1
|
Sadeghi M, Fathi M, Gholizadeh Navashenaq J, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Namdar A, Movasaghpour Akbari AA, Jadidi-Niaragh F. The prognostic and therapeutic potential of HO-1 in leukemia and MDS. Cell Commun Signal 2023; 21:57. [PMID: 36915102 PMCID: PMC10009952 DOI: 10.1186/s12964-023-01074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/11/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Heme oxygenase-1 (HO-1), a heme-degrading enzyme, is proven to have anti-apoptotic effects in several malignancies. In addition, HO-1 is reported to cause chemoresistance and increase cell survival. Growing evidence indicates that HO-1 contributes to the course of hematological malignancies as well. Here, the expression pattern, prognostic value, and the effect of HO-1 targeting in HMs are discussed. MAIN BODY According to the recent literature, it was discovered that HO-1 is overexpressed in myelodysplastic syndromes (MDS), chronic myeloid leukemia (CML), acute myeloblastic leukemia (AML), and acute lymphoblastic leukemia (ALL) cells and is associated with high-risk disease. Furthermore, in addition to HO-1 expression by leukemic and MDS cells, CML, AML, and ALL leukemic stem cells express this protein as well, making it a potential target for eliminating minimal residual disease (MRD). Moreover, it was concluded that HO-1 induces tumor progression and prevents apoptosis through various pathways. CONCLUSION HO-1 has great potential in determining the prognosis of leukemia and MDS patients. HO-1 induces resistance to several chemotherapeutic agents as well as tyrosine kinase inhibitors and following its inhibition, chemo-sensitivity increases. Moreover, the exact role of HO-1 in Chronic Lymphocytic Leukemia (CLL) is yet unknown. While findings illustrate that MDS and other leukemic patients could benefit from HO-1 targeting. Future studies can help broaden our knowledge regarding the role of HO-1 in MDS and leukemia. Video abstract.
Collapse
Affiliation(s)
- Mohammad Sadeghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Fathi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Namdar
- Department of Immunology, University of Toronto, Toronto, Canada
| | | | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. .,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Abe K, Ikeda S, Nara M, Kitadate A, Tagawa H, Takahashi N. Hypoxia-induced oxidative stress promotes therapy resistance via upregulation of heme oxygenase-1 in multiple myeloma. Cancer Med 2023; 12:9709-9722. [PMID: 36775962 PMCID: PMC10166934 DOI: 10.1002/cam4.5679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/21/2022] [Accepted: 01/26/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematopoietic malignancy for which proteasome inhibitors have become available in recent years. However, many patients develop resistance to these drugs during treatment. Therefore, it is important to elucidate the mechanisms underlying resistance acquisition by proteasome inhibitors. Side population (SP) cells, which have a high drug efflux capacity and hypoxic responses in the microenvironment have both provided important insights into drug resistance in MM; however, little is known about the characteristics of SP cells in hypoxic microenvironments. METHODS We performed cDNA microarray analysis for SP and non-SP obtained from RPMI-8226 and KMS-11 cell lines cultured for 48 h in normoxic and hypoxic conditions (1% O2 ). Genes specifically upregulated in hypoxic SP were examined. RESULTS Our comprehensive gene expression analysis identified HMOX1, BACH2, and DUX4 as protein-coding genes that are specifically highly expressed in SP cells under hypoxic conditions. We have shown that HMOX1/heme oxygenase-1 (HMOX1/HO-1) is induced by hypoxia-inducible reactive oxygen species (ROS) and reduces ROS levels. Furthermore, we found that HMOX1 contributes to hypoxia-induced resistance to proteasome inhibitors in vitro and in vivo. Excessive ROS levels synergistically enhance bortezomib sensitivity. In clinical datasets, HMOX1 had a strong and significantly positive correlation with MAFB but not MAF. Interestingly, hypoxic stimulation increased MAFB/MafB expression in myeloma cells; in addition, the knockdown of MAFB under hypoxic conditions suppressed HMOX1 expression. CONCLUSION These results suggest that the hypoxia-ROS-HMOX1 axis and hypoxia-induced MafB may be important mechanisms of proteasome inhibitor resistance in hypoxic microenvironments.
Collapse
Affiliation(s)
- Ko Abe
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Sho Ikeda
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Miho Nara
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akihiro Kitadate
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroyuki Tagawa
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
3
|
Zhu XN, Wei YS, Yang Q, Liu HR, Zhi Z, Zhu D, Xia L, Hong DL, Yu Y, Chen GQ. FBXO22 promotes leukemogenesis by targeting BACH1 in MLL-rearranged acute myeloid leukemia. J Hematol Oncol 2023; 16:9. [PMID: 36774506 PMCID: PMC9922468 DOI: 10.1186/s13045-023-01400-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Selectively targeting leukemia stem cells (LSCs) is a promising approach in treating acute myeloid leukemia (AML), for which identification of such therapeutic targets is critical. Increasing lines of evidence indicate that FBXO22 plays a critical role in solid tumor development and therapy response. However, its potential roles in leukemogenesis remain largely unknown. METHODS We established a mixed lineage leukemia (MLL)-AF9-induced AML model with hematopoietic cell-specific FBXO22 knockout mice to elucidate the role of FBXO22 in AML progression and LSCs regulation, including self-renewal, cell cycle, apoptosis and survival analysis. Immunoprecipitation combined with liquid chromatography-tandem mass spectrometry analysis, Western blotting and rescue experiments were performed to study the mechanisms underlying the oncogenic role of FBXO22. RESULTS FBXO22 was highly expressed in AML, especially in MLL-rearranged (MLLr) AML. Upon FBXO22 knockdown, human MLLr leukemia cells presented markedly increased apoptosis. Although conditional deletion of Fbxo22 in hematopoietic cells did not significantly affect the function of hematopoietic stem cells, MLL-AF9-induced leukemogenesis was dramatically abrogated upon Fbxo22 deletion, together with remarkably reduced LSCs after serial transplantations. Mechanistically, FBXO22 promoted degradation of BACH1 in MLLr AML cells, and overexpression of BACH1 suppressed MLLr AML progression. In line with this, heterozygous deletion of BACH1 significantly reversed delayed leukemogenesis in Fbxo22-deficient mice. CONCLUSIONS FBXO22 promotes MLLr AML progression by targeting BACH1 and targeting FBXO22 might be an ideal strategy to eradicate LSCs without influencing normal hematopoiesis.
Collapse
Affiliation(s)
- Xiao-Na Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yu-Sheng Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Qian Yang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Hao-Ran Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Zhe Zhi
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Di Zhu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Li Xia
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Deng-Li Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China
| | - Yun Yu
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China.
| | - Guo-Qiang Chen
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Oncogenes and Related Genes and Chinese Academy of Medical Sciences Research Unit (No. 2019RU043), Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China. .,Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, SJTU-SM, Shanghai, China.
| |
Collapse
|
4
|
Xie X, Tian L, Zhao Y, Liu F, Dai S, Gu X, Ye Y, Zhou L, Liu X, Sun Y, Zhao X. BACH1-induced ferroptosis drives lymphatic metastasis by repressing the biosynthesis of monounsaturated fatty acids. Cell Death Dis 2023; 14:48. [PMID: 36670112 PMCID: PMC9860034 DOI: 10.1038/s41419-023-05571-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the fatal malignancies worldwide. It has an increased propensity to metastasize via lymphogenous routes in an early stage. The prognosis of patients with lymph node metastases (LNM) is often worse than that of patients without metastases. Although several factors have been found to influence metastasis, the mechanisms of preference for specific metastatic routes remain poorly understood. Herein, we provide evidence that the intrinsic hypersensitivity of tumor cells to ferroptosis may proactively drive lymphatic metastasis. Serum autoantibodies associated with LNM of early ESCC were screened using a whole-proteome protein array containing 19 394 human recombinant proteins, and an anti-BACH1 autoantibody was first identified. Pan-cancer analysis of ferroptosis-related genes with preferential lymphatic metastasis and preferential hematogenous metastasis based on The Cancer Genome Atlas data was performed. Only BACH1 showed significant overexpression in tumors with preferential lymphatic metastasis, whereas it was downregulated in most tumors with preferential nonlymphatic metastasis. In addition, it was found that the serum levels of autoantibodies against BACH1 were elevated in early-stage patients with LNM. Interestingly, BACH1 overexpression and ferroptosis induction promoted LNM but inhibited hematogenous metastasis in mouse models. Transcriptomic and lipidomic analyses found that BACH1 repressed SCD1-mediated biosynthesis of monounsaturated fatty acids, especially oleic acid (OA). OA significantly attenuated the ferroptotic phenotypes and reversed the metastatic properties of BACH1-overexpressing cells. OA addition significantly rescued the ferroptotic phenotypes and reversed the metastatic properties of BACH1-overexpressing cells. Importantly, the concentration gradient of OA between primary lesions and the lymph resulted in the chemoattraction of tumor cells to promote invasion, thus facilitating lymphatic metastasis. BACH1-induced ferroptosis drives lymphatic metastasis via the BACH1-SCD1-OA axis. More importantly, this study confirms that ferroptosis is a double-edged sword in tumorigenesis and tumor progression. The clinical application of ferroptosis-associated agents requires a great caution.
Collapse
Affiliation(s)
- Xiufeng Xie
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Lusong Tian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yan Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Fang Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Shuyang Dai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Xinglu Gu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yuxin Ye
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Lanping Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Xinmiao Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Yulin Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China.
| |
Collapse
|
5
|
Wang L, He C. Nrf2-mediated anti-inflammatory polarization of macrophages as therapeutic targets for osteoarthritis. Front Immunol 2022; 13:967193. [PMID: 36032081 PMCID: PMC9411667 DOI: 10.3389/fimmu.2022.967193] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant immune cells within the synovial joints, and also the main innate immune effector cells triggering the initial inflammatory responses in the pathological process of osteoarthritis (OA). The transition of synovial macrophages between pro-inflammatory and anti-inflammatory phenotypes can play a key role in building the intra-articular microenvironment. The pro-inflammatory cascade induced by TNF-α, IL-1β, and IL-6 is closely related to M1 macrophages, resulting in the production of pro-chondrolytic mediators. However, IL-10, IL1RA, CCL-18, IGF, and TGF are closely related to M2 macrophages, leading to the protection of cartilage and the promoted regeneration. The inhibition of NF-κB signaling pathway is central in OA treatment via controlling inflammatory responses in macrophages, while the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway appears not to attract widespread attention in the field. Nrf2 is a transcription factor encoding a large number of antioxidant enzymes. The activation of Nrf2 can have antioxidant and anti-inflammatory effects, which can also have complex crosstalk with NF-κB signaling pathway. The activation of Nrf2 can inhibit the M1 polarization and promote the M2 polarization through potential signaling transductions including TGF-β/SMAD, TLR/NF-κB, and JAK/STAT signaling pathways, with the regulation or cooperation of Notch, NLRP3, PI3K/Akt, and MAPK signaling. And the expression of heme oxygenase-1 (HO-1) and the negative regulation of Nrf2 for NF-κB can be the main mechanisms for promotion. Furthermore, the candidates of OA treatment by activating Nrf2 to promote M2 phenotype macrophages in OA are also reviewed in this work, such as itaconate and fumarate derivatives, curcumin, quercetin, melatonin, mesenchymal stem cells, and low-intensity pulsed ultrasound.
