1
|
Singh AA, Ghosh A, Agrawal M, Agrawal SB. Secondary metabolites responses of plants exposed to ozone: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88281-88312. [PMID: 37440135 DOI: 10.1007/s11356-023-28634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
Tropospheric ozone (O3) is a secondary pollutant that causes oxidative stress in plants due to the generation of excess reactive oxygen species (ROS). Phenylpropanoid metabolism is induced as a usual response to stress in plants, and induction of key enzyme activities and accumulation of secondary metabolites occur, upon O3 exposure to provide resistance or tolerance. The phenylpropanoid, isoprenoid, and alkaloid pathways are the major secondary metabolic pathways from which plant defense metabolites emerge. Chronic exposure to O3 significantly accelerates the direction of carbon flows toward secondary metabolic pathways, resulting in a resource shift in favor of the synthesis of secondary products. Furthermore, since different cellular compartments have different levels of ROS sensitivity and metabolite sets, intracellular compartmentation of secondary antioxidative metabolites may play a role in O3-induced ROS detoxification. Plants' responses to resource partitioning often result in a trade-off between growth and defense under O3 stress. These metabolic adjustments help the plants to cope with the stress as well as for achieving new homeostasis. In this review, we discuss secondary metabolic pathways in response to O3 in plant species including crops, trees, and medicinal plants; and how the presence of this stressor affects their role as ROS scavengers and structural defense. Furthermore, we discussed how O3 affects key physiological traits in plants, foliar chemistry, and volatile emission, which affects plant-plant competition (allelopathy), and plant-insect interactions, along with an emphasis on soil dynamics, which affect the composition of soil communities via changing root exudation, litter decomposition, and other related processes.
Collapse
Affiliation(s)
- Aditya Abha Singh
- Department of Botany, University of Lucknow, -226007, Lucknow, India
| | - Annesha Ghosh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi Bhushan Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Gupta A, Awasthi P, Sharma N, Parveen S, Vats RP, Singh N, Kumar Y, Goel A, Chandran D. Medicarpin confers powdery mildew resistance in Medicago truncatula and activates the salicylic acid signalling pathway. MOLECULAR PLANT PATHOLOGY 2022; 23:966-983. [PMID: 35263504 PMCID: PMC9190973 DOI: 10.1111/mpp.13202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 05/28/2023]
Abstract
Powdery mildew (PM) caused by the obligate biotrophic fungal pathogen Erysiphe pisi is an economically important disease of legumes. Legumes are rich in isoflavonoids, a class of secondary metabolites whose role in PM resistance is ambiguous. Here we show that the pterocarpan medicarpin accumulates at fungal infection sites, as analysed by fluorescein-tagged medicarpin, and provides penetration and post-penetration resistance against E. pisi in Medicago truncatula in part through the activation of the salicylic acid (SA) signalling pathway. Comparative gene expression and metabolite analyses revealed an early induction of isoflavonoid biosynthesis and accumulation of the defence phytohormones SA and jasmonic acid (JA) in the highly resistant M. truncatula genotype A17 but not in moderately susceptible R108 in response to PM infection. Pretreatment of R108 leaves with medicarpin increased SA levels, SA-associated gene expression, and accumulation of hydrogen peroxide at PM infection sites, and reduced fungal penetration and colony formation. Strong parallels in the levels of medicarpin and SA, but not JA, were observed on medicarpin/SA treatment pre- or post-PM infection. Collectively, our results suggest that medicarpin and SA may act in concert to restrict E. pisi growth, providing new insights into the metabolic and signalling pathways required for PM resistance in legumes.
Collapse
Affiliation(s)
- Arunima Gupta
- Laboratory of Plant‐Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| | - Pallavi Awasthi
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Neha Sharma
- Advanced Technology Platform Centre, Regional Centre for BiotechnologyFaridabadHaryanaIndia
| | - Sajiya Parveen
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Ravi P. Vats
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Nirpendra Singh
- Advanced Technology Platform Centre, Regional Centre for BiotechnologyFaridabadHaryanaIndia
- Present address:
Institute of Stem Cell Science and Regenerative MedicineBangaloreKarnatakaIndia
| | - Yashwant Kumar
- Translational Health Science and Technology InstituteNCR Biotech Science ClusterFaridabadHaryanaIndia
| | - Atul Goel
- Medicinal and Process ChemistryCentral Drug Research InstituteLucknowUttar PradeshIndia
- Academy of Scientific and Innovative ResearchGhaziabadUttar PradeshIndia
| | - Divya Chandran
- Laboratory of Plant‐Microbe InteractionsRegional Centre for BiotechnologyNCR Biotech Science ClusterFaridabadHaryanaIndia
| |
Collapse
|
3
|
Devi J, Mishra GP, Sagar V, Kaswan V, Dubey RK, Singh PM, Sharma SK, Behera TK. Gene-Based Resistance to Erysiphe Species Causing Powdery Mildew Disease in Peas ( Pisum sativum L.). Genes (Basel) 2022; 13:316. [PMID: 35205360 PMCID: PMC8872628 DOI: 10.3390/genes13020316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/27/2022] Open
Abstract
Globally powdery mildew (PM) is one of the major diseases of the pea caused by Erysiphe pisi. Besides, two other species viz. Erysiphe trifolii and Erysiphe baeumleri have also been identified to infect the pea plant. To date, three resistant genes, namely er1, er2 and Er3 located on linkage groups VI, III and IV respectively were identified. Studies have shown the er1 gene to be a Pisum sativum Mildew resistance Locus 'O' homologue and subsequent analysis has identified eleven alleles namely er1-1 to er1-11. Despite reports mentioning the breakdown of er1 gene-mediated PM resistance by E. pisi and E. trifolii, it is still the most widely deployed gene in PM resistance breeding programmes across the world. Several linked DNA markers have been reported in different mapping populations with varying linkage distances and effectiveness, which were used by breeders to develop PM-resistant pea cultivars through marker assisted selection. This review summarizes the genetics of PM resistance and its mechanism, allelic variations of the er gene, marker linkage and future strategies to exploit this information for targeted PM resistance breeding in Pisum.
Collapse
Affiliation(s)
- Jyoti Devi
- ICAR-Indian Institute of Vegetable Research, Post Box 1, Jakhini, Varanasi 221305, India; (J.D.); (V.S.); (R.K.D.); (P.M.S.)
| | - Gyan P. Mishra
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012, India;
| | - Vidya Sagar
- ICAR-Indian Institute of Vegetable Research, Post Box 1, Jakhini, Varanasi 221305, India; (J.D.); (V.S.); (R.K.D.); (P.M.S.)
| | - Vineet Kaswan
- Department of Biotechnology, College of Basic Science and Humanities, Sardar Krushinagar Dantiwada Agricultural University, Palanpur, Gujarat 385506, India;
| | - Rakesh K. Dubey
- ICAR-Indian Institute of Vegetable Research, Post Box 1, Jakhini, Varanasi 221305, India; (J.D.); (V.S.); (R.K.D.); (P.M.S.)
| | - Prabhakar M. Singh
- ICAR-Indian Institute of Vegetable Research, Post Box 1, Jakhini, Varanasi 221305, India; (J.D.); (V.S.); (R.K.D.); (P.M.S.)
