1
|
Jin T, Ren J, Bai B, Wu W, Cao Y, Meng J, Zhang L. Effects of Klebsiella michiganensis LDS17 on Codonopsis pilosula growth, rhizosphere soil enzyme activities, and microflora, and genome-wide analysis of plant growth-promoting genes. Microbiol Spectr 2024; 12:e0405623. [PMID: 38563743 PMCID: PMC11064500 DOI: 10.1128/spectrum.04056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress.
Collapse
Affiliation(s)
- Tingting Jin
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Wei Wu
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Yongqing Cao
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Jing Meng
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Lihui Zhang
- Department of Life Sciences, Changzhi University, Changzhi, China
| |
Collapse
|
2
|
Liu J, Lefevere H, Coussement L, Delaere I, De Meyer T, Demeestere K, Höfte M, Gershenzon J, Ullah C, Gheysen G. The phenylalanine ammonia-lyase inhibitor AIP induces rice defence against the root-knot nematode Meloidogyne graminicola. MOLECULAR PLANT PATHOLOGY 2024; 25:e13424. [PMID: 38279847 PMCID: PMC10817824 DOI: 10.1111/mpp.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/29/2024]
Abstract
The phenylalanine ammonia-lyase (PAL) enzyme catalyses the conversion of l-phenylalanine to trans-cinnamic acid. This conversion is the first step in phenylpropanoid biosynthesis in plants. The phenylpropanoid pathway produces diverse plant metabolites that play essential roles in various processes, including structural support and defence. Previous studies have shown that mutation of the PAL genes enhances disease susceptibility. Here, we investigated the functions of the rice PAL genes using 2-aminoindan-2-phosphonic acid (AIP), a strong competitive inhibitor of PAL enzymes. We show that the application of AIP can significantly reduce the PAL activity of rice crude protein extracts in vitro. However, when AIP was applied to intact rice plants, it reduced infection of the root-knot nematode Meloidogyne graminicola. RNA-seq showed that AIP treatment resulted in a rapid but transient upregulation of defence-related genes in roots. Moreover, targeted metabolomics demonstrated higher levels of jasmonates and antimicrobial flavonoids and diterpenoids accumulating after AIP treatment. Furthermore, chemical inhibition of the jasmonate pathway abolished the effect of AIP on nematode infection. Our results show that disturbance of the phenylpropanoid pathway by the PAL inhibitor AIP induces defence in rice against M. graminicola by activating jasmonate-mediated defence.
Collapse
Affiliation(s)
- Jing Liu
- Department of BiotechnologyGhent UniversityGhentBelgium
- College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | | | - Louis Coussement
- Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
| | - Ilse Delaere
- Department of Plants and CropsGhent UniversityGhentBelgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
| | - Kristof Demeestere
- Department of Green Chemistry and TechnologyGhent UniversityGhentBelgium
| | - Monica Höfte
- Department of Plants and CropsGhent UniversityGhentBelgium
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Chhana Ullah
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | | |
Collapse
|
3
|
Zhang S, Kan J, Liu X, Wu Y, Zhang M, Ou J, Wang J, An L, Li D, Wang L, Wang X, Fang R, Jia Y. Phytopathogenic bacteria utilize host glucose as a signal to stimulate virulence through LuxR homologues. MOLECULAR PLANT PATHOLOGY 2023; 24:359-373. [PMID: 36762904 PMCID: PMC10013830 DOI: 10.1111/mpp.13302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/17/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen-plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.
Collapse
Affiliation(s)
- Siyuan Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jinhong Kan
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Present address:
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xin Liu
- State Key Laboratory of Plant Genomics, Collaborative Innovation Center of Genetics and DevelopmentInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yao Wu
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Mingyang Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Jinqing Ou
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Juan Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Lin An
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Defeng Li
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Li Wang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Xiu‐Jie Wang
- State Key Laboratory of Plant Genomics, Collaborative Innovation Center of Genetics and DevelopmentInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Rongxiang Fang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yantao Jia
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Cell-Cell Signaling Proteobacterial LuxR Solos: a Treasure Trove of Subgroups Having Different Origins, Ligands, and Ecological Roles. mSystems 2023; 8:e0103922. [PMID: 36802056 PMCID: PMC10134790 DOI: 10.1128/msystems.01039-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Many proteobacteria possess LuxR solos which are quorum sensing LuxR-type regulators that are not paired with a cognate LuxI-type synthase. LuxR solos have been implicated in intraspecies, interspecies, and interkingdom communication by sensing endogenous and exogenous acyl-homoserine lactones (AHLs) as well as non-AHL signals. LuxR solos are likely to play a major role in microbiome formation, shaping, and maintenance through many different cell-cell signaling mechanisms. This review intends to assess the different types and discuss the possible functional roles of the widespread family of LuxR solo regulators. In addition, an analysis of LuxR solo types and variability among the totality of publicly available proteobacterial genomes is presented. This highlights the importance of these proteins and will encourage scientists to mobilize and study them in order to increase our knowledge of novel cell-cell mechanisms that drive bacterial interactions in the context of complex bacterial communities.
Collapse
|
5
|
Nathawat R, Maku RV, Patel HK, Sankaranarayanan R, Sonti RV. Role of the FnIII domain associated with a cell wall-degrading enzyme cellobiosidase of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:1011-1021. [PMID: 35278018 PMCID: PMC9190976 DOI: 10.1111/mpp.13205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Cellobiosidase (CbsA) is an important secreted virulence factor of Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight of rice. CbsA is one of several cell wall-degrading enzymes secreted by Xoo via the type II secretion system (T2SS). CbsA is considered a fundamental virulence factor for vascular pathogenesis. CbsA has an N-terminal glycosyl hydrolase domain and a C-terminal fibronectin type III (FnIII) domain. Interestingly, the secreted form of CbsA lacks the FnIII domain during in planta growth. Here we show that the presence of the FnIII domain inhibits the enzyme activity of CbsA on polysaccharide substrates like carboxymethylcellulose. The FnIII domain is required for the interaction of CbsA with SecB chaperone, and this interaction is crucial for the stability and efficient transport of CbsA across the inner membrane. Deletion of the FnIII domain reduced virulence similar to ΔcbsA Xoo, which corroborates the importance of the FnIII domain in CbsA. Our work elucidates a hitherto unknown function of the FnIII domain in enabling the virulence-promoting activity of CbsA.
Collapse
Affiliation(s)
| | - Roshan V. Maku
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Present address:
DBT – National Institute of Animal BiotechnologyHyderabadIndia
| | | | | | - Ramesh V. Sonti
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Present address:
Indian Institute of Science Education and Research TirupatiTirupatiIndia
| |
Collapse
|
6
|
Abstract
LuxR solos are related to quorum sensing (QS) LuxR family regulators; however, they lack a cognate LuxI family protein. LuxR solos are widespread and almost exclusively found in proteobacteria. In this study, we investigated the distribution and conservation of LuxR solos in the fluorescent pseudomonads group. Our analysis of more than 600 genomes revealed that the majority of fluorescent Pseudomonas spp. carry one or more LuxR solos, occurring considerably more frequently than complete LuxI/LuxR archetypical QS systems. Based on the adjacent gene context and conservation of the primary structure, nine subgroups of LuxR solos have been identified that are likely to be involved in the establishment of communication networks. Modeling analysis revealed that the majority of subgroups shows some substitutions at the invariant amino acids of the ligand-binding pocket of QS LuxRs, raising the possibility of binding to non-acyl-homoserine lactone (AHL) ligands. Several mutants and gene expression studies on some LuxR solos belonging to different subgroups were performed in order to shed light on their response. The commonality of LuxR solos among fluorescent pseudomonads is an indication of their important role in cell-cell signaling. IMPORTANCE Cell-cell communication in bacteria is being extensively studied in simple settings and uses chemical signals and cognate regulators/receptors. Many Gram-negative proteobacteria use acyl-homoserine lactones (AHLs) synthesized by LuxI family proteins and cognate LuxR-type receptors to regulate their quorum sensing (QS) target loci. AHL-QS circuits are the best studied QS systems; however, many proteobacterial genomes also contain one or more LuxR solos, which are QS-related LuxR proteins which are unpaired to a cognate LuxI. A few LuxR solos have been implicated in intraspecies, interspecies, and interkingdom signaling. Here, we report that LuxR solo homologs occur considerably more frequently than complete LuxI/LuxR QS systems within the Pseudomonas fluorescens group of species and that they are characterized by different genomic organizations and primary structures and can be subdivided into several subgroups. The P. fluorescens group consists of more than 50 species, many of which are found in plant-associated environments. The role of LuxR solos in cell-cell signaling in fluorescent pseudomonads is discussed.
Collapse
|
7
|
Structural basis for a bacterial Pip system plant effector recognition protein. Proc Natl Acad Sci U S A 2021; 118:2019462118. [PMID: 33649224 DOI: 10.1073/pnas.2019462118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of plant-associated proteobacteria have LuxR family transcription factors that we refer to as PipR subfamily members. PipR proteins play roles in interactions between bacteria and their plant hosts, and some are important for bacterial virulence of plants. We identified an ethanolamine derivative, N-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), as a potent effector of PipR-mediated gene regulation in the plant endophyte Pseudomonas GM79. HEHEAA-dependent PipR activity requires an ATP-binding cassette-type active transport system, and the periplasmic substrate-binding protein (SBP) of that system binds HEHEAA. To begin to understand the molecular basis of PipR system responses to plant factors we crystallized a HEHEAA-responsive SBP in the free- and HEHEAA-bound forms. The SBP, which is similar to peptide-binding SBPs, was in a closed conformation. A narrow cavity at the interface of its two lobes is wide enough to bind HEHEAA, but it cannot accommodate peptides with side chains. The polar atoms of HEHEAA are recognized by hydrogen-bonding interactions, and additional SBP residues contribute to the binding site. This binding mode was confirmed by a structure-based mutational analysis. We also show that a closely related SBP from the plant pathogen Pseudomonas syringae pv tomato DC3000 does not recognize HEHEAA. However, a single amino acid substitution in the presumed effector-binding pocket of the P. syringae SBP converted it to a weak HEHEAA-binding protein. The P. syringae PipR depends on a plant effector for activity, and our findings imply that different PipR-associated SBPs bind different effectors.