Collapse
Affiliation(s)
- Lin Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Chengqi He,
| |
Collapse
|
6
|
HO-1 Limits the Efficacy of Vemurafenib/PLX4032 in BRAF V600E Mutated Melanoma Cells Adapted to Physiological Normoxia or Hypoxia. Antioxidants (Basel) 2022; 11:antiox11061171. [PMID: 35740068 PMCID: PMC9219655 DOI: 10.3390/antiox11061171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Induction of heme oxygenase 1 (HO-1) favors immune-escape in BRAFV600 melanoma cells treated with Vemurafenib/PLX4032 under standard cell culture conditions. However, the oxygen tension under standard culture conditions (~18 kPa O2) is significantly higher than the physiological oxygen levels encountered in vivo. In addition, cancer cells in vivo are often modified by hypoxia. In this study, MeOV-1 primary melanoma cells bearing the BRAFV600E mutation, were adapted to either 5 kPa O2 (physiological normoxia) or 1 kPa O2 (hypoxia) and then exposed to 10 μM PLX4032. PLX4032 abolished ERK phosphorylation, reduced Bach1 expression and increased HO-1 levels independent of pericellular O2 tension. Moreover, cell viability was significantly reduced further in cells exposed to PLX4032 plus Tin mesoporphyrin IX, a HO-1 inhibitor. Notably, our findings provide the first evidence that HO-1 inhibition in combination with PLX4032 under physiological oxygen tension and hypoxia restores and increases the expression of the NK ligands ULBP3 and B7H6 compared to cells exposed to PLX4032 alone. Interestingly, although silencing NRF2 prevented PLX4032 induction of HO-1, other NRF2 targeted genes were unaffected, highlighting a pivotal role of HO-1 in melanoma resistance and immune escape. The present findings may enhance translation and highlight the potential of the HO-1 inhibitors in the therapy of BRAFV600 melanomas.
Collapse
|
7
|
Effect of Kaempferol and Its Glycoside Derivatives on Antioxidant Status of HL-60 Cells Treated with Etoposide. Molecules 2022; 27:molecules27020333. [PMID: 35056649 PMCID: PMC8777684 DOI: 10.3390/molecules27020333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 11/23/2022] Open
Abstract
Kaempferol is a well-known antioxidant found in many plants and plant-based foods. In plants, kaempferol is present mainly in the form of glycoside derivatives. In this work, we focused on determining the effect of kaempferol and its glycoside derivatives on the expression level of genes related to the reduction of oxidative stress—NFE2L2, NQO1, SOD1, SOD2, and HO-1; the enzymatic activity of superoxide dismutases; and the level of glutathione. We used HL-60 acute promyelocytic leukemia cells, which were incubated with the anticancer drug etoposide and kaempferol or one of its three glycoside derivatives isolated from the aerial parts of Lens culinaris Medik.—kaempferol 3-O-[(6-O-E-caffeoyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P2), kaempferol 3-O-[(6-O-E-p-coumaroyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P5), and kaempferol 3-O-[(6-O-E-feruloyl)-β-d-glucopyranosyl-(1→2)]-β-d-galactopyranoside-7-O-β-d-glucuropyranoside (P7). We showed that none of the tested compounds affected NFE2L2 gene expression. Co-incubation with etoposide (1 µM) and kaempferol (10 and 50 µg/mL) leads to an increase in the expression of the HO-1 (9.49 and 9.33-fold at 10 µg/mL and 50 µg/mL, respectively), SOD1 (1.68-fold at 10 µg/mL), SOD2 (1.72-fold at 10–50 µg/mL), and NQO1 (1.84-fold at 50 µg/mL) genes in comparison to cells treated only with etoposide. The effect of kaempferol derivatives on gene expression differs depending on the derivative. All tested polyphenols increased the SOD activity in cells co-incubated with etoposide. We observed that the co-incubation of HL-60 cells with etoposide and kaempferol or derivative P7 increases the level of total glutathione in these cells. Taken together, our observations suggest that the antioxidant activity of kaempferol is related to the activation of antioxidant genes and proteins. Moreover, we observed that glycoside derivatives can have a different effect on the antioxidant cellular systems than kaempferol.
Collapse
|
8
|
Li X, Zhang X, Liu Y, Pan R, Liang X, Huang L, Yang C. Exosomes derived from mesenchyml stem cells ameliorate oxygen-glucose deprivation/reoxygenation-induced neuronal injury via transferring MicroRNA-194 and targeting Bach1. Tissue Cell 2021; 73:101651. [PMID: 34600339 DOI: 10.1016/j.tice.2021.101651] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 01/13/2023]
Abstract
The neuroprotective function of miR-194 on neurovascular endothelial cell injury is perceived as a novel method for clinical therapy. So are exosomes (EXs), being attractive in neurofunctional recovery. However, whether EXs derived from mesenchymal stromal cells (MSCs) perform the same efficacy by transferring miR-194 and the underlying mechanism remain vague. This study rooted in oxygen-glucose deprivation/reoxygenation (OGD/R) model. MSCs were isolated by gradient centrifugation and identified by flow cytometry. EXs were obtained through ultracentrifugation, whereas protein levels of specific markers (CD63, TGS101), together with Bach1, Nrf2 and HO-1 were measured by western blot. The relative mRNA expressions of Bach1, NOX1, AGSL4, GPX4 and miR-194 were measured by RT-qPCR assays. Cell viability was measured by cell counting kit-8, and cell migration was detected by wound healing assay. The interaction between miR-194 and Bach1 was predicted by starBase and confirmed by dual luciferase reporter assay. OGD/R dampened cell viability and miR-194 expression. Bach1 could bind with miR-194. miR-194 mimic attenuated the effect of OGD/R on cell viability and protein levels of Nrf2, HO-1 and Bach1, whereas Bach1 overexpression reversed the effect of miR-194 mimics. MSC-EXs could merge with HBMECs. Based on this, MSC-EXs loaded with miR-194 downregulated Bach1 protein level and iron content and the mRNA expressions of NOX1 and ACSL4, yet upregulated miR-194 and GPX4 expressions and Nrf2/HO-1 protein level in OGD/R-injured cells, whereas those carrying ShmiR-194 had the opposite effects. Our study suggested MSC-EXs loaded with miR-194 attenuated OGD/R-induced injury via targeting Bach1, providing a new therapeutic strategy for cerebral injuries.
Collapse
Affiliation(s)
- Xu Li
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Xin Zhang
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Yajun Liu
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Ruihan Pan
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Xiaolong Liang
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Lifa Huang
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China
| | - Chao Yang
- Department of Neurosurgey, The First Affiliated Hospital of Zhejiang Chinese Medical University, China.
| |
Collapse
|
9
|
Savage AK, Gutschow MV, Chiang T, Henderson K, Green R, Chaudhari M, Swanson E, Heubeck AT, Kondza N, Burley KC, Genge PC, Lord C, Smith T, Thomson Z, Beaubien A, Johnson E, Goldy J, Bolouri H, Buckner JH, Meijer P, Coffey EM, Skene PJ, Torgerson TR, Li XJ, Bumol TF. Multimodal analysis for human ex vivo studies shows extensive molecular changes from delays in blood processing. iScience 2021; 24:102404. [PMID: 34113805 PMCID: PMC8169801 DOI: 10.1016/j.isci.2021.102404] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
Multi-omic profiling of human peripheral blood is increasingly utilized to identify biomarkers and pathophysiologic mechanisms of disease. The importance of these platforms in clinical and translational studies led us to investigate the impact of delayed blood processing on the numbers and state of peripheral blood mononuclear cells (PBMC) and on the plasma proteome. Similar to previous studies, we show minimal effects of delayed processing on the numbers and general phenotype of PBMC up to 18 hours. In contrast, profound changes in the single-cell transcriptome and composition of the plasma proteome become evident as early as 6 hours after blood draw. These reflect patterns of cellular activation across diverse cell types that lead to progressive distancing of the gene expression state and plasma proteome from native in vivo biology. Differences accumulating during an overnight rest (18 hours) could confound relevant biologic variance related to many underlying disease states. Studies of human blood cells and plasma are highly sensitive to process variability Time variability distorts biology in cutting-edge single-cell and multiplex assays Longitudinal, multi-modal, and aligned data enable data qualification and exploration Dataset holds potential novel, multi-modal biological correlations and hypotheses
Collapse
Affiliation(s)
- Adam K Savage
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Tony Chiang
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Richard Green
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | | | | | - Nina Kondza
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Palak C Genge
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Cara Lord
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Tanja Smith
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | | | - Ed Johnson
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hamid Bolouri
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Jane H Buckner
- Center for Translational Research, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Paul Meijer
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Peter J Skene
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | | - Xiao-Jun Li
- Allen Institute for Immunology, Seattle, WA 98109, USA
| | | |
Collapse
|
10
|
Liu D, Xu G, Bai C, Gu Y, Wang D, Li B. Differential effects of arsenic species on Nrf2 and Bach1 nuclear localization in cultured hepatocytes. Toxicol Appl Pharmacol 2021; 413:115404. [PMID: 33434570 DOI: 10.1016/j.taap.2021.115404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
Arsenic is a ubiquitous metalloid element present in both inorganic and organic forms in the environment. The liver is considered to be a primary organ of arsenic biotransformation and methylation, as well as the main target of arsenic toxicity. Studies have confirmed that Chang human hepatocytes have an efficient arsenic methylating capacity. Our previous studies have proven that arsenite activates nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in hepatocytes. This study aimed to explore the activation of the Nrf2 pathway upon treatment of arsenic in various forms, including inorganic and organic arsenic. Our results showed that inorganic arsenic-both As2O3 and Na2HAsO4 significantly induced the expression of Nrf2 protein and mRNA, enhanced the transcription activity of Nrf2, and induced the expression of downstream target genes. These results confirmed the inorganic arsenic-induced Nrf2 pathway activation in hepatocytes. Although all arsenic chemicals used in the study induced Nrf2 protein accumulation, the organic arsenic C2H7AsO2 did not affect the expression of Nrf2 downstream genes which were elevated by inorganic arsenic exposures. Through qRT-PCR and Nrf2 luciferase reporter assays, we further confirmed that C2H7AsO2 neither increased Nrf2 mRNA level nor activated the Nrf2 transcription activity. Mechanistically, our results confirmed inorganic arsenic-induced both the nuclear import of Nrf2 and export of Bach1 (BTB and CNC homology 1), which is an Nrf2 transcriptional repressor, while organic arsenic only induced Nrf2 translocation. The unique pattern of Nrf2 regulation by organic arsenic underlines the critical role of Nrf2 and Bach1 in the arsenic toxicology.
Collapse
Affiliation(s)
- Dan Liu
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Guowei Xu
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China
| | - Caijun Bai
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China
| | - Yuqin Gu
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China
| | - Da Wang
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China
| | - Bing Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, PR China.
| |
Collapse
|
11
|
Malik S, Lim J, Slack FJ, Braddock DT, Bahal R. Next generation miRNA inhibition using short anti-seed PNAs encapsulated in PLGA nanoparticles. J Control Release 2020; 327:406-419. [PMID: 32835710 DOI: 10.1016/j.jconrel.2020.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Selective inhibition of microRNAs (miRNAs) offers a new avenue for cancer therapeutics. While most of the current anti-miRNA (antimiR) reagents target full length miRNAs, here we investigate novel nanoparticle-delivered short PNA probes containing cationic domains targeting the seed region of the miRNA for effective antimiR therapy. For proof of concept, we tested PNAs targeting miRNA-155 and employed poly(lactic-co-glycolic acid) (PLGA)-based nanoparticle formulation for delivery. A comprehensive evaluation of PLGA nanoparticles (NPs) containing short PNA probes showed significantly superior loading, release profile, and uniform size distribution, compared to conventional non-cationic PNA probes. Confocal microscopy and flow cytometry analyses showed efficient transfection efficiency and uniform distribution of PLGA NPs containing short PNA probes in the cytoplasm. Functional analysis also confirmed efficient miRNA-155 inhibition including an effect on its downstream target proteins. Further, reduced tumor growth was observed after systemic delivery of PLGA nanoparticles containing short PNA probes in vivo in a xenograft mouse model following inhibition of miR-155. There was no evidence of acute or chronic toxicity associated with systemic delivery of PLGA NPs containing short PNA probes in the mice. Overall, in this paper we present a novel antimiR strategy based on PLGA nanoparticle delivered short PNA probes for potential cancer therapy.
