1
|
Al-Kaeath N, Zagier S, Alisawi O, Fadhal FA, Mahfoudhi N. High-Throughput Sequencing Identified Multiple Fig Viruses and Viroids Associated with Fig Mosaic Disease in Iraq. THE PLANT PATHOLOGY JOURNAL 2024; 40:486-497. [PMID: 39397303 PMCID: PMC11471924 DOI: 10.5423/ppj.oa.04.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024]
Abstract
Mosaic is the most common viral disease affecting fig plants. Although the Fig mosaic virus is the leading cause of mosaic disease, other viruses are also involved. High-throughput sequencing was used to assess viral infections in fig plants with mosaic. The genomic DNA and total RNAseq of mosaic-symptomatic fig leaves were sequenced using the Illumina platform. The analysis revealed the presence of fig badnavirus 1 (FBV-1), grapevine badnavirus 1 (GBV-1), citrus exocortis viroid (CEVd), and apple dimple fruit viroid (ADFVd). The FBV-1 and GBV-1 sequences were 7,140 bp and 7,239 bp long, respectively. The two genomes encode one open reading frame containing five major protein domains. The viroids, CEVd and ADFVd, were 397 bp and 305 bp long. Phylogenetic analyses revealed a close relationship between FBV-1 and Iranian isolates of the same species, while GBV-1 was closely related to Russian grapevine badnavirus isolates (Tem64, Blu17, KDH48, and Pal9). CEVd was closely related to other Iraqi isolates, while ADFVd was strongly related to a Spanish isolate. A registered endogenous pararetrovirus, caulimovirus-Fca1, with a size of 7,556 bp, was found in the RNA transcripts with a low expression level. This integrant was also detected in the genomes of the two lines 'Horaishi' (a female line) and 'Caprifig 6085' (a male line). Phylogenetic analyses revealed that caulimovirus-Fca1 was distinct from two other clades of different endogenous virus genera.
Collapse
Affiliation(s)
- Nabeel Al-Kaeath
- Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Laboratoire de Protection des Végétaux LR16INRAT04, Rue Hedi Karray, 1004 ElMenzah, Tunis, Tunisia
- Department of Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, 4000 Sousse, Tunisia
- Department of Plant Protection, College of Agriculture, University of Al-Muthanna, Samawah 66001, Iraq
| | - Shrooq Zagier
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf 54001, Iraq
| | - Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf 54001, Iraq
| | - Fadhal Al Fadhal
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf 54001, Iraq
| | - Naima Mahfoudhi
- Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Laboratoire de Protection des Végétaux LR16INRAT04, Rue Hedi Karray, 1004 ElMenzah, Tunis, Tunisia
| |
Collapse
|
2
|
Rott ME, Ghoshal K, Lerat S, Brosseau C, Clément G, Phelan J, Poojari S, Gaafar Y, Vemulapati BM, Scheer H, Ritzenthaler C, Fall ML, Moffett P. Improving grapevine virus diagnostics: Comparative analysis of three dsRNA enrichment methods for high-throughput sequencing. J Virol Methods 2024; 329:114997. [PMID: 39059502 DOI: 10.1016/j.jviromet.2024.114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The extraction of double stranded (ds) RNA is a common enrichment method for the study, characterization, and detection of RNA viruses. In addition to RNA viruses, viroids, and some DNA viruses, can also be detected from dsRNA enriched extracts which makes it an attractive method for detecting a wide range of viruses when coupled with HTS. Several dsRNA enrichment strategies have been developed. The oldest utilizes the selective binding properties of dsRNA to cellulose. More recent methods are based on the application of anti-dsRNA antibodies and viral proteins with a specific affinity for dsRNA. All three methods have been used together with HTS for plant virus detection and study. To our knowledge, this is the first comparative study of three alternative dsRNA enrichment methods for virus and viroid detection through HTS using virus-infected, and healthy grapevine test plants. Extracts were performed in triplicate using methods based on, the anti-dsRNA antibody mAb rJ2 (Millipore Sigma Canada Ltd, Oakville, ON, Canada), the B2 dsRNA binding protein, and ReliaPrep™ Resin (Promega Corporation, Madison, WI, USA). The results show that the workflows for all three methods are effectively comparable, apart from purification steps related to antibody and binding protein construct. Both the cellulose resin and dsRNA binding protein construct methods provide highly enriched dsRNA extracts suitable for HTS with the B2 method providing a 36× and the ReliaPrep™ Resin a 163× increase in dsRNA enrichment compared to the mAb rJ2 antibody. The overall consistency and cost effectiveness of the ReliaPrep™ cellulose resin-based method and the potentially simpler adaptation to robotics made it the method of choice for future transfer to a semi-automated workflow.
Collapse
Affiliation(s)
- Michael E Rott
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, British Columbia V8L 1H3, Canada.
| | - Kankana Ghoshal
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, British Columbia V8L 1H3, Canada
| | - Sylvain Lerat
- Département de Biologie, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Chantal Brosseau
- Département de Biologie, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Geneviève Clément
- Département de Biologie, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| | - James Phelan
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, British Columbia V8L 1H3, Canada
| | - Sudarsana Poojari
- Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Yahya Gaafar
- Canadian Food Inspection Agency, Centre for Plant Health, Sidney Laboratory, 8801 East Saanich Rd, North Saanich, British Columbia V8L 1H3, Canada
| | - Bhadra M Vemulapati
- Cool Climate Oenology and Viticulture Institute, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Hélène Scheer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg 67000, France
| | - Mamadou L Fall
- Agriculture and Agri-Food Canada, 430 Gouin Boulevard, Saint-Jean-sur-Richelieu, Québec J3B 3EB, Canada
| | - Peter Moffett
- Département de Biologie, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
3
|
Alabi OJ, Stevens K, Oladokun JO, Villegas C, Hwang MS, Al Rwahnih M, Tian T, Hernandez I, Ouro-Djobo A, Sétamou M, Jifon JL. Discovery and Characterization of Two Highly Divergent Variants of a Novel Potyvirus Species Infecting Madagascar Periwinkle ( Catharanthus roseus). PLANT DISEASE 2024; 108:2494-2502. [PMID: 38568788 DOI: 10.1094/pdis-02-24-0459-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
During the summer of 2022, a cluster of Madagascar periwinkle plants with white and mauve flowers were observed with foliar mild yellow mosaic symptoms on a private property in Harlingen, Cameron County, Texas. The symptoms were reproduced on mechanically inoculated periwinkle and Nicotiana benthamiana plants. Virions of 776 to 849 nm in length and 11.7 to 14.8 nm in width were observed in transmission electron microscopy of leaf dip preparations made from symptomatic periwinkle leaves. High-throughput sequencing (HTS) analysis of total RNA extracts from symptomatic leaves revealed the occurrence of two highly divergent variants of a novel Potyvirus species as the only virus-like sequences present in the sample. The complete genomes of both variants were independently amplified via reverse transcriptase PCR, cloned, and Sanger sequenced. The 5' and 3' of the genomes were acquired using random amplification of cDNA ends methodology. The assembled virus genomes were 9,936 and 9,944 nucleotides (nt) long, and they shared 99.9 to 100% identities with the respective HTS-derived genomes. Each genome encoded hypothetical polyprotein of 3,171 amino acids (aa) (362.6 kilodaltons [kDa]) and 3,173 aa (362.7 kDa), respectively, and they shared 77.3/84.4% nt/aa polyprotein identities, indicating that they represent highly divergent variants of the same Potyvirus species. Both genomes also shared below-species-threshold polyprotein identity levels with the most closely phylogenetically related known potyviruses, thus indicating that they belong to a novel species. The name periwinkle mild yellow mosaic virus (PwMYMV) is given to the potyvirus with complete genomes of 9,936 nt for variant 1 (PwMYMV-1) and 9,944 nt for variant 2 (PwMYMV-2). We propose that PwMYMV be assigned into the genus Potyvirus (family Potyviridae).