Collapse
|
8
|
Pan H, Pierson LS, Pierson EA. PcsR2 Is a LuxR-Type Regulator That Is Upregulated on Wheat Roots and Is Unique to Pseudomonas chlororaphis. Front Microbiol 2020; 11:560124. [PMID: 33244313 PMCID: PMC7683790 DOI: 10.3389/fmicb.2020.560124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
LuxR solos are common in plant-associated bacteria and increasingly recognized for playing important roles in plant-microbe interkingdom signaling. Unlike the LuxR-type transcriptional regulators of prototype LuxR/LuxI quorum sensing systems, luxR solos do not have a LuxI-type autoinducer synthase gene associated with them. LuxR solos in plant-pathogenic bacteria are important for virulence and in plant endosymbionts contribute to symbiosis. In the present study, we characterized an atypical LuxR solo, PcsR2, in the biological control species Pseudomonas chlororaphis 30-84 that is highly conserved among sequenced P. chlororaphis strains. Unlike most LuxR solos in the plant-associated bacteria characterized to date, pcsR2 is not associated with a proline iminopeptidase gene and the protein has an atypical N-terminal binding domain. We created a pcsR2 deletion mutant and used quantitative RT-PCR to show that the expression of pcsR2 and genes in the operon immediately downstream was upregulated ∼10-fold when the wild type strain was grown on wheat roots compared to planktonic culture. PcsR2 was involved in upregulation. Using a GFP transcriptional reporter, we found that expression of pcsR2 responded specifically to root-derived substrates as compared to leaf-derived substrates but not to endogenous AHLs. Compared to the wild type, the mutant was impaired in the ability to utilize root carbon and nitrogen sources in wheat root macerate and to colonize wheat roots. Phenazine production and most biofilm traits previously shown to be correlated with phenazine production also were diminished in the mutant. Gene expression of several of the proteins in the phenazine regulatory network including PhzR, Pip (phenazine inducing protein) and RpeA/RpeB were reduced in the mutant, and overexpression of these genes in trans restored phenazine production in the mutant to wild-type levels, indicating PcsR2 affects the activity of the these regulatory genes upstream of RpeA/RpeB via an undetermined mechanism. Our results indicate PcsR2 upregulates the expression of the adjacent operon in response to unknown wheat root-derived signals and belongs to a novel subfamily of LuxR-type transcriptional regulators found in sequenced P. chlororaphis strains.
Collapse
Affiliation(s)
- Huiqiao Pan
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, United States.,Department of Horticulture Sciences, Texas A&M University, College Station, TX, United States
| | - Leland S Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A Pierson
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, United States.,Department of Horticulture Sciences, Texas A&M University, College Station, TX, United States.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
LuxR Solos in the Plant Endophyte Kosakonia sp. Strain KO348. Appl Environ Microbiol 2020; 86:AEM.00622-20. [PMID: 32332134 PMCID: PMC7301841 DOI: 10.1128/aem.00622-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022] Open
Abstract
Cell-cell signaling in bacteria allows a synchronized and coordinated behavior of a microbial community. LuxR solos represent a subfamily of proteins in proteobacteria which most commonly detect and respond to signals produced exogenously by other microbes or eukaryotic hosts. Here, we report that a plant-beneficial bacterial endophyte belonging to the novel genus of Kosakonia possesses two LuxR solos; one is involved in the detection of exogenous N-acyl homoserine lactone quorum sensing signals and the other in detecting a compound(s) produced by the host plant. These two Kosakonia LuxR solos are therefore most likely involved in interspecies and interkingdom signaling. Endophytes are microorganisms that live inside plants and are often beneficial for the host. Kosakonia is a novel bacterial genus that includes several species that are diazotrophic and plant associated. This study revealed two quorum sensing-related LuxR solos, designated LoxR and PsrR, in the plant endophyte Kosakonia sp. strain KO348. LoxR modeling and biochemical studies demonstrated that LoxR binds N-acyl homoserine lactones (AHLs) in a promiscuous way. PsrR, on the other hand, belongs to the subfamily of plant-associated-bacterium (PAB) LuxR solos that respond to plant compounds. Target promoter studies as well as modeling and phylogenetic comparisons suggest that PAB LuxR solos are likely to respond to different plant compounds. Finally, LoxR is involved in the regulation of T6SS and PsrR plays a role in root endosphere colonization. IMPORTANCE Cell-cell signaling in bacteria allows a synchronized and coordinated behavior of a microbial community. LuxR solos represent a subfamily of proteins in proteobacteria which most commonly detect and respond to signals produced exogenously by other microbes or eukaryotic hosts. Here, we report that a plant-beneficial bacterial endophyte belonging to the novel genus of Kosakonia possesses two LuxR solos; one is involved in the detection of exogenous N-acyl homoserine lactone quorum sensing signals and the other in detecting a compound(s) produced by the host plant. These two Kosakonia LuxR solos are therefore most likely involved in interspecies and interkingdom signaling.
Collapse
|
10
|
Tobias NJ, Brehm J, Kresovic D, Brameyer S, Bode HB, Heermann R. New Vocabulary for Bacterial Communication. Chembiochem 2020; 21:759-768. [PMID: 31709676 PMCID: PMC7154725 DOI: 10.1002/cbic.201900580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 12/21/2022]
Abstract
Quorum sensing (QS) is widely accepted as a procedure that bacteria use to converse. However, prevailing thinking places acyl homoserine lactones (AHLs) at the forefront of this communication pathway in Gram-negative bacteria. With the advent of high-throughput genomics and the subsequent influx of bacterial genomes, bioinformatics analysis has determined that the genes encoding AHL biosynthesis, originally discovered to be indispensable for QS (LuxI-like proteins and homologues), are often absent in QS-capable bacteria. Instead, the sensing protein (LuxR-like proteins) is present with an apparent inability to produce any outgoing AHL signal. Recently, several signals for these LuxR solos have been identified. Herein, advances in the field of QS are discussed, with a particular focus on recent research in the field of bacterial cell-cell communication.
Collapse
Affiliation(s)
- Nicholas J. Tobias
- Fachbereich BiowissenschaftenMerck-Stiftungsprofessur für Molekulare BiotechnologieGoethe-Universität FrankfurtMax-von-Laue-Strasse 960438Frankfurt am MainGermany
- LOEWE Center for Translational Biodiversity in Genomics (TBG)Frankfurt am MainGermany
| | - Jannis Brehm
- Institut für Molekulare PhysiologieMikrobiologie und WeinforschungJohannes-Gutenberg-Universität MainzJohann-Joachim-Becher-Weg 1355128MainzGermany
| | - Darko Kresovic
- Fachbereich BiowissenschaftenMerck-Stiftungsprofessur für Molekulare BiotechnologieGoethe-Universität FrankfurtMax-von-Laue-Strasse 960438Frankfurt am MainGermany
| | - Sophie Brameyer
- Biozentrum, Bereich MikrobiologieLudwig-Maximilians-Universität MünchenGroßhaderner Strasse 2–482152MartinsriedGermany
| | - Helge B. Bode
- Fachbereich BiowissenschaftenMerck-Stiftungsprofessur für Molekulare BiotechnologieGoethe-Universität FrankfurtMax-von-Laue-Strasse 960438Frankfurt am MainGermany
- LOEWE Center for Translational Biodiversity in Genomics (TBG)Frankfurt am MainGermany
- Buchmann Institute for Molecular Life Sciences (BMLS)Goethe-Universität FrankfurtMax-von-Laue-Strasse 1560438Frankfurt am MainGermany
| | - Ralf Heermann
- Institut für Molekulare PhysiologieMikrobiologie und WeinforschungJohannes-Gutenberg-Universität MainzJohann-Joachim-Becher-Weg 1355128MainzGermany
| |
Collapse
|
11
|
Ling J, Zhou L, Wu G, Zhao Y, Jiang T, Liu F. The AHL Quorum-Sensing System Negatively Regulates Growth and Autolysis in Lysobacter brunescens. Front Microbiol 2019; 10:2748. [PMID: 31849892 PMCID: PMC6902743 DOI: 10.3389/fmicb.2019.02748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Lysobacter species are emerging as novel sources of antibiotics, but the regulation of their physiological metabolism is still poorly understood. In this work, we extracted AHL (acyl-homoserine lactone) autoinducers, identified the structures of AHLs and described the AHL quorum-sensing system in Lysobacter brunescens OH23. AHLs were isolated from the supernatant of L. brunescens OH23, and ESI-MS/MS (electrospray ionization mass spectrometry) analysis revealed biosynthesis of three different AHL chemical structures by L. brunescens OH23: N-(3-oxohexanoyl)- homoserine lactone (HSL), 3-OH-C10-HSL and C8-HSL. The growth rate of AHL quorum-sensing knockout mutants was dramatically increased compared to that of wildtype. Sucrose consumptions were also twice as high in AHL quorum-sensing knockout mutants than that in wildtype in early-log phase. Additionally, expression of key genes related to sucrose metabolism α-glucosidase was enhanced in AHL quorum-sensing knockout mutants, which indicated that AHL quorum sensing negatively regulates sucrose uptake and metabolism which further affects the growth rate of L. brunescens. Furthermore, autolysis was strongly induced in AHL quorum-sensing knockout mutants compared to wildtype, suggesting that AHL quorum sensing plays a negative regulatory role in cell autolysis. Moreover, compared to wildtype, XSAC (Xanthomonas-specific antibiotic compound) production was significantly increased in AHL knockout mutants in the early-log and late-log phases, and surface motility capabilities are also enhanced also in AHL knockout mutants; the normalized data of XSAC production and surface motility and expressions of key genes related to these two phenotypes reveal that growth rare and autolysis strongly affects XSAC biosynthesis and surface motility rather than AHL quorum-sensing system. Our results show that the AHL quorum-sensing system negatively regulates cell growth and autolysis, and further maintain nutrition homeostasis and population stability in L. brunescens.