Collapse
Affiliation(s)
- Shipra Malik
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Jihoon Lim
- Department of Pathology, BIDMC Cancer Center, Harvard Medical School, 330, Brookline Ave, Boston, MA 02215, USA
| | - Frank J Slack
- Department of Pathology, BIDMC Cancer Center, Harvard Medical School, 330, Brookline Ave, Boston, MA 02215, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
12
|
Fischhuber K, Matzinger M, Heiss EH. AMPK Enhances Transcription of Selected Nrf2 Target Genes via Negative Regulation of Bach1. Front Cell Dev Biol 2020; 8:628. [PMID: 32760724 PMCID: PMC7372114 DOI: 10.3389/fcell.2020.00628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
5'-AMP-activated protein kinase (AMPK) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) are main players in the cellular adaptive response to metabolic and oxidative/xenobiotic stress, respectively. AMPK does not only balance the rate of fuel catabolism versus anabolism but also emerges as regulator of gene expression. We here examined the influence of AMPK on Nrf2-dependent gene transcription and the potential interplay of the two cellular stress hubs. Using gene expression analyses in wt and AMPKα1 -/- or Nrf2 -/- mouse embryonal fibroblasts, we could show that AMPK only affected a portion of the entire of Nrf2-dependent transcriptome upon exposure to the Nrf2 activator sulforaphane (Sfn). Focusing on selected genes with positive regulation by Nrf2 and either positive or no further regulation by AMPK, we revealed that altered Nrf2 levels could not account for the distinct extent of transactivation of certain Nrf2 targets in wt and AMPK -/- cells (assessed by immunoblot). FAIRE-qPCR largely excluded distinct chromatin accessibility of selected Nrf2-responsive antioxidant response elements (ARE) within the regulatory gene regions in wt and AMPK-/- cells. However, expression analyses and ChIP-qPCR showed that in AMPK-/- cells, levels of BTB and CNC homology 1 (Bach1), a competitor of Nrf2 for ARE sites with predominant repressor function, were higher, and Bach1 also bound to a greater relative extent to the examined ARE sites when compared to Nrf2. The negative influence of AMPK on Bach1 was confirmed by pharmacological and genetic approaches and occurred at the level of mRNA synthesis. Overall, the observed AMPK-mediated boost in transactivation of a subset of Nrf2 target genes involves downregulation of Bach1 and subsequent favored binding of activating Nrf2 over repressing Bach1 to the examined ARE sites.
Collapse
Affiliation(s)
| | - Manuel Matzinger
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Wada S, Kanzaki H, Katsumata Y, Yamaguchi Y, Narimiya T, Attucks OC, Nakamura Y, Tomonari H. Bach1 Inhibition Suppresses Osteoclastogenesis via Reduction of the Signaling via Reactive Oxygen Species by Reinforced Antioxidation. Front Cell Dev Biol 2020; 8:740. [PMID: 32850850 PMCID: PMC7417670 DOI: 10.3389/fcell.2020.00740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Bone destructive diseases such as periodontitis are common worldwide and are caused by excessive osteoclast formation and activation. Receptor activator of nuclear factor-κB ligand (RANKL) is essential factor for osteoclastogenesis. This triggers reactive oxygen species (ROS), which has a key role in intracellular signaling as well exerting cytotoxicity. Cells have protective mechanisms against ROS, such as nuclear factor E2-related factor 2 (Nrf2), which controls the expression of many antioxidant enzyme genes. Conversely, BTB and CNC homology 1 (Bach1), a competitor for Nrf2, transcriptionally represses the expression of anti-oxidant enzymes. Previously, we demonstrated that RANKL induces Bach1 nuclear import and attenuates the expression of Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular ROS signaling and osteoclastogenesis. However, it remains unknown if Bach1 inhibitors attenuate osteoclastogenesis. In this study, we hypothesized that Bach1 inhibition would exert an anti-osteoclastogenic effects via diminishing of intracellular ROS signaling through augmented antioxidation. We used RAW 264.7 cells as osteoclast progenitor cells. Using flow cytometry, we found that Bach1 inhibitors attenuated RANKL-mediated ROS generation, which resulted in the inhibition of osteoclastogenesis. Local injection of a Bach1 inhibitor into the calvaria of male BALB/c mice blocked bone destruction induced by lipopolysaccharide. In conclusion, we demonstrate that Bach1 inhibitor attenuates RANKL-mediated osteoclastogenesis and bone destruction in mice by inducing the expression of Nrf2-regulated antioxidant enzymes that consequently decrease intracellular ROS levels. Bach1 inhibitors have potential in inhibiting bone destructive diseases such as periodontitis, rheumatoid arthritis and osteoporosis.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yuta Katsumata
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yuuki Yamaguchi
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Tsuyoshi Narimiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | | | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| |
Collapse
|
14
|
Targeting the MAPK/ERK and PI3K/AKT Signaling Pathways Affects NRF2, Trx and GSH Antioxidant Systems in Leukemia Cells. Antioxidants (Basel) 2020; 9:antiox9070633. [PMID: 32709140 PMCID: PMC7402140 DOI: 10.3390/antiox9070633] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK)/extracellular signal kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signal transduction pathways have been implicated in the pathogenesis of leukemia. The aim of this study was to investigate the effect of the combination of ERK1/2 inhibitor AZD0364 and PI3K inhibitor ZSTK474 on acute lymphoblastic leukemia (ALL) REH, MOLT-4, acute myeloid leukemia (AML) MOLM-14, and chronic myeloid leukemia (CML) K562 cell lines. To evaluate the interactions of the drugs, cells were treated for 48 h with AZD0364 or ZSTK474 alone and in combination at fixed ratios. The combinatorial effects of both inhibitors were synergistic over a wide range of concentrations in REH, MOLT-4, and MOLM-14 cell lines. However, in K562 cells, the effects were found to be antagonistic. Furthermore, AZD0364 and ZSTK474 significantly decreased both ERK1/2 and AKT activation in REH, MOLT-4, and MOLM-14 cells. The results showed that incubation with both AZD0364 and ZSTK474 inhibited cell viability, increased reactive oxygen species (ROS) production, and induced apoptosis in leukemia cells. We observed that combined treatment with AZD0364 and ZSTK474 affected nuclear factor-κB (NF-κB) and antioxidant protein levels: NF-E2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), thioredoxin (Trx), thioredoxin reductase (TrxR), and the reduced glutathione/oxidized glutathione (GSH/GSSG) ratio. These effects were accompanied with decreased antiapoptotic survivin protein level. However, distinct cell line dependent effects were observed. In conclusion, the combination of AZD0364 and ZSTK474 can exert a synergistic anticancer effect in ALL and AML cells, which is associated with the induction of oxidative stress and the involvement of cellular antioxidant defense mechanisms.
Collapse
|
15
|
Huang J, Huang LQ, He HS, Yan J, Huang C, Wang R, Guan Y, Huang DP. Overexpression of heme oxygenase-1 in bone marrow stromal cells promotes multiple myeloma resistance through the JAK2/STAT3 pathway. Life Sci 2020; 257:118088. [PMID: 32663573 DOI: 10.1016/j.lfs.2020.118088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/09/2020] [Accepted: 07/08/2020] [Indexed: 01/16/2023]
Abstract
AIMS Bone marrow stromal cells (BMSCs) have been reported to interact with multiple myeloma (MM) and exert a vital function of the survival of MM cells. Heme oxygenase-1 (HO-1), a cytoprotective enzyme, has the potential to become a hematological malignancies targeted gene. This study aimed to investigate the role of HO-1 in MM resistance of BMSCs and its possible mechanisms. MAIN METHODS In this study, the expression of related proteins was detected by RT-qPCR and Western blot. HO-1 expression was regulated by lentivirus transfection. Cell viability and apoptosis were detected by Flow cytometry and CCK-8. Cytokine secretion was assayed by ELISA. The survival and carcinogenic abilities was detected by clone formation assay. KEY FINDINGS HO-1 expression in the BMSCs of stage III MM patients was substantially increased, compared with that of healthy donors and stage I/II patients. The results of co-culture of BMSCs and MM cells indicated that, the upregulated HO-1 inhibited the apoptosis of co-cultured MM cells, while downregulated HO-1 promoted the chemosensitivity of co-cultured MM cells, moreover, the upregulated HO-1 in BMSCs increased the colony-formation ability of MM cells. This protective capability may be regulated by CXCL12/CXCR4 signaling. High HO-1 expression in BMSCs can promote the phosphorylation of the JAK2/STAT3 pathway, thereby increasing secretion of SDF-1 in BMSCs and activating CXCL12/CXCR4 signaling. In addition, direct contact between BMSCs and MM cells may cause drug resistance. SIGNIFICANCE These results indicated that the regulation of HO-1 in BMSCs may be a new effective method of MM therapy.
Collapse
Affiliation(s)
- Jun Huang
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Lai-Quan Huang
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - He-Sheng He
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Jiawei Yan
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Chen Huang
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Ran Wang
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China
| | - Yan Guan
- Wannan Medical College, Wuhu 241001, China
| | - Dong-Ping Huang
- Department of Hematology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, China.
| |
Collapse
|
16
|
Oxidative resistance of leukemic stem cells and oxidative damage to hematopoietic stem cells under pro-oxidative therapy. Cell Death Dis 2020; 11:291. [PMID: 32341354 PMCID: PMC7184730 DOI: 10.1038/s41419-020-2488-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023]
Abstract
Leukemic stem cells (LSCs) and hematopoietic stem cells (HSCs) are both dependent on the hypoxic bone marrow (BM) microenvironment (also known as the BM niche). There is always fierce competition between the two types of cells, and the former exhibits a greater competitive advantage than the latter via multiple mechanisms. Under hypoxia, the dynamic balance between the generation and clearing of intracellular reactive oxygen species (ROS) is conducive to maintaining a quiescent state of cells. Quiescent LSCs can reside well in the BM niche, avoiding attack by chemotherapeutic agents, which is the cause of chemotherapeutic resistance and relapse in leukemia. HSCs acquire energy mainly through anaerobic glycolysis, whereas LSCs achieve energy metabolism largely through mitochondrial oxidative respiration. Mitochondria are the primary site of ROS generation. Thus, in theory, mitochondria-mediated respiration will cause an increase in ROS generation in LSCs and a higher intracellular oxidative stress level. The sensitivity of the cells to pro-oxidant drugs increases as well, which allows for the selective clearing of LSCs by pro-oxidative therapy. However, HSCs are also highly sensitive to changes in ROS levels, and the toxic effects of pro-oxidant drugs on HSCs poses a major challenge to pro-oxidative therapy in leukemia. Given the above facts, we reviewed studies on the oxidative resistance of LSCs and the oxidative damage to HSCs under pro-oxidative therapy. An in-depth investigation into the oxidative stress status and regulatory mechanisms of LSCs and HSCs in hypoxic environments will promote our understanding of the survival strategy employed by LSCs and the mechanism of the oxidative damage to HSCs in the BM niche, thus facilitating individualized treatment of leukemia patients and helping eliminate LSCs without disturbing normal hematopoietic cells.
Collapse
|
17
|
Marine Microorganism-Derived Macrolactins Inhibit Inflammatory Mediator Effects in LPS-Induced Macrophage and Microglial Cells by Regulating BACH1 and HO-1/Nrf2 Signals through Inhibition of TLR4 Activation. Molecules 2020; 25:molecules25030656. [PMID: 32033079 PMCID: PMC7037854 DOI: 10.3390/molecules25030656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022] Open
Abstract
Recently, many natural products with unique structure and promising pharmacological potential have been reported from marine-derived microorganisms. The macrolactin A (MA), 15-epi-dihydromacrolactin F (DMF) and macrolactin F (MF) were obtained from the culture broth extract of a marine sediment derived microorganism Bacillus sp. HC001. In this study, MA, DMF and MF inhibited the production and expression of proinflammatory mediators of inducible nitric oxide synthase (iNOS) and cyclooxygenase–2 (COX-2) in LPS-stimulated RAW264.7 and BV2 cells. Also, MA, DMF and MF exert anti-inflammatory effects through the expression of heme oxygenase (HO) -1, a stress-inducing enzyme that converts heme to carbon monoxide (CO), iron and biliberdine. Toll-like receptor 4 (TLR4) expressed by lipopolysaccharide (LPS) was inhibited by increased expression of HO-1 transcription factor Nrf2 and down regulation of BTB Domain And CNC Homolog 1 (BACH1), inhibited phosphorylation of Mitogen-activated protein kinase kinase kinase 7 (MAP3K7, TAK1) and nuclear factor kappaB (NF-κB). These results show that MA, DMF and MF effectively inhibited TLR4 by regulating BACH1 and HO-1/Nrf2 signals in LPS-stimulated RAW264.7 and BV2 cells, which suggests the possibility of use as an anti-inflammatory agent.