Collapse
Affiliation(s)
- Olufemi J Alabi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - Kristian Stevens
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616
| | - John O Oladokun
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - Cecilia Villegas
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - Min Sook Hwang
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616
| | - Maher Al Rwahnih
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616
| | - Tongyan Tian
- California Department of Food and Agriculture, Sacramento, CA 95832
| | - Isaias Hernandez
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539
| | - Ashrafou Ouro-Djobo
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - Mamoudou Sétamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - John L Jifon
- Department of Horticultural Sciences, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| |
Collapse
|
4
|
Lee GE, Lee HJ, Jeong RD. Comprehensive Metatranscriptomic Analysis of Plant Viruses in Imported Frozen Cherries and Blueberries. THE PLANT PATHOLOGY JOURNAL 2024; 40:377-389. [PMID: 39117336 PMCID: PMC11309839 DOI: 10.5423/ppj.oa.06.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
The possibility of new viruses emerging in various regions worldwide has increased due to a combination of factors, including climate change and the expansion of international trading. Plant viruses spread through various transmission routes, encompassing well-known avenues such as pollen, seeds, and insects. However, research on potential transmission routes beyond these known mechanisms has remained limited. To address this gap, this study employed metatranscriptomic analysis to ascertain the presence of plant viruses in imported frozen fruits, specifically cherries and blueberries. This analysis aimed to identify pathways through which plant viruses may be introduced into countries. Virome analysis revealed the presence of six species of plant viruses in frozen cherries and blueberries: cherry virus A (CVA), prunus necrotic ringspot virus (PNRSV), prune dwarf virus (PDV), prunus virus F (PrVF), blueberry shock virus (BlShV), and blueberry latent virus (BlLV). Identifying these potential transmission routes is crucial for effectively managing and preventing the spread of plant viruses and crop protection. This study highlights the importance of robust quality control measures and monitoring systems for frozen fruits, emphasizing the need for proactive measures to mitigate the risk associated with the potential spread of plant viruses.
Collapse
Affiliation(s)
- Ga-Eun Lee
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| |
Collapse
|
5
|
Jung JS, Wong JWC, Soundharrajan I, Lee KW, Park HS, Kim D, Choi KC, Chang SW, Balasubramani R. Changes in microbial dynamics and fermentation characteristics of alfalfa silage: A potent approach to mitigate greenhouse gas emission through high-quality forage silage. CHEMOSPHERE 2024:142920. [PMID: 39053774 DOI: 10.1016/j.chemosphere.2024.142920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Feeding ruminants with high-quality forage can enhance digestibility and reduce methane production. Development of high-quality silage from leguminous plants with lactic acid bacteria can improve digestibility and it mitigate the greenhouse gas emissions. In this study, we developed a high-quality alfalfa silage with improved fermentation index and microbial dynamics using Levilactobacillus brevis-KCC-44 at low or high moisture (LM/HM) conditions and preserved it for 75 or 150 days. Alfalfa fermentation with L. brevis enhances acidification and fermentation characteristics primarily due to the dominance of lactic acid bacteria (LAB) L. brevis (>95%) compared to alfalfa fermented with epiphytic LAB. The inoculant L. brevis improved the anaerobic fermentation indexes resulting in a higher level of lactic acid in both high (10.0 ± 0.12 & 8.90 ± 0.31%DM) and low moisture (0.55 ± 0.08 & 0.39 ±0.0 %DM) in 75 and 150 days respectively, compared to control silage. In addition, the marginal amount of acetic acid (range from 0.23 ± 0.07 to 2.04 ± 0.27 %DM) and a reduced level of butyric acid (range between 0.03 ± 0.0 to 0.13± 02 %DM) was noted in silage treated with LAB than the control. The LAB count and abundance of Levilactobacillus were higher in alfalfa silage fermented with L. brevis. Microbial richness and diversity were reduced in alfalfa silage treated with L. brevis which prompted lactic acid production at a higher level even for a prolonged period of time. Therefore, this L. brevis is an effective inoculant for producing high-quality alfalfa silage since it improves fermentation indexes and provides reproducible ensiling properties.
Collapse
Affiliation(s)
- Jeong Sung Jung
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, China; Department of Biology, Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ilavenil Soundharrajan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Ki-Won Lee
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Hyung Soo Park
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju 55365, Korea
| | - Ki Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea.
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Ravindran Balasubramani
- Department of Environmental Energy and Engineering, Kyonggi University Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea.
| |
Collapse
|
6
|
Massé D, Candresse T, Filloux D, Massart S, Cassam N, Hostachy B, Marais A, Fernandez E, Roumagnac P, Verdin E, Teycheney PY, Lett JM, Lefeuvre P. Characterization of Six Ampeloviruses Infecting Pineapple in Reunion Island Using a Combination of High-Throughput Sequencing Approaches. Viruses 2024; 16:1146. [PMID: 39066307 PMCID: PMC11281624 DOI: 10.3390/v16071146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The cultivation of pineapple (Ananas comosus) is threatened worldwide by mealybug wilt disease of pineapple (MWP), whose etiology is not yet fully elucidated. In this study, we characterized pineapple mealybug wilt-associated ampeloviruses (PMWaVs, family Closteroviridae) from a diseased pineapple plant collected from Reunion Island, using a high-throughput sequencing approach combining Illumina short reads and Nanopore long reads. Reads co-assembly resulted in complete or near-complete genomes for six distinct ampeloviruses, including the first complete genome of pineapple mealybug wilt-associated virus 5 (PMWaV5) and that of a new species tentatively named pineapple mealybug wilt-associated virus 7 (PMWaV7). Short reads data provided high genome coverage and sequencing depths for all six viral genomes, contrary to long reads data. The 5' and 3' ends of the genome for most of the six ampeloviruses could be recovered from long reads, providing an alternative to RACE-PCRs. Phylogenetic analyses did not unveil any geographic structuring of the diversity of PMWaV1, PMWaV2 and PMWaV3 isolates, supporting the current hypothesis that PMWaVs were mainly spread by human activity and vegetative propagation.
Collapse
Affiliation(s)
- Delphine Massé
- ANSES—LSV RAPT, F-97410 St. Pierre, La Réunion, France; (N.C.); (B.H.)
- UMR PVBMT, Université de La Réunion, F-97410 St. Pierre, La Réunion, France
| | - Thierry Candresse
- INRAe, UMR 1332 Biologie du Fruit et Pathologie, Université Bordeaux, CS20032, F-33882 Villenave d’Ornon, France; (T.C.); (A.M.)
| | - Denis Filloux
- CIRAD, UMR PHIM, F-34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34090 Montpellier, France
| | - Sébastien Massart
- Plant Pathology Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium;
| | - Nathalie Cassam
- ANSES—LSV RAPT, F-97410 St. Pierre, La Réunion, France; (N.C.); (B.H.)
| | - Bruno Hostachy
- ANSES—LSV RAPT, F-97410 St. Pierre, La Réunion, France; (N.C.); (B.H.)
| | - Armelle Marais
- INRAe, UMR 1332 Biologie du Fruit et Pathologie, Université Bordeaux, CS20032, F-33882 Villenave d’Ornon, France; (T.C.); (A.M.)