Collapse
Affiliation(s)
- Jun Ling
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lan Zhou
- Academy of Agricultural Sciences of Yanbian, Longjing, China
| | - Guichun Wu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianping Jiang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Wu L, Ma L, Li X, Huang Z, Gao X. Contribution of the cold shock protein CspA to virulence in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2019; 20:382-391. [PMID: 30372574 PMCID: PMC6637868 DOI: 10.1111/mpp.12763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a damaging bacterial leaf blight disease in rice. Cold shock proteins (Csps) are highly conserved nucleic acid-binding proteins present in various bacterial genera, but relatively little is known about their functions in Xanthomonas. Herein, we identified four Csps (CspA-CspD) in the Xoo PXO99A strain. Deletion of cspA decreased cold adaptation and a few known pathogenic factors, including bacterial pathogenicity, biofilm formation and polysaccharide production. Furthermore, we performed transcriptomic and chromosome immunoprecipitation (ChIP) experiments to identify direct targets of CspA and to determine its DNA-binding sequence. Integrative data analysis revealed that CspA directly regulates two genes, PXO_RS11830 and PXO_RS01060, by binding to a conserved CCAAT sequence in the promoter region. We generated single-deletion mutants of each gene and the results indicate that both are responsible for Xanthomonas pathogenicity. In addition, quantitative real-time polymerase chain reaction and western blotting showed that CspA suppressed the expression of its direct targets. In summary, our study clarifies the characteristics of Csps in Xanthomonas and greatly advances our understanding of the mechanisms underlying the contribution of CspA to bacterial virulence.
Collapse
Affiliation(s)
- Liming Wu
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of EducationNanjing210095China
| | - Liumin Ma
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of EducationNanjing210095China
| | - Xi Li
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of EducationNanjing210095China
| | - Ziyang Huang
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of EducationNanjing210095China
| | - Xuewen Gao
- College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Disease and Pest Insects, Ministry of EducationNanjing210095China
| |
Collapse
|
13
|
Fernández M, Corral-Lugo A, Krell T. The plant compound rosmarinic acid induces a broad quorum sensing response in Pseudomonas aeruginosa PAO1. Environ Microbiol 2018; 20:4230-4244. [PMID: 30051572 DOI: 10.1111/1462-2920.14301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/28/2018] [Indexed: 02/05/2023]
Abstract
The interference of plant compounds with bacterial quorum sensing (QS) is a major mechanism through which plants and bacteria communicate. However, little is known about the modes of action and effects on signal integrity during this type of communication. We have recently shown that the plant compound rosmarinic acid (RA) specifically binds to the Pseudomonas aeruginosa RhlR QS receptor. To determine the effect of RA on expression patterns, we carried out global RNA-seq analysis. The results show that RA induces the expression of 128 genes, amongst which many virulence factor genes. RA triggers a broad QS response because 88% of the induced genes are known to be controlled by QS, and because RA stimulated genes were found to be involved in all four QS signalling systems within P. aeruginosa. This finding was confirmed through the analysis of transcriptional fusions transferred to wt and a rhlI/lasI double mutant. RA did not induce gene expression in the rhlI/lasI/rhlR triple mutant indicating that the effects observed are due to the RA-RhlR interaction. Furthermore, RA induced seven sRNAs that were all encoded in regions close to QS and/or RA induced genes. This work significantly enhances our understanding of plant bacteria interaction.
Collapse
Affiliation(s)
- Matilde Fernández
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Institut de Biologie Intégrative de la Cellule (I2BC), CNRS, Gif-Sur-Yvette, France
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
14
|
A plant-responsive bacterial-signaling system senses an ethanolamine derivative. Proc Natl Acad Sci U S A 2018; 115:9785-9790. [PMID: 30190434 DOI: 10.1073/pnas.1809611115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Certain plant-associated Proteobacteria sense their host environment by detecting an unknown plant signal recognized by a member of a LuxR subfamily of transcription factors. This interkingdom communication is important for both mutualistic and pathogenic interactions. The Populus root endophyte Pseudomonas sp. GM79 possesses such a regulator, named PipR. In a previous study we reported that PipR activates an adjacent gene (pipA) coding for a proline iminopeptidase in response to Populus leaf macerates and peptides and that this activation is dependent on a putative ABC-type transporter [Schaefer AL, et al. (2016) mBio 7:e01101-16]. In this study we identify a chemical derived from ethanolamine that induces PipR activity at picomolar concentrations, and we present evidence that this is the active inducer present in plant leaf macerates. First, a screen of more than 750 compounds indicated ethanolamine was a potent inducer for the PipR-sensing system; however, ethanolamine failed to bind to the periplasmic-binding protein (PBP) required for the signal response. This led us to discover that a specific ethanolamine derivative, N-(2-hydroxyethyl)-2-(2-hydroxyethylamino) acetamide (HEHEAA), binds to the PBP and serves as a potent PipR-dependent inducer. We also show that a compound, which coelutes with HEHEAA in HPLC and induces pipA gene expression in a PipR-dependent manner, can be found in Populus leaf macerates. This work sheds light on how plant-associated bacteria can sense their environment and on the nature of inducers for a family of plant-responsive LuxR-like transcription factors found in plant-associated bacteria.
Collapse
|
15
|
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis. Genes (Basel) 2018; 9:genes9050263. [PMID: 29783703 PMCID: PMC5977203 DOI: 10.3390/genes9050263] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| | - Matthew McIntosh
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, 35392 Giessen, Germany.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| |
Collapse
|
16
|
Nobori T, Mine A, Tsuda K. Molecular networks in plant-pathogen holobiont. FEBS Lett 2018; 592:1937-1953. [PMID: 29714033 DOI: 10.1002/1873-3468.13071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022]
Abstract
Plant immune receptors enable detection of a multitude of microbes including pathogens. The recognition of microbes activates various plant signaling pathways, such as those mediated by phytohormones. Over the course of coevolution with microbes, plants have expanded their repertoire of immune receptors and signaling components, resulting in highly interconnected plant immune networks. These immune networks enable plants to appropriately respond to different types of microbes and to coordinate immune responses with developmental programs and environmental stress responses. However, the interconnectivity in plant immune networks is exploited by microbial pathogens to promote pathogen fitness in plants. Analogous to plant immune networks, virulence-related pathways in bacterial pathogens are also interconnected. Accumulating evidence implies that some plant-derived compounds target bacterial virulence networks. Thus, the plant immune and bacterial virulence networks intimately interact with each other. Here, we highlight recent insights into the structures of the plant immune and bacterial virulence networks and the interactions between them. We propose that small molecules derived from plants and/or bacterial pathogens connect the two molecular networks, forming supernetworks in the plant-bacterial pathogen holobiont.
Collapse
Affiliation(s)
- Tatsuya Nobori
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Akira Mine
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.,JST, PRESTO, Kawaguchi-shi, Japan
| | - Kenichi Tsuda
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
17
|
Wang B, Wu G, Zhang Y, Qian G, Liu F. Dissecting the virulence-related functionality and cellular transcription mechanism of a conserved hypothetical protein in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:1859-1872. [PMID: 29392817 PMCID: PMC6638143 DOI: 10.1111/mpp.12664] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 05/09/2023]
Abstract
Hypothetical proteins without defined functions are largely distributed in all sequenced bacterial genomes. Understanding their potent functionalities is a basic demand for bacteriologists. Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight of rice, is one of the model systems for the study of molecular plant pathology. One-quarter of proteins in the genome of this bacterium are defined as hypothetical proteins, but their roles in Xoo pathogenicity are unknown. Here, we generated in-frame deletions for six hypothetical proteins selected from strain PXO99A and found that one of them (PXO_03177) is required for the full virulence of this strain. PXO_03177 is conserved in Xanthomonas, and is predicted to contain two domains relating to polysaccharide synthesis. However, we found that mutation of this gene did not affect the production or modification of extracellular polysaccharides (EPSs) and lipopolysaccharides (LPSs), two major polysaccharides produced by Xoo relating to its infection. Interestingly, we found that inactivation of PXO_03177 significantly impaired biofilm formation and tolerance to sodium dodecyl sulfate (SDS), both of which are considered to play key roles during Xoo infection in rice leaves. These findings thus enable us to define a function for PXO_03177 in the virulence of Xoo. Furthermore, we also found that the global regulator Clp controls the transcription of PXO_03177 by direct binding to its promoter region, presenting the first cellular regulatory pathway for the modulation of expression of this hypothetical protein gene. Our results provide reference information for PXO_03177 homologues in Xanthomonas.
Collapse
Affiliation(s)
- Bo Wang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Guichun Wu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Yuqiang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Guoliang Qian
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
| | - Fengquan Liu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjing 210095China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing 210095China
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesNanjing 210014China
| |
Collapse
|
18
|
Venturi V, Subramoni S, Sabag-Daigle A, Ahmer BMM. Methods to Study Solo/Orphan Quorum-Sensing Receptors. Methods Mol Biol 2018; 1673:145-159. [PMID: 29130171 DOI: 10.1007/978-1-4939-7309-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
LuxR solos/orphans are very widespread among Proteobacteria; however they are surprisingly understudied given that they are likely to play a major role in cell-cell communication in bacteria. Here we describe three simple methodologies/approaches that can be used in order to begin to study this subgroup of quorum sensing-related LuxR receptors.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Science Engineering, Singapore, Singapore
| | - Anice Sabag-Daigle
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Brian M M Ahmer
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Xu H, Wang R, Zhao Y, Fu ZQ, Qian G, Liu F. LesR is a novel upstream regulator that controls downstream Clp expression to modulate antibiotic HSAF biosynthesis and cell aggregation in Lysobacter enzymogenes OH11. Microb Cell Fact 2017; 16:202. [PMID: 29137648 PMCID: PMC5686890 DOI: 10.1186/s12934-017-0818-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/09/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Heat-stable antifungal factor (HSAF) is a polycyclic tetramate macrolactam secondary metabolite that exhibits broad-spectrum inhibitory activities against filamentous fungal pathogens. The native yield of this chemical is low. It is also a great challenge to synthesize HSAF artificially, due to its complex structure. Understanding the regulatory mechanism underlying HSAF biosynthesis could provide genetic basis for engineering high HSAF-producing strain. The transcription factor Clp is a global regulator that controls bacterial pathogenicity and the expression of one hundred related genes in the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc). Diffusible signal factor (DSF) chemical signaling is the only well-characterized upstream regulatory pathway that involves downstream Clp regulation in Xcc. Such a regulatory hierarchy between DSF signaling and Clp is also conserved in the Gram-negative biological control agent Lysobacter enzymogenes, where the DSF signaling system controls antifungal antibiotic HSAF biosynthesis via Clp. RESULTS Here, using LLysobacter enzymogenes OH11 as a working organism, we examined a novel upstream regulator, LesR, a LuxR solo that controls Clp expression to modulate HSAF biosynthesis as well as cell aggregation. We found that the overexpression of lesR in strain OH11 almost entirely shut down HSAF production and accelerated cell aggregation. These changed phenotypes could be rescued by the introduction of plasmid-borne clp in the lesR overexpression background. Consistent with findings, we further found that overexpression of lesR led to a decrease in the Clp level. CONCLUSIONS These results collectively have shown that LesR could exert its function, i.e., HSAF biosynthesis, via downstream Clp. These findings were subsequently validated by a comparative transcriptome analysis, where the regulatory action of LesR was found to largely overlap with that of Clp. Therefore, in addition to the well-known DSF signaling system, the present study reveals that LesR functions as a new upstream regulatory factor of Clp in L. enzymogenes. The key factor was important for the production of HSAF. The strains with high HSAF yield can presumably be constructed by deletion of the negative regulators or overexpression of the positive regulators by genetic engineering.