| | - Shyam K. Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
| | - Tusar K. Behera
- ICAR-Indian Institute of Vegetable Research, Post Box 1, Jakhini, Varanasi 221305, India; (J.D.); (V.S.); (R.K.D.); (P.M.S.)
| |
Collapse
|
4
|
Bhosle SM, Makandar R. Comparative transcriptome of compatible and incompatible interaction of Erysiphe pisi and garden pea reveals putative defense and pathogenicity factors. FEMS Microbiol Ecol 2021; 97:fiab006. [PMID: 33476382 DOI: 10.1093/femsec/fiab006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Comparative transcriptome analysis of Erysiphe pisi-infected pea (Pisum sativum) genotypes JI-2480 (resistant) and Arkel (susceptible) at 72 hours post-inoculation (hpi) was carried to detect molecular components involved in compatible and incompatible interactions. Differential gene expression was observed in Arkel and JI-2480 genotype at 72 hpi with E. pisi isolate (Ep01) using EdgeR software. Out of 32 217 transcripts, 2755 transcripts showed significantly altered gene expression in case of plants while 530 were related to E. pisi (P < 0.05). The higher transcript number of differentially expressed genes demonstrated peak activity of pathogenicity genes in plants at 72 hpi. Glycolysis was observed to be the major pathway for energy source during fungal growth. Differential gene expression of plant transcripts revealed significant expression of putative receptor and regulatory sequences involved in defense in the resistant, JI-2480 compared to susceptible, Arkel genotype. Expression of genes involved in defense and hormonal signaling, genes related to hypersensitive response, reactive oxygen species and phenylpropanoid pathway in JI-2480 indicated their crucial role in disease resistance against E. pisi. Down-regulation of transcription factors like-WRKY-28 and up-regulation of several putative pattern recognition receptors in JI-2480 compared to Arkel also suggested activation of host-mediated defense responses against E. pisi in pea.
Collapse
Affiliation(s)
- Sheetal M Bhosle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Ragiba Makandar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
5
|
Bhattarai K, Conesa A, Xiao S, Peres NA, Clark DG, Parajuli S, Deng Z. Sequencing and analysis of gerbera daisy leaf transcriptomes reveal disease resistance and susceptibility genes differentially expressed and associated with powdery mildew resistance. BMC PLANT BIOLOGY 2020; 20:539. [PMID: 33256589 PMCID: PMC7706040 DOI: 10.1186/s12870-020-02742-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/16/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND RNA sequencing has been widely used to profile genome-wide gene expression and identify candidate genes controlling disease resistance and other important traits in plants. Gerbera daisy is one of the most important flowers in the global floricultural trade, and powdery mildew (PM) is the most important disease of gerbera. Genetic improvement of gerbera PM resistance has become a crucial goal in gerbera breeding. A better understanding of the genetic control of gerbera resistance to PM can expedite the development of PM-resistant cultivars. RESULTS The objectives of this study were to identify gerbera genotypes with contrasting phenotypes in PM resistance and sequence and analyze their leaf transcriptomes to identify disease resistance and susceptibility genes differentially expressed and associated with PM resistance. An additional objective was to identify SNPs and SSRs for use in future genetic studies. We identified two gerbera genotypes, UFGE 4033 and 06-245-03, that were resistant and susceptible to PM, respectively. De novo assembly of their leaf transcriptomes using four complementary pipelines resulted in 145,348 transcripts with a N50 of 1124 bp, of which 67,312 transcripts contained open reading frames and 48,268 were expressed in both genotypes. A total of 494 transcripts were likely involved in disease resistance, and 17 and 24 transcripts were up- and down-regulated, respectively, in UFGE 4033 compared to 06-245-03. These gerbera disease resistance transcripts were most similar to the NBS-LRR class of plant resistance genes conferring resistance to various pathogens in plants. Four disease susceptibility transcripts (MLO-like) were expressed only or highly expressed in 06-245-03, offering excellent candidate targets for gene editing for PM resistance in gerbera. A total of 449,897 SNPs and 19,393 SSRs were revealed in the gerbera transcriptomes, which can be a valuable resource for developing new molecular markers. CONCLUSION This study represents the first transcriptomic analysis of gerbera PM resistance, a highly important yet complex trait in a globally important floral crop. The differentially expressed disease resistance and susceptibility transcripts identified provide excellent targets for development of molecular markers and genetic maps, cloning of disease resistance genes, or targeted mutagenesis of disease susceptibility genes for PM resistance in gerbera.
Collapse
Affiliation(s)
- Krishna Bhattarai
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, IFAS, Gainesville, FL, 32611, USA
- University of Florida, Genetics Institute, Gainesville, FL, 32611, USA
| | - Shunyuan Xiao
- University of Maryland, College of Agriculture and Natural Resources, 4291 Fieldhouse Drive, Rockville, MD, 20850, USA
| | - Natalia A Peres
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - David G Clark
- Department of Environmental Horticulture, University of Florida, IFAS, Gainesville, FL, 32611, USA
| | - Saroj Parajuli
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA.
| |
Collapse
|
6
|
Martins D, Araújo SDS, Rubiales D, Vaz Patto MC. Legume Crops and Biotrophic Pathogen Interactions: A Continuous Cross-Talk of a Multilayered Array of Defense Mechanisms. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1460. [PMID: 33137969 PMCID: PMC7692723 DOI: 10.3390/plants9111460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
Legume species are recognized for their nutritional benefits and contribution to the sustainability of agricultural systems. However, their production is threatened by biotic constraints with devastating impacts on crop yield. A deep understanding of the molecular and genetic architecture of resistance sources culminating in immunity is critical to assist new biotechnological approaches for plant protection. In this review, the current knowledge regarding the major plant immune system components of grain and forage legumes challenged with obligate airborne biotrophic fungi will be comprehensively evaluated and discussed while identifying future directions of research. To achieve this, we will address the multi-layered defense strategies deployed by legume crops at the biochemical, molecular, and physiological levels, leading to rapid pathogen recognition and carrying the necessary information to sub-cellular components, on-setting a dynamic and organized defense. Emphasis will be given to recent approaches such as the identification of critical components of host decentralized immune response negatively regulated by pathogens while targeting the loss-of-function of susceptibility genes. We conclude that advances in gene expression analysis in both host and pathogen, protocols for effectoromics pipelines, and high-throughput disease phenomics platforms are rapidly leading to a deeper understanding of the intricate host-pathogen interaction, crucial for efficient disease resistance breeding initiatives.
Collapse
Affiliation(s)
- Davide Martins
- Instituto de Tecnologia Química e Biologia António Xavier, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal; (S.d.S.A.); (M.C.V.P.)
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biologia António Xavier, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal; (S.d.S.A.); (M.C.V.P.)