Collapse
|
18
|
Sudan K, Vijayan V, Madyaningrana K, Gueler F, Igarashi K, Foresti R, Motterlini R, Immenschuh S. TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radic Biol Med 2019; 137:131-142. [PMID: 31026585 DOI: 10.1016/j.freeradbiomed.2019.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Accepted: 04/20/2019] [Indexed: 02/07/2023]
Abstract
Heme oxygenase (HO)-1, a stress-inducible enzyme that converts heme into carbon monoxide (CO), iron and biliverdin, exerts important anti-inflammatory effects in activated macrophages. HO-1 expression is mainly governed by a mutual interplay between the transcriptional factor NRF2 and the nuclear repressor BTB and CNC homology 1 (BACH1), a heme sensor protein. In the current study we hypothesized that alterations in the levels of intracellular labile heme in macrophages stimulated by lipopolysaccharide (LPS), a prototypical pro-inflammatory Toll-like receptor (TLR)4 agonist, are responsible for BACH1-dependent HO-1 expression. To this end, labile heme was determined in both mouse bone marrow-derived macrophages (mBMDMs) and human monocyte-derived macrophages (hMDMs) using an apo-horseradish peroxidase-based assay. We found that LPS raised the levels of labile heme, depressed BACH1 protein and up-regulated HO-1 in mBMDMs. In contrast, in hMDMs LPS decreased labile heme levels while increasing BACH1 expression and down-regulating HO-1. These effects were abolished by the TLR4 antagonist TAK-242, suggesting that TLR4 activation triggers the signaling cascade leading to changes in the labile heme pool. Studies using mBMDMs from BACH1-/- and NRF2-/- mice revealed that regulation of HO-1 and levels of labile heme after LPS stimulation are strictly dependent on BACH1, but not NRF2. A strong interplay between BACH1-mediated HO-1 expression and intracellular levels of labile heme was also confirmed in hMDMs with siRNA knockdown studies and following inhibition of de novo heme synthesis with succinylacetone. Finally, CORM-401, a compound that liberates CO, counteracted LPS-dependent down-regulation of HO-1 and restored levels of labile heme in hMDMs. In conclusion, alterations of labile heme levels in macrophages following TLR4 stimulation play a crucial role in BACH1-mediated regulation of HO-1 expression.
Collapse
Affiliation(s)
- Kritika Sudan
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kukuh Madyaningrana
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Seiryo-machi 2-1, Sendai 980-8575, Japan
| | - Roberta Foresti
- INSERM U955, Team 12, Faculty of Medicine, University Paris Est, Creteil, France
| | - Roberto Motterlini
- INSERM U955, Team 12, Faculty of Medicine, University Paris Est, Creteil, France
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
19
|
Li YY, Liu CY, Liu M, Sun KY. Protective effects of HO-1 pathway on lung injury subsequent to limb ischemia reperfusion. Kaohsiung J Med Sci 2019; 35:417-424. [PMID: 30977589 DOI: 10.1002/kjm2.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
Limb ischemia reperfusion (LIR) can activate endogenous cytoprotective mechanisms by generating specific proteins against reperfusion injury in remote organs. The present study investigated the roles of heme oxygenase-1 (HO-1) pathway and the molecular mechanisms underlying the regulation of this pathway on lung injury following LIR. LIR was induced by ischemia for 4 hours followed by reperfusion for 6 hours (LIR 6 hours) or 16 hours (LIR 16 hours) in male Sprague-Dawley rats. HO-1 inducer cobalt protoporphyrin (Copp) or HO-1 inhibitor zinc protoporphyrin (Znpp) was intravenously injected 24 hours before ischemia. The animals were randomly divided into nine groups, including normal control, LIR 6 hours, LIR 16 hours, Copp, Copp + LIR 6 hours, Copp + LIR 16 hours, and Znpp, Znpp+ LIR 6 hours, and Znpp + LIR 16 hours groups (each group included four samples). Lung injury was examined through histopathology. Quantitative real-time PCR, immunohistochemistry and Western blot were applied to detect the mRNA and protein levels of HO-1, Nrf2, and Bach1. Our study showed that LIR induced Nrf2 upregulation but Bach1 downregulation to promote HO-1 expression in lung tissues. Activation of HO-1 pathway by Copp potentially enhanced Nrf2 expression but inhibition of the pathway by Znpp promoted Bach1 expression. Inducer of HO-1 pathway, Copp injection improved the lung injury. Nevertheless, Znpp injection aggravated the lung injury following LIR. Our findings suggested that activated HO-1 pathway might exert protective effects on the lung injury following LIR.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Chun-Yan Liu
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Mei Liu
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Ke-Yu Sun
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Davies KJA, Forman HJ. Does Bach1 & c-Myc dependent redox dysregulation of Nrf2 & adaptive homeostasis decrease cancer risk in ageing? Free Radic Biol Med 2019; 134:708-714. [PMID: 30695691 PMCID: PMC6588462 DOI: 10.1016/j.freeradbiomed.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 01/05/2023]
Abstract
The Keap1-Nrf2 signal transduction pathway plays a major role in oxidant and electrophile induction of adaptive homeostasis that transiently and reversibly increases cellular and organismal protection from stress. By expanding (and then contracting) the normal homeostatic range of expression of stress-protective genes, Nrf2 allows us to cope with fluctuations in stress levels. Two major inhibitors of Nrf2 are Bach1 and c-Myc which normally serve the important function of turning off adaptation when appropriate. We have found, however, that both Bach1 and c-Myc levels increase substantially with age and that older human cells, worms, flies, and mice loose Nrf2-dependent signaling and adaptive homeostasis. Nrf2 has also been linked with increased risk of cancers, and cancer incidence certainly increases with age. Here we propose that the age-dependent increase in Bach1 and c-Myc may actually cause the age-dependent decline in Nrf2 signaling and adaptive homeostasis, and that this is a coordinated attempt to minimize the age-dependent increase in cancer incidence. In other words, we may trade off adaptive homeostasis for a lower risk of cancer by increasing Bach1 and c-Myc in ageing.
Collapse
Affiliation(s)
- Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, Los Angeles, CA 90089-0191, USA.
| | - Henry Jay Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA
| |
Collapse
|
21
|
Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, Rescifina A, Pittalà V. Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem 2019; 167:439-453. [PMID: 30784878 DOI: 10.1016/j.ejmech.2019.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Heme oxygenases (HOs) are a family of enzymes involved in the selective catabolism of free circulating heme. While HO-2 is constitutively expressed, HO-1 is strongly overexpressed under stressful stimuli (e.g., oxidative stress). Under these conditions, HO-1 exerts its strong cytoprotective activities and plays a crucial role in stimulating cell survival by removing the pro-oxidant heme and by producing carbon monoxide and biliverdin (promptly reduced to bilirubin). Unfortunately, the broad spectrum of HO-1 cytoprotective effects has been well experimentally documented both in normal and tumor cells, where the enzyme can be overexpressed, making it an exciting target in the management of some type of tumors. Development of non-competitive HO-1 inhibitors dates back in 2002 with the discovery of Azalanstat. Since then, many efforts have been devoted to the identification of selective HO-1 and HO-2 inhibitors and to unravel the molecular determinants responsible for selectivity. Molecular modeling studies supported the identification of chemical features involved in the recognition and inhibition of these enzymes. Herein, medicinal chemistry aspects and in silico studies related to the development of HO inhibitors will be discussed. The purpose of this review is to highlight recent advances in the development of new selective HO-1 and HO-2 inhibitors and covers the last six years (2013-2018).
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Valeria Ciaffaglione
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Fatima Margani
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, Bari, 70125, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
22
|
Han W, Zhang Y, Niu C, Guo J, Li J, Wei X, Jia M, Zhi X, Yao L, Meng D. BTB and CNC homology 1 (Bach1) promotes human ovarian cancer cell metastasis by HMGA2-mediated epithelial-mesenchymal transition. Cancer Lett 2019; 445:45-56. [PMID: 30654010 DOI: 10.1016/j.canlet.2019.01.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/10/2018] [Accepted: 01/07/2019] [Indexed: 01/12/2023]
Abstract
Transcriptional factor BTB and CNC homology 1 (Bach1) has been linked to tumor progression and metastasis, but the mechanisms underlying the effects of Bach1 on tumor growth and metastasis are largely uncharacterized. Here, we report that Bach1 expression was significantly higher in human epithelial ovarian cancer (EOC) tissues than in normal ovarian tissues and that higher levels of Bach1 were associated with tumor stage and poorer overall and progression-free survival. We found that Bach1 enhanced the expression of epithelial-mesenchymal transition (EMT) genes, including Slug and Snail, and promoted cell migration by recruiting HMGA2 in the human EOC cell line A2780. Bach1 overexpression enhanced and Bach1 knockout reduced the expression of Slug and the metastasis of EOC cells in a tumor metastasis mouse model. Bach1 expression was positively correlated with Slug and HMGA2 expression in human ovarian cancer tissues. In addition, Bach1 activated p-AKT and p-p70S6K, increased the expression of cyclin D1, and promoted the growth of ovarian cancer cells in vitro and tumor xenografts in vivo. Together, our findings reveal that Bach1 enhances tumor growth and recruits HMGA2 to promote EMT and ovarian cancer metastasis.
Collapse
Affiliation(s)
- Wenyan Han
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Yiqun Zhang
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Cong Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiajia Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Liangqing Yao
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Bach1: Function, Regulation, and Involvement in Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1347969. [PMID: 30370001 PMCID: PMC6189649 DOI: 10.1155/2018/1347969] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
The transcription factor BTB and CNC homology 1 (Bach1) is widely expressed in most mammalian tissues and functions primarily as a transcriptional suppressor by heterodimerizing with small Maf proteins and binding to Maf recognition elements in the promoters of targeted genes. It has a key regulatory role in the production of reactive oxygen species, cell cycle, heme homeostasis, hematopoiesis, and immunity and has been shown to suppress ischemic angiogenesis and promote breast cancer metastasis. This review summarizes how Bach1 controls these and other cellular and physiological and pathological processes. Bach1 expression and function differ between different cell types. Thus, therapies designed to manipulate Bach1 expression will need to be tightly controlled and tailored for each specific disease state or cell type.
Collapse
|
24
|
Ye F, Li X, Liu Y, Chang W, Liu W, Yuan J, Chen J. Hemin provides protection against lead neurotoxicity through heme oxygenase 1/carbon monoxide activation. J Appl Toxicol 2018; 38:1353-1364. [PMID: 29797346 DOI: 10.1002/jat.3646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/23/2018] [Accepted: 04/17/2018] [Indexed: 12/19/2022]
Abstract
The neurotoxicity of lead (Pb) is well established, and oxidative stress is strongly associated with Pb-induced neurotoxicity. Heme oxygenase 1 (HO-1) is an important antioxidative enzyme for protection against oxidative stress in many disease models. In this study, we applied hemin, the substrate and a well-known inducer of HO-1, to investigate the possible role of HO-1 in protecting against Pb neurotoxicity. Hemin can significantly attenuate Pb acetate-induced cell death and oxidative stress in the hippocampus and frontal cortex of developmental rats. Consistent with in vivo results, the protective effects of hemin were also observed in SH-SY5Y cells after inducing cell survival and maintaining redox balance. However, knocking down HO-1 could significantly abolish the cytoprotective action of hemin against Pb toxicity, confirming HO-1 contributed to the protection. Finally, the HO-1-derived production of carbon monoxide, but not of bilirubin or Fe2+ , mediated the protective effects of HO-1 activation induced by hemin treatment against Pb-induced cell death and oxidative stress in SHSY5Y cells. Overall, this study showed that hemin provided protection against Pb neurotoxicity by HO-1/carbon monoxide activation.