Collapse
Affiliation(s)
- Huiyong Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Ruping Wang
- College of Plant Protection, Nanjing Agricultural University, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University, Ministry of Education), Nanjing, 210095, People's Republic of China
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University, Ministry of Education), Nanjing, 210095, People's Republic of China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
20
|
Interkingdom signaling in plant-microbe interactions. SCIENCE CHINA-LIFE SCIENCES 2017; 60:785-796. [PMID: 28755299 DOI: 10.1007/s11427-017-9092-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/04/2017] [Indexed: 12/18/2022]
Abstract
The widespread communications between prokaryotes and eukaryotes via signaling molecules are believed to affect gene expression in both partners. During the communication process, the contacted organisms produce and release small molecules that establish communication channels between two kingdoms-this procedure is known as interkingdom signaling. Interkingdom communications are widespread between pathogenic or beneficial bacteria and their host plants, with diversified outcomes depending on the specific chemical-triggered signaling pathways. Deciphering the signals or language of this interkingdom communication and uncovering the underlying mechanisms are major current challenges in this field. It is evident that diverse signaling molecules can be produced or derived from bacteria and plants, and researchers have sought to identify these signals and explore the mechanisms of the signaling pathways. The results of such studies will lead to the development of strategies to improve plant disease resistance through controlling interkingdom signals, rather than directly killing the pathogenic bacteria. Also, the identification of signals produced by beneficial bacteria will be useful for agricultural applications. In this review, we summarize the recent progress of cross-kingdom interactions between plant and bacteria, and how LuxR-family transcription factors in plant associated bacterial quorum sensing system are involved in the interkingdom signaling.
Collapse
|
21
|
Jacques MA, Arlat M, Boulanger A, Boureau T, Carrère S, Cesbron S, Chen NWG, Cociancich S, Darrasse A, Denancé N, Fischer-Le Saux M, Gagnevin L, Koebnik R, Lauber E, Noël LD, Pieretti I, Portier P, Pruvost O, Rieux A, Robène I, Royer M, Szurek B, Verdier V, Vernière C. Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:163-87. [PMID: 27296145 DOI: 10.1146/annurev-phyto-080615-100147] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.
Collapse
Affiliation(s)
- Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Matthieu Arlat
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Alice Boulanger
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Tristan Boureau
- Université Angers, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Sébastien Carrère
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
| | - Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas W G Chen
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Stéphane Cociancich
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Armelle Darrasse
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas Denancé
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Marion Fischer-Le Saux
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Lionel Gagnevin
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Ralf Koebnik
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Emmanuelle Lauber
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Laurent D Noël
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Isabelle Pieretti
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Perrine Portier
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Adrien Rieux
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Isabelle Robène
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Monique Royer
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Boris Szurek
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Valérie Verdier
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Christian Vernière
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| |
Collapse
|
22
|
A LuxR Homolog in a Cottonwood Tree Endophyte That Activates Gene Expression in Response to a Plant Signal or Specific Peptides. mBio 2016; 7:mBio.01101-16. [PMID: 27486195 PMCID: PMC4981722 DOI: 10.1128/mbio.01101-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Homologs of the LuxR acyl-homoserine lactone (AHL) quorum-sensing signal receptor are prevalent in Proteobacteria isolated from roots of the Eastern cottonwood tree, Populus deltoides Many of these isolates possess an orphan LuxR homolog, closely related to OryR from the rice pathogen Xanthomonas oryzae OryR does not respond to AHL signals but, instead, responds to an unknown plant compound. We discovered an OryR homolog, PipR, in the cottonwood endophyte Pseudomonas sp. strain GM79. The genes adjacent to pipR encode a predicted ATP-binding cassette (ABC) peptide transporter and peptidases. We purified the putative peptidases, PipA and AapA, and confirmed their predicted activities. A transcriptional pipA-gfp reporter was responsive to PipR in the presence of plant leaf macerates, but it was not influenced by AHLs, similar to findings with OryR. We found that PipR also responded to protein hydrolysates to activate pipA-gfp expression. Among many peptides tested, the tripeptide Ser-His-Ser showed inducer activity but at relatively high concentrations. An ABC peptide transporter mutant failed to respond to leaf macerates, peptone, or Ser-His-Ser, while peptidase mutants expressed higher-than-wild-type levels of pipA-gfp in response to any of these signals. Our studies are consistent with a model where active transport of a peptidelike signal is required for the signal to interact with PipR, which then activates peptidase gene expression. The identification of a peptide ligand for PipR sets the stage to identify plant-derived signals for the OryR family of orphan LuxR proteins. IMPORTANCE We describe the transcription factor PipR from a Pseudomonas strain isolated as a cottonwood tree endophyte. PipR is a member of the LuxR family of transcriptional factors. LuxR family members are generally thought of as quorum-sensing signal receptors, but PipR is one of an emerging subfamily of LuxR family members that respond to compounds produced by plants. We found that PipR responds to a peptidelike compound, and we present a model for Pip system signal transduction. A better understanding of plant-responsive LuxR homologs and the compounds to which they respond is of general importance, as they occur in dozens of bacterial species that are associated with economically important plants and, as we report here, they also occur in members of certain root endophyte communities.
Collapse
|
23
|
Wang R, Xu H, Du L, Chou SH, Liu H, Liu Y, Liu F, Qian G. A TonB-dependent receptor regulates antifungal HSAF biosynthesis in Lysobacter. Sci Rep 2016; 6:26881. [PMID: 27241275 PMCID: PMC4886534 DOI: 10.1038/srep26881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 11/25/2022] Open
Abstract
Lysobacter species are Gram-negative bacteria that are emerging as new sources of antibiotics, including HSAF (Heat Stable Antifungal Factor), which was identified from L. enzymogenes with a new mode of action. LesR, a LuxR solo, was recently shown to regulate the HSAF biosynthesis via an unidentified mechanism in L. enzymogenes OH11. Here, we used a comparative proteomic approach to identify the LesR targets and found that LesR influenced the expression of 33 proteins belonging to 10 functional groups, with 9 proteins belonging to the TBDR (TonB-Dependent Receptor) family. The fundamental role of bacterial TBDR in nutrient uptake motivates us to explore their potential regulation on HSAF biosynthesis which is also modulated by nutrient condition. Six out of 9 TBDR coding genes were individually in-frame deleted. Phenotypic and gene-expression assays showed that TBDR7, whose level was lower in a strain overexpressing lesR, was involved in regulating HSAF yield. TBDR7 was not involved in the growth, but played a vital role in transcribing the key HSAF biosynthetic gene. Taken together, the current lesR-based proteomic study provides the first report that TBDR7 plays a key role in regulating antibiotic (HSAF) biosynthesis, a function which has never been found for TBDRs in bacteria.
Collapse
Affiliation(s)
- Ruping Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huiyong Xu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Hongxia Liu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
24
|
Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M, Krell T. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal 2016; 9:ra1. [PMID: 26732761 DOI: 10.1126/scisignal.aaa8271] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.
Collapse
Affiliation(s)
- Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Alvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
25
|
A Burkholderia thailandensis Acyl-Homoserine Lactone-Independent Orphan LuxR Homolog That Activates Production of the Cytotoxin Malleilactone. J Bacteriol 2015; 197:3456-62. [PMID: 26283771 DOI: 10.1128/jb.00425-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/13/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Burkholderia thailandensis has three acyl-homoserine lactone (AHL) LuxR-LuxI quorum-sensing circuits and two orphan LuxR homologs. Orphans are LuxR-type transcription factors that do not have cognate LuxI-type AHL synthases. One of the orphans, MalR, is genetically linked to the mal gene cluster, which encodes enzymes required for production of the cytotoxic polyketide malleilactone. Under normal laboratory conditions the mal gene cluster is silent; however, antibiotics like trimethoprim induce mal transcription. We show that trimethoprim-dependent induction of the mal genes requires MalR. MalR has all of the conserved amino acid residues characteristic of AHL-responsive LuxR homologs, but in B. thailandensis, MalR activation of malleilactone synthesis genes is not responsive to AHLs. MalR can activate transcription from the mal promoter in E. coli without addition of AHLs or trimethoprim. Expression of malR in B. thailandensis is induced by trimethoprim. Our data indicate that MalR binds to a lux box-like element in the mal promoter and activates transcription of the mal genes in an AHL-independent manner. Antibiotics like trimethoprim appear to activate mal gene expression indirectly by somehow activating malR expression. MalR activation of the mal genes represents an example of a LuxR homolog that is not a receptor for an AHL quorum-sensing signal. Our evidence is consistent with the idea that mal gene activation depends solely on sufficient transcription of the malR gene. IMPORTANCE LuxR proteins are transcription factors that are typically activated by acyl-homoserine lactone (AHL) signals. We demonstrate that a conserved LuxR family protein, MalR, activates genes independently of AHLs. MalR is required for transcription of genes coding for synthesis of the cytotoxic polyketide malleilactone. These genes are not expressed when cells are grown under normal laboratory conditions. In laboratory culture, MalR induction of malleilactone requires certain antibiotics, such as trimethoprim, which increase malR expression by an unknown mechanism. At sufficient levels of malR expression, MalR functions independently of any external signal. Our findings show that MalR is an activator of the silent malleilactone biosynthesis genes and that MalR functions independently of AHLs.
Collapse
|
26
|
da Silva DP, Patel HK, González JF, Devescovi G, Meng X, Covaceuszach S, Lamba D, Subramoni S, Venturi V. Studies on synthetic LuxR solo hybrids. Front Cell Infect Microbiol 2015; 5:52. [PMID: 26151032 PMCID: PMC4471428 DOI: 10.3389/fcimb.2015.00052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 05/26/2015] [Indexed: 11/13/2022] Open
Abstract
A sub-group of LuxR family of proteins that plays important roles in quorum sensing, a process of cell-cell communication, is widespread in proteobacteria. These proteins have a typical modular structure consisting of N-ter autoinducer binding and C-ter helix-turn-helix (HTH) DNA binding domains. The autoinducer binding domain recognizes signaling molecules which are most often N-acyl homoserine lactones (AHLs) but could also be other novel and yet unidentified molecules. In this study we carried out a series of specific domain swapping and promoter activation experiments as a first step to engineer synthetic signaling modules, taking advantage of the modularity and the versatile/diverse signal specificities of LuxR proteins. In our experiments the N-ter domains from different LuxR homologs were either interchanged or placed in tandem followed by a C-ter domain. The rational design of the hybrid proteins was supported by a structure-based homology modeling studies of three members of the LuxR family (i.e., LasR, RhlR, and OryR being chosen for their unique ligand binding specificities) and of selected chimeras. Our results reveal that these LuxR homologs were able to activate promoter elements that were not their usual targets; we also show that hybrid LuxR proteins retained the ability to recognize the signal specific for their N- ter autoinducer binding domain. However, the activity of hybrid LuxR proteins containing two AHL binding domains in tandem appears to depend on the organization and nature of the introduced domains. This study represents advances in the understanding of the modularity of LuxR proteins and provides additional possibilities to use hybrid proteins in both basic and applied synthetic biology based research.
Collapse
Affiliation(s)
- Daniel Passos da Silva
- Bacteriology and Plant Bacteriology, International Centre for Genetic Engineering and Biotechnology Trieste, Italy ; Centro de Ciencias da Saude, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Hitendra K Patel
- Bacteriology and Plant Bacteriology, International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Juan F González
- Bacteriology and Plant Bacteriology, International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Giulia Devescovi
- Bacteriology and Plant Bacteriology, International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Xianfa Meng
- Bacteriology and Plant Bacteriology, International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Sonia Covaceuszach
- Istituto di Cristallografia, Unità Organizzativa di Supporto di Basovizza (Trieste), Consiglio Nazionale delle Ricerche Trieste, Italy
| | - Doriano Lamba
- Istituto di Cristallografia, Unità Organizzativa di Supporto di Basovizza (Trieste), Consiglio Nazionale delle Ricerche Trieste, Italy
| | - Sujatha Subramoni
- Bacteriology and Plant Bacteriology, International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Vittorio Venturi
- Bacteriology and Plant Bacteriology, International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| |
Collapse
|
27
|
Martínez P, Huedo P, Martinez-Servat S, Planell R, Ferrer-Navarro M, Daura X, Yero D, Gibert I. Stenotrophomonas maltophilia responds to exogenous AHL signals through the LuxR solo SmoR (Smlt1839). Front Cell Infect Microbiol 2015; 5:41. [PMID: 26029670 PMCID: PMC4432800 DOI: 10.3389/fcimb.2015.00041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/28/2015] [Indexed: 11/22/2022] Open
Abstract
Quorum Sensing (QS) mediated by Acyl Homoserine Lactone (AHL) molecules are probably the most widespread and studied among Gram-negative bacteria. Canonical AHL systems are composed by a synthase (LuxI family) and a regulator element (LuxR family), whose genes are usually adjacent in the genome. However, incomplete AHL-QS machinery lacking the synthase LuxI is frequently observed in Proteobacteria, and the regulator element is then referred as LuxR solo. It has been shown that certain LuxR solos participate in interspecific communication by detecting signals produced by different organisms. In the case of Stenotrophomonas maltophilia, a preliminary genome sequence analysis revealed numerous putative luxR genes, none of them associated to a luxI gene. From these, the hypothetical LuxR solo Smlt1839, here designated SmoR, presents a conserved AHL binding domain and a helix-turn-helix DNA binding motif. Its genomic organization—adjacent to hchA gene—indicate that SmoR belongs to the new family “LuxR regulator chaperone HchA-associated.” AHL-binding assays revealed that SmoR binds to AHLs in-vitro, at least to oxo-C8-homoserine lactone, and it regulates operon transcription, likely by recognizing a conserved palindromic regulatory box in the hchA upstream region. Supplementation with concentrated supernatants from Pseudomonas aeruginosa, which contain significant amounts of AHLs, promoted swarming motility in S. maltophilia. Contrarily, no swarming stimulation was observed when the P. aeruginosa supernatant was treated with the lactonase AiiA from Bacillus subtilis, confirming that AHL contributes to enhance the swarming ability of S. maltophilia. Finally, mutation of smoR resulted in a swarming alteration and an apparent insensitivity to the exogenous AHLs provided by P. aeruginosa. In conclusion, our results demonstrate that S. maltophilia senses AHLs produced by neighboring bacteria through the LuxR solo SmoR, regulating population behaviors such as swarming motility.
Collapse
Affiliation(s)
- Paula Martínez
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Pol Huedo
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Sònia Martinez-Servat
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Raquel Planell
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Mario Ferrer-Navarro
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Xavier Daura
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Catalan Institution for Research and Advanced Studies Barcelona, Spain
| | - Daniel Yero
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Isidre Gibert
- Grup de Genètica Molecular i Patogènesi Bacteriana, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
28
|
Xu H, Zhao Y, Qian G, Liu F. XocR, a LuxR solo required for virulence in Xanthomonas oryzae pv. oryzicola. Front Cell Infect Microbiol 2015; 5:37. [PMID: 25932456 PMCID: PMC4399327 DOI: 10.3389/fcimb.2015.00037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/31/2015] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc) causes bacterial leaf streak (BLS) in rice, a serious bacterial disease of rice in Asia and parts of Africa. The virulence mechanisms of Xoc are not entirely clear and control measures for BLS are poorly developed. The solo LuxR proteins are widespread and shown to be involved in virulence in some plant associated bacteria (PAB). Here, we have cloned and characterized a PAB LuxR solo from Xoc, named as XocR. Mutation of xocR almost completely impaired the virulence ability of Xoc on host rice, but did not alter the ability to trigger HR (hypersensitive response, a programmed cell death) on non-host (plant) tobacco, suggesting the diversity of function of xocR in host and non-host plants. We also provide evidence to show that xocR is involved in the regulation of growth-independent cell motility in response to a yet-to-be-identified rice signal, as mutation of xocR impaired cell swimming motility of wild-type Rs105 in the presence but not absence of rice macerate. We further found that xocR regulated the transcription of two characterized virulence-associated genes (recN and trpE) in the presence of rice macerate. The promoter regions of recN and trpE possessed a potential binding motif (an imperfect pip box-like element) of XocR, raising the possibility that XocR might directly bind the promoter regions of these two genes to regulate their transcriptional activity. Our studies add a new member of PAB LuxR solos and also provide new insights into the role of PAB LuxR solo in the virulence of Xanthomonas species.
Collapse
Affiliation(s)
- Huiyong Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural ScienceNanjing, China
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural ScienceNanjing, China
| | - Guoliang Qian
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural ScienceNanjing, China
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of EducationNanjing, China
| |
Collapse
|
29
|
Subramoni S, Florez Salcedo DV, Suarez-Moreno ZR. A bioinformatic survey of distribution, conservation, and probable functions of LuxR solo regulators in bacteria. Front Cell Infect Microbiol 2015; 5:16. [PMID: 25759807 PMCID: PMC4338825 DOI: 10.3389/fcimb.2015.00016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/02/2015] [Indexed: 12/25/2022] Open
Abstract
LuxR solo transcriptional regulators contain both an autoinducer binding domain (ABD; N-terminal) and a DNA binding Helix-Turn-Helix domain (HTH; C-terminal), but are not associated with a cognate N-acyl homoserine lactone (AHL) synthase coding gene in the same genome. Although a few LuxR solos have been characterized, their distributions as well as their role in bacterial signal perception and other processes are poorly understood. In this study we have carried out a systematic survey of distribution of all ABD containing LuxR transcriptional regulators (QS domain LuxRs) available in the InterPro database (IPR005143), and identified those lacking a cognate AHL synthase. These LuxR solos were then analyzed regarding their taxonomical distribution, predicted functions of neighboring genes and the presence of complete AHL-QS systems in the genomes that carry them. Our analyses reveal the presence of one or multiple predicted LuxR solos in many proteobacterial genomes carrying QS domain LuxRs, some of them harboring genes for one or more AHL-QS circuits. The presence of LuxR solos in bacteria occupying diverse environments suggests potential ecological functions for these proteins beyond AHL and interkingdom signaling. Based on gene context and the conservation levels of invariant amino acids of ABD, we have classified LuxR solos into functionally meaningful groups or putative orthologs. Surprisingly, putative LuxR solos were also found in a few non-proteobacterial genomes which are not known to carry AHL-QS systems. Multiple predicted LuxR solos in the same genome appeared to have different levels of conservation of invariant amino acid residues of ABD questioning their binding to AHLs. In summary, this study provides a detailed overview of distribution of LuxR solos and their probable roles in bacteria with genome sequence information.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Grupo de Bioprospección, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común Chía, Colombia
| | | | - Zulma R Suarez-Moreno
- Grupo de Bioprospección, Facultad de Ingeniería, Universidad de La Sabana, Campus del Puente del Común Chía, Colombia
| |
Collapse
|
30
|
Xu J, Zhou L, Venturi V, He YW, Kojima M, Sakakibari H, Höfte M, De Vleesschauwer D. Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions. BMC PLANT BIOLOGY 2015; 15:10. [PMID: 25605284 PMCID: PMC4307914 DOI: 10.1186/s12870-014-0411-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/30/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND Small-molecule hormones are well known to play key roles in the plant immune signaling network that is activated upon pathogen perception. In contrast, little is known about whether phytohormones also directly influence microbial virulence, similar to what has been reported in animal systems. RESULTS In this paper, we tested the hypothesis that hormones fulfill dual roles in plant-microbe interactions by orchestrating host immune responses, on the one hand, and modulating microbial virulence traits, on the other. Employing the rice-Xanthomonas oryzae pv. oryzae (Xoo) interaction as a model system, we show that Xoo uses the classic immune hormone salicylic acid (SA) as a trigger to activate its virulence-associated quorum sensing (QS) machinery. Despite repressing swimming motility, sodium salicylate (NaSA) induced production of the Diffusible Signal Factor (DSF) and Diffusible Factor (DF) QS signals, with resultant accumulation of xanthomonadin and extracellular polysaccharides. In contrast, abscisic acid (ABA), which favors infection by Xoo, had little impact on DF- and DSF-mediated QS, but promoted bacterial swimming via the LuxR solo protein OryR. Moreover, we found both DF and DSF to influence SA- and ABA-responsive gene expression in planta. CONCLUSIONS Together our findings indicate that the rice SA and ABA signaling pathways cross-communicate with the Xoo DF and DSF QS systems and underscore the importance of bidirectional interkingdom signaling in molding plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Xu