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Rua Nossa Senhora da Conceição, 2, Lagares, 3405-155 Oliveira do Hospital, Portugal
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biologia António Xavier, Universidade Nova de Lisboa, Avenida da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal; (S.d.S.A.); (M.C.V.P.)
| |
Collapse
|
7
|
Gupta M, Sharma G, Saxena D, Budhwar R, Vasudevan M, Gupta V, Gupta A, Gupta R, Chandran D. Dual RNA-Seq analysis of Medicago truncatula and the pea powdery mildew Erysiphe pisi uncovers distinct host transcriptional signatures during incompatible and compatible interactions and pathogen effector candidates. Genomics 2019; 112:2130-2145. [PMID: 31837401 DOI: 10.1016/j.ygeno.2019.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/14/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022]
Abstract
Powdery mildew (PM) is a serious fungal disease of legumes. To gain novel insights into PM pathogenesis and host resistance/susceptibility, we used dual RNA-Seq to simultaneously capture host and pathogen transcriptomes at 1 d post-inoculation of resistant and susceptible Medicago truncatula genotypes with the PM Erysiphe pisi (Ep). Differential expression analysis indicates that R-gene mediated resistance against Ep involves extensive transcriptional reprogramming. Functional enrichment of differentially expressed host genes and in silico analysis of co-regulated promoters suggests that amplification of PTI, activation of the JA/ET signaling network, and regulation of growth-defense balance correlate with resistance. In contrast, processes that favor biotrophy, including suppression of defense signaling and programmed cell death, and weaker cell wall defenses are important susceptibility factors. Lastly, Ep effector candidates and genes with known/putative virulence functions were identified, representing a valuable resource that can be leveraged to improve our understanding of legume-PM interactions.
Collapse
Affiliation(s)
- Megha Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India; Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Gunjan Sharma
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Divya Saxena
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Roli Budhwar
- Bionivid Technology Pvt. Ltd., Kasturi Nagar, Bangalore, India
| | | | - Varsha Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Arunima Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Rashi Gupta
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad 121001, India.
| |
Collapse
|
8
|
Felice MR, Giuffrè L, El Aamri L, Hafidi M, Criseo G, Romeo O, Scordino F. Looking for New Antifungal Drugs from Flavonoids: Impact of the Genetic Diversity of Candida albicans on the in-vitro Response. Curr Med Chem 2019; 26:5108-5123. [PMID: 29278204 DOI: 10.2174/0929867325666171226102700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND In an era in which antimicrobial resistance is increasing at an alarming pace, it is very important to find new antimicrobial agents effective against pathogenic microrganisms resistant to traditional treatments. Among the notable breakthroughs in the past years of research in natural-drug discovery, there is the identification and testing of flavonoids, a group of plant-derived substances capable of promoting many beneficial effects on humans. These compounds show different biological activities such as inhibition of neuroinflammation and tumor growth as well as antimicrobial activity against many microbial pathogens. METHODS We undertook a review of protocols and standard strains used in studies reporting the inhibitory effects of flavonoids against Candida albicans by focusing our attention on genetic characterization of the strains examined. Moreover, using the C. albicans MLST-database, we performed a phylogenetic analysis showing the genetic variation occurring in this species. RESULTS Today, we have enough information to estimate genetic diversity within microbial species and recent data revealed that most of fungal pathogens show complex population structures in which not a single isolate can be designated as representative of the entire taxon. This is especially true for the highly divergent fungal pathogen C. albicans, in which the assumption that one or few "standard strains" can represent the whole species is overly unrealistic and should be laid to rest. CONCLUSION The goal of this article is to shed light on the extent of genetic variation in C. albicans and how this phenomenon can largely influence the activity of flavonoids against this species.
Collapse
Affiliation(s)
- Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | - Lamya El Aamri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Majida Hafidi
- Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Fabio Scordino
- Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
9
|
Bhosle SM, Marathe N, Bheri M, Makandar R. Detection of putative pathogenicity and virulence genes of Erysiphe pisi using genome-wide in-silico search and their suppression by er2 mediated resistance in garden pea. Microb Pathog 2019; 136:103680. [PMID: 31442573 DOI: 10.1016/j.micpath.2019.103680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/30/2023]
Abstract
The biotrophic fungus, Erysiphe pisi is the chief causal agent of powdery mildew disease of garden pea. A genome-wide search using in-silico approach was carried to detect putative pathogenicity and virulence genes of E. pisi, since information about these genes and their interaction with pea is limited. Nineteen putative pathogenicity gene sequences were detected through genome-wide pathogenicity gene-search and confirmed them to be conserved in E. pisi through genomic PCRs. Fifteen of these genes expressed through reverse transcriptase-polymerase chain reaction (RT-PCR) amplifying expected band size along with fungal and plant specific internal controls. Gene sequencing and annotation revealed them to be Erysiphe-specific. A time course study was carried to monitor expression of nine of these genes through real-time quantitative (qRT)-PCR in Erysiphe-challenged plants of powdery mildew resistant pea genotype, JI-2480 carrying er2 gene and susceptible pea cultivar, Arkel. Expression of these genes was differentially and temporally regulated. They were found mostly related to signaling; cAMP-PKA (cPKA, CRP and AC) and MAPK (MST7) pathways along with MFP, TRE and PEX which are reported pathogenicity factors in other ascomycete members indicating that similar conserved pathways function in E. pisi also. These genes expressed at higher level at initial hours post inoculation (hpi) as early as 6 hpi in Arkel compared to JI-2480 implying them as pathogenicity factors. The elevated level of expression of MFP, TRE, CRP and cPKA gene sequences in E. pisi-challenged JI-2480 genotype at 12 hpi alone suggests these genes to possess a role in avirulence in JI-2480, conferring er2 mediated resistance.
Collapse
Affiliation(s)
- Sheetal M Bhosle
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Nitinkumar Marathe
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Malathi Bheri
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Ragiba Makandar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
10
|
Cirak C, Radusiene J. Factors affecting the variation of bioactive compounds in Hypericum species. Biol Futur 2019; 70:198-209. [DOI: 10.1556/019.70.2019.25] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/19/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Cuneyt Cirak
- Vocational High School of Bafra, Ondokuz Mayis University, Samsun, Turkey
| | | |
Collapse
|
11
|
Smigielski L, Laubach EM, Pesch L, Glock JML, Albrecht F, Slusarenko A, Panstruga R, Kuhn H. Nodulation Induces Systemic Resistance of Medicago truncatula and Pisum sativum Against Erysiphe pisi and Primes for Powdery Mildew-Triggered Salicylic Acid Accumulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1243-1255. [PMID: 31025899 DOI: 10.1094/mpmi-11-18-0304-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plants encounter beneficial and detrimental microorganisms both above- and belowground and the health status of the plant depends on the composition of this pan-microbiome. Beneficial microorganisms contribute to plant nutrition or systemically or locally protect plants against pathogens, thus facilitating adaptation to a variety of environments. Induced systemic resistance, caused by root-associated microbes, manifests as aboveground resistance against necrotrophic pathogens and is mediated by jasmonic acid/ethylene-dependent signaling. By contrast, systemic acquired resistance relies on salicylic acid (SA) signaling and confers resistance against secondary infection by (hemi)biotrophic pathogens. To investigate whether symbiotic rhizobia that are ubiquitously found in natural ecosystems are able to modulate resistance against biotrophs, we tested the impact of preestablished nodulation of Medicago truncatula and pea (Pisum sativum) plants against infection by the powdery mildew fungus Erysiphe pisi. We found that root symbiosis interfered with fungal penetration of M. truncatula and reduced asexual spore formation on pea leaves independently of symbiotic nitrogen fixation. Improved resistance of nodulated plants correlated with elevated levels of free SA and SA-dependent marker gene expression upon powdery mildew infection. Our results suggest that nodulation primes the plants systemically for E. pisi-triggered SA accumulation and defense gene expression, resulting in increased resistance.