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, F-34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34090 Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, F-34090 Montpellier, France; (D.F.); (E.F.); (P.R.)
- PHIM Plant Health Institute, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34090 Montpellier, France
| | - Eric Verdin
- INRAe, UR407 Unité de Pathologie Végétale, CS 60094, F-84140 Montfavet, France;
| | - Pierre-Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 St. Pierre, La Réunion, France; (P.-Y.T.); (J.-M.L.); (P.L.)
| | - Jean-Michel Lett
- CIRAD, UMR PVBMT, F-97410 St. Pierre, La Réunion, France; (P.-Y.T.); (J.-M.L.); (P.L.)
| | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, F-97410 St. Pierre, La Réunion, France; (P.-Y.T.); (J.-M.L.); (P.L.)
| |
Collapse
|
7
|
Marais A, Gentit P, Brans Y, Renvoisé JP, Faure C, Saison A, Cousseau P, Castaing J, Chambon F, Pion A, Calado G, Lefebvre M, Garnier S, Latour F, Bresson K, Grasseau N, Candresse T. Comparative Performance Evaluation of Double-Stranded RNA High-Throughput Sequencing for the Detection of Viral Infection in Temperate Fruit Crops. PHYTOPATHOLOGY 2024; 114:1701-1709. [PMID: 38376958 DOI: 10.1094/phyto-12-23-0480-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
There is limited information on the compared performances of biological, serological. and molecular assays with high-throughput sequencing (HTS) for viral indexing in temperate fruit crops. Here, using a range of samples of predetermined virological status, we compared two performance criteria (inclusivity and analytical sensitivity) of enzyme-linked immunosorbent assay (ELISA), molecular hybridization, reverse transcription (RT)-PCR, and double-stranded RNA (dsRNA) HTS for the detection of a total of 14 viruses (10 genera) and four viroids (three genera). When undiluted samples from individual plants were used, ELISA had the lowest performance, with an overall detection rate of 68.7%, followed by RT-PCR (82.5%) and HTS (90.7%; 100% if considering only viruses). The lower performance of RT-PCR reflected the inability to amplify some isolates as a consequence of point mutations affecting primer-binding sites. In addition, HTS identified viruses that had not been identified by other assays in nearly two-thirds of the samples. Analysis of serial dilutions of fruit tree samples allowed comparison of analytical sensitivities for various viruses. ELISA showed the lowest analytical sensitivity, but RT-PCR showed higher analytical sensitivity than HTS for most of the samples. Overall, these results confirm the superiority of HTS over biological indexing in terms of speed and inclusivity and show that while the absolute analytical sensitivity of RT-PCR tends to be higher than that of HTS, PCR inclusivity is affected by viral genetic diversity. Taken together, these results make a strong case for the implementation of HTS-based approaches in fruit tree viral testing protocols supporting quarantine and certification programs.
Collapse
Affiliation(s)
- Armelle Marais
- INRAE, Univ. Bordeaux, UMR Biologie du fruit et Pathologie, CS20032, 33882 Villenave d'Ornon Cedex, France
| | - Pascal Gentit
- ANSES, Plant Health Laboratory, Unité de Bactériologie, Virologie et détection des OGM, 7 rue Jean Dixméras, 49044 Angers Cedex 01, France
| | - Yoann Brans
- CTIFL, Laboratoire de virologie fruitière, Centre de Lanxade, 24130 Prigonrieux, France
| | | | - Chantal Faure
- INRAE, Univ. Bordeaux, UMR Biologie du fruit et Pathologie, CS20032, 33882 Villenave d'Ornon Cedex, France
| | - Anne Saison
- ANSES, Plant Health Laboratory, Unité de Bactériologie, Virologie et détection des OGM, 7 rue Jean Dixméras, 49044 Angers Cedex 01, France
| | - Pascaline Cousseau
- ANSES, Plant Health Laboratory, Unité de Bactériologie, Virologie et détection des OGM, 7 rue Jean Dixméras, 49044 Angers Cedex 01, France
| | - Julie Castaing
- CTIFL, Laboratoire de virologie fruitière, Centre de Lanxade, 24130 Prigonrieux, France
| | - Fabien Chambon
- ANSES, Plant Health Laboratory, Unité de Quarantaine, 63370 Lempdes, France
| | - Angélique Pion
- ANSES, Plant Health Laboratory, Unité de Quarantaine, 63370 Lempdes, France
| | - Grégory Calado
- ANSES, Plant Health Laboratory, Unité de Quarantaine, 63370 Lempdes, France
| | - Marie Lefebvre
- INRAE, Univ. Bordeaux, UMR Biologie du fruit et Pathologie, CS20032, 33882 Villenave d'Ornon Cedex, France
| | - Soraya Garnier
- ANSES, Plant Health Laboratory, Unité de Quarantaine, 63370 Lempdes, France
| | - François Latour
- CTIFL, Laboratoire de virologie fruitière, Centre de Lanxade, 24130 Prigonrieux, France
| | - Kévin Bresson
- CTIFL, Laboratoire de virologie fruitière, Centre de Lanxade, 24130 Prigonrieux, France
| | - Nathalie Grasseau
- CTIFL, Laboratoire de virologie fruitière, Centre de Lanxade, 24130 Prigonrieux, France
| | - Thierry Candresse
- INRAE, Univ. Bordeaux, UMR Biologie du fruit et Pathologie, CS20032, 33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
8
|
Roy SD, Ramasamy S, Obbineni JM. An evaluation of nucleic acid-based molecular methods for the detection of plant viruses: a systematic review. Virusdisease 2024; 35:357-376. [PMID: 39071869 PMCID: PMC11269559 DOI: 10.1007/s13337-024-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/15/2024] [Indexed: 07/30/2024] Open
Abstract
Precise and timely diagnosis of plant viruses is a prerequisite for the implementation of efficient management strategies, considering factors like globalization of trade and climate change facilitating the spread of viruses that lead to agriculture yield losses of billions yearly worldwide. Symptomatic diagnosis alone may not be reliable due to the diverse symptoms and confusion with plant abiotic stresses. It is crucial to detect plant viruses accurately and reliably and do so with little time. A complete understanding of the various detection methods is necessary to achieve this. Enzyme-linked immunosorbent assay (ELISA), has become more popular as a method for detecting viruses but faces limitations such as antibody availability, cost, sample volume, and time. Advanced techniques like polymerase chain reaction (PCR) have surpassed ELISA with its various sensitive variants. Over the last decade, nucleic acid-based molecular methods have gained popularity and have quickly replaced other techniques, such as serological techniques for detecting plant viruses due to their specificity and accuracy. Hence, this review enables the reader to understand the strengths and weaknesses of each molecular technique starting with PCR and its variations, along with various isothermal amplification followed by DNA microarrays, and next-generation sequencing (NGS). As a result of the development of new technologies, NGS is becoming more and more accessible and cheaper, and it looks possible that this approach will replace others as a favoured approach for carrying out regular diagnosis. NGS is also becoming the method of choice for identifying novel viruses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00863-0.