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Hitoshi Sakakibari
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Monica Höfte
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - David De Vleesschauwer
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
31
|
Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, Savka MA. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family. Front Cell Infect Microbiol 2015; 4:188. [PMID: 25621282 PMCID: PMC4288048 DOI: 10.3389/fcimb.2014.00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Here we report the draft genomes and annotation of four N-acyl homoserine lactone (AHL)-producing members from the family Sphingomonadaceae. Comparative genomic analyses of 62 Sphingomonadaceae genomes were performed to gain insights into the distribution of the canonical luxI/R-type quorum sensing (QS) network within this family. Forty genomes contained at least one luxR homolog while the genome of Sphingobium yanoikuyae B1 contained seven Open Reading Frames (ORFs) that have significant homology to that of luxR. Thirty-three genomes contained at least one luxI homolog while the genomes of Sphingobium sp. SYK6, Sphingobium japonicum, and Sphingobium lactosutens contained four luxI. Using phylogenetic analysis, the sphingomonad LuxR homologs formed five distinct clades with two minor clades located near the plant associated bacteria (PAB) LuxR solo clade. This work for the first time shows that 13 Sphingobium and one Sphingomonas genome(s) contain three convergently oriented genes composed of two tandem luxR genes proximal to one luxI (luxR-luxR-luxI). Interestingly, luxI solos were identified in two Sphingobium species and may represent species that contribute to AHL-based QS system by contributing AHL molecules but are unable to perceive AHLs as signals. This work provides the most comprehensive description of the luxI/R circuitry and genome-based taxonomical description of the available sphingomonad genomes to date indicating that the presence of luxR solos and luxI solos are not an uncommon feature in members of the Sphingomonadaceae family.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Huan You Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Nurul H Ahmad
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Nazrin A Aziz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| |
Collapse
|
32
|
|
33
|
Coutinho BG, Licastro D, Mendonça-Previato L, Cámara M, Venturi V. Plant-Influenced Gene Expression in the Rice Endophyte Burkholderia kururiensis M130. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:10-21. [PMID: 25494355 DOI: 10.1094/mpmi-07-14-0225-r] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Burkholderia kururiensis M130 is one of the few rice endophytic diazotrophic bacteria identified thus far which is able to enhance growth of rice. To date, very little is known of how strain M130 and other endophytes enter and colonize plants. Here, we identified genes of strain M130 that are differentially regulated in the presence of rice plant extract. A genetic screening of a promoter probe transposon mutant genome bank and RNAseq analysis were performed. The screening of 10,100 insertions of the genomic transposon reporter library resulted in the isolation of 61 insertions displaying differential expression in response to rice macerate. The RNAseq results validated this screen and indicated that this endophytic bacterium undergoes major changes in the presence of plant extract regulating 27.7% of its open reading frames. A large number of differentially expressed genes encode membrane transporters and secretion systems, indicating that the exchange of molecules is an important aspect of bacterial endophytic growth. Genes related to motility, chemotaxis, and adhesion were also overrepresented, further suggesting plant–bacteria interaction. This work highlights the potential close signaling taking place between plants and bacteria and helps us to begin to understand the adaptation of an endophyte in planta.
Collapse
|
34
|
Qian G, Xu F, Venturi V, Du L, Liu F. Roles of a solo LuxR in the biological control agent Lysobacter enzymogenes strain OH11. PHYTOPATHOLOGY 2014; 104:224-31. [PMID: 24111575 PMCID: PMC4161204 DOI: 10.1094/phyto-07-13-0188-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lysobacter enzymogenes is a ubiquitous plant-associated and environmentally friendly bacterium emerging as a novel biological control agent of plant disease. This bacterium produces diverse antifungal factors, such as lytic enzymes and a secondary metabolite (heat-stable antifungal factor [HSAF]) having antifungal activity with a novel structure and mode of action. The regulatory mechanisms for biosynthesis of antifungal factors is largely unknown in L. enzymogenes. The solo LuxR proteins have been shown to be widespread, playing important roles in plant-associated bacteria. Here, we cloned and studied a solo LuxR protein, LesR, from L. enzymogenes strain OH11. Overexpression but not deletion of lesR significantly impaired HSAF biosynthesis levels and antimicrobial activities but did not show visible effect on production of major lytic enzymes. Overexpression of lesR also led to remarkably accelerated cell aggregation and induced production of a melanin-like pigment in L. enzymogenes; these two phenotypes are mediated by the diffusible factor cell-to-cell signaling system of L. enzymogenes. The C-terminus helix-turn-helix domain was shown to be critical for several lesR-controlled functions. Overall, our study provides the first example of the roles and mechanisms of a solo LuxR protein in a plant-associated L. enzymogenes.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education
| | - Feifei Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education
- To whom correspondence should be addressed. Tel: +86-25-84396726. Fax: +86-25-84395325.
| |
Collapse
|
35
|
Patel HK, Ferrante P, Covaceuszach S, Lamba D, Scortichini M, Venturi V. The kiwifruit emerging pathogen Pseudomonas syringae pv. actinidiae does not produce AHLs but possesses three luxR solos. PLoS One 2014; 9:e87862. [PMID: 24498215 PMCID: PMC3909224 DOI: 10.1371/journal.pone.0087862] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/30/2013] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is an emerging phytopathogen causing bacterial canker disease in kiwifruit plants worldwide. Quorum sensing (QS) gene regulation plays important roles in many different bacterial plant pathogens. In this study we analyzed the presence and possible role of N-acyl homoserine lactone (AHL) quorum sensing in Psa. It was established that Psa does not produce AHLs and that a typical complete LuxI/R QS system is absent in Psa strains. Psa however possesses three putative luxR solos designated here as PsaR1, PsaR2 and PsaR3. PsaR2 belongs to the sub-family of LuxR solos present in many plant associated bacteria (PAB) that binds and responds to yet unknown plant signal molecules. PsaR1 and PsaR3 are highly similar to LuxRs which bind AHLs and are part of the canonical LuxI/R AHL QS systems. Mutation in all the three luxR solos of Psa showed reduction of in planta survival and also showed additive effect if more than one solo was inactivated in double mutants. Gene promoter analysis revealed that the three solos are not auto-regulated and investigated their possible role in several bacterial phenotypes.
Collapse
Affiliation(s)
| | - Patrizia Ferrante
- Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy
| | - Sonia Covaceuszach
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, U.O.S di Trieste, Trieste, Italy
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, U.O.S di Trieste, Trieste, Italy
| | - Marco Scortichini
- Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy
- Research Unit for Fruit Trees, Agricultural Research Council, Caserta, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
36
|
Terwagne M, Mirabella A, Lemaire J, Deschamps C, De Bolle X, Letesson JJ. Quorum sensing and self-quorum quenching in the intracellular pathogen Brucellamelitensis. PLoS One 2013; 8:e82514. [PMID: 24349302 PMCID: PMC3859601 DOI: 10.1371/journal.pone.0082514] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 11/19/2022] Open
Abstract
Brucella quorum sensing has been described as an important regulatory system controlling crucial virulence determinants such as the VirB type IV secretion system and the flagellar genes. However, the basis of quorum sensing, namely the production of autoinducers in Brucella has been questioned. Here, we report data obtained from the use of a genetic tool allowing the in situ detection of long-chain N-acyl-homoserine lactones (AHL) activity at single bacterium level in Brucella melitensis. These data are consistent with an intrinsic production of AHL by B. melitensis in low concentration both during in vitro growth and macrophage infection. Moreover, we identified a protein, named AibP, which is homologous to the AHL-acylases of various bacterial species. In vitro and during infection, expression of aibP coincided with a decrease in endogenous AHL activity within B. melitensis, suggesting that AibP could efficiently impair AHL accumulation. Furthermore, we showed that deletion of aibP in B. melitensis resulted in enhanced virB genes expression and VirB8 production as well as in a reduced flagellar genes expression and production of FlgE (hook protein) and FliC (flagellin) in vitro. Altogether, these results suggest that AHL-dependent quorum sensing and AHL-quorum quenching coexist in Brucella, at least to regulate its virulence.
Collapse
Affiliation(s)
| | | | - Julien Lemaire
- URBM, Department of Biology, University of Namur, Namur, Belgium
| | | | - Xavier De Bolle
- URBM, Department of Biology, University of Namur, Namur, Belgium
| | | |
Collapse
|
37
|
Patel HK, Suárez-Moreno ZR, Degrassi G, Subramoni S, González JF, Venturi V. Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. FRONTIERS IN PLANT SCIENCE 2013; 4:447. [PMID: 24273546 DOI: 10.3389/fpls.2013.00447.03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/19/2013] [Indexed: 05/26/2023]
Abstract
A future challenge will be understanding the extensive communication that most likely takes place in bacterial interspecies and interkingdom signaling between plants and bacteria. A major bacterial inter-cellular signaling system in Gram-negative bacteria is LuxI/R quorum sensing (QS) based on the production (via the LuxI-family proteins) and detection (via the LuxR-family proteins) of N-acyl homoserine lactones (AHLs) signaling molecules. LuxR proteins which have the same modular structure of QS LuxRs but are devoid of a cognate LuxI AHL synthase are called solos. LuxR solos have been shown to be responsible to respond to exogenous AHLs produced by neighboring cells as well endogenously produced AHLs. It is now also evident that some LuxR proteins have evolved from the ability to binding AHLs and respond to other molecules/signals. For example, recent research has shown that a sub-family of LuxR solos responds to small molecules produced by plants. This indicates the presence of a uni-directional interkingdom signaling system occurring from plants to bacteria. In addition LuxR solos have now been also implicated to respond to endogenously produced signals which are not AHLs. In this Mini Review article we will discuss current trends and implications of the role of LuxR solos in bacterial responses to other signals using proteins related to AHL QS systems.
Collapse
Affiliation(s)
- Hitendra K Patel
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Covaceuszach S, Degrassi G, Venturi V, Lamba D. Structural insights into a novel interkingdom signaling circuit by cartography of the ligand-binding sites of the homologous quorum sensing LuxR-family. Int J Mol Sci 2013; 14:20578-96. [PMID: 24132148 PMCID: PMC3821632 DOI: 10.3390/ijms141020578] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/13/2013] [Accepted: 10/01/2013] [Indexed: 01/06/2023] Open
Abstract
Recent studies have identified a novel interkingdom signaling circuit, via plant signaling molecules, and a bacterial sub-family of LuxR proteins, bridging eukaryotes and prokaryotes. Indeed pivotal plant-bacteria interactions are regulated by the so called Plant Associated Bacteria (PAB) LuxR solo regulators that, although closely related to the quorum sensing (QS) LuxR family, do not bind or respond to canonical quorum sensing N-acyl homoserine lactones (AHLs), but only to specific host plant signal molecules. The large body of structural data available for several members of the QS LuxR family complexed with different classes of ligands (AHLs and other compounds), has been exploited to dissect the cartography of their regulatory domains through structure-based multiple sequence alignments, structural superimposition and a comparative analysis of the contact residues involved in ligand binding. In the absence of experimentally determined structures of members of the PAB LuxR solos subfamily, an homology model of its prototype OryR is presented, aiming to elucidate the architecture of its ligand-binding site. The obtained model, in combination with the cartography of the regulatory domains of the homologous QS LuxRs, provides novel insights into the 3D structure of its ligand-binding site and unveils the probable molecular determinants responsible for differences in selectivity towards specific host plant signal molecules, rather than to canonical QS compounds.
Collapse
Affiliation(s)
- Sonia Covaceuszach
- Institute of Crystallography, National Research Council, Trieste Outstation, Area Science Park-Basovizza, S.S. n° 14 Km 163.5, I-34149 Trieste, Italy; E-Mail:
| | - Giuliano Degrassi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy; E-Mail:
- IBIOBA-CONICET-ICGEB, International Centre for Genetic Engineering and Biotechnology, Scientific and Technological Center, Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (V.V.); (D.L.); Tel.: +39-40-3757319 (V.V.); +39-40-3758514 (D.L.); Fax: +39-40-226555 (V.V.); +39-40-9221126 (D.L.)
| | - Doriano Lamba
- Institute of Crystallography, National Research Council, Trieste Outstation, Area Science Park-Basovizza, S.S. n° 14 Km 163.5, I-34149 Trieste, Italy; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (V.V.); (D.L.); Tel.: +39-40-3757319 (V.V.); +39-40-3758514 (D.L.); Fax: +39-40-226555 (V.V.); +39-40-9221126 (D.L.)
| |
Collapse
|
39
|
Pyrones as bacterial signaling molecules. Nat Chem Biol 2013; 9:573-8. [PMID: 23851573 DOI: 10.1038/nchembio.1295] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 06/12/2013] [Indexed: 01/26/2023]
Abstract
Bacteria communicate via small diffusible molecules and thereby mediate group-coordinated behavior, a process referred to as quorum sensing. The prototypical quorum sensing system found in Gram-negative bacteria consists of a LuxI-type autoinducer synthase that produces N-acyl homoserine lactones (AHLs) as signals and a LuxR-type receptor that detects the AHLs to control expression of specific genes. However, many proteobacteria have proteins with homology to LuxR receptors yet lack any cognate LuxI-like AHL synthase. Here we show that in the insect pathogen Photorhabdus luminescens the orphan LuxR-type receptor PluR detects endogenously produced α-pyrones that serve as signaling molecules at low nanomolar concentrations. Additionally, the ketosynthase PpyS was identified as pyrone synthase. Reconstitution of the entire system containing PluR, the PluR-target operon we termed pcf and PpyS in Escherichia coli demonstrated that the cell-cell communication circuit is portable. Our research thus deorphanizes a signaling system and suggests that additional modes of bacterial communication may await discovery.
Collapse
|
40
|
LuxR- and luxI-type quorum-sensing circuits are prevalent in members of the Populus deltoides microbiome. Appl Environ Microbiol 2013; 79:5745-52. [PMID: 23851092 DOI: 10.1128/aem.01417-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We are interested in the root microbiome of the fast-growing Eastern cottonwood tree, Populus deltoides. There is a large bank of bacterial isolates from P. deltoides, and there are 44 draft genomes of bacterial endophyte and rhizosphere isolates. As a first step in efforts to understand the roles of bacterial communication and plant-bacterial signaling in P. deltoides, we focused on the prevalence of acyl-homoserine lactone (AHL) quorum-sensing-signal production and reception in members of the P. deltoides microbiome. We screened 129 bacterial isolates for AHL production using a broad-spectrum bioassay that responds to many but not all AHLs, and we queried the available genome sequences of microbiome isolates for homologs of AHL synthase and receptor genes. AHL signal production was detected in 40% of 129 strains tested. Positive isolates included members of the Alpha-, Beta-, and Gammaproteobacteria. Members of the luxI family of AHL synthases were identified in 18 of 39 proteobacterial genomes, including genomes of some isolates that tested negative in the bioassay. Members of the luxR family of transcription factors, which includes AHL-responsive factors, were more abundant than luxI homologs. There were 72 in the 39 proteobacterial genomes. Some of the luxR homologs appear to be members of a subfamily of LuxRs that respond to as-yet-unknown plant signals rather than bacterial AHLs. Apparently, there is a substantial capacity for AHL cell-to-cell communication in proteobacteria of the P. deltoides microbiota, and there are also Proteobacteria with LuxR homologs of the type hypothesized to respond to plant signals or cues.
Collapse
|
41
|
González JF, Myers MP, Venturi V. The inter-kingdom solo OryR regulator of Xanthomonas oryzae is important for motility. MOLECULAR PLANT PATHOLOGY 2013; 14:211-21. [PMID: 23083431 PMCID: PMC6638885 DOI: 10.1111/j.1364-3703.2012.00843.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The LuxR-type transcriptional regulator OryR of the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo) is a member of a subgroup of regulators found in plant-associated bacteria that are known to respond to plant signals. OryR has been shown previously to positively regulate the neighbouring pip gene and to be important for rice virulence. The role of this inter-kingdom signalling regulator was investigated through a genome-wide transcriptome analysis. OryR was found to positively regulate 220 genes, whereas 110 were down-regulated. A significant over-representation of movement-related genes among the positively regulated ones was found, including 30 flagellar genes, accounting for 14% of the up-regulated genes above the two-fold cut-off value. In Xoo, both swimming and swarming respond to rice macerate and OryR plays a role in the induction of both of these types of motility under these conditions. In this study, we have also shown that the flagellar regulator flhF contains a lux box-like element in its promoter region, similar to the oryR-regulated neighbouring pip gene; via the use of a transcriptional fusion reporter, it was shown that flhF is regulated by OryR. Finally, the role of OryR in motility was also demonstrated by the significant reduction in flagellin content in the oryR Xoo mutant with respect to the wild-type, as observed by in planta proteomics studies.
Collapse
Affiliation(s)
- Juan F González
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | | |
Collapse
|
42
|
González JF, Venturi V. A novel widespread interkingdom signaling circuit. TRENDS IN PLANT SCIENCE 2013; 18:167-74. [PMID: 23089307 DOI: 10.1016/j.tplants.2012.09.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/14/2012] [Accepted: 09/21/2012] [Indexed: 05/08/2023]
Abstract
Extensive communication is believed to occur between eukaryotes and prokaryotes via signaling molecules; this field of research is now called interkingdom signaling. Recently, it has been discovered that many different plant-associated bacteria possess a protein closely related to the quorum-sensing (QS) LuxR-family protein that binds and responds to plant compounds. This LuxR protein does not have a cognate N-acyl homoserine lactone (AHL) signal synthase and therefore is regarded as a 'solo' or 'orphan'. The protein is involved in interkingdom signaling in rhizobia, xanthomonads, and pseudomonads, regulating processes important for plant-bacteria interaction. In this review, we focus on this new interkingdom signaling circuit, which is widespread among pathogenic and beneficial plant-associated bacteria.
Collapse
Affiliation(s)
- Juan F González
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | |
Collapse
|
43
|
Patel HK, Suárez-Moreno ZR, Degrassi G, Subramoni S, González JF, Venturi V. Bacterial LuxR solos have evolved to respond to different molecules including signals from plants. FRONTIERS IN PLANT SCIENCE 2013; 4:447. [PMID: 24273546 PMCID: PMC3824090 DOI: 10.3389/fpls.2013.00447] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/19/2013] [Indexed: 05/08/2023]
Abstract
A future challenge will be understanding the extensive communication that most likely takes place in bacterial interspecies and interkingdom signaling between plants and bacteria. A major bacterial inter-cellular signaling system in Gram-negative bacteria is LuxI/R quorum sensing (QS) based on the production (via the LuxI-family proteins) and detection (via the LuxR-family proteins) of N-acyl homoserine lactones (AHLs) signaling molecules. LuxR proteins which have the same modular structure of QS LuxRs but are devoid of a cognate LuxI AHL synthase are called solos. LuxR solos have been shown to be responsible to respond to exogenous AHLs produced by neighboring cells as well endogenously produced AHLs. It is now also evident that some LuxR proteins have evolved from the ability to binding AHLs and respond to other molecules/signals. For example, recent research has shown that a sub-family of LuxR solos responds to small molecules produced by plants. This indicates the presence of a uni-directional interkingdom signaling system occurring from plants to bacteria. In addition LuxR solos have now been also implicated to respond to endogenously produced signals which are not AHLs. In this Mini Review article we will discuss current trends and implications of the role of LuxR solos in bacterial responses to other signals using proteins related to AHL QS systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Vittorio Venturi
- *Correspondence: Vittorio Venturi, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy e-mail:
| |
Collapse
|
44
|
Venturi V, Fuqua C. Chemical signaling between plants and plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:17-37. [PMID: 23915131 DOI: 10.1146/annurev-phyto-082712-102239] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Studies of chemical signaling between plants and bacteria in the past have been largely confined to two models: the rhizobial-legume symbiotic association and pathogenesis between agrobacteria and their host plants. Recent studies are beginning to provide evidence that many plant-associated bacteria undergo chemical signaling with the plant host via low-molecular-weight compounds. Plant-produced compounds interact with bacterial regulatory proteins that then affect gene expression. Similarly, bacterial quorum-sensing signals result in a range of functional responses in plants. This review attempts to highlight current knowledge in chemical signaling that takes place between pathogenic bacteria and plants. This chemical communication between plant and bacteria, also referred to as interkingdom signaling, will likely become a major research field in the future, as it allows the design of specific strategies to create plants that are resistant to plant pathogens.
Collapse
Affiliation(s)
- Vittorio Venturi
- International Center for Genetic Engineering and Biotechnology, 34149 Trieste, Italy.
| | | |
Collapse
|
45
|
Santos CL, Correia-Neves M, Moradas-Ferreira P, Mendes MV. A walk into the LuxR regulators of Actinobacteria: phylogenomic distribution and functional diversity. PLoS One 2012; 7:e46758. [PMID: 23056438 PMCID: PMC3466318 DOI: 10.1371/journal.pone.0046758] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/05/2012] [Indexed: 01/08/2023] Open
Abstract
LuxR regulators are a widely studied group of bacterial helix-turn-helix (HTH) transcription factors involved in the regulation of many genes coding for important traits at an ecological and medical level. This regulatory family is particularly known by their involvement in quorum-sensing (QS) mechanisms, i.e., in the bacterial ability to communicate through the synthesis and binding of molecular signals. However, these studies have been mainly focused on Gram-negative organisms, and the presence of LuxR regulators in the Gram-positive Actinobacteria phylum is still poorly explored. In this manuscript, the presence of LuxR regulators among Actinobacteria was assayed using a domain-based strategy. A total of 991 proteins having one LuxR domain were identified in 53 genome-sequenced actinobacterial species, of which 59% had an additional domain. In most cases (53%) this domain was REC (receiver domain), suggesting that LuxR regulators in Actinobacteria may either function as single transcription factors or as part of two-component systems. The frequency, distribution and evolutionary stability of each of these sub-families of regulators was analyzed and contextualized regarding the ecological niche occupied by each organism. The results show that the presence of extra-domains in the LuxR-regulators was likely driven by a general need to physically uncouple the signal sensing from the signal transduction. Moreover, the total frequency of LuxR regulators was shown to be dependent on genetic, metabolic and ecological variables. Finally, the functional annotation of the LuxR regulators revealed that the bacterial ecological niche has biased the specialization of these proteins. In the case of pathogens, our results suggest that LuxR regulators can be involved in virulence and are therefore promising targets for future studies in the health-related biotechnology field.
Collapse
Affiliation(s)
- Catarina Lopes Santos
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
46
|
Chatnaparat T, Prathuangwong S, Ionescu M, Lindow SE. XagR, a LuxR homolog, contributes to the virulence of Xanthomonas axonopodis pv. glycines to soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1104-17. [PMID: 22746827 DOI: 10.1094/mpmi-01-12-0008-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A novel luxR homolog, termed XagR, in Xanthomonas axonopodis pv. glycines, the cause of soybean pustule, controls expression of pip, yapH, and at least 77 other genes. Although XagR and Pip are required for full virulence of X. axonopodis pv. glycines to soybean, constitutive overproduction of XagR suppresses infection. The xagR-dependent induction of pip occurs in planta only 2 days or more after inoculation. Although the transcription of xagR appears constitutive, XagR accumulates only in cells that have colonized soybean plants for more than 2 days suggesting that some components produced during the infection process mediate post-transcriptional control, likely by protecting XagR from proteolytic degradation. XagR modulates the adhesiveness of the pathogen during the infection process by suppressing the adhesin YapH. Although yapH mutants incite more infections of soybean leaves than the wild-type strain when topically applied under dry conditions, the mutant causes fewer infections when leaves are subject to simulated rain events after inoculation. Likewise, yapH mutants and cells in which XagR was overexpressed exhibited much more egress from infected leaves than the wild-type strain. Thus, XagR differentially modulates expression of a variety of genes during the infection process in response to feedback from plant molecules elaborated during infection to coordinate processes such as invasion, infection, and cell egress needed to complete the disease cycle.
Collapse
|
47
|
González JF, Degrassi G, Devescovi G, De Vleesschauwer D, Höfte M, Myers MP, Venturi V. A proteomic study of Xanthomonas oryzae pv. oryzae in rice xylem sap. J Proteomics 2012; 75:5911-9. [PMID: 22835776 DOI: 10.1016/j.jprot.2012.07.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/22/2012] [Accepted: 07/15/2012] [Indexed: 11/16/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is the second most important rice pathogen, causing a disease called bacterial leaf blight. Xoo colonizes and infects the vascular tissue resulting in tissue necrosis and wilting causing significant yield losses worldwide. In this study Xoo infected vascular fluid (xylem sap) was recovered and analyzed for secreted Xoo proteins. Three independent experiments resulted in the identification of 324 different proteins, 64 proteins were found in all three samples which included many of the known virulence-associated factors. In addition, 10 genes encoding for the identified proteins were inactivated and one mutant displayed statistically a significant loss in virulence when compared to the wild type Xoo, suggesting that a new virulence-associated factor has been revealed. The usefulness of this approach in understanding the lifestyle and unraveling the virulence-associated factors of phytopathogenic vascular bacteria is discussed.
Collapse
Affiliation(s)
- Juan F González
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Evidente A, Venturi V, Masi M, Degrassi G, Cimmino A, Maddau L, Andolfi A. In vitro antibacterial activity of sphaeropsidins and chemical derivatives toward Xanthomonas oryzae pv. oryzae, the causal agent of rice bacterial blight. JOURNAL OF NATURAL PRODUCTS 2011; 74:2520-2525. [PMID: 22124378 DOI: 10.1021/np200625m] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sphaeropsidin A, the main phytotoxin produced by Diplodia cupressi, as well as the two natural analogues sphaeropsidins B and C and 14 derivatives obtained by chemical modifications were assayed for antibacterial activity against Xanthomonas oryzae pv. oryzae, Pseudomonas fuscovaginae, and Burkholderia glumae, the causal agents of severe bacterial rice diseases. The results showed a strong and specific activity of sphaeropsidin A against X. oryzae pv. oryzae, while no activity was observed against the other two pathogens. The results of structure-activity relationship studies showed that structural features important to impart this antibacterial activity are the presence of the C-7 carbonyl group and the hemiketalic lactone functionality. The C-13 vinyl group, the double bond of ring C, and/or the tertiary C-9 hydroxy group, as well as the pimarane arrangement of the tricylic carbon skeleton, were also important for the antibacterial activity. These findings may be useful in designing novel compounds for practical applications in agriculture.
Collapse
Affiliation(s)
- Antonio Evidente
- Dipartimento di Scienze del Suolo, della Pianta, dell'Ambiente e delle Produzioni Animali, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy.
| | | | | | | | | | | | | |
Collapse
|
49
|
Li C, Tao J, Mao D, He C. A novel manganese efflux system, YebN, is required for virulence by Xanthomonas oryzae pv. oryzae. PLoS One 2011; 6:e21983. [PMID: 21789199 PMCID: PMC3136493 DOI: 10.1371/journal.pone.0021983] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/14/2011] [Indexed: 12/01/2022] Open
Abstract
Manganese ions (Mn2+) play a crucial role in virulence and protection against oxidative stress in bacterial pathogens. Such pathogens appear to have evolved complex mechanisms for regulating Mn2+ uptake and efflux. Despite numerous studies on Mn2+ uptake, however, only one efflux system has been identified to date. Here, we report on a novel Mn2+ export system, YebN, in Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial leaf blight. Compared with wild-type PXO99, the yebN mutant was highly sensitive to Mn2+ and accumulated high concentrations of intracellular manganese. In addition, we found that expression of yebN was positively regulated by Mn2+ and the Mn2+-dependent transcription regulator, MntR. Interestingly, the yebN mutant was more tolerant to methyl viologen and H2O2 in low Mn2+ medium than PXO99, but more sensitive in high Mn2+ medium, implying that YebN plays an important role in Mn2+ homoeostasis and detoxification of reactive oxygen species (ROS). Notably, deletion of yebN rendered Xoo sensitive to hypo-osmotic shock, suggesting that YebN may protect against such stress. That mutation of yebN substantially reduced the Xoo growth rate and lesion formation in rice implies that YebN could be involved in Xoo fitness in host. Although YebN has two DUF204 domains, it lacks homology to any known metal transporter. Hence, this is the first report of a novel metal export system that plays essential roles in hypo-osmotic and oxidative stress, and virulence. Our results lay the foundations for elucidating the complex and fascinating relationship between metal homeostasis and host-pathogen interactions.
Collapse
Affiliation(s)
- Chunxia Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Jun Tao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Daqing Mao
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chaozu He
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou, Hainan, China
- * E-mail:
| |
Collapse
|
50
|
Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl Environ Microbiol 2011; 77:4579-88. [PMID: 21531826 DOI: 10.1128/aem.00183-11] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas fluorescens are rhizobacteria known for their biocontrol properties. Several antimicrobial functions are crucial for this process, and the experiments described here investigate the modulation of their expression during the plant-bacterium interaction. The role of a LuxR family regulator in interkingdom signaling has been investigated using genome-scale transcriptome analysis, gene promoter studies in vivo and in vitro, biocontrol assays, and response to plant compounds. PsoR, a LuxR solo or orphan regulator of P. fluorescens, was identified. PsoR is solubilized and activates a lux-box-containing promoter only in the presence of macerated plants, suggesting the presence of a plant molecule(s) that most likely binds to PsoR. Gene expression profiles revealed that genes involved in the inhibition of plant pathogens were affected by PsoR, including a chitinase gene, iron metabolism genes, and biosynthetic genes of antifungal compounds. 2,4-Diacetylphloroglucinol production is PsoR dependent both in vitro and in vivo. psoR mutants were significantly reduced for their ability to protect wheat plants from root rot, and damping-off caused by Pythium ultimum infection. PsoR most likely senses a molecule(s) in the plant and modulates expression of genes that have a role in biocontrol. PsoR and related proteins form a subfamily of LuxR family regulators in plant-associated bacteria.
Collapse
|