Collapse
Affiliation(s)
- Lara Smigielski
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Eva-Maria Laubach
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Lina Pesch
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Joanna Marie Leyva Glock
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Frank Albrecht
- Institute for Biology III, Department of Plant Physiology, RWTH Aachen University
| | - Alan Slusarenko
- Institute for Biology III, Department of Plant Physiology, RWTH Aachen University
| | - Ralph Panstruga
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Hannah Kuhn
- Institute for Biology I, Unit of Plant Molecular Cell Biology, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| |
Collapse
|
12
|
Karre S, Kumar A, Yogendra K, Kage U, Kushalappa A, Charron JB. HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight. PLANT MOLECULAR BIOLOGY 2019; 100:591-605. [PMID: 31098785 DOI: 10.1007/s11103-019-00882-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/09/2019] [Indexed: 05/20/2023]
Abstract
Crop plant resistance against pathogens is governed by dynamic molecular and biochemical responses driven by complex transcriptional networks. However, the underlying mechanisms are largely unclear. Here we report an interesting role of HvWRKY23 transcription factor (TF) in modulating defense response against Fusarium head blight (FHB) in barley. The combined approach of gene silencing, metabolomics, real time expression analysis and ab initio bioinformatics tools led to the identification of the HvWRKY23 role in FHB resistance. The knock-down of HvWRKY23 gene in the FHB resistant barley genotype CI9831, followed by inoculation with Fusarium graminearum, led to the down regulation of key flavonoid and hydroxycinnamic acid amide biosynthetic genes resulting in reduced accumulation of resistant related (RR) secondary metabolites such as pelargonidin 3-rutinoside, peonidin 3-rhamnoside-5-glucoside, kaempferol 3-O-arabinoside and other flavonoid glycosides. Reduced abundances of RR metabolites in TF silenced plants were also associated with an increased proportion of spikelets diseased and amount of fungal biomass in spikelets, depicting the role of HvWRKY23 in disease resistance. The luciferase reporter assay demonstrated binding of HvWRKY23 protein to promoters of key flavonoid and hydroxycinnamic acid amides (HCAA) biosynthetic genes, such as HvPAL2, HvCHS1, HvHCT, HvLAC15 and HvUDPGT. The accumulation of high abundances of HCAAs and flavonoid glycosides reinforce cell walls to contain the pathogen to initial infection area. This gene in commercial cultivars can be edited, if non-functional, to enhance resistance against FHB.
Collapse
Affiliation(s)
- Shailesh Karre
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Arun Kumar
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, 141004, India
| | - Kalenahalli Yogendra
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Udaykumar Kage
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Ajjamada Kushalappa
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada.
| | - Jean-Benoit Charron
- Plant Science Department, McGill University, Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| |
Collapse
|
13
|
Nisha SN, Prabu G, Mandal AKA. Biochemical and molecular studies on the resistance mechanisms in tea [ Camellia sinensis (L.) O. Kuntze] against blister blight disease. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:867-880. [PMID: 30150861 PMCID: PMC6103951 DOI: 10.1007/s12298-018-0565-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/15/2018] [Accepted: 06/01/2018] [Indexed: 05/27/2023]
Abstract
Tea (Camellia sinensis) plantations are exposed to biotic and abiotic stresses. Among the biotic factors, blister blight (BB), caused by Exobasidium vexans, affects the quality and quantity of the product and demands high fungicide application. A long term solution for disease resistance would require the knowledge of the basic molecular and biochemical changes occurring in plant as an attempt to resist the pathogen and limit the spread of the disease which can further help in developing resistant cultivars using biotechnological tools. Thus, gene expression studies using the cDNA based suppressive subtractive hybridization library, characterization of genes for pathogenesis related (PR) proteins [chitinase (CsCHIT), glucanase (CsGLUC), phenylalanine ammonia lyase (CsPAL)] and genes in flavonoid pathway were accessed in the BB resistant and susceptible cultivars, SA6 and TES34, respectively. Further, biochemical analysis of PR and antioxidant enzymes (POX, APX, SOD) involved in BB resistance have been carried out to investigate the potential molecular and biochemical changes. Various stages of pathogen development had varied impact on PR protein, flavonoid pathway and anti-oxidative enzymes and indicates the possible role of reactive oxygen species, lignins, flavonoids, anthocyanins and other synthesized compounds in acting as antimicrobial/antifungal agents in tea cultivars.
Collapse
Affiliation(s)
| | - Gajjeraman Prabu
- UPASI-Tea Research Foundation, Valparai, Tamil Nadu 642127 India
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed University), Coimbatore, Tamil Nadu 641021 India
| | - Abul Kalam Azad Mandal
- UPASI-Tea Research Foundation, Valparai, Tamil Nadu 642127 India
- SBST, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014 India
| |
Collapse
|
14
|
Tonelli ML, Magallanes-Noguera C, Fabra A. Symbiotic performance and induction of systemic resistance against Cercospora sojina in soybean plants co-inoculated with Bacillus sp. CHEP5 and Bradyrhizobium japonicum E109. Arch Microbiol 2017; 199:1283-1291. [PMID: 28643122 DOI: 10.1007/s00203-017-1401-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 10/19/2022]
Abstract
Soybean is an economically very important crop throughout the word and particularly in Argentina. Soybean yield may be affected by many factors such as the lack of some essential nutrients or pathogens attack. In this work we demonstrated that the co-inoculation of the native biocontrol bacterium Bacillus sp. CHEP5 which induces resistance against Cercospora sojina in soybean and the nitrogen fixing strain Bradyrhizobium japonicum E109, was more effective in reducing frog leaf spot severity than the inoculation of the biocontrol agent alone. Probably, this is related with the increase in the ability to form biofilm when both bacteria are growing together. Furthermore, Bacillus sp. CHEP5 inoculation did not affect Bradyrhizobium japonicum E109 symbiotic behavior and flavonoids composition of root exudates in pathogen challenged plants. These results suggest that co-inoculation of plants with rhizobia and biocontrol agents could be a strategy to improve soybean production in a sustainable system.
Collapse
Affiliation(s)
- María Laura Tonelli
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina.
| | - C Magallanes-Noguera
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina
| | - A Fabra
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Agencia Postal 3, 5800, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
15
|
Liu Y, Hassan S, Kidd BN, Garg G, Mathesius U, Singh KB, Anderson JP. Ethylene Signaling Is Important for Isoflavonoid-Mediated Resistance to Rhizoctonia solani in Roots of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:691-700. [PMID: 28510484 DOI: 10.1094/mpmi-03-17-0057-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The root-infecting necrotrophic fungal pathogen Rhizoctoniasolani causes significant disease to all the world's major food crops. As a model for pathogenesis of legumes, we have examined the interaction of R. solani AG8 with Medicago truncatula. RNAseq analysis of the moderately resistant M. truncatula accession A17 and highly susceptible sickle (skl) mutant (defective in ethylene sensing) identified major early transcriptional reprogramming in A17. Responses specific to A17 included components of ethylene signaling, reactive oxygen species metabolism, and consistent upregulation of the isoflavonoid biosynthesis pathway. Mass spectrometry revealed accumulation of the isoflavonoid-related compounds liquiritigenin, formononetin, medicarpin, and biochanin A in A17. Overexpression of an isoflavone synthase in M. truncatula roots increased isoflavonoid accumulation and resistance to R. solani. Addition of exogenous medicarpin suggested this phytoalexin may be one of several isoflavonoids required to contribute to resistance to R. solani. Together, these results provide evidence for the role of ethylene-mediated accumulation of isoflavonoids during defense against root pathogens in legumes. The involvement of ethylene signaling and isoflavonoids in the regulation of both symbiont-legume and pathogen-legume interactions in the same tissue may suggest tight regulation of these responses are required in the root tissue.