Collapse
Affiliation(s)
- Subha Deep Roy
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | | | - Jagan M. Obbineni
- School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
9
|
Singh J, Teotia S, Singh AK, Arya M, Rout AK, Behera BK, Majumder S. Whole genome sequence analysis of shallot virus X from India reveals it to be a natural recombinant with positive selection pressure. BMC Genom Data 2024; 25:42. [PMID: 38711021 DOI: 10.1186/s12863-024-01196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/23/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Shallots are infected by various viruses like Onion yellow dwarf virus (OYDV), Leek yellow stripe virus (LYSV), Shallot latent virus (SLV) and Shallot virus X (ShVX). In India, they have been found to be persistently infected by ShVX. ShVX also infects onion and garlic in combination with other carlaviruses and potyviruses. ShVX is a member of genus Allexivirus of family Alphaflexiviridae. ShVX has a monopartite genome, which is represented by positive sense single-stranded RNA. Globally, only six complete and 3 nearly complete genome sequences of ShV X are reported to date. This number is insufficient to measure a taxon's true molecular diversity. Moreover, the complete genome sequence of ShVX from Asia has not been reported as yet. Therefore, this study was undertaken to generate a complete genome sequence of ShVX from India. RESULTS Shallot virus X (ShVX) is one of the significant threats to Allium crop production. In this study, we report the first complete genome sequence of the ShVX from India through Next-generation sequencing (NGS). The complete genome of the ShVX (Accession No. OK104171), from this study comprised 8911 nucleotides. In-silico analysis of the sequence revealed variability between this isolate and isolates from other countries. The dissimilarities are spread all over the genome specifically some non-coding intergenic regions. Statistical analysis of individual genes for site-specific selection indicates a positive selection in NABP region. The presence of a recombination event was detected in coat protein region. The sequence similarity percentage and phylogenetic analysis indicate ShVX Indian isolate is a distinctly different isolate. Recombination and site-specific selection may have a function in the evolution of this isolate. This is the first detailed study of the ShVX complete genome sequence from Southeast Asia. CONCLUSION This study presents the first report of the entire genome sequence of an Indian isolate of ShVX along with an in-depth exploration of its evolutionary traits. The findings highlight the Indian variant as a naturally occurring recombinant, emphasizing the substantial role of recombination in the evolution of this viral species. This insight into the molecular diversity of strains within a specific geographical region holds immense significance for comprehending and forecasting potential epidemics. Consequently, the insights garnered from this research hold practical value for shaping ShVX management strategies and providing a foundation for forthcoming studies delving into its evolutionary trajectory.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Biotechnology, Sharda University, Greater Noida, India
| | - Sachin Teotia
- Department of Biotechnology, Sharda University, Greater Noida, India
| | - Ajay Kumar Singh
- Deaprtment of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, 284003, Jhansi, Uttar Pradesh, India.
| | - Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, 284003, Jhansi, Uttar Pradesh, India
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, 284003, Jhansi, Uttar Pradesh, India
| | - Shahana Majumder
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
10
|
Sel FA, Oğuz FS. Can novel methods replace the gold standard chimerism method after allogeneic hematopoietic stem cell transplantation? Ann Hematol 2024; 103:1035-1047. [PMID: 37801085 DOI: 10.1007/s00277-023-05448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/07/2023] [Indexed: 10/07/2023]
Abstract
After hematopoietic stem cell transplantation, chimerism assay is a useful approach to monitor the success of the transplant and to select the appropriate treatment strategy, such as donor leukocyte infusion or immunosuppressive drug dosage. Short tandem repeat PCR is the method that has been accepted as the gold standard for chimerism. However, it has not yet been sufficient to detect mixed chimerism in patients with minimal residual disease. Simultaneously, recent years have been marked by developing sensitive, high-throughput, and accurate molecular genetic assays. These novel methods have subsequently been adapted for the analysis of post-transplant chimerism. In this review, we discuss the technical features of both novel and conventional gold standard chimerism assays. We also discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Figen Abatay Sel
- Department of Biology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey.
- Institute of Graduate Studies in Health Science, Istanbul University, Istanbul, Turkey.
| | - Fatma Savran Oğuz
- Department of Biology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
11
|
Tan J, Wu L, Zhan L, Sheng M, Tang Z, Xu J, Ma H. Optimal selection of specimens for metagenomic next-generation sequencing in diagnosing periprosthetic joint infections. Front Cell Infect Microbiol 2024; 14:1356804. [PMID: 38500507 PMCID: PMC10945027 DOI: 10.3389/fcimb.2024.1356804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Objective This study aimed to assess the diagnostic value of metagenomic next-generation sequencing (mNGS) across synovial fluid, prosthetic sonicate fluid, and periprosthetic tissues among patients with periprosthetic joint infection (PJI), intending to optimize specimen selection for mNGS in these patients. Methods This prospective study involved 61 patients undergoing revision arthroplasty between September 2021 and September 2022 at the First Affiliated Hospital of Zhengzhou University. Among them, 43 cases were diagnosed as PJI, and 18 as aseptic loosening (AL) based on the American Musculoskeletal Infection Society (MSIS) criteria. Preoperative or intraoperative synovial fluid, periprosthetic tissues, and prosthetic sonicate fluid were collected, each divided into two portions for mNGS and culture. Comparative analyses were conducted between the microbiological results and diagnostic efficacy derived from mNGS and culture tests. Furthermore, the variability in mNGS diagnostic efficacy for PJI across different specimen types was assessed. Results The sensitivity and specificity of mNGS diagnosis was 93% and 94.4% for all types of PJI specimens; the sensitivity and specificity of culture diagnosis was 72.1% and 100%, respectively. The diagnostic sensitivity of mNGS was significantly higher than that of culture (X2 = 6.541, P=0.011), with no statistically significant difference in specificity (X2 = 1.029, P=0.310). The sensitivity of the synovial fluid was 83.7% and the specificity was 94.4%; the sensitivity of the prosthetic sonicate fluid was 90.7% and the specificity was 94.4%; and the sensitivity of the periprosthetic tissue was 81.4% and the specificity was 100%. Notably, the mNGS of prosthetic sonicate fluid displayed a superior pathogen detection rate compared to other specimen types. Conclusion mNGS can function as a precise diagnostic tool for identifying pathogens in PJI patients using three types of specimens. Due to its superior ability in pathogen identification, prosthetic sonicate fluid can replace synovial fluid and periprosthetic tissue as the optimal sample choice for mNGS.
Collapse
Affiliation(s)
- Jun Tan
- Department of Mini-invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, China
| | - Lingxiao Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijuan Zhan
- Department of Neurology, People’s Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Minkui Sheng
- Department of Mini-invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, China
| | - Zhongxin Tang
- Department of Mini-invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haijun Ma
- Department of Mini-invasive Spinal Surgery, The Third People’s Hospital of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Rishan ST, Kline RJ, Rahman MS. Exploitation of environmental DNA (eDNA) for ecotoxicological research: A critical review on eDNA metabarcoding in assessing marine pollution. CHEMOSPHERE 2024; 351:141238. [PMID: 38242519 DOI: 10.1016/j.chemosphere.2024.141238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The rise in worldwide population has led to a noticeable spike in the production, consumption, and transportation of energy and food, contributing to elevated environmental pollution. Marine pollution is a significant global environmental issue with ongoing challenges, including plastic waste, oil spills, chemical pollutants, and nutrient runoff, threatening marine ecosystems, biodiversity, and human health. Pollution detection and assessment are crucial to understanding the state of marine ecosystems. Conventional approaches to pollution evaluation usually represent laborious and prolonged physical and chemical assessments, constraining their efficacy and expansion. The latest advances in environmental DNA (eDNA) are valuable methods for the detection and surveillance of pollution in the environment, offering enhanced sensibility, efficacy, and involvement. Molecular approaches allow genetic information extraction from natural resources like water, soil, or air. The application of eDNA enables an expanded evaluation of the environmental condition by detecting both identified and unidentified organisms and contaminants. eDNA methods are valuable for assessing community compositions, providing indirect insights into the intensity and quality of marine pollution through their effects on ecological communities. While eDNA itself is not direct evidence of pollution, its analysis offers a sensitive tool for monitoring changes in biodiversity, serving as an indicator of environmental health and allowing for the indirect estimation of the impact and extent of marine pollution on ecosystems. This review explores the potential of eDNA metabarcoding techniques for detecting and identifying marine pollutants. This review also provides evidence for the efficacy of eDNA assessment in identifying a diverse array of marine pollution caused by oil spills, harmful algal blooms, heavy metals, ballast water, and microplastics. In this report, scientists can expand their knowledge and incorporate eDNA methodologies into ecotoxicological research.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
13
|
Keremane M, Singh K, Ramadugu C, Krueger RR, Skaggs TH. Next Generation Sequencing, and Development of a Pipeline as a Tool for the Detection and Discovery of Citrus Pathogens to Facilitate Safer Germplasm Exchange. PLANTS (BASEL, SWITZERLAND) 2024; 13:411. [PMID: 38337944 PMCID: PMC10856814 DOI: 10.3390/plants13030411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Citrus is affected by many diseases, and hence, the movement of citrus propagative materials is highly regulated in the USA. Currently used regulatory pathogen detection methods include biological and laboratory-based technologies, which are time-consuming, expensive, and have many limitations. There is an urgent need to develop alternate, rapid, economical, and reliable testing methods for safe germplasm exchange. Citrus huanglongbing (HLB) has devastated citrus industries leading to an increased need for germplasm exchanges between citrus growing regions for evaluating many potentially valuable hybrids for both HLB resistance and multilocational performance. In the present study, Next-Generation Sequencing (NGS) methods were used to sequence the transcriptomes of 21 test samples, including 15 well-characterized pathogen-positive plants. A workflow was designed in the CLC Genomics Workbench software, v 21.0.5 for bioinformatics analysis of the sequence data for the detection of pathogens. NGS was rapid and found to be a valuable technique for the detection of viral and bacterial pathogens, and for the discovery of new citrus viruses, complementary to the existing array of biological and laboratory assays. Using NGS methods, we detected beet western yellows virus, a newly reported citrus virus, and a variant of the citrus yellow vein-associated virus associated with the "fatal yellows" disease.
Collapse
Affiliation(s)
- Manjunath Keremane
- USDA ARS, National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507, USA;
| | - Khushwant Singh
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA;
| | - Chandrika Ramadugu
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA;
| | - Robert R. Krueger
- USDA ARS, National Clonal Germplasm Repository for Citrus and Dates, Riverside, CA 92507, USA;
| | - Todd H. Skaggs
- USDA ARS, U.S. Salinity Laboratory, Riverside, CA 92507, USA;
| |
Collapse
|
14
|
Dong J, Chen Y, Xie Y, Cao M, Fu S, Wu J. The Identification of Viral Pathogens in a Physostegia virginiana Plant Using High-Throughput RNA Sequencing. Viruses 2023; 15:1972. [PMID: 37766378 PMCID: PMC10534606 DOI: 10.3390/v15091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Physostegia virginiana is an important ornamental and cut-flower plant in China. Its commonly used method of clonal propagation leads to virus accumulation in this plant. However, which viruses can infect the Physostegia virginiana plant remains to be illuminated. In this work, five viral pathogens in a Physostegia virginiana plant with virus-like symptoms of yellow, shriveled, and curled leaves were identified using RNA-seq, bioinformatics, and molecular biological techniques. These techniques allowed us to identify five viruses comprising one known alfalfa mosaic virus (AMV) and four novel viruses. The novel viruses include a virus belonging to the genus Fabavirus, temporarily named Physostegia virginiana crinkle-associated virus 1 (PVCaV1); two viruses belonging to the genus Caulimovirus, temporarily named Physostegia virginiana caulimovirus 1 and 2 (PVCV1 and PVCV2); and a virus belonging to the genus Fijivirus, temporarily named Physostegia virginiana fijivirus (PVFV). The genome sequences of PVCaV1, PVCV1, and PVCV2, and the partial genome sequence of PVFV were identified. Genome organizations and genetic evolutionary relationships of all four novel viruses were analyzed. PVCaV1 has a relatively close evolutionary relationship with five analyzed fabiviruses. PVCV1 and PVCV2 have separately a closest evolutionary relationship with lamium leaf distortion-associated virus (LLDAV) and figwort mosaic virus (FMV), and PVFV has a close evolutionary relationship with the five analyzed fijiviruses. Additionally, PVCaV1 can infect Nicotiana benthamiana plants via friction inoculation. The findings enrich our understanding of Physostegia virginiana viruses and contribute to the prevention and control of Physostegia virginiana viral diseases.
Collapse
Affiliation(s)
- Jinxi Dong
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yuanling Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yi Xie
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Mengji Cao
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, China
| | - Shuai Fu
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou 311100, China
| | - Jianxiang Wu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (J.D.); (Y.C.)
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
15
|
Hammond J, Huang Q, Jordan R, Meekes E, Fox A, Vazquez-Iglesias I, Vaira AM, Copetta A, Delmiglio C. International Trade and Local Effects of Viral and Bacterial Diseases in Ornamental Plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:73-95. [PMID: 37257057 DOI: 10.1146/annurev-phyto-021621-114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Since the 1950s, there have been major changes in the scope, value, and organization of the ornamental plant industry. With fewer individual producers and a strong trend toward consolidation and globalization, increasing quantities of diverse plant genera and species are being shipped internationally. Many more ornamentals are propagated vegetatively instead of by seed, further contributing to disease spread. These factors have led to global movement of pathogens to countries where they were not formerly known. The emergence of some previously undescribed pathogens has been facilitated by high-throughput sequencing, but biological studies are often lacking, so their roles in economic diseases are not yet known. Case studies of diseases in selected ornamentals discuss the factors involved in their spread, control measures to reduce their economic impact, and some potential effects on agronomic crops. Advances in diagnostic techniques are discussed, and parallels are drawn to the international movement of human diseases.
Collapse
Affiliation(s)
- John Hammond
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland, USA;
| | - Qi Huang
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland, USA;
| | - Ramon Jordan
- Floral and Nursery Plants Research Unit, US National Arboretum, USDA-ARS, Beltsville, Maryland, USA;
| | | | - Adrian Fox
- Fera Science Ltd., York Biotech Campus, York, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | - Andrea Copetta
- CREA Research Centre for Vegetable and Ornamental Crops, Sanremo, Italy
| | - Catia Delmiglio
- Plant Health & Environment Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Auckland, New Zealand
| |
Collapse
|
16
|
He S, Wei J, Feng J, Liu D, Wang N, Chen L, Xiong Y. The application of metagenomic next-generation sequencing in pathogen diagnosis: a bibliometric analysis based on Web of Science. Front Cell Infect Microbiol 2023; 13:1112229. [PMID: 37600953 PMCID: PMC10434771 DOI: 10.3389/fcimb.2023.1112229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Background Infectious disease is a large burden on public health globally. Metagenomic next-generation sequencing (mNGS) has become popular as a new tool for pathogen diagnosis with numerous advantages compared to conventional methods. Recently, research on mNGS increases yearly. However, no bibliometric analysis has systematically presented the full spectrum of this research field. Therefore, we reviewed all the publications associated with this topic and performed this study to analyze the comprehensive status and future hotspots of mNGS for infectious disease diagnosis. Methods The literature was searched in the Web of Science Core Collection and screened without year or language restrictions, and the characteristics of the studies were also identified. The outcomes included publication years, study types, journals, countries, authorship, institutions, frontiers, and hotspots with trends. Statistical analysis and visualization were conducted using VOSviewer (version 1.6.16) and CiteSpace (version 6.1. R3). Results In total, 325 studies were included in the analysis after screening. Studies were published between 2009 and 2022 with a significantly increasing number from 1 to 118. Most of the studies were original articles and case reports. Frontiers in Cellular and Infection Microbiology and Clinical Infectious Disease were the most commonly cited and co-cited journals. Institutions and researchers from China contributed the most to this field, followed by those from the USA. The hotspots and frontiers of these studies are pneumonia, tuberculosis, and central nervous system infections. Conclusion This study determined that mNGS is a hot topic in the diagnosis of infectious diseases with development trends and provides insights into researchers, institutions, hotspots and frontiers in mNGS, which can offer references to related researchers and future research.
Collapse
Affiliation(s)
- Sike He
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwen Wei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaming Feng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dan Liu
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, China
| | - Neng Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Xiong
- Department of Periodical Press, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Jin W, Zhang Y, Su X, Xie Z, Wang R, Du Z, Wang Y, Qiu Y. Genetic diversity analysis of lychnis mottle virus and first identification of Angelica sinensis infection. Heliyon 2023; 9:e17006. [PMID: 37332943 PMCID: PMC10272471 DOI: 10.1016/j.heliyon.2023.e17006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/13/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023] Open
Abstract
Gansu Province is a district renowned for the cultivation of Angelica sinensis (Oliv.) Diels, accounting for greater than 90% of China's total annual production. However, virus infection has caused a reduction in A. sinensis yield. Here, we collected suspected virus-infected A. sinensis leaf samples from Gansu Province's A. sinensis cultivation area. For the first time, using small RNA deep sequencing and RT-PCR, lychnis mottle virus (LycMoV) was found to naturally infect A. sinensis. The coat protein (cp) gene of the Gansu A. sinensis LycMoV isolate was obtained through cloning, where its nucleotide and amino acid identity was highest while having the closest affinity to the China Pearl (i.e., Prunus persica) isolate. Recombination analysis indicated that genetic recombination had only a limited influencing effect on the molecular evolution of LycMoV. Moreover, results from genetic diversity analysis indicated that the host, geographic isolation, and genetic drift may be the main factors that contributed to the formation of genetic diversity and differentiation in LycMoV. Furthermore, the LycMoV population trend was expansionary. Selection pressure may also be the main driver for the evolution of the entire LycMoV population, while the driving effect of genetic recombination is limited. This study marks a new LycMoV host (i.e., A. sinensis) for the first time and provides scientific support for the identification, prevention, and control of LycMoV.
Collapse
Affiliation(s)
- Weijie Jin
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou, 730000, China
| | - Yubao Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou, 730000, China
| | - Xuesi Su
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou, 730000, China
| | - Zhongkui Xie
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou, 730000, China
| | - Ruoyu Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou, 730000, China
| | - Zhongpei Du
- Jiuquan Vocational and Technical College, Jiuquan, 735000, China
| | - Yajun Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou, 730000, China
| | - Yang Qiu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou, 730000, China
| |
Collapse
|
18
|
Haegeman A, Foucart Y, De Jonghe K, Goedefroit T, Al Rwahnih M, Boonham N, Candresse T, Gaafar YZA, Hurtado-Gonzales OP, Kogej Zwitter Z, Kutnjak D, Lamovšek J, Lefebvre M, Malapi M, Mavrič Pleško I, Önder S, Reynard JS, Salavert Pamblanco F, Schumpp O, Stevens K, Pal C, Tamisier L, Ulubaş Serçe Ç, van Duivenbode I, Waite DW, Hu X, Ziebell H, Massart S. Looking beyond Virus Detection in RNA Sequencing Data: Lessons Learned from a Community-Based Effort to Detect Cellular Plant Pathogens and Pests. PLANTS (BASEL, SWITZERLAND) 2023; 12:2139. [PMID: 37299118 PMCID: PMC10255714 DOI: 10.3390/plants12112139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
High-throughput sequencing (HTS), more specifically RNA sequencing of plant tissues, has become an indispensable tool for plant virologists to detect and identify plant viruses. During the data analysis step, plant virologists typically compare the obtained sequences to reference virus databases. In this way, they are neglecting sequences without homologies to viruses, which usually represent the majority of sequencing reads. We hypothesized that traces of other pathogens might be detected in this unused sequence data. In the present study, our goal was to investigate whether total RNA-seq data, as generated for plant virus detection, is also suitable for the detection of other plant pathogens and pests. As proof of concept, we first analyzed RNA-seq datasets of plant materials with confirmed infections by cellular pathogens in order to check whether these non-viral pathogens could be easily detected in the data. Next, we set up a community effort to re-analyze existing Illumina RNA-seq datasets used for virus detection to check for the potential presence of non-viral pathogens or pests. In total, 101 datasets from 15 participants derived from 51 different plant species were re-analyzed, of which 37 were selected for subsequent in-depth analyses. In 29 of the 37 selected samples (78%), we found convincing traces of non-viral plant pathogens or pests. The organisms most frequently detected in this way were fungi (15/37 datasets), followed by insects (13/37) and mites (9/37). The presence of some of the detected pathogens was confirmed by independent (q)PCRs analyses. After communicating the results, 6 out of the 15 participants indicated that they were unaware of the possible presence of these pathogens in their sample(s). All participants indicated that they would broaden the scope of their bioinformatic analyses in future studies and thus check for the presence of non-viral pathogens. In conclusion, we show that it is possible to detect non-viral pathogens or pests from total RNA-seq datasets, in this case primarily fungi, insects, and mites. With this study, we hope to raise awareness among plant virologists that their data might be useful for fellow plant pathologists in other disciplines (mycology, entomology, bacteriology) as well.
Collapse
Affiliation(s)
- Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Yoika Foucart
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Thomas Goedefroit
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium
| | - Maher Al Rwahnih
- Foundation Plant Services, Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Neil Boonham
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Bordeaux, 33882 Villenave-d’Ornon, France
| | - Yahya Z. A. Gaafar
- Centre for Plant Health, Canadian Food Inspection Agency, 8801 East Saanich Road, North Saanich, BC V8L 1H3, Canada
| | - Oscar P. Hurtado-Gonzales
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture (USDA-APHIS), Beltsville, ML 20705, USA
| | - Zala Kogej Zwitter
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and Systems Biology, National Institute of Biology (NIB), 1000 Ljubljana, Slovenia
| | - Janja Lamovšek
- Plant Protection Department, Agricultural Institute of Slovenia (KIS), 1000 Ljubljana, Slovenia
| | - Marie Lefebvre
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université de Bordeaux, 33882 Villenave-d’Ornon, France
| | - Martha Malapi
- Biotechnology Risk Analysis Program, Animal and Plant Health Inspection Service, United States Department of Agriculture (USDA-APHIS), Riverdale, ML 20737, USA
| | - Irena Mavrič Pleško
- Plant Protection Department, Agricultural Institute of Slovenia (KIS), 1000 Ljubljana, Slovenia
| | - Serkan Önder
- Department of Plant Protection, Faculty of Agriculture, Eskişehir Osmangazi University, Odunpazarı, Eskişehir 26160, Turkey
| | | | | | - Olivier Schumpp
- Department of Plant Protection, Agroscope, 1260 Nyon, Switzerland
| | - Kristian Stevens
- Foundation Plant Services, Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | - Chandan Pal
- Zespri International Limited, 400 Maunganui Road, Mount Maunganui 3116, New Zealand
| | - Lucie Tamisier
- Unités GAFL et Pathologie Végétale, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 84143 Montfavet, France
| | - Çiğdem Ulubaş Serçe
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
| | - Inge van Duivenbode
- Dutch General Inspection Service for Agricultural Seed and Seed Potatoes (NAK), Randweg 14, 8304 AS Emmeloord, The Netherlands
| | - David W. Waite
- Plant Health and Environment Laboratory, Ministry for Primary Industries, Auckland 1140, New Zealand
| | - Xiaojun Hu
- Plant Germplasm Quarantine Program, Animal and Plant Health Inspection Service, United States Department of Agriculture (USDA-APHIS), Beltsville, ML 20705, USA
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn Institute (JKI), Messeweg 11-12, 38104 Braunschweig, Germany
| | - Sébastien Massart
- Plant Pathology Laboratory, University of Liège, Gembloux Agro-Bio Tech, TERRA, 5030 Gembloux, Belgium
| |
Collapse
|
19
|
Jin W, Zhang Y, Su X, Wang R, Xie Z, Wang Y, Qiu Y. Development of Colloidal Gold Immunochromatography and Reverse-Transcription Loop-Mediated Isothermal Amplification Assays to Detect Lychnis Mottle Virus. PLANT DISEASE 2023:PDIS08221970RE. [PMID: 36383991 DOI: 10.1094/pdis-08-22-1970-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lychnis mottle virus (LycMoV; genus Unassigned, family Secoviridae) infection of Angelica sinensis produces mottle and mosaic symptoms, damaging the host. Early detection of relevant pathogens is the most critical step in preventing the potential transmission of infectious disease. Polyclonal antibodies with high potency and high specificity were prepared using the recombinant LycMoV capsid protein as an antigen. Here, we developed and optimized a rapid colloidal gold immunochromatography assay (GICA) detection system for LycMoV using this antibody. Under optimum conditions, GICA specifically detected (up to 10,000-fold) positive LycMoV samples. A real-time reverse-transcription loop-mediated isothermal amplification (RT-LAMP) system was also established by selecting the primers with high sensitivity and specificity to LycMoV. The RT-LAMP detection threshold was 1.42 fg/μl (291 copies/μl). A GICA-RT-LAMP assay system was further established and optimized. The minimum GICA detection line was calculated at 1.52 × 10-2 ng/μl. Although GICA did not detect positive samples after capturing virus at 2.53 × 10-3 ng/μl, GICA-LAMP and GICA-RT-PCR did, whose sensitivity was comparatively greater than sixfold. This is the first report showing that GICA-RT-LAMP is a cost-effective approach for use in detecting LycMoV without extracting nucleic acids. These sensitive assays will help improve virus disease management in A. sinensis crops.
Collapse
Affiliation(s)
- Weijie Jin
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China
| | - Yubao Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China
| | - Xuesi Su
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China
| | - Ruoyu Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China
| | - Zhongkui Xie
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China
| | - Yajun Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China
| | - Yang Qiu
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Lanzhou 730000, China
| |
Collapse
|
20
|
Venbrux M, Crauwels S, Rediers H. Current and emerging trends in techniques for plant pathogen detection. FRONTIERS IN PLANT SCIENCE 2023; 14:1120968. [PMID: 37223788 PMCID: PMC10200959 DOI: 10.3389/fpls.2023.1120968] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/21/2023] [Indexed: 05/25/2023]
Abstract
Plant pathogenic microorganisms cause substantial yield losses in several economically important crops, resulting in economic and social adversity. The spread of such plant pathogens and the emergence of new diseases is facilitated by human practices such as monoculture farming and global trade. Therefore, the early detection and identification of pathogens is of utmost importance to reduce the associated agricultural losses. In this review, techniques that are currently available to detect plant pathogens are discussed, including culture-based, PCR-based, sequencing-based, and immunology-based techniques. Their working principles are explained, followed by an overview of the main advantages and disadvantages, and examples of their use in plant pathogen detection. In addition to the more conventional and commonly used techniques, we also point to some recent evolutions in the field of plant pathogen detection. The potential use of point-of-care devices, including biosensors, have gained in popularity. These devices can provide fast analysis, are easy to use, and most importantly can be used for on-site diagnosis, allowing the farmers to take rapid disease management decisions.
Collapse
Affiliation(s)
- Marc Venbrux
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Sam Crauwels
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Hans Rediers
- Centre of Microbial and Plant Genetics, Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Altindiş M, Kahraman Kilbaş EP. Managing Viral Emerging Infectious Diseases via Current and Future Molecular Diagnostics. Diagnostics (Basel) 2023; 13:diagnostics13081421. [PMID: 37189522 DOI: 10.3390/diagnostics13081421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Emerging viral infectious diseases have been a constant threat to global public health in recent times. In managing these diseases, molecular diagnostics has played a critical role. Molecular diagnostics involves the use of various technologies to detect the genetic material of various pathogens, including viruses, in clinical samples. One of the most commonly used molecular diagnostics technologies for detecting viruses is polymerase chain reaction (PCR). PCR amplifies specific regions of the viral genetic material in a sample, making it easier to detect and identify viruses. PCR is particularly useful for detecting viruses that are present in low concentrations in clinical samples, such as blood or saliva. Another technology that is becoming increasingly popular for viral diagnostics is next-generation sequencing (NGS). NGS can sequence the entire genome of a virus present in a clinical sample, providing a wealth of information about the virus, including its genetic makeup, virulence factors, and potential to cause an outbreak. NGS can also help identify mutations and discover new pathogens that could affect the efficacy of antiviral drugs and vaccines. In addition to PCR and NGS, there are other molecular diagnostics technologies that are being developed to manage emerging viral infectious diseases. One of these is CRISPR-Cas, a genome editing technology that can be used to detect and cut specific regions of viral genetic material. CRISPR-Cas can be used to develop highly specific and sensitive viral diagnostic tests, as well as to develop new antiviral therapies. In conclusion, molecular diagnostics tools are critical for managing emerging viral infectious diseases. PCR and NGS are currently the most commonly used technologies for viral diagnostics, but new technologies such as CRISPR-Cas are emerging. These technologies can help identify viral outbreaks early, track the spread of viruses, and develop effective antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Mustafa Altindiş
- Medical Microbiology Department, Faculty of Medicine, Sakarya University, Sakarya 54050, Türkiye
| | - Elmas Pınar Kahraman Kilbaş
- Medical Laboratory Techniques, Vocational School of Health Services, Fenerbahce University, Istanbul 34758, Türkiye
| |
Collapse
|
22
|
First Discovery of Phenuiviruses within Diverse RNA Viromes of Asiatic Toad (Bufo gargarizans) by Metagenomics Sequencing. Viruses 2023; 15:v15030750. [PMID: 36992458 PMCID: PMC10056474 DOI: 10.3390/v15030750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Most zoonotic pathogens originate from mammals and avians, but viral diversity and related biosafety risk assessment in lower vertebrates also need to be explored. Amphibians are an important group of lower vertebrates that played a momentous role in animal evolution. To elucidate the diversity of RNA viruses in one important species of amphibians, the Asiatic toad (Bufo gargarizans), we obtained 44 samples including lung, gut, liver, and kidney tissues from Asiatic toads in Sichuan and Jilin provinces, China, for viral metagenomics sequencing. More than 20 novel RNA viruses derived from the order Bunyavirales and 7 families of Astroviridae, Dicistroviridae, Leviviridae, Partitiviridae, Picornaviridae, Rhabdoviridae, and Virgaviridae were discovered, which were distinct from previously described viruses and formed new clusters, as revealed by phylogenetic analyses. Notably, a novel bastrovirus, AtBastV/GCCDC11/2022, of the family Astroviridae was identified from the gut library, the genome of which contains three open reading frames, with the RNA-dependent RNA polymerase (RdRp) coded by ORF1 closely related to that of hepeviruses, and ORF2 encoding an astrovirus-related capsid protein. Notably, phenuiviruses were discovered for the first time in amphibians. AtPhenV1/GCCDC12/2022 and AtPhenV2/GCCDC13/2022 clustered together and formed a clade with the group of phenuiviruses identified from rodents. Picornaviruses and several invertebrate RNA viruses were also detected. These findings improve our understanding of the high RNA viral diversity in the Asiatic toad and provide new insights in the evolution of RNA viruses in amphibians.
Collapse
|
23
|
Discovery of a Closterovirus Infecting Jujube Plants Grown at Aksu Area in Xinjiang of China. Viruses 2023; 15:v15020267. [PMID: 36851483 PMCID: PMC9958854 DOI: 10.3390/v15020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is a widely grown fruit crop at Aksu in Xinjiang Uygur Autonomous Region of China. Viral disease-like symptoms are common on jujube plants. Here, for the first time, we report a virus tentatively named persimmon ampelovirus jujube isolate (PAmpV-Ju) infecting jujube plants. The virus was identified using high-throughput sequencing from a jujube plant (ID: AKS15) and molecularly related to viruses in the family Closteroviridae. The genomic sequences of two PAmpV-Ju variants named AKS15-20 and AKS15-17 were determined by RT-PCR amplifications. The genome structure of PAmpV-Ju was identical to that of a recently reported persimmon ampelovirus (PAmpV) and consisted of seven open reading frames. The genomes of AKS15-20 and AKS15-17 shared 83.7% nt identity with each other, and the highest nt sequence identity of 79% with two variants of PAmpV. The incidence of PAmpV-Ju on Aksu jujube plants was evaluated by RT-PCR assays. The phylogenetic analysis of amplified partial sequences coding for polymerase, HSP70h, and CP revealed two phylogenetic clades represented by AKS15-20 and AKS15-17. Our study provides important evidence for understanding viruses infecting jujube plants and establishing efficient measures to prevent virus spread.
Collapse
|
24
|
Dong ZX, Lin CC, Chen YK, Chou CC, Chen TC. Identification of an emerging cucumber virus in Taiwan using Oxford nanopore sequencing technology. PLANT METHODS 2022; 18:143. [PMID: 36550551 PMCID: PMC9773502 DOI: 10.1186/s13007-022-00976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In June 2020, severe symptoms of leaf mosaic and fruit malformation were observed on greenhouse-grown cucumber plants in Xizhou Township of Changhua County, Taiwan. An unknown virus, designated CX-2, was isolated from a diseased cucumber sample by single lesion isolation on Chenopodium quinoa leaves. Identification of CX-2 was performed. Moreover, the incidence of cucumber viruses in Taiwan was also investigated. METHODS Transmission electron microscopy was performed to examine virion morphology. The portable MinION sequencer released by Oxford Nanopore Technologies was used to detect viral sequences in dsRNA of CX-2-infected leaf tissue. The whole genome sequence of CX-2 was completed by Sanger sequencing and analyzed. Reverse transcription-polymerase chain reaction (RT-PCR) with species-specific primers and indirect enzyme-linked immunosorbent assay (ELISA) with anti-coat protein antisera were developed for virus detection in the field [see Additional file 1]. RESULTS Icosahedral particles about 30 nm in diameter were observed in the crud leaf sap of CX-2-infected C. quinoa plant. The complete genome sequence of CX-2 was determined as 4577 nt long and shared 97.0-97.2% of nucleotide identity with that of two cucumber Bulgarian latent virus (CBLV) isolates in Iran and Bulgaria. Therefore, CX-2 was renamed CBLV-TW. In 2020-2022 field surveys, melon yellow spot virus (MYSV) had the highest detection rate of 74.7%, followed by cucurbit chlorotic yellows virus (CCYV) (32.0%), papaya ringspot virus virus watermelon type (PRSV-W) (10.7%), squash leaf curl Philippines virus (SLCuPV) (9.3%), CBLV (8.0%) and watermelon silver mottle virus (WSMoV) (4.0%). Co-infection of CBLV and MYSV could be detected in field cucumbers. CONCLUSION The emerging CBLV-TW was identified by nanopore sequencing. Whole genome sequence analysis revealed that CBLV-TW is closely related, but phylogenetically distinct, to two known CBLV isolates in Bulgaria and Iran. Detection methods including RT-PCR and indirect ELISA have been developed to detect CBLV and to investigate cucumber viruses in central Taiwan. The 2020-2022 field survey results showed that MYSV and CCYV were the main threats to cucumbers, with CBLV, SLCuPV and WSMoV were occasionally occurring.
Collapse
Affiliation(s)
- Zi-Xuan Dong
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Chian-Chi Lin
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Yuh-Kun Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Cheng Chou
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Tsung-Chi Chen
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung, Taiwan.
| |
Collapse
|
25
|
Yang S, Mao Q, Wang Y, He J, Yang J, Chen X, Xiao Y, He Y, Zhao M, Lu J, Yang Z, Dai Z, Liu Q, Yao Y, Lu X, Li H, Zhou R, Zeng J, Li W, Zhou C, Wang X, Shen Q, Xu H, Deng X, Delwart E, Shan T, Zhang W. Expanding known viral diversity in plants: virome of 161 species alongside an ancient canal. ENVIRONMENTAL MICROBIOME 2022; 17:58. [PMID: 36437477 PMCID: PMC9703751 DOI: 10.1186/s40793-022-00453-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Since viral metagenomic approach was applied to discover plant viruses for the first time in 2006, many plant viruses had been identified from cultivated and non-cultivated plants. These previous researches exposed that the viral communities (virome) of plants have still largely uncharacterized. Here, we investigated the virome in 161 species belonging to 38 plant orders found in a riverside ecosystem. RESULTS We identified 245 distinct plant-associated virus genomes (88 DNA and 157 RNA viruses) belonging to 27 known viral families, orders, or unclassified virus groups. Some viral genomes were sufficiently divergent to comprