S. constellatus NCTC11325T (87.8% and 91.4%, respectively), and S. intermedia SK54T (85.8% and 91.2%, respectively) rather than those of S. sinensis HKU4T (80.5% and 82.6%). The complete genome of strain ChDC F135T consisted of 1,901,251 bp and the G+C content was 38.9 mol %. Average nucleotide identity value between strain ChDC F135T and S. sinensis HKU4T or S. anginosus NCTC 10713T were 75.7% and 95.6%, respectively. The C14:0 composition of the cellular fatty acids of strain ChDC F135T (32.8%) was different from that of S. intermedia (6-8%), S. constellatus (6-13%), and S. anginosus (13-20%). Based on the results of phylogenetic and phenotypic analysis, strain ChDC F135T (= KCOM 2412T = JCM 33300T) was classified as a type strain of a novel species of the genus Streptococcus, for which we proposed the name Streptococcus periodonticum sp. nov.
Collapse
Affiliation(s)
- Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc, Daejeon, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
36
|
Turner CE, Bubba L, Efstratiou A. Pathogenicity Factors in Group C and G Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0020-2018. [PMID: 31111818 PMCID: PMC11026075 DOI: 10.1128/microbiolspec.gpp3-0020-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 11/20/2022] Open
Abstract
Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.
Collapse
Affiliation(s)
- Claire E Turner
- Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK
| | - Laura Bubba
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Androulla Efstratiou
- Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
37
|
|
38
|
Chetwood JD, Garg P, Finch P, Gordon M. Systematic review: the etiology of esophageal squamous cell carcinoma in low-income settings. Expert Rev Gastroenterol Hepatol 2019; 13:71-88. [PMID: 30791842 DOI: 10.1080/17474124.2019.1543024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Esophageal carcinoma causes over 380 000 deaths per year, ranking sixth worldwide in mortality amongst all malignancies. Globally, the squamous cell subtype is most common and accounts for 80% of esophageal cancers. Nonetheless, esophageal squamous cell carcinoma is much more poorly understood than esophageal adenocarcinoma, including what is driving such high prevalences, why it often presents in young patients, and shows such marked geographical delineations Areas covered: The current literature was searched for articles focusing on aetiopathogenesis of squamous cell esophageal carcinoma via a systematic review, particularly in low-resource settings. This was supplemented by papers of interest known to the authors. Expert commentary: Current putative mechanisms include polycyclic aromatic hydrocarbons, nitrosamines, acetaldehyde, cyclo-oxygenase-2 pathways, androgen and their receptor levels, as well as smoking & alcohol, micronutrient deficiencies and diet, mycotoxins, thermal damage, oral hygiene and microbiotal factors, inhaled smoke, viral infections such as HPV, and chronic irritative states. Etiology is likely multifactorial and varies geographically. Though smoking and alcohol play a predominant role in high-income settings, there is strong evidence that mycotoxins, diet and temperature effects may play an under-recognized role in low and middle-income settings.
Collapse
Affiliation(s)
- John David Chetwood
- a Malawi Liverpool Wellcome Trust Clinical Research Programme , Blantyre , Malawi
| | - Priya Garg
- a Malawi Liverpool Wellcome Trust Clinical Research Programme , Blantyre , Malawi
| | | | - Melita Gordon
- a Malawi Liverpool Wellcome Trust Clinical Research Programme , Blantyre , Malawi.,b College of Medicine , Blantyre , Malawi.,c Institute of Infection and Global Health , University of Liverpool , Liverpool , UK
| |
Collapse
|
39
|
Reichenbach ZW, Murray MG, Saxena R, Farkas D, Karassik EG, Klochkova A, Patel K, Tice C, Hall TM, Gang J, Parkman HP, Ward SJ, Tétreault MP, Whelan KA. Clinical and translational advances in esophageal squamous cell carcinoma. Adv Cancer Res 2019; 144:95-135. [PMID: 31349905 DOI: 10.1016/bs.acr.2019.05.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most deadly forms of human malignancy characterized by late stage diagnosis, metastasis, therapy resistance and frequent recurrence. Clinical management of ESCC remains challenging and the disease presently lacks approved targeted therapeutics. However, emerging data from recent clinical and translational investigations hold great promise for future progress toward improving patient outcomes in this deadly disease. Here, we review current clinical perspectives in ESCC epidemiology, pathophysiology, and clinical care, highlighting recent advances with potential to impact ESCC prevention, diagnosis and management. We further provide an overview of recent translational investigations contributing to our understanding of the molecular mechanisms underlying ESCC development, progression and therapy response, including insights gained from genetic studies and various murine model systems. Finally, we discuss future perspectives in the clinical and translational realms, along with remaining hurdles that must be overcome to eradicate ESCC.
Collapse
Affiliation(s)
- Zachary Wilmer Reichenbach
- Department of Medicine, Gastroenterology Section, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Mary Grace Murray
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Reshu Saxena
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Daniel Farkas
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Erika G Karassik
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Alena Klochkova
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kishan Patel
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Caitlin Tice
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Timothy M Hall
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Julie Gang
- Fels Institute for Cancer Research & Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Henry P Parkman
- Department of Medicine, Gastroenterology Section, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah J Ward
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States; Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Marie-Pier Tétreault
- Department of Medicine, Gastroenterology and Hepatology Division, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Kelly A Whelan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States; Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| |
Collapse
|
40
|
Vesty A, Gear K, Biswas K, Radcliff FJ, Taylor MW, Douglas RG. Microbial and inflammatory-based salivary biomarkers of head and neck squamous cell carcinoma. Clin Exp Dent Res 2018; 4:255-262. [PMID: 30603107 PMCID: PMC6305924 DOI: 10.1002/cre2.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 11/22/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) patients often present with poor oral health, making it difficult to assess the relationship between oral microbes, inflammation, and carcinoma. This study investigates salivary microbes and inflammatory cytokines as biomarkers for HNSCC, with consideration of oral health. Saliva was collected from 30 participants, including 14 HNSCC patients and 16 participants representing both dentally compromised and healthy individuals. Bacterial and fungal communities were analyzed based on 16S rRNA gene and ITS1 amplicon sequencing, respectively, and concentrations of inflammatory cytokines were quantified using a cytometric bead array, with flow cytometry. Diversity-based analyses revealed that the bacterial communities of HNSCC patients were significantly different to those of the healthy control group but not the dentally compromised patients. Fungal communities were dominated by Candida, irrespective of cohort, with Candida albicans comprising ≥96% of fungal sequences in most HNSCC patients. Significantly higher concentrations of interleukin (IL)-1β and IL-8 were detected in HNSCC and dentally compromised patients, when independently compared with healthy controls. IL-1β and IL-8 concentrations were significantly positively correlated with the abundance of C. albicans. Our findings suggest that salivary microbial and inflammatory biomarkers of HNSCC are influenced by oral health.
Collapse
Affiliation(s)
- Anna Vesty
- Department of SurgeryThe University of AucklandNew Zealand
| | - Kim Gear
- OtorhinolaryngologyAuckland District Health BoardNew Zealand
| | - Kristi Biswas
- Department of SurgeryThe University of AucklandNew Zealand
| | - Fiona J. Radcliff
- Department of Molecular Medicine & PathologyThe University of AucklandNew Zealand
| | - Michael W. Taylor
- School of Biological SciencesThe University of AucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryThe University of AucklandNew Zealand
| | | |
Collapse
|
41
|
Lazar V, Ditu LM, Pircalabioru GG, Gheorghe I, Curutiu C, Holban AM, Picu A, Petcu L, Chifiriuc MC. Aspects of Gut Microbiota and Immune System Interactions in Infectious Diseases, Immunopathology, and Cancer. Front Immunol 2018; 9:1830. [PMID: 30158926 PMCID: PMC6104162 DOI: 10.3389/fimmu.2018.01830] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
The microbiota consists of a dynamic multispecies community of bacteria, fungi, archaea, and protozoans, bringing to the host organism a dowry of cells and genes more numerous than its own. Among the different non-sterile cavities, the human gut harbors the most complex microbiota, with a strong impact on host homeostasis and immunostasis, being thus essential for maintaining the health condition. In this review, we outline the roles of gut microbiota in immunity, starting with the background information supporting the further presentation of the implications of gut microbiota dysbiosis in host susceptibility to infections, hypersensitivity reactions, autoimmunity, chronic inflammation, and cancer. The role of diet and antibiotics in the occurrence of dysbiosis and its pathological consequences, as well as the potential of probiotics to restore eubiosis is also discussed.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Carmen Curutiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| | - Ariana Picu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Laura Petcu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- National Institute for Diabetes, Nutrition and Metabolic Diseases Prof. Dr. N. Paulescu, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
42
|
Liu Y, Lin Z, Lin Y, Chen Y, Peng XE, He F, Liu S, Yan S, Huang L, Lu W, Xiang Z, Hu Z. Streptococcus and Prevotella are associated with the prognosis of oesophageal squamous cell carcinoma. J Med Microbiol 2018; 67:1058-1068. [PMID: 29923815 DOI: 10.1099/jmm.0.000754] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Oesophageal squamous cell carcinoma (ESCC) is the dominant type of oesophageal cancer among the East Asian population. The role of ESCC tissue bacteria in neoplastic progression has not been fully elucidated. Our goal was to uncover different bacterial communities in pathological staging grouping of ESCC and to identify microorganisms that could predict the likelihood of prognosis. METHODOLOGY Tissue samples were obtained from 45 patients and assessed using 16S ribosomal RNA gene sequencing. Significant bacteria were selected to perform survival analysis and evaluate prognostic biomarker.Results/Key findings. We observed variations in the abundance of oesophageal flora among different pathological characteristics of ESCC. Phylum Bacteroidetes, Firmicutes and Spirochaetes showed significantly higher relative abundances among N+ (positive lymph node) patients when compared to N- (negative lymph node) controls, whereas Proteobacteria showed lower abundances in N+ patients. Both genera Prevotella and Treponema were more abundant in the N+ group. In regard to T stage, the abundance of only Streptococcus in T3-4 was significantly higher than that in T1-2, while the other genera showed no significance. On multivariable analysis adjusted for the effects of standard clinicopathological features, combined Streptococcus and Prevotella abundance retained its association with unfavourable survival (hazard ratio, 6.094; 95 % confidence interval, 1.072-34.646; P=0.042), suggesting that this may be an independent prognostic indicator for ESCC. CONCLUSION Combined Streptococcus and Prevotella abundance is regarded as an independent species prognostic biomarker in ESCC patients.
Collapse
Affiliation(s)
- Yanfang Liu
- 1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China
| | - Zheng Lin
- 1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China.,2Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou 350108, PR China
| | - Yingying Lin
- 1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China
| | - Yuanmei Chen
- 3Department of Thoracic Surgery, Fujian Provincial Cancer Hospital affiliated to Fujian Medical University, Fuzhou 350014, PR China
| | - Xian-E Peng
- 1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China.,2Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou 350108, PR China
| | - Fei He
- 1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China.,2Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou 350108, PR China
| | - Shuang Liu
- 1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China
| | - Siyou Yan
- 1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China
| | - Liping Huang
- 1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China
| | - Wanting Lu
- 1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China
| | - Zhisheng Xiang
- 1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China
| | - Zhijian Hu
- 2Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou 350108, PR China.,1Department of Epidemiology and Health Statistics, Fujian Provincial Key Laboratory of Environment factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, PR China
| |
Collapse
|
43
|
Norder Grusell E, Dahlén G, Ruth M, Bergquist H, Bove M. The cultivable bacterial flora of the esophagus in subjects with esophagitis. Scand J Gastroenterol 2018; 53:650-656. [PMID: 29616839 DOI: 10.1080/00365521.2018.1457712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The healthy human esophagus is colonized by bacteria similar to that of the oral mucosa. However, little is known about the microbiome of the esophagus in esophagitis or the possible role of bacteria in the inflammatory response. AIM To survey bacterial diversity and compare the microbiome of the esophagus in subjects with gastro-esophageal reflux disease (GERD) and eosinophilic esophagitis (EoE). MATERIAL AND METHODS Seventeen subjects diagnosed with GERD and 10 with EoE underwent endoscopic examination with brush sampling and biopsies from the oral cavity, upper and lower esophagus. The samples were cultivated on agar plates, and bacterial growth was identified to the genus or species level and semi-quantified. RESULTS Significantly higher numbers of bacterial groups or species were found in specimens from the lower esophagus in subjects with EoE compared to subjects with GERD (median 4 (range 1-7) vs. 2 (range 0-6), p < .0014). Sixteen vs. 14 different bacterial groups or species were found in subjects with GERD and EoE, respectively, mostly in sparse or very sparse amounts. Alfa-streptococci (viridans streptococci) were the most common bacteria in both groups. Streptococci were present in all of the EoE-subjects but only in approximately 75% in lower esophagus of the GERD-subjects, regardless of the sampling method. CONCLUSION Subjects with GERD had significantly less bacterial diversity in both oral and esophageal samples than EoE-subjects. Whether this discrepancy might be explained by an effect on the protective mucosal biofilm by the acidic content of the reflux in subjects with GERD remains unclear.
Collapse
Affiliation(s)
- Elisabeth Norder Grusell
- a Department of Otorhinolaryngology, Head and Neck Surgery , Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Gunnar Dahlén
- b Department of Oral Microbiology , Institute of Odontology, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Magnus Ruth
- a Department of Otorhinolaryngology, Head and Neck Surgery , Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Henrik Bergquist
- a Department of Otorhinolaryngology, Head and Neck Surgery , Sahlgrenska University Hospital , Gothenburg , Sweden
| | - Mogens Bove
- c Department of ENT and Maxillofacial Surgery , NÄL Medical Centre Hospital , Trollhättan , Sweden
| |
Collapse
|
44
|
Coker OO, Dai Z, Nie Y, Zhao G, Cao L, Nakatsu G, Wu WKK, Wong SH, Chen Z, Sung JJY, Yu J. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 2018; 67:1024-1032. [PMID: 28765474 PMCID: PMC5969346 DOI: 10.1136/gutjnl-2017-314281] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/23/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES We aimed to characterise the microbial changes associated with histological stages of gastric tumourigenesis. DESIGN We performed 16S rRNA gene analysis of gastric mucosal samples from 81 cases including superficial gastritis (SG), atrophic gastritis (AG), intestinal metaplasia (IM) and gastric cancer (GC) from Xi'an, China, to determine mucosal microbiome dysbiosis across stages of GC. We validated the results in mucosal samples of 126 cases from Inner Mongolia, China. RESULTS We observed significant mucosa microbial dysbiosis in IM and GC subjects, with significant enrichment of 21 and depletion of 10 bacterial taxa in GC compared with SG (q<0.05). Microbial network analysis showed increasing correlation strengths among them with disease progression (p<0.001). Five GC-enriched bacterial taxa whose species identifications correspond to Peptostreptococcus stomatis, Streptococcus anginosus, Parvimonas micra, Slackia exigua and Dialister pneumosintes had significant centralities in the GC ecological network (p<0.05) and classified GC from SG with an area under the receiver-operating curve (AUC) of 0.82. Moreover, stronger interactions among gastric microbes were observed in Helicobacter pylori-negative samples compared with H. pylori-positive samples in SG and IM. The fold changes of selected bacteria, and strengths of their interactions were successfully validated in the Inner Mongolian cohort, in which the five bacterial markers distinguished GC from SG with an AUC of 0.81. CONCLUSIONS In addition to microbial compositional changes, we identified differences in bacterial interactions across stages of gastric carcinogenesis. The significant enrichments and network centralities suggest potentially important roles of P. stomatis, D. pneumosintes, S. exigua, P. micra and S. anginosus in GC progression.
Collapse
Affiliation(s)
- Olabisi Oluwabukola Coker
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhenwei Dai
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Guijun Zhao
- Department of Gastroenterology and Hepatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Lei Cao
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Geicho Nakatsu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William KK Wu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny Hei Wong
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Zigui Chen
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph J Y Sung
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Wong SH, Kwong TNY, Wu CY, Yu J. Clinical applications of gut microbiota in cancer biology. Semin Cancer Biol 2018; 55:28-36. [PMID: 29782923 DOI: 10.1016/j.semcancer.2018.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
The involvement of microorganisms in cancer has been increasing recognized. Collectively, microorganisms have been estimated to account for ∼20% of all cancers worldwide. Recent advances in metagenomics and bioinformatics have provided new insights on the microbial ecology in different tumors, pinpointing the roles of microorganisms in cancer formation, development and response to treatments. Furthermore, studies have emphasized the importance of host-microbial and inter-microbial interactions in the cancer microbiota. These studies have not only revolutionized our understanding of cancer biology, but also opened up new opportunities for cancer prevention, diagnosis, prognostication and treatment. This review article aims to summarize the microbiota in various cancers and their treatments, and explore clinical applications for such relevance.
Collapse
Affiliation(s)
- Sunny H Wong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Thomas N Y Kwong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Chun-Ying Wu
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; College of Public Health and Graduate Institute of Clinical Medicine, China Medical University, Taichung, Taiwan.
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
46
|
Wolf A, Moissl-Eichinger C, Perras A, Koskinen K, Tomazic PV, Thurnher D. The salivary microbiome as an indicator of carcinogenesis in patients with oropharyngeal squamous cell carcinoma: A pilot study. Sci Rep 2017; 7:5867. [PMID: 28725009 PMCID: PMC5517471 DOI: 10.1038/s41598-017-06361-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
This study aimed to undertake an initial, comparative analysis of the oral salivary microbiome of patients with oral and oropharyngeal squamous cell carcinoma versus healthy controls. This project, conceived as a pilot study, included 11 patients (1 female, 10 male, mean age 61.6 yrs., SD = 8.2 yrs.) and 11 healthy controls (1 female, 10 male, mean age 46.7 yrs., SD = 15.1 yrs.). Samples of saliva were analysed by high-throughput sequencing of the 16S rRNA gene using the MiSeq platform. Sequence data revealed microbial changes that may mirror disease progression and reflect clinical preconditions such as age, alcohol consumption, tumour size, lymph node status, smoking habit, and tumour HPV-positivity. Consequently, mapping microbial changes in patients with oral and oropharyngeal squamous cell carcinomas might improve our understanding of the pathobiology of the disease, and help in the design of novel diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Axel Wolf
- Department of Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036, Graz, Austria
| | - Christine Moissl-Eichinger
- Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed, Mozartgasse 12/II, 8010, Graz, Austria.
| | - Alexandra Perras
- Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- Department of Microbiology and Archaea Center, University of Regensburg, Universitätsstrasse 1, 93053, Regensburg, Germany
| | - Kaisa Koskinen
- Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed, Mozartgasse 12/II, 8010, Graz, Austria
| | - Peter V Tomazic
- Department of Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036, Graz, Austria
| | - Dietmar Thurnher
- Department of Otorhinolaryngology, Medical University of Graz, Auenbruggerplatz 26, 8036, Graz, Austria.
| |
Collapse
|
47
|
Yuan X, Liu Y, Kong J, Gu B, Qi Y, Wang X, Sun M, Chen P, Sun W, Wang H, Zhou F, Gao S. Different frequencies of Porphyromonas gingivalis infection in cancers of the upper digestive tract. Cancer Lett 2017; 404:1-7. [PMID: 28705771 DOI: 10.1016/j.canlet.2017.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/13/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022]
Abstract
The high incidence rate of multiple carcinomas in the upper digestive tract is often explained in terms of involvement of the same underlying risk factors. It has been reported that the oral bacterium Streptococcus anginosus is associated with esophageal, gastric, and pharyngeal cancers. We previously reported occurrence of Porphyromonas gingivalis (P. gingivalis) DNA in esophagus cancer. In this study, the presence of P. gingivalis in specimens of various types of cancer from the upper digestive tract was investigated. Here we report that P. gingivalis was preferentially and frequently present in specimens of esophageal cancer as well as in those from dysplasia of the esophagus but rarely in matched noncancerous portions and are quite low or absent in cancers from the cardia or stomach. Therefore, it led us to propose that, the microorganism does not survive in conditions of high acidity. We then investigate the pH dependence of survival of P. gingivalis as well as the acid tolerance of it. We found that, exposure to acidic buffers of a wide range of pH values led to a decline in colony forming units of P. gingivalis, thus, providing a possible explanation for variations in frequencies of P. gingivalis infection in this study.
Collapse
Affiliation(s)
- Xiang Yuan
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China; Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yiwen Liu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jinyu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bianli Gu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yijun Qi
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China; Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Man Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Pan Chen
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Wei Sun
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Room 263D, 501 South Preston Street, Louisville, KY, 40202, USA
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, Henan, 455000, China
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China; Department of Medical Oncology, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
48
|
Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep 2017; 7:1834. [PMID: 28500338 PMCID: PMC5431832 DOI: 10.1038/s41598-017-02079-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/21/2017] [Indexed: 12/24/2022] Open
Abstract
Studies on the possible association between bacteria and oral squamous cell carcinoma (OSCC) remain inconclusive, largely due to methodological variations/limitations. The objective of this study was to characterize the species composition as well as functional potential of the bacteriome associated with OSCC. DNA obtained from 20 fresh OSCC biopsies (cases) and 20 deep-epithelium swabs (matched control subjects) was sequenced for the V1-V3 region using Illumina’s 2 × 300 bp chemistry. High quality, non-chimeric merged reads were classified to species level using a prioritized BLASTN-algorithm. Downstream analyses were performed using QIIME, PICRUSt, and LEfSe. Fusobacterium nucleatum subsp. polymorphum was the most significantly overrepresented species in the tumors followed by Pseudomonas aeruginosa and Campylobacter sp. Oral taxon 44, while Streptococcus mitis, Rothia mucilaginosa and Haemophilus parainfluenzae were the most significantly abundant in the controls. Functional prediction showed that genes involved in bacterial mobility, flagellar assembly, bacterial chemotaxis and LPS synthesis were enriched in the tumors while those responsible for DNA repair and combination, purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, ribosome biogenesis and glycolysis/gluconeogenesis were significantly associated with the controls. This is the first epidemiological evidence for association of F. nucleatum and P. aeruginosa with OSCC. Functionally, an “inflammatory bacteriome” is enriched in OSSC.
Collapse
|
49
|
Hernandez BY, Zhu X, Goodman MT, Gatewood R, Mendiola P, Quinata K, Paulino YC. Betel nut chewing, oral premalignant lesions, and the oral microbiome. PLoS One 2017; 12:e0172196. [PMID: 28225785 PMCID: PMC5321455 DOI: 10.1371/journal.pone.0172196] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/01/2017] [Indexed: 01/06/2023] Open
Abstract
Oral cancers are attributed to a number of causal agents including tobacco, alcohol, human papillomavirus (HPV), and areca (betel) nut. Although betel nut chewing has been established as an independent cause of oral cancer, the mechanisms of carcinogenesis are poorly understood. An investigation was undertaken to evaluate the influence of betel nut chewing on the oral microbiome and oral premalignant lesions. Study participants were recruited from a dental clinic in Guam. Structured interviews and oral examinations were performed. Oral swabbing and saliva samples were evaluated by 454 pyrosequencing of the V3- V5 region of the 16S rRNA bacterial gene and genotyped for HPV. One hundred twenty-two adults were enrolled including 64 current betel nut chewers, 37 former chewers, and 21 with no history of betel nut use. Oral premalignant lesions, including leukoplakia and submucous fibrosis, were observed in 10 chewers. Within-sample bacterial diversity was significantly lower in long-term (≥10 years) chewers vs. never chewers and in current chewers with oral lesions vs. individuals without lesions. Between-sample bacterial diversity based on Unifrac distances significantly differed by chewing status and oral lesion status. Current chewers had significantly elevated levels of Streptococcus infantis and higher and lower levels of distinct taxa of the Actinomyces and Streptococcus genera. Long-term chewers had reduced levels of Parascardovia and Streptococcus. Chewers with oral lesions had significantly elevated levels of Oribacterium, Actinomyces, and Streptococcus, including Streptococcus anginosus. In multivariate analyses, controlling for smoking, oral HPV, S.anginosus, and S. infantis levels, current betel nut chewing remained the only predictor of oral premalignant lesions. Our study provides evidence that betel nut chewing alters the oral bacterial microbiome including that of chewers who develop oral premalignant lesions. Nonetheless, whether microbial changes are involved in betel nut-induced oral carcinogenesis is only speculative. Further research is needed to discern the clinical significance of an altered oral microbiome and the mechanisms of oral cancer development in betel nut chewers.
Collapse
Affiliation(s)
- Brenda Y. Hernandez
- University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Xuemei Zhu
- University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Marc T. Goodman
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Robert Gatewood
- University of Guam Cancer Research Center, Mangilao, Guam, United States of America
| | - Paul Mendiola
- University of Guam Cancer Research Center, Mangilao, Guam, United States of America
| | - Katrina Quinata
- University of Guam Cancer Research Center, Mangilao, Guam, United States of America
| | - Yvette C. Paulino
- University of Guam Cancer Research Center, Mangilao, Guam, United States of America
| |
Collapse
|
50
|
Liu M, Jin J, Pan H, Feng J, Cerniglia CE, Yang M, Chen H. Effect of smokeless tobacco products on human oral bacteria growth and viability. Anaerobe 2016; 42:152-161. [PMID: 27756619 DOI: 10.1016/j.anaerobe.2016.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/25/2023]
Abstract
To evaluate the toxicity of smokeless tobacco products (STPs) on oral bacteria, seven smokeless tobacco aqueous extracts (STAEs) from major brands of STPs and three tobacco-specific N-nitrosamines (TSNAs) were used in a growth and viability test against 38 oral bacterial species or subspecies. All seven STAEs showed concentration-dependent effects on the growth and viability of tested oral bacteria under anaerobic culture conditions, although there were strain-to-strain variations. In the presence of 1 mg/ml STAEs, the growth of 4 strains decreased over 0.32-2.14 log10 fold, while 14 strains demonstrated enhanced growth of 0.3-1.76 log10 fold, and the growth of 21 strains was not significantly affected. In the presence of 10 mg/ml STAEs, the growth of 17 strains was inhibited 0.3-2.11 log10 fold, 18 strains showed enhanced growth of 0.3-0.97 log10 fold, and 4 strains were not significantly affected. In the presence of 50 mg/ml STAEs, the growth of 32 strains was inhibited 0.3-2.96 log10 fold, 8 strains showed enhanced growth of 0.3-1.0 log10 fold, and 2 strains were not significantly affected. All seven STAEs could promote the growth of 4 bacterial strains, including Eubacterium nodatum, Peptostreptococcus micros, Streptococcus anginosus, and Streptococcus constellatus. Exposure to STAEs modulated the viability of some bacterial strains, with 21.1-66.5% decrease for 4 strains at 1 mg/ml, 20.3-85.7% decrease for 10 strains at 10 mg/ml, 20.0-93.3% decrease for 27 strains at 50 mg/ml, and no significant effect for 11 strains at up to 50 mg/ml. STAEs from snuffs inhibited more tested bacterial strains than those from snus indicating that the snuffs may be more toxic to the oral bacteria than snus. For TSNAs, cell growth and viability of 34 tested strains were not significantly affected at up to 100 μg/ml; while the growth of P. micros was enhanced 0.31-0.54 log10 fold; the growth of Veillonella parvula was repressed 0.33-0.36 log10 fold; and the cell viabilities of 2 strains decreased 56.6-69.9%. The results demonstrate that STAEs affected the growth of some types of oral bacteria, which may affect the healthy ecological balance of oral bacteria in humans. On the other hand, TSNAs did not significantly affect the growth of the oral bacteria.
Collapse
Affiliation(s)
- Min Liu
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, United States; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jinshan Jin
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, United States
| | - Hongmiao Pan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, United States; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhui Feng
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, United States; National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, United States
| | - Maocheng Yang
- Office of Science, Center for Tobacco Products, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, United States.
| | - Huizhong Chen
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, United States.
| |
Collapse
|