Collapse
Affiliation(s)
- Yao Liu
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
- 2 Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Samira Hassan
- 3 Research School of Biology, Australian National University, Canberra, Australian Capital Territory; and
| | - Brendan N Kidd
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
| | - Gagan Garg
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
| | - Ulrike Mathesius
- 3 Research School of Biology, Australian National University, Canberra, Australian Capital Territory; and
| | - Karam B Singh
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
- 4 The UWA Institute of Agriculture, University of Western Australia, Crawley, Western Australia
| | - Jonathan P Anderson
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
- 4 The UWA Institute of Agriculture, University of Western Australia, Crawley, Western Australia
| |
Collapse
|
16
|
Tohge T, de Souza LP, Fernie AR. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4013-4028. [PMID: 28922752 DOI: 10.1093/jxb/erx177] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Flavonoids are a signature class of secondary metabolites formed from a relatively simple collection of scaffolds. They are extensively decorated by chemical reactions including glycosylation, methylation, and acylation. They are present in a wide variety of fruits and vegetables and as such in Western populations it is estimated that 20-50 mg of flavonoids are consumed daily per person. In planta they have demonstrated to contribute to both flower color and UV protection. Their consumption has been suggested to presenta wide range of health benefits. Recent technical advances allowing affordable whole genome sequencing, as well as a better inventory of species-by-species chemical diversity, have greatly advanced our understanding as to how flavonoid biosynthesis pathways vary across species. In parallel, reverse genetics combined with detailed molecular phenotyping is currently allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. Here we provide an inventory of current knowledge of pathways of flavonoid biosynthesis in both the model plant Arabidopsis thaliana and a range of crop species, including tomato, maize, rice, and bean.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm
| |
Collapse
|
17
|
Ahmed MMS, Ji W, Wang M, Bian S, Xu M, Wang W, Zhang J, Xu Z, Yu M, Liu Q, Zhang C, Zhang H, Tang S, Gu M, Yu H. Transcriptional changes of rice in response to rice black-streaked dwarf virus. Gene 2017; 628:38-47. [PMID: 28700950 DOI: 10.1016/j.gene.2017.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 02/01/2023]
Abstract
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Although a great deal of effort has been made to elucidate the interactions among the virus, insect vectors, host and environmental conditions, few RBSDV proteins involved in pathogenesis have been identified, and the biological basis of disease development in rice remains largely unknown. Transcriptomic information associated with the disease development in rice would be helpful to unravel the biological mechanism. To determine how the rice transcriptome changes in response to RBSDV infection, we carried out RNA-Seq to perform a genome-wide gene expression analysis of a susceptible rice cultivar KTWYJ3. The transcriptomes of RBSDV-infected samples were compared to those of RBSDV-free (healthy) at two time points (time points are represented by group I and II). The results derived from the differential expression analysis in RBSDV-infected libraries vs. healthy ones in group I revealed that 102 out of a total of 281 significant differentially expressed genes (DEGs) were up-regulated and 179 DEGs were down-regulated. Of the 2592 identified DEGs in group II, 1588 DEGs were up-regulated and 1004 DEGs were down-regulated. A total of 66 DEGs were commonly identified in both groups. Of these 66 DEGs, expression patterns for 36 DEGs were similar in both groups. Our analysis demonstrated that some genes related to disease defense and stress resistance were up-regulated while genes associated with chloroplast were down-regulated in response to RBSDV infection. In addition, some genes associated with plant-height were differentially expressed. This result indicates those genes might be involved in dwarf symptoms caused by RBSDV. Taken together, our results provide a genome-wide transcriptome analysis for rice plants in response to RBSDV infection which may contribute to the understanding of the regulatory mechanisms involved in rice-RBSDV interaction and the biological basis of rice black-streaked dwarf disease development in rice.
Collapse
Affiliation(s)
- Mohamed M S Ahmed
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Department of Crop Protection, Faculty of Agriculture, University of Khartoum, Khartoum North 13314, Sudan
| | - Wen Ji
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Muyue Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Qingdao Saline-Alkali Tolerant Rice Research and Development Center, Qingdao 266100, China
| | - Shiquan Bian
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; Qingdao Saline-Alkali Tolerant Rice Research and Development Center, Qingdao 266100, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Weiyun Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Jiangxiang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhihao Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Meimei Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Honggen Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Shuzhu Tang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
18
|
Hosseini S, Elfstrand M, Heyman F, Funck Jensen D, Karlsson M. Deciphering common and specific transcriptional immune responses in pea towards the oomycete pathogens Aphanomyces euteiches and Phytophthora pisi. BMC Genomics 2015; 16:627. [PMID: 26293353 PMCID: PMC4546216 DOI: 10.1186/s12864-015-1829-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 08/07/2015] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Root rot caused by Aphanomyces euteiches is one of the most destructive pea diseases while a distantly related species P. pisi has been recently described as the agent of pea and faba bean root rot. These two oomycete pathogens with different pathogenicity factor repertories have both evolved specific mechanisms to infect pea. However, little is known about the genes and mechanisms of defence against these pathogens in pea. In the present study, the transcriptomic response of pea to these two pathogens was investigated at two time points during early phase of infection using a Medicago truncatula microarray. RESULTS Of the 37,976 genes analysed, 574 and 817 were differentially expressed in response to A. euteiches at 6 hpi and 20 hpi, respectively, while 544 and 611 genes were differentially regulated against P. pisi at 6 hpi and 20 hpi, respectively. Differentially expressed genes associated with plant immunity responses were involved in cell wall reinforcement, hormonal signalling and phenylpropanoid metabolism. Activation of cell wall modification, regulation of jasmonic acid biosynthesis and induction of ethylene signalling pathway were among the common transcriptional responses to both of these oomycetes. However, induction of chalcone synthesis and the auxin pathway were specific transcriptional changes against A. euteiches. CONCLUSIONS Our results demonstrate a global view of differentially expressed pea genes during compatible interactions with P. pisi and A. euteiches at an early phase of infection. The results suggest that distinct signalling pathways are triggered in pea by these two pathogens that lead to common and specific immune mechanisms in response to these two oomycetes. The generated knowledge may eventually be used in breeding pea varieties with resistance against root rot disease.
Collapse
Affiliation(s)
- Sara Hosseini
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Malin Elfstrand
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Fredrik Heyman
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, SE-75007, Uppsala, Sweden.
| |
Collapse
|
19
|
Curto M, Krajinski F, Schlereth A, Rubiales D. Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection. FRONTIERS IN PLANT SCIENCE 2015; 6:517. [PMID: 26217367 PMCID: PMC4496563 DOI: 10.3389/fpls.2015.00517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/26/2015] [Indexed: 05/21/2023]
Abstract
Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.