Collapse
Affiliation(s)
- Fang Ye
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoyi Li
- Center for Translational Medicine, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yawen Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Chang
- Department of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Wenqi Liu
- Department of Parasitology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
25
|
Kishimoto D, Kirino Y, Tamura M, Takeno M, Kunishita Y, Takase-Minegishi K, Nakano H, Kato I, Nagahama K, Yoshimi R, Igarashi K, Aoki I, Nakajima H. Dysregulated heme oxygenase-1 low M2-like macrophages augment lupus nephritis via Bach1 induced by type I interferons. Arthritis Res Ther 2018; 20:64. [PMID: 29636091 PMCID: PMC5894134 DOI: 10.1186/s13075-018-1568-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Background Innate immunity including macrophages (Mϕ) in lupus nephritis (LN) has been gaining attention, but roles of Mϕ in LN remain uncertain. Methods Immunohistochemical staining was performed to determine CD68, CD163, heme oxygenase (HO)-1 (a stress-inducible heme-degrading enzyme with anti-inflammatory property), pSTAT1, and CMAF-expressing Mϕ in the glomeruli of patients with LN. Effects of type I interferons on the expression levels of CD163, HO-1, BTB and CNC homology 1 (Bach1; a transcriptional HO-1 repressor), interleukin (IL)-6, and IL-10 by human M2-like Mϕ, which were differentiated in vitro from peripheral monocytes with macrophage colony-stimulating factor, were assessed by RT-PCR and immunocytostaining. Clinical manifestations, anti-double-stranded DNA (anti-dsDNA), and local HO-1 expression were compared in Bach1-deficient and wild-type MRL/lpr mice. Results The number of glomerular M2-like Mϕ correlated with the amounts of proteinuria in patients with LN. Unlike monocyte-derived M2-like Mϕ, HO-1 expression was defective in the majority of glomerular M2-like Mϕ of patients with LN. Stimulation of human M2-like Mϕ with type I interferons led to reduced HO-1 expression and increased Bach1 and IL-6 expression. Bach1-deficient MRL/lpr mice exhibited increased HO-1 expression in kidneys, prolonged survival, reduced urine proteins, and serum blood urea nitrogen levels, but serum anti-dsDNA antibody levels were comparable. Increased expression of CD163 and HO-1 was found in peritoneal Mϕ from Bach1-deficient MRL/lpr mice. Conclusions Our data suggest that dysregulated M2-like Mϕ play a proinflammatory role in LN. Bach1 is a potential therapeutic target that could restore the anti-inflammatory property of M2 Mϕ. Electronic supplementary material The online version of this article (10.1186/s13075-018-1568-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daiga Kishimoto
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan.
| | - Maasa Tamura
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Mitsuhiro Takeno
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Yosuke Kunishita
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Kaoru Takase-Minegishi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Hiroto Nakano
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kiyotaka Nagahama
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University School of Medicine, Sendai, Japan.,Center for Regulatory Epigenome and Diseases, Tohoku University School of Medicine, Sendai, Japan
| | - Ichiro Aoki
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-Ku, Yokohama, 236-0004, Japan
| |
Collapse
|
26
|
Salerno L, Romeo G, Modica MN, Amata E, Sorrenti V, Barbagallo I, Pittalà V. Heme oxygenase-1: A new druggable target in the management of chronic and acute myeloid leukemia. Eur J Med Chem 2017; 142:163-178. [DOI: 10.1016/j.ejmech.2017.07.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
|
27
|
Li Volti G, Tibullo D, Vanella L, Giallongo C, Di Raimondo F, Forte S, Di Rosa M, Signorelli SS, Barbagallo I. The Heme Oxygenase System in Hematological Malignancies. Antioxid Redox Signal 2017; 27:363-377. [PMID: 28257621 DOI: 10.1089/ars.2016.6735] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Several lines of evidence suggest that hematological malignancies exhibit an altered redox balance homeostasis that can lead to the activation of various survival pathways that, in turn, lead to the progression of disease and chemoresistance. Among these pathways, the heme oxygenase-1 (HO-1) pathway is likely to play a major role. HO catalyzes the enzymatic degradation of heme with the simultaneous release of carbon monoxide (CO), ferrous iron (Fe2+), and biliverdin. This review focuses on the role of HO-1 in various hematological malignancies and the possibility of exploiting such targets to improve the outcome of well-established chemotherapeutic regimens. Recent Advances and Critical Issues: Interestingly, the inhibition of the expression of HO-1 (e.g., with siRNA) or HO activity (with competitive inhibitors) contributes to the increased efficacy of chemotherapy and improves the outcome in animal models. Furthermore, some hematological malignancies (e.g., chronic myeloid leukemia and multiple myeloma) have served to explore the non-canonical functions of HO-1, such as the association between nuclear compartmentalization and genetic instability and/or chemoresistance. FUTURE DIRECTIONS The HO system may serve as an important tool in the field of hematological malignancies because it can be exploited to counteract chemoresistance and to monitor the outcome of bone marrow transplants and may be an additional target for combined therapies. Antioxid. Redox Signal. 27, 363-377.
Collapse
Affiliation(s)
- Giovanni Li Volti
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy .,2 EuroMediterranean Institute of Science and Technology , Palermo, Italy
| | - Daniele Tibullo
- 3 Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania, Italy
| | - Luca Vanella
- 4 Department of Drug Sciences, University of Catania , Catania, Italy
| | - Cesarina Giallongo
- 3 Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania, Italy
| | - Francesco Di Raimondo
- 3 Division of Haematology, AOU "Policlinico - Vittorio Emanuele", University of Catania , Catania, Italy
| | - Stefano Forte
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy .,5 Istituto Oncologico del Mediterraneo Ricerca srl Viagrande , Catania, Italy
| | - Michelino Di Rosa
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania , Catania, Italy
| | | | | |
Collapse
|
28
|
Li L, Kong L, Song H. The therapeutic effect of zerumbone on chronic gastritis via antioxidant mechanisms. Exp Ther Med 2017; 14:2505-2510. [PMID: 28962187 PMCID: PMC5609211 DOI: 10.3892/etm.2017.4795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/20/2017] [Indexed: 12/27/2022] Open
Abstract
Effects of zerumbone on chronic gastritis remain unclear. The purpose of this study was to investigate the mechanism of the protective effect of zerumbone on the treatment of chronic gastritis in rats. The animal models of chronic gastritis in rats were established, and the surface damage of gastric mucosa was observed by gross anatomy; the changes of gastric mucosal tissue and surface morphology were observed by pathological sections of gastric mucosal tissues; the expressions of heme oxygenase-1 (HO-1) and nuclear factor E2-related factor 2 (Nrf-2) proteins of gastric mucosal tissues in each group were detected by western blot analysis; the activities of superoxide dismutase (SOD) and catalase (CAT) as well as the contents of reduced glutathione (GSH) and malondialdehyde (MDA) in gastric mucosal tissues were detected by kits. The results indicated that zerumbone could significantly relieve red and swelling as well as erosion of the gastric mucosal tissues in rats with chronic gastritis; zerumbone could significantly ameliorate the loose arrangement of cells in the lamina propria of gastric mucosa, epithelial cell deformation and abscission, and inflammatory cell infiltration. The results of western blot analysis showed that compared with the model group, zerumbone could significantly upregulate the expression of HO-1 and Nrf-2 in gastric mucosal tissues. Compared with the model group, the activities of SOD and CAT as well as GSH levels in gastric mucosal tissues of rats in the zerumbone groups were obviously increased, but MDA contents were significantly decreased. Zerumbone has a protective effect on chronic gastritis in rats, which is achieved by improving the antioxidant capacity of gastric mucosal tissues through inhibiting lipid peroxidation.
Collapse
Affiliation(s)
- Liqing Li
- Department of Spleen and Stomach Diseases, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Liang Kong
- Department of Spleen and Stomach Diseases, Qilu Hospital of Shandong University, Gaoxin District Branch, Jinan, Shandong 250101, P.R. China
| | - Hongquan Song
- Department of Spleen and Stomach Diseases, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250010, P.R. China
| |
Collapse
|
29
|
Immenschuh S, Vijayan V, Janciauskiene S, Gueler F. Heme as a Target for Therapeutic Interventions. Front Pharmacol 2017; 8:146. [PMID: 28420988 PMCID: PMC5378770 DOI: 10.3389/fphar.2017.00146] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 12/30/2022] Open
Abstract
Heme is a complex of iron and the tetrapyrrole protoporphyrin IX with essential functions in aerobic organisms. Heme is the prosthetic group of hemoproteins such as hemoglobin and myoglobin, which are crucial for reversible oxygen binding and transport. By contrast, high levels of free heme, which may occur in various pathophysiological conditions, are toxic via pro-oxidant, pro-inflammatory and cytotoxic effects. The toxicity of heme plays a major role for the pathogenesis of prototypical hemolytic disorders including sickle cell disease and malaria. Moreover, there is increasing appreciation that detrimental effects of heme may also be critically involved in diseases, which usually are not associated with hemolysis such as severe sepsis and atherosclerosis. In mammalians homeostasis of heme and its potential toxicity are primarily controlled by two physiological systems. First, the scavenger protein hemopexin (Hx) non-covalently binds extracellular free heme with high affinity and attenuates toxicity of heme in plasma. Second, heme oxygenases (HOs), in particular the inducible HO isozyme, HO-1, can provide antioxidant cytoprotection via enzymatic degradation of intracellular heme. This review summarizes current knowledge on the pathophysiological role of heme for various diseases as demonstrated in experimental animal models and in humans. The functional significance of Hx and HOs for the regulation of heme homeostasis is highlighted. Finally, the therapeutic potential of pharmacological strategies that apply Hx and HO-1 in various clinical settings is discussed.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | | | - Faikah Gueler
- Department of Nephrology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
30
|
Chifman J, Arat S, Deng Z, Lemler E, Pino JC, Harris LA, Kochen MA, Lopez CF, Akman SA, Torti FM, Torti SV, Laubenbacher R. Activated Oncogenic Pathway Modifies Iron Network in Breast Epithelial Cells: A Dynamic Modeling Perspective. PLoS Comput Biol 2017; 13:e1005352. [PMID: 28166223 PMCID: PMC5293201 DOI: 10.1371/journal.pcbi.1005352] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/08/2017] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of iron metabolism in cancer is well documented and it has been suggested that there is interdependence between excess iron and increased cancer incidence and progression. In an effort to better understand the linkages between iron metabolism and breast cancer, a predictive mathematical model of an expanded iron homeostasis pathway was constructed that includes species involved in iron utilization, oxidative stress response and oncogenic pathways. The model leads to three predictions. The first is that overexpression of iron regulatory protein 2 (IRP2) recapitulates many aspects of the alterations in free iron and iron-related proteins in cancer cells without affecting the oxidative stress response or the oncogenic pathways included in the model. This prediction was validated by experimentation. The second prediction is that iron-related proteins are dramatically affected by mitochondrial ferritin overexpression. This prediction was validated by results in the pertinent literature not used for model construction. The third prediction is that oncogenic Ras pathways contribute to altered iron homeostasis in cancer cells. This prediction was validated by a combination of simulation experiments of Ras overexpression and catalase knockout in conjunction with the literature. The model successfully captures key aspects of iron metabolism in breast cancer cells and provides a framework upon which more detailed models can be built. Iron is required for cellular metabolism and growth, but can be toxic due to its ability to cause high oxidative stress and consequently DNA damage. To prevent damage, all organisms that require iron have developed mechanisms to tightly control iron levels. Dysregulation of iron metabolism is detrimental and can contribute to a wide range of diseases, including cancer. This paper presents a predictive mathematical model of iron regulation linked to iron utilization, oxidative stress, and the oncogenic response specific to normal breast epithelial cells. The model uses a discrete modeling framework to generate novel biological hypotheses for an investigation of how normal breast cells become malignant cells, capturing a breast cancer phenotype of iron homeostasis through overexpression and knockout simulations. The new biology discovered is (1) IRP2 overexpression alters the iron homeostasis pathway in breast cells, without affecting the oxidative stress response or oncogenic pathways, (2) an activated oncogenic pathway disrupts iron regulation in breast cancer cells.
Collapse
Affiliation(s)
- Julia Chifman
- Department of Mathematics and Statistics, American University, Washington, DC, USA
| | - Seda Arat
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Zhiyong Deng
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Erica Lemler
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - James C. Pino
- Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, TN, USA
| | - Leonard A. Harris
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Michael A. Kochen
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - Carlos F. Lopez
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
- Center for Quantitative Science, Vanderbilt University, Nashville, TN, USA
| | - Steven A. Akman
- Cancer Program, Roper St Francis HealthCare, Charleston, SC, USA
| | - Frank M. Torti
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Suzy V. Torti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Reinhard Laubenbacher
- Center for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- * E-mail:
| |
Collapse
|
31
|
Bai X, Chen Y, Hou X, Huang M, Jin J. Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab Rev 2016; 48:541-567. [PMID: 27320238 DOI: 10.1080/03602532.2016.1197239] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemoresistance is a disturbing barrier in cancer therapy, which always results in limited therapeutic options and unfavorable prognosis. Nuclear factor E2-related factor 2 (NRF2) controls the expression of genes encoding cytoprotective enzymes and transporters that protect against oxidative stress and electrophilic injury to maintain intrinsic redox homeostasis. However, recent studies have demonstrated that aberrant activation of NRF2 due to genetic and/or epigenetic mutations in tumor contributes to the high expression of phase I and phase II drug-metabolizing enzymes, phase III transporters, and other cytoprotective proteins, which leads to the decreased therapeutic efficacy of anticancer drugs through biotransformation or extrusion during chemotherapy. Therefore, a better understanding of the role of NRF2 in regulation of these enzymes and transporters in tumors is necessary to find new strategies that improve chemotherapeutic efficacy. In this review, we summarized the recent findings about the chemoresistance-promoting role of NRF2, NRF2-regulated phase I and phase II drug-metabolizing enzymes, phase III drug efflux transporters, and other cytoprotective genes. Most importantly, the potential of NRF2 was proposed to counteract drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Xupeng Bai
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Yibei Chen
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Xiangyu Hou
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Min Huang
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| | - Jing Jin
- a School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
32
|
Huang J, Guo P, Ma D, Lin X, Fang Q, Wang J. Overexpression of heme oxygenase-1 induced by constitutively activated NF-κB as a potential therapeutic target for activated B-cell-like diffuse large B-cell lymphoma. Int J Oncol 2016; 49:253-64. [PMID: 27211510 DOI: 10.3892/ijo.2016.3529] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/22/2016] [Indexed: 11/06/2022] Open
Abstract
There is an urgent requirement for a new therapeutic target for activated B-cell-like lymphoma (ABC-DLBCL), which is known to have dismal outcome and constitutive activation of NF-κB. Heme oxygenase-1 (HO-1) can inhibit apoptosis and promote proliferation in many cancers. To our knowledge, no studies have been performed on the correlation between HO-1 and DLBCL. In this study, immunohistochemical analysis of 31 tumor tissues from DLBCL patients [20 of ABC subtype and 11 of germinal center B-cell-like (GCB) subtype] and 11 normal lymph nodes revealed that HO-1 overexpression was characteristic of ABC-DLBCL. In addition, HO-1 mRNA expression levels were consistent with the immunohistochemistry results. High levels of HO-1 expression were significantly correlated with the involvement of more than 1 extranodal site (p=0.025), with a high positivity rate of Ki-67 (p<0.01). Similar to its anti-apoptotic role in other malignancies, HO-1 upregulation suppressed apoptosis of the ABC-DLBCL cell line OCI-ly10, whereas its downregulation sensitized the tumor cells to chemotherapeutic drugs. Further study demonstrated that the HO-1 overexpression was mediated by constitutively activated NF-κB which together played an anti-apoptotic role in ABC-DLBCL. Combination of the NF-κB inhibitor Bay11‑7082 and the lentivirus vector Lenti-siHO-1 significantly decreased HO-1 protein expression and increased apoptosis in OCI-ly10 cells. However, in GCB-DLBCL cells with low levels of NF-κB expression, the TNF-α-mediated activation of NF-κB leading to HO-1 upregulation rescued the cells from apoptosis caused by HO-1 silencing. These results indicated that HO-1 can be a potential target for the treatment of ABC-DLBCL.
Collapse
Affiliation(s)
- Jun Huang
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Pengxiang Guo
- People's Hospital of Guizhou Province, Guiyang 550004, P.R. China
| | - Dan Ma
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiaojing Lin
- Guizhou Medical University, Guiyang 550004, P.R. China
| | - Qin Fang
- Department of Pharmacy, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang 550004, P.R. China
| | - Jishi Wang
- Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
33
|
Cross-talk between two antioxidants, thioredoxin reductase and heme oxygenase-1, and therapeutic implications for multiple myeloma. Redox Biol 2016; 8:175-85. [PMID: 26795735 PMCID: PMC4732019 DOI: 10.1016/j.redox.2016.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is characterized by an accumulation of abnormal clonal plasma cells in the bone marrow. Despite recent advancements in anti-myeloma therapies, MM remains an incurable disease. Antioxidant molecules are upregulated in many cancers, correlating with tumor proliferation, survival, and chemoresistance and therefore, have been suggested as potential therapeutic targets. This study investigated the cross-talk between two antioxidant molecules, thioredoxin reductase (TrxR) and heme oxygenase-1 (HO-1), and their therapeutic implications in MM. We found that although auranofin, a TrxR inhibitor, significantly inhibited TrxR activity by more than 50% at lower concentrations, myeloma cell proliferation was only inhibited at higher concentrations of auranofin. Inhibition of TrxR using lower auranofin concentrations induced HO-1 protein expression in myeloma cells. Using a sub-lethal concentration of auranofin to inhibit TrxR activity in conjunction with HO-1 inhibition significantly decreased myeloma cell growth and induced apoptosis. TrxR was shown to regulate HO-1 via the Nrf2 signaling pathway in a ROS-dependent manner. Increased HO-1 mRNA levels were observed in bortezomib-resistant myeloma cells compared to parent cells and HO-1 inhibition restored the sensitivity to bortezomib in bortezomib-resistant myeloma cells. These findings indicate that concurrent inhibition of HO-1 with either a TrxR inhibitor or with bortezomib would improve therapeutic outcomes in MM patients. Hence, our findings further support the need to target multiple antioxidant systems alone or in combination with other therapeutics to improve therapeutic outcomes in MM patients. TrxR inhibition induces HO-1 expression in myeloma cells. Inhibiting TrxR and HO-1 together induces myeloma cell apoptosis. HO-1 serves as a secondary anti-apoptotic mechanism in TrxR-inhibited myeloma cells. HO-1 inhibition overcomes bortezomib resistance in myeloma cells.
Collapse
|
34
|
Ryter SW, Choi AMK. Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation. Transl Res 2016; 167:7-34. [PMID: 26166253 PMCID: PMC4857893 DOI: 10.1016/j.trsl.2015.06.011] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 12/19/2022]
Abstract
The heme oxygenase-1 (HO-1) enzyme system remains an attractive therapeutic target for the treatment of inflammatory conditions. HO-1, a cellular stress protein, serves a vital metabolic function as the rate-limiting step in the degradation of heme to generate carbon monoxide (CO), iron, and biliverdin-IXα (BV), the latter which is converted to bilirubin-IXα (BR). HO-1 may function as a pleiotropic regulator of inflammatory signaling programs through the generation of its biologically active end products, namely CO, BV and BR. CO, when applied exogenously, can affect apoptotic, proliferative, and inflammatory cellular programs. Specifically, CO can modulate the production of proinflammatory or anti-inflammatory cytokines and mediators. HO-1 and CO may also have immunomodulatory effects with respect to regulating the functions of antigen-presenting cells, dendritic cells, and regulatory T cells. Therapeutic strategies to modulate HO-1 in disease include the application of natural-inducing compounds and gene therapy approaches for the targeted genetic overexpression or knockdown of HO-1. Several compounds have been used therapeutically to inhibit HO activity, including competitive inhibitors of the metalloporphyrin series or noncompetitive isoform-selective derivatives of imidazole-dioxolanes. The end products of HO activity, CO, BV and BR may be used therapeutically as pharmacologic treatments. CO may be applied by inhalation or through the use of CO-releasing molecules. This review will discuss HO-1 as a therapeutic target in diseases involving inflammation, including lung and vascular injury, sepsis, ischemia-reperfusion injury, and transplant rejection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY.
| | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY
| |
Collapse
|
35
|
Yu M, Wang J, Ma D, Chen S, Lin X, Fang Q, Zhe N. HO-1, RET and PML as possible markers for risk stratification of acute myelocytic leukemia and prognostic evaluation. Oncol Lett 2015; 10:3137-3144. [PMID: 26722301 DOI: 10.3892/ol.2015.3644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 07/28/2015] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible isoform of HO that is activated in response to oxidative stress and has anti-apoptotic and pro-proliferative effects on leukemia cells. RET, a tyrosine kinase receptor; its expression levels are associated with the differentiation degree of acute myelocytic leukemia (AML) cells. The promyelocytic leukemia (PML) gene inhibits cell proliferation and tumor growth, participates in the differentiation of hematopoietic progenitor cells and induces cell apoptosis. However, the association between the expression levels of HO-1, RET and PML genes and the risk stratification of AML and prognosis have not previously been reported. In the present study, HO-1 was expressed in the human AML Kasumi-1, HL-60 and THP-1 cell lines, and HO-1 expression was regulated by Hemin (20 µmol/l) and ZnPPIX (10 µmol/l). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that expression of RET and PML were positively and negatively correlated with HO-1 expression, respectively. Bone marrow samples (18 favorable, 55 intermediate, 15 adverse and 2 unknown karyotype AML cases and 20 healthy donors) were collected from 90 randomly selected AML patients upon their first visit. The mRNA and protein expression of HO-1, RET and PML in samples was detected by RT-qPCR and western blot analysis. At the mRNA level, the adverse group expressed significantly higher levels of HO-1 and RET compared with the levels in the favorable and normal groups. The PML mRNA expression levels in adverse patient samples was lower compared with those of the intermediate group and favorable group. Western blot analysis demonstrated that the expression levels of HO-1, RET and PML proteins in all risk groups exhibited the same pattern of expression as was observed for the mRNA levels. The overall survival and relapse-free survival rates were shortest in AML patients with high HO-1 expression (Kaplan-Meier; log-rank, P<0.01). The results of the present study therefore indicate that HO-1, RET and PML may be critical in the risk-stratification and prognosis of AML. However, additional samples and clinical data should be collected and analyzed in order to provide stronger evidence for this hypothesis.