Collapse
Affiliation(s)
- Miguel Curto
- Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| | - Franziska Krajinski
- Department of Plant-Microbe Interactions, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Armin Schlereth
- Department of Plant-Microbe Interactions, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Diego Rubiales
- Department of Plant Breeding, Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| |
Collapse
|
20
|
Mierziak J, Kostyn K, Kulma A. Flavonoids as important molecules of plant interactions with the environment. Molecules 2014; 19:16240-65. [PMID: 25310150 PMCID: PMC6270724 DOI: 10.3390/molecules191016240] [Citation(s) in RCA: 508] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Flavonoids are small molecular secondary metabolites synthesized by plants with various biological activities. Due to their physical and biochemical properties, they are capable of participating in plants' interactions with other organisms (microorganisms, animals and other plants) and their reactions to environmental stresses. The majority of their functions result from their strong antioxidative properties. Although an increasing number of studies focus on the application of flavonoids in medicine or the food industry, their relevance for the plants themselves also deserves extensive investigations. This review summarizes the current knowledge on the functions of flavonoids in the physiology of plants and their relations with the environment.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Kamil Kostyn
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | - Anna Kulma
- Faculty of Biotechnology, Wroclaw University, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| |
Collapse
|
21
|
Park CJ, Song MY, Kim CY, Jeon JS, Ronald PC. Rice BiP3 regulates immunity mediated by the PRRs XA3 and XA21 but not immunity mediated by the NB-LRR protein, Pi5. Biochem Biophys Res Commun 2014; 448:70-5. [PMID: 24780396 DOI: 10.1016/j.bbrc.2014.04.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/13/2014] [Indexed: 10/25/2022]
Abstract
Plant innate immunity is mediated by pattern recognition receptors (PRRs) and intracellular NB-LRR (nucleotide-binding domain and leucine-rich repeat) proteins. Overexpression of the endoplasmic reticulum (ER) chaperone, luminal-binding protein 3 (BiP3) compromises resistance to Xanthomonas oryzae pv. oryzae (Xoo) mediated by the rice PRR XA21 [12]. Here we show that BiP3 overexpression also compromises resistance mediated by rice XA3, a PRR that provides broad-spectrum resistance to Xoo. In contrast, BiP3 overexpression has no effect on resistance mediated by rice Pi5, an NB-LRR protein that confers resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae). Our results suggest that rice BiP3 regulates membrane-resident PRR-mediated immunity.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Bioresources Engineering, Sejong University, Seoul 143-747, Republic of Korea
| | - Min-Young Song
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Chi-Yeol Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Gholami A, De Geyter N, Pollier J, Goormachtig S, Goossens A. Natural product biosynthesis in Medicago species. Nat Prod Rep 2014; 31:356-80. [PMID: 24481477 DOI: 10.1039/c3np70104b] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The genus Medicago, a member of the legume (Fabaceae) family, comprises 87 species of flowering plants, including the forage crop M. sativa (alfalfa) and the model legume M. truncatula (barrel medic). Medicago species synthesize a variety of bioactive natural products that are used to engage into symbiotic interactions but also serve to deter pathogens and herbivores. For humans, these bioactive natural products often possess promising pharmaceutical properties. In this review, we focus on the two most interesting and well characterized secondary metabolite classes found in Medicago species, the triterpene saponins and the flavonoids, with a detailed overview of their biosynthesis, regulation, and profiling methods. Furthermore, their biological role within the plant as well as their potential utility for human health or other applications is discussed. Finally, we give an overview of the advances made in metabolic engineering in Medicago species and how the development of novel molecular and omics toolkits can influence a better understanding of this genus in terms of specialized metabolism and chemistry. Throughout, we critically analyze the current bottlenecks and speculate on future directions and opportunities for research and exploitation of Medicago metabolism.
Collapse
Affiliation(s)
- Azra Gholami
- Department of Plant Systems Biology, VIB, Ghent University, Technologiepark 927, B-9052 Gent, Belgium.
| | | | | | | | | |
Collapse
|
23
|
Ben C, Debellé F, Berges H, Bellec A, Jardinaud MF, Anson P, Huguet T, Gentzbittel L, Vailleau F. MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. THE NEW PHYTOLOGIST 2013; 199:758-72. [PMID: 23638965 DOI: 10.1111/nph.12299] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 03/27/2013] [Indexed: 05/21/2023]
Abstract
Ralstonia solanacearum is a major soilborne pathogen that attacks > 200 plant species, including major crops. To characterize MtQRRS1, a major quantitative trait locus (QTL) for resistance towards this bacterium in the model legume Medicago truncatula, genetic and functional approaches were combined. QTL analyses together with disease scoring of heterogeneous inbred families were used to define the locus. The candidate region was studied by physical mapping using a bacterial artificial chromosome (BAC) library of the resistant line, and sequencing. In planta bacterial growth measurements, grafting experiments and gene expression analysis were performed to investigate the mechanisms by which this locus confers resistance to R. solanacearum. The MtQRRS1 locus was localized to the same position in two recombinant inbred line populations and was narrowed down to a 64 kb region. Comparison of parental line sequences revealed 15 candidate genes with sequence polymorphisms, but no evidence of differential gene expression upon infection. A role for the hypocotyl in resistance establishment was shown. These data indicate that the quantitative resistance to bacterial wilt conferred by MtQRRS1, which contains a cluster of seven R genes, is shared by different accessions and may act through intralocus interactions to promote resistance.
Collapse
Affiliation(s)
- Cécile Ben
- INP, UPS, Laboratoire d'Ecologie Fonctionnelle et Environnement (Ecolab), ENSAT, Université de Toulouse, Castanet Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tohge T, Watanabe M, Hoefgen R, Fernie AR. The evolution of phenylpropanoid metabolism in the green lineage. Crit Rev Biochem Mol Biol 2013; 48:123-52. [PMID: 23350798 DOI: 10.3109/10409238.2012.758083] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phenolic secondary metabolites are only produced by plants wherein they play important roles in both biotic and abiotic defense in seed plants as well as being potentially important bioactive compounds with both nutritional and medicinal benefits reported for animals and humans as a consequence of their potent antioxidant activity. During the long evolutionary period in which plants have adapted to the environmental niches in which they exist (and especially during the evolution of land plants from their aquatic algal ancestors), several strategies such as gene duplication and convergent evolution have contributed to the evolution of this pathway. In this respect, diversity and redundancy of several key genes of phenolic secondary metabolism such as polyketide synthases, cytochrome P450s, Fe(2+)/2-oxoglutarate-dependent dioxygenases and UDP-glycosyltransferases have played an essential role. Recent technical developments allowing affordable whole genome sequencing as well as a better inventory of species-by-species chemical diversity have resulted in a dramatic increase in the number of tools we have to assess how these pathways evolved. In parallel, reverse genetics combined with detailed molecular phenotyping is allowing us to elucidate the functional importance of individual genes and metabolites and by this means to provide further mechanistic insight into their biological roles. In this review, phenolic metabolite-related gene sequences (for a total of 65 gene families including shikimate biosynthetic genes) are compared across 23 independent species, and the phenolic metabolic complement of various plant species are compared with one another, in attempt to better understand the evolution of diversity in this crucial pathway.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | |
Collapse
|
25
|
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. FRONTIERS IN PLANT SCIENCE 2012; 3:222. [PMID: 23060891 DOI: 10.3389/fpls.2012.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/11/2012] [Indexed: 05/23/2023]
Abstract
Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.
Collapse
Affiliation(s)
- María L Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario Rosario, Santa Fe, Argentina
| | | | | |
Collapse
|
26
|
Kamphuis LG, Williams AH, Küster H, Trengove RD, Singh KB, Oliver RP, Ellwood SR. Phoma medicaginis stimulates the induction of the octadecanoid and phenylpropanoid pathways in Medicago truncatula. MOLECULAR PLANT PATHOLOGY 2012; 13:593-603. [PMID: 22212347 PMCID: PMC6638703 DOI: 10.1111/j.1364-3703.2011.00767.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Gene expression changes and metabolite abundances were measured during the interaction of Medicago truncatula with the fungal necrotrophic pathogen Phoma medicaginis in leaf tissue of susceptible and resistant accessions. Over 330 genes were differentially expressed in plants infected with P. medicaginis relative to mock-inoculated plants at 12 h post-inoculation. Of these, 191 were induced in either the resistant or the susceptible accession, with 143 genes repressed. Expression changes were observed in genes involved in the oxidative burst, cell wall strengthening and lipid metabolism, as well as several transcription factors. Genes related to salicylic acid, jasmonate and ethylene responses were up-regulated, as well as genes leading to the production of jasmonic acid. Significant induction of genes in the phenylpropanoid pathway leading to lignin and isoflavonoid biosynthesis occurred. High-pressure liquid chromatography with UV detection (HPLC-UV) identified several phenolic compounds induced by P. medicaginis, as well as constitutively higher levels of phenolic compounds, in the resistant M. truncatula accession. Differentially regulated genes induced in both the resistant and susceptible accessions, but with different kinetics, and constitutively more highly expressed and induced phenolic compounds provide candidates for functional analysis. Taken together, these results highlight the importance of the octadecanoid and phenylpropanoid pathways in defence against this necrotrophic pathogen.
Collapse
|
27
|
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. FRONTIERS IN PLANT SCIENCE 2012; 3:222. [PMID: 23060891 PMCID: PMC3460232 DOI: 10.3389/fpls.2012.00222] [Citation(s) in RCA: 762] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/11/2012] [Indexed: 05/18/2023]
Abstract
Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.
Collapse
Affiliation(s)
| | | | - Paula Casati
- *Correspondence: Paula Casati, Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina. e-mail:
| |
Collapse
|
28
|
Samac DA, Peñuela S, Schnurr JA, Hunt EN, Foster-Hartnett D, Vandenbosch KA, Gantt JS. Expression of coordinately regulated defence response genes and analysis of their role in disease resistance in Medicago truncatula. MOLECULAR PLANT PATHOLOGY 2011; 12:786-98. [PMID: 21726379 PMCID: PMC6640494 DOI: 10.1111/j.1364-3703.2011.00712.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microarray technology was used to identify the genes associated with disease defence responses in the model legume Medicago truncatula. Transcript profiles from M. truncatula cv. Jemalong genotype A17 leaves inoculated with Colletotrichum trifolii and Erysiphe pisi and roots infected with Phytophthora medicaginis were compared to identify the genes expressed in response to all three pathogens and genes unique to an interaction. The A17 genotype is resistant to C. trifolii and E. pisi, exhibiting a hypersensitive response after inoculation, and is moderately susceptible to P. medicaginis. Among the most strongly up-regulated genes in all three interactions were those encoding a hevein-like protein, thaumatin-like protein (TLP) and members of the pathogenesis response (PR)10 family. Transcripts of genes for enzymes in the phenylpropanoid pathway leading to the production of isoflavonoid phytoalexins increased dramatically in response to inoculation with the foliar pathogens. In P. medicaginis-inoculated roots, transcripts of genes in the phenylpropanoid pathway peaked at 5 days post-inoculation, when symptoms became visible. Transcript accumulation of three PR10 family members, a TLP and chalcone synthase (CHS) was assessed in M. truncatula genotype R108 plants. The R108 plants are resistant to C. trifolii and moderately susceptible to E. pisi and P. medicaginis. Transcript accumulation paralleled the stages of pathogen development. To evaluate the role of a TLP, a PR10 family member and CHS in disease resistance, transgenic R108 plants containing interfering RNA (RNAi) constructs were produced. Reduced expression of PR10 and TLP had no effect on the disease phenotype, whereas reduced expression of CHS resulted in increased susceptibility to necrotrophic pathogens.
Collapse
Affiliation(s)
- Deborah A Samac
- USDA-ARS-Plant Science Research Unit, St. Paul, MN 55108, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Anderson JP, Lichtenzveig J, Gleason C, Oliver RP, Singh KB. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. PLANT PHYSIOLOGY 2010; 154:861-73. [PMID: 20713618 PMCID: PMC2949043 DOI: 10.1104/pp.110.163949] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/13/2010] [Indexed: 05/20/2023]
Abstract
The fungal necrotrophic pathogen Rhizoctonia solani is a significant constraint to a range of crops as diverse as cereals, canola, and legumes. Despite wide-ranging germplasm screens in many of these crops, no strong genetic resistance has been identified, suggesting that alternative strategies to improve resistance are required. In this study, we characterize moderate resistance to R. solani anastomosis group 8 identified in Medicago truncatula. The activity of the ethylene- and jasmonate-responsive GCC box promoter element was associated with moderate resistance, as was the induction of the B-3 subgroup of ethylene response transcription factors (ERFs). Genes of the B-1 subgroup showed no significant response to R. solani infection. Overexpression of a B-3 ERF, MtERF1-1, in Medicago roots increased resistance to R. solani as well as an oomycete root pathogen, Phytophthora medicaginis, but not root knot nematode. These results indicate that targeting specific regulators of ethylene defense may enhance resistance to an important subset of root pathogens. We also demonstrate that overexpression of MtERF1-1 enhances disease resistance without apparent impact on nodulation in the A17 background, while overexpression in sickle reduced the hypernodulation phenotype. This suggests that under normal regulation of nodulation, enhanced resistance to root diseases can be uncoupled from symbiotic plant-microbe interactions in the same tissue and that ethylene/ERF regulation of nodule number is distinct from the defenses regulated by B-3 ERFs. Furthermore, unlike the stunted phenotype previously described for Arabidopsis (Arabidopsis thaliana) ubiquitously overexpressing B-3 ERFs, overexpression of MtERF1-1 in M. truncatula roots did not show adverse effects on plant development.
Collapse
|
30
|
Stewart SA, Hodge S, Ismail N, Mansfield JW, Feys BJ, Prospéri JM, Huguet T, Ben C, Gentzbittel L, Powell G. The RAP1 gene confers effective, race-specific resistance to the pea aphid in Medicago truncatula independent of the hypersensitive reaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1645-55. [PMID: 19888829 DOI: 10.1094/mpmi-22-12-1645] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant resistance to pathogens is commonly associated with a hypersensitive response (HR), but the degree to which the HR is responsible for incompatibility is subject to debate. Resistance to aphids is likely to share features with resistance to pathogens but is less well understood. Here, we report effective resistance to the pea aphid Acyrthosiphon pisum in Medicago truncatula. Aphids lost weight and died rapidly (within two days) on the resistant genotype Jemalong, which developed necrotic lesions following infestation. Lesions were induced by nonvascular intracellular stylet punctures by aphids, remained localized to the site of stylet entry, stained for the presence of reactive oxygen species, and were similar to the HR induced by the bacterial pathogen Pseudomonas syringae pv. phaseolicola. The implication that aphid-induced lesions confer resistance was tested by quantitative trait loci analysis using recombinant inbred lines derived from a cross between Jemalong and the susceptible genotype DZA315.16. One major locus, RAP1, was identified that was sufficient to confer race-specific resistance against the pea aphid and was mapped to the middle of chromosome 3. Surprisingly, a separate locus, mapping to the top of chromosome 3, governed aphid-induced HR, indicating that the HR-like lesions are not required for RAP1-mediated aphid resistance.