Collapse
Affiliation(s)
- Meisheng Yu
- Clinical Medical College, Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jishi Wang
- Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China ; Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dan Ma
- Clinical Medical College, Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China ; Department of Pharmacy, Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shuya Chen
- Clinical Medical College, Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xiaojing Lin
- Clinical Medical College, Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qin Fang
- Department of Pharmacy, Affiliated Baiyun Hospital of Guiyang Medical University, Guiyang, Guizhou 550058, P.R. China
| | - Nana Zhe
- Clinical Medical College, Guiyang Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
36
|
Jiang L, Yin M, Wei X, Liu J, Wang X, Niu C, Kang X, Xu J, Zhou Z, Sun S, Wang X, Zheng X, Duan S, Yao K, Qian R, Sun N, Chen A, Wang R, Zhang J, Chen S, Meng D. Bach1 Represses Wnt/β-Catenin Signaling and Angiogenesis. Circ Res 2015; 117:364-375. [PMID: 26123998 PMCID: PMC4676728 DOI: 10.1161/circresaha.115.306829] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 06/29/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Wnt/β-catenin signaling has an important role in the angiogenic activity of endothelial cells (ECs). Bach1 is a transcription factor and is expressed in ECs, but whether Bach1 regulates angiogenesis is unknown. OBJECTIVE This study evaluated the role of Bach1 in angiogenesis and Wnt/β-catenin signaling. METHODS AND RESULTS Hind-limb ischemia was surgically induced in Bach1(-/-) mice and their wild-type littermates and in C57BL/6J mice treated with adenoviruses coding for Bach1 or GFP. Lack of Bach1 expression was associated with significant increases in perfusion and vascular density and in the expression of proangiogenic cytokines in the ischemic hindlimb of mice, with enhancement of the angiogenic activity of ECs (eg, tube formation, migration, and proliferation). Bach1 overexpression impaired angiogenesis in mice with hind-limb ischemia and inhibited Wnt3a-stimulated angiogenic response and the expression of Wnt/β-catenin target genes, such as interleukin-8 and vascular endothelial growth factor, in human umbilical vein ECs. Interleukin-8 and vascular endothelial growth factor were responsible for the antiangiogenic response of Bach1. Immunoprecipitation and GST pull-down assessments indicated that Bach1 binds directly to TCF4 and reduces the interaction of β-catenin with TCF4. Bach1 overexpression reduces the interaction between p300/CBP and β-catenin, as well as β-catenin acetylation, and chromatin immunoprecipitation experiments confirmed that Bach1 occupies the TCF4-binding site of the interleukin-8 promoter and recruits histone deacetylase 1 to the interleukin-8 promoter in human umbilical vein ECs. CONCLUSIONS Bach1 suppresses angiogenesis after ischemic injury and impairs Wnt/β-catenin signaling by disrupting the interaction between β-catenin and TCF4 and by recruiting histone deacetylase 1 to the promoter of TCF4-targeted genes.
Collapse
Affiliation(s)
- Li Jiang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Meng Yin
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Junxu Liu
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Xinhong Wang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Cong Niu
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Xueling Kang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Jie Xu
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Zhongwei Zhou
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Shaoyang Sun
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Xu Wang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Xiaojun Zheng
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Shengzhong Duan
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Kang Yao
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Ning Sun
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Alex Chen
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Rui Wang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Jianyi Zhang
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Sifeng Chen
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| | - Dan Meng
- Department of Physiology and Pathophysiology (L.J., Xiangxiang Wei, J.L., Xinhong Wang, C.N., X.K., J.X., Z.Z., R.Q., N.S., A.C., R.W., S.C., D.M.) and Department of Biochemistry and Molecular Biology (S.S., Xu Wang), School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China (M.Y.); Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China (X.Z., S.D.); Department of Cardiology, Shanghai Institute of Cardiovascular Disease, ZhongShan Hospital, Fudan University, Shanghai, China (K.Y.); Center for Vascular Disease and Translational Medicine, Xiangya Third Hospital, Central South University, Changsha, China (A.C.); Department of Biology, Laurentian University, Sudbury, Ontario, Canada (R.W.); and Division of Cardiology, Department of Medicine, Stem Cell Institute, University of Minnesota Medical School, Minneapolis (J.Z.)
| |
Collapse
|
37
|
Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms. mBio 2015; 6:e00668. [PMID: 26045540 PMCID: PMC4462627 DOI: 10.1128/mbio.00668-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities. Previously published work has shown that KSHV-infected EC in vitro proliferate in response to free heme in a HO-1-dependent manner, thus implicating virus-enhanced HO-1 activity in KS tumorigenesis. The present study investigated the molecular mechanisms underlying KSHV induction of HO-1 in lymphatic EC (LEC), which are the likely spindle cell precursors. In a time course analysis of KSHV-infected cells, HO-1 expression displays biphasic kinetics characterized by an early transient induction that is followed by a more sustained upregulation coincident with the establishment of viral latency. A viral microRNA miR-K12-11 deletion mutant of KSHV was found to be defective for induction of HO-1 during latency. A potential mechanism for this phenotype was provided by BACH1, a cellular HO-1 transcriptional repressor targeted by miR-K12-11. In fact, in KSHV-infected LEC, the BACH1 message level is reduced, BACH1 subcellular localization is altered, and miR-K12-11 mediates the inverse regulation of HO-1 and BACH1 during viral latency. Interestingly, the data indicate that neither miR-K12-11 nor de novo KSHV gene expression is required for the burst of HO-1 expression observed at early times postinfection, which suggests that additional virion components promote this phenotype. While the mechanisms underlying KSHV induction of HO-1 remain unknown, the cellular mechanisms that regulate HO-1 expression have been extensively investigated in the context of basal and pathophysiological states. The detoxifying action of HO-1 is critical for the protection of cells exposed to high heme levels. KS spindle cells are erythrophagocytic and contain erythrocyte ghosts. Erythrocyte degeneration leads to the localized release of heme, creating oxidative stress that may be further exacerbated by environmental or other cofactors. Our previous work showed that KSHV-infected cells proliferate in response to heme and that this occurs in a HO-1-dependent manner. We therefore hypothesize that KSHV induction of HO-1 contributes to KS tumor development via heme metabolism and propose that HO-1 be evaluated as a therapeutic target for KS. Our present work, which aimed to understand the mechanisms whereby KSHV induces HO-1, will be important for the design and implementation of such a strategy.
Collapse
|
38
|
Lin X, Fang Q, Chen S, Zhe N, Chai Q, Yu M, Zhang Y, Wang Z, Wang J. Heme oxygenase-1 suppresses the apoptosis of acute myeloid leukemia cells via the JNK/c-JUN signaling pathway. Leuk Res 2015; 39:544-52. [PMID: 25828744 DOI: 10.1016/j.leukres.2015.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/26/2015] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
Abstract
There are few studies on the correlation between heme oxygenase-1 (HO-1) and acute myeloid leukemia (AML). We found that HO-1 was aberrantly overexpressed in the majority of AML patients, especially in patients with acute monocytic leukemia (M5) and leukocytosis, and inhibited the apoptosis of HL-60 and U937 cells. Moreover, silencing HO-1 prolonged the survival of xenograft mouse models. Further studies demonstrated that HO-1 suppressed the apoptosis of AML cells through activating the JNK/c-JUN signaling pathway. These data indicate a molecular role of HO-1 in inhibiting cell apoptosis, allowing it to be a potential target for treating AML.
Collapse
Affiliation(s)
- Xiaojing Lin
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Qin Fang
- Department of Pharmacy, the Affiliated Baiyun Hospital of Guiyang Medical College, Guiyang 550004, China
| | - Shuya Chen
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Nana Zhe
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Qixiang Chai
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Meisheng Yu
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Yaming Zhang
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Ziming Wang
- Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China
| | - Jishi Wang
- Guiyang Medical College, Guiyang 550004, China; Department of Hematology, the Affiliated Hospital of Guiyang Medical College, Guiyang 550004, China; Guizhou Provincial Laboratory of Hematopoietic Stem Cell Transplantation Center, Guiyang 550004, China.
| |
Collapse
|
39
|
Ma D, Fang Q, Wang P, Gao R, Sun J, Li Y, Hu XY, Wang JS. Downregulation of HO-1 promoted apoptosis induced by decitabine via increasing p15INK4B promoter demethylation in myelodysplastic syndrome. Gene Ther 2015; 22:287-96. [DOI: 10.1038/gt.2015.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 11/08/2014] [Accepted: 12/16/2014] [Indexed: 11/09/2022]
|
40
|
Progress in RNAi-mediated Molecular Therapy of Acute and Chronic Myeloid Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e240. [DOI: 10.1038/mtna.2015.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 02/08/2023]
|
41
|
Dorresteijn MJ, Paine A, Zilian E, Fenten MGE, Frenzel E, Janciauskiene S, Figueiredo C, Eiz-Vesper B, Blasczyk R, Dekker D, Pennings B, Scharstuhl A, Smits P, Larmann J, Theilmeier G, van der Hoeven JG, Wagener FADTG, Pickkers P, Immenschuh S. Cell-type-specific downregulation of heme oxygenase-1 by lipopolysaccharide via Bach1 in primary human mononuclear cells. Free Radic Biol Med 2015; 78:224-32. [PMID: 25463280 DOI: 10.1016/j.freeradbiomed.2014.10.579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022]
Abstract
Heme oxygenase (HO)-1 is the inducible isoform of the heme-degrading enzyme HO, which is upregulated by multiple stress stimuli. HO-1 has major immunomodulatory and anti-inflammatory effects via its cell-type-specific functions in mononuclear cells. Contradictory findings have been reported on HO-1 regulation by the Toll-like receptor (TLR) 4 ligand lipopolysaccharide (LPS) in these cells. Therefore, we reinvestigated the effects of LPS on HO-1 gene expression in human and murine mononuclear cells in vitro and in vivo. Remarkably, LPS downregulated HO-1 in primary human peripheral blood mononuclear cells (PBMCs), CD14(+) monocytes, macrophages, dendritic cells, and granulocytes, but upregulated this enzyme in primary murine macrophages and human monocytic leukemia cell lines. Furthermore, experiments with human CD14(+) monocytes revealed that activation of other TLRs including TLR1, -2, -5, -6, -8, and -9 decreased HO-1 mRNA expression. LPS-dependent downregulation of HO-1 was specific, because expression of cyclooxygenase-2, NADP(H)-quinone oxidoreductase-1, and peroxiredoxin-1 was increased under the same experimental conditions. Notably, LPS upregulated expression of Bach1, a critical transcriptional repressor of HO-1. Moreover, knockdown of this nuclear factor enhanced basal and LPS-dependent HO-1 expression in mononuclear cells. Finally, downregulation of HO-1 in response to LPS was confirmed in PBMCs from human individuals subjected to experimental endotoxemia. In conclusion, LPS downregulates HO-1 expression in primary human mononuclear cells via a Bach1-mediated pathway. As LPS-dependent HO-1 regulation is cell-type- and species-specific, experimental findings in cell lines and animal models need careful interpretation.
Collapse
MESH Headings
- Animals
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- Blotting, Western
- Down-Regulation
- Endotoxemia/drug therapy
- Endotoxemia/enzymology
- Endotoxemia/pathology
- Fanconi Anemia Complementation Group Proteins/genetics
- Fanconi Anemia Complementation Group Proteins/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Humans
- Leukemia, Monocytic, Acute/drug therapy
- Leukemia, Monocytic, Acute/enzymology
- Leukemia, Monocytic, Acute/pathology
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/enzymology
- Lipopolysaccharides/pharmacology
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/enzymology
- Mice
- Monocytes/cytology
- Monocytes/drug effects
- Monocytes/enzymology
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Mirrin J Dorresteijn
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Department of Pharmacology and Toxicology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Ananta Paine
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Eva Zilian
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Maaike G E Fenten
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Department of Pharmacology and Toxicology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Eileen Frenzel
- Department of Internal Medicine-Respiratory Medicine, Hannover Medical School, 30635 Hannover, Germany
| | - Sabina Janciauskiene
- Department of Internal Medicine-Respiratory Medicine, Hannover Medical School, 30635 Hannover, Germany
| | - Constanca Figueiredo
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Douwe Dekker
- Department of Pharmacology and Toxicology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Bas Pennings
- Department of Pharmacology and Toxicology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6500 Nijmegen, The Netherlands
| | - Alwin Scharstuhl
- Department of Pharmacology and Toxicology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Paul Smits
- Department of Pharmacology and Toxicology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Jan Larmann
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Gregor Theilmeier
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Johannes G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Nijmegen Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Frank A D T G Wagener
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, 6500 Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; Nijmegen Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
42
|
Udensi UK, Tchounwou PB. Dual effect of oxidative stress on leukemia cancer induction and treatment. J Exp Clin Cancer Res 2014; 33:106. [PMID: 25519934 PMCID: PMC4320640 DOI: 10.1186/s13046-014-0106-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OS) has been characterized by an imbalance between the production of reactive oxygen species (ROS) and a biological system's ability to repair oxidative damage or to neutralize the reactive intermediates including peroxides and free radicals. High ROS production has been associated with significant decrease in antioxidant defense mechanisms leading to protein, lipid and DNA damage and subsequent disruption of cellular functions. In humans, OS has been reported to play a role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, Lou Gehrig's disease, multiple sclerosis and Parkinson's disease, as well as atherosclerosis, autism, cancer, heart failure, and myocardial infarction. Although OS has been linked to the etiology and development of chronic diseases, many chemotherapeutic drugs have been shown to exert their biologic activity through induction of OS in affected cells. This review highlights the controversial role of OS in the development and progression of leukemia cancer and the therapeutic application of increased OS and antioxidant approaches to the treatment of leukemia patients.
Collapse
Affiliation(s)
- Udensi K Udensi
- NIH/NIMHD RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, 39217, USA.
| | - Paul B Tchounwou
- NIH/NIMHD RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
43
|
Chigaev A, Smagley Y, Sklar LA. Carbon monoxide down-regulates α4β1 integrin-specific ligand binding and cell adhesion: a possible mechanism for cell mobilization. BMC Immunol 2014; 15:52. [PMID: 25367365 PMCID: PMC4221689 DOI: 10.1186/s12865-014-0052-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/21/2014] [Indexed: 01/13/2023] Open
Abstract
Background Carbon monoxide (CO), a byproduct of heme degradation, is attracting growing attention from the scientific community. At physiological concentrations, CO plays a role as a signal messenger that regulates a number of physiological processes. CO releasing molecules are under evaluation in preclinical models for the management of inflammation, sepsis, ischemia/reperfusion injury, and organ transplantation. Because of our discovery that nitric oxide signaling actively down-regulates integrin affinity and cell adhesion, and the similarity between nitric oxide and CO-dependent signaling, we studied the effects of CO on integrin signaling and cell adhesion. Results We used a cell permeable CO releasing molecule (CORM-2) to elevate intracellular CO, and a fluorescent Very Late Antigen-4 (VLA-4, α4β1-integrin)-specific ligand to evaluate the integrin state in real-time on live cells. We show that the binding of the ligand can be rapidly down-modulated in resting cells and after inside-out activation through several Gαi-coupled receptors. Moreover, cell treatment with hemin, a natural source of CO, resulted in comparable VLA-4 ligand dissociation. Inhibition of VLA-4 ligand binding by CO had a dramatic effect on cell-cell interaction in a VLA-4/VCAM-1-dependent cell adhesion system. Conclusions We conclude that the CO signaling pathway can rapidly down-modulate binding of the VLA-4 -specific ligand. We propose that CO-regulated integrin deactivation provides a basis for modulation of immune cell adhesion as well as rapid cell mobilization, for example as shown for splenic monocytes in response to surgically induced ischemia of the myocardium.
Collapse
Affiliation(s)
- Alexandre Chigaev
- Department of Pathology and University of New Mexico Cancer Center, Albuquerque 87131, NM, USA.
| | | | | |
Collapse
|
44
|
Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 2013; 83:1029-41. [PMID: 23325084 PMCID: PMC3633725 DOI: 10.1038/ki.2012.439] [Citation(s) in RCA: 542] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress and inflammation are mediators in the development and progression of chronic kidney disease (CKD) and its complications, and they are inseparably linked as each begets and amplifies the other. CKD-associated oxidative stress is due to increased production of reactive oxygen species (ROS) and diminished antioxidant capacity. The latter is largely caused by impaired activation of Nrf2, the transcription factor that regulates genes encoding antioxidant and detoxifying molecules. Protective effects of Nrf2 are evidenced by amelioration of oxidative stress, inflammation, and kidney disease in response to natural Nrf2 activators in animal models, while Nrf2 deletion amplifies these pathogenic pathways and leads to autoimmune nephritis. Given the role of impaired Nrf2 activity in CKD-induced oxidative stress and inflammation, interventions aimed at restoring Nrf2 may be effective in retarding CKD progression. Clinical trials of the potent Nrf2 activator bardoxolone methyl showed significant improvement in renal function in CKD patients with type 2 diabetes. However, due to unforeseen complications the BEACON trial, which was designed to investigate the effect of this drug on time to end-stage renal disease or cardiovascular death in patients with advanced CKD, was prematurely terminated. This article provides an overview of the role of impaired Nrf2 activity in the pathogenesis of CKD-associated oxidative stress and inflammation and the potential utility of targeting Nrf2 in the treatment of CKD.
Collapse
|
45
|
Zhou F, Shen Q, Claret FX. Novel roles of reactive oxygen species in the pathogenesis of acute myeloid leukemia. J Leukoc Biol 2013; 94:423-9. [PMID: 23715741 DOI: 10.1189/jlb.0113006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has become apparent that regulation of ROS is important in cell signaling and homeostasis. Accumulation of ROS triggers oxidative stress in various cell types and contributes to the development, progression, and persistence of cancer. Recent research has demonstrated that redox dysregulation caused by ROS promotes proliferation, differentiation, genomic, and epigenetic alterations; immune evasion; and survival in leukemic cells. ROS act as signaling molecules to regulate redox-sensitive transcriptional factors, enzymes, oncogenes, and other downstream effectors. Thus, a thorough understanding the role of ROS as key mediators in leukemogenesis is likely to provide opportunities for improved pharmacological intervention. In this review, we summarize the recent findings that support a role for ROS in the pathogenesis of AML and outline innovative approaches in the implementation of redox therapies for myeloid malignancies.
Collapse
Affiliation(s)
- Fuling Zhou
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
46
|
Activation of the Nrf2 pathway by inorganic arsenic in human hepatocytes and the role of transcriptional repressor Bach1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:984546. [PMID: 23738048 PMCID: PMC3664501 DOI: 10.1155/2013/984546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/29/2023]
Abstract
Previous studies have proved that the environmental toxicant, inorganic arsenic, activates nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in many different cell types. This study tried to explore the hepatic Nrf2 pathway upon arsenic treatment comprehensively, since liver is one of the major target organs of arsenical toxicity. Our results showed that inorganic arsenic significantly induced Nrf2 protein and mRNA expression in Chang human hepatocytes. We also observed a dose-dependent increase of antioxidant response element- (ARE-) luciferase activity. Both the mRNA and protein levels of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) were all upregulated dramatically. On the other hand, entry and accumulation of Nrf2 protein in the nucleus, while exportting the transcriptional repressor BTB and CNC homology 1 (Bach1) from nucleus to cytoplasm, were also confirmed by western blot and immunofluorescence assay. Our results therefore confirmed the arsenic-induced Nrf2 pathway activation in hepatocytes and also suggested that the translocation of Bach1 was associated with the regulation of Nrf2 pathway by arsenic. Hepatic Nrf2 pathway plays indispensable roles for cellular defenses against arsenic hepatotoxicity, and the interplay of Bach1 and Nrf2 may be helpful to understand the self-defensive responses and the diverse biological effects of arsenicals.
Collapse
|
47
|
Irwin ME, Rivera-Del Valle N, Chandra J. Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2013; 18:1349-83. [PMID: 22900756 PMCID: PMC3584825 DOI: 10.1089/ars.2011.4258] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability-some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients.
Collapse
Affiliation(s)
- Mary E Irwin
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
48
|
Carbon monoxide: Mechanisms of action and potential clinical implications. Pharmacol Ther 2013; 137:133-52. [DOI: 10.1016/j.pharmthera.2012.09.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
|
49
|
Hama M, Kirino Y, Takeno M, Takase K, Miyazaki T, Yoshimi R, Ueda A, Itoh-Nakadai A, Muto A, Igarashi K, Ishigatsubo Y. Bach1 regulates osteoclastogenesis in a mouse model via both heme oxygenase 1-dependent and heme oxygenase 1-independent pathways. ACTA ACUST UNITED AC 2012; 64:1518-28. [PMID: 22127667 DOI: 10.1002/art.33497] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Reducing inflammation and osteoclastogenesis by heme oxygenase 1 (HO-1) induction could be beneficial in the treatment of rheumatoid arthritis (RA). However, the function of HO-1 in bone metabolism remains unclear. This study was undertaken to clarify the effects of HO-1 and its repressor Bach1 in osteoclastogenesis. METHODS In vitro osteoclastogenesis was compared in Bach1-deficient and wild-type mice. Osteoclasts (OCs) were generated from bone marrow-derived macrophages by stimulation with macrophage colony-stimulating factor and RANKL. Osteoclastogenesis was assessed by tartrate-resistant acid phosphatase staining and expression of OC-related genes. Intracellular signal pathways in OC precursors were also assessed. HO-1 short hairpin RNA (shRNA) was transduced into Bach1(-/-) mouse bone marrow-derived macrophages to examine the role of HO-1 in osteoclastogenesis. In vivo inflammatory bone loss was evaluated by local injection of tumor necrosis factor α (TNFα) into calvaria. RESULTS Transcription of HO-1 was down-regulated by stimulation with RANKL in the early stage of OC differentiation. Bach1(-/-) mouse bone marrow-derived macrophages were partially resistant to the RANKL-dependent HO-1 reduction and showed impaired osteoclastogenesis, which was associated with reduced expression of RANK and components of the downstream TNF receptor-associated factor 6/c-Fos/NF-ATc1 pathway as well as reduced expression of Blimp1. Treatment with HO-1 shRNA increased the number of OCs and expression of OC-related genes except for the Blimp1 gene during in vitro osteoclastogenesis from Bach1(-/-) mouse bone marrow-derived macrophages. TNFα-induced bone destruction was reduced in Bach1(-/-) mice in vivo. CONCLUSION The present findings demonstrate that Bach1 regulates osteoclastogenesis under inflammatory conditions, via both HO-1-dependent and HO-1-independent mechanisms. Bach1 may be worthy of consideration as a target for treatment of inflammatory bone loss in diseases including RA.
Collapse
Affiliation(s)
- Maasa Hama
- Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Barrera LN, Rushworth SA, Bowles KM, MacEwan DJ. Bortezomib induces heme oxygenase-1 expression in multiple myeloma. Cell Cycle 2012; 11:2248-52. [PMID: 22617388 DOI: 10.4161/cc.20343] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is a progressive malignant disorder characterized by accumulation of plasma cells in the bone marrow. MM remains an incurable disease with a 5-y survival rate of approximately 40%. While clinical response rates to first line chemotherapeutics are high, disease relapse is inevitable, and occurs because a small fraction of the original myeloma cells appear to be resistant to treatment. Heme oxygenase-1 (HO-1) is an Nrf2 transcription factor-regulated gene that is commonly induced following oxidative stress and cellular injury, functioning to decrease oxidative stress and inflammatory responses, protecting against apoptosis and altering the cell cycle. We and others have highlighted the role of HO-1 in providing cellular protection against chemotherapeutic drugs in a number of cancer cells, which we have highlighted here in this Extra View. Furthermore, we explored the expression of HO-1 in multiple myeloma cells in response to the key anti-myeloma drugs bortezomib and lenalidomide. We show here for the first time that bortezomib increases HO-1 expression in a time- and concentration-dependent manner. Moreover, we also observe that HO-1 is increased in lenalidomide-resistant MM cell lines. Altogether, we highlight a possible role for HO-1 in basal and acquired chemoresistance in MM.
Collapse
Affiliation(s)
- Lawrence N Barrera
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | | | | | | |
Collapse
|