Collapse
Affiliation(s)
- Sophie Alice Stewart
- Division of Biology, Imperial College London, South Kensington Campus, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Djébali N, Jauneau A, Ameline-Torregrosa C, Chardon F, Jaulneau V, Mathé C, Bottin A, Cazaux M, Pilet-Nayel ML, Baranger A, Aouani ME, Esquerré-Tugayé MT, Dumas B, Huguet T, Jacquet C. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1043-55. [PMID: 19656040 DOI: 10.1094/mpmi-22-9-1043] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A pathosystem between Aphanomyces euteiches, the causal agent of pea root rot disease, and the model legume Medicago truncatula was developed to gain insights into mechanisms involved in resistance to this oomycete. The F83005.5 French accession and the A17-Jemalong reference line, susceptible and partially resistant, respectively, to A. euteiches, were selected for further cytological and genetic analyses. Microscopy analyses of thin root sections revealed that a major difference between the two inoculated lines occurred in the root stele, which remained pathogen free in A17. Striking features were observed in A17 roots only, including i) frequent pericycle cell divisions, ii) lignin deposition around the pericycle, and iii) accumulation of soluble phenolic compounds. Genetic analysis of resistance was performed on an F7 population of 139 recombinant inbred lines and identified a major quantitative trait locus (QTL) near the top of chromosome 3. A second study, with near-isogenic line responses to A. euteiches confirmed the role of this QTL in expression of resistance. Fine-mapping allowed the identification of a 135-kb sequenced genomic DNA region rich in proteasome-related genes. Most of these genes were shown to be induced only in inoculated A17. Novel mechanisms possibly involved in the observed partial resistance are proposed.
Collapse
|
32
|
Bolton MD, Kolmer JA, Xu WW, Garvin DF. Lr34-mediated leaf rust resistance in wheat: transcript profiling reveals a high energetic demand supported by transient recruitment of multiple metabolic pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1515-27. [PMID: 18986248 DOI: 10.1094/mpmi-21-12-1515] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The wheat gene Lr34 confers partial resistance to all races of Puccinia triticina, the causal agent of wheat leaf rust. However, the biological basis for the exceptional durability of Lr34 is unclear. We used the Affymetrix GeneChip Wheat Genome Array to compare transcriptional changes of near-isogenic lines of Thatcher wheat in a compatible interaction, an incompatible interaction conferred by the resistance gene Lr1, and the race-nonspecific response conditioned by Lr34 3 and 7 days postinoculation (dpi) with P. triticina. No differentially expressed genes were detected in Lr1 plants at either timepoint whereas, in the compatible Thatcher interaction, differentially expressed genes were detected only at 7 dpi. In contrast, differentially expressed genes were identified at both timepoints in P. triticina-inoculated Lr34 plants. At 3 dpi, upregulated genes associated with Lr34-mediated resistance encoded various defense and stress-related proteins, secondary metabolism enzymes, and transcriptional regulation and cellular-signaling proteins. Further, coordinated upregulation of key genes in several metabolic pathways that can contribute to increased carbon flux through the tricarboxylic cycle was detected. This indicates that Lr34-mediated resistance imposes a high energetic demand that leads to the induction of multiple metabolic responses to support cellular energy requirements. These metabolic responses were not sustained through 7 dpi, and may explain why Lr34 fails to inhibit the pathogen fully but does increase the latent period.
Collapse
Affiliation(s)
- Melvin D Bolton
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Plant Science Research Unit, 411 Borlaug Hall, University of Minnesota, 1991 Upper Buford Circle, St. Paul 55108, USA
| | | | | | | |
Collapse
|
33
|
Rose RJ. Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:253-264. [PMID: 32688781 DOI: 10.1071/fp07297] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/16/2008] [Indexed: 05/08/2023]
Abstract
Medicago truncatula Gaertn. cv. Jemalong, a pasture species used in Australian agriculture, was first proposed as a model legume in 1990. Since that time M. truncatula, along with Lotus japonicus (Regal) Larsen, has contributed to major advances in understanding rhizobia Nod factor perception and the signalling pathway involved in nodule formation. Research using M. truncatula as a model has expanded beyond nodulation and the allied mycorrhizal research to investigate interactions with insect pests, plant pathogens and nematodes. In addition to biotic stresses the genetic mechanisms to ameliorate abiotic stresses such as salinity and drought are being investigated. Furthermore, M. truncatula is being used to increase understanding of plant development and cellular differentiation, with nodule differentiation providing a different perspective to organogenesis and meristem biology. This legume plant represents one of the major evolutionary success stories of plant adaptation to its environment, and it is particularly in understanding the capacity to integrate biotic and abiotic plant responses with plant growth and development that M. truncatula has an important role to play. The expanding genomic and genetic toolkit available with M. truncatula provides many opportunities for integrative biological research with a plant which is both a model for functional genomics and important in agricultural sustainability.
Collapse
Affiliation(s)
- Ray J Rose
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia. Email
| |
Collapse
|
34
|
Ameline-Torregrosa C, Cazaux M, Danesh D, Chardon F, Cannon SB, Esquerré-Tugayé MT, Dumas B, Young ND, Samac DA, Huguet T, Jacquet C. Genetic dissection of resistance to anthracnose and powdery mildew in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:61-9. [PMID: 18052883 DOI: 10.1094/mpmi-21-1-0061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Medicago truncatula was used to characterize resistance to anthracnose and powdery mildew caused by Colletotrichum trifolii and Erysiphe pisi, respectively. Two isolates of E. pisi (Ep-p from pea and Ep-a from alfalfa) and two races of C. trifolii (races 1 and 2) were used in this study. The A17 genotype was resistant and displayed a hypersensitive response after inoculation with either pathogen, while lines F83005.5 and DZA315.16 were susceptible to anthracnose and powdery mildew, respectively. To identify the genetic determinants underlying resistance in A17, two F7 recombinant inbred line (RIL) populations, LR4 (A17 x DZA315.16) and LR5 (A17 x F83005.5), were phenotyped with E. pisi isolates and C. trifolii races, respectively. Genetic analyses showed that i) resistance to anthracnose is governed mainly by a single major locus to both races, named Ct1 and located on the upper part of chromosome 4; and ii) resistance to powdery mildew involves three distinct loci, Epp1 on chromosome 4 and Epa1 and Epa2 on chromosome 5. The use of a consensus genetic map for the two RIL populations revealed that Ct1 and Epp1, although located in the same genome region, were clearly distinct. In silico analysis in this region identified the presence of several clusters of nucleotide binding site leucine-rich repeat genes. Many of these genes have atypical resistance gene analog structures and display differential expression patterns in distinct stress-related cDNA libraries.
Collapse
Affiliation(s)
- Carine Ameline-Torregrosa
- UMR 5546, Centre National de la Recherche Scientifique-UPS, Pôle de Biotechnologie Végétale, 24 Chemin Borde Rouge, 34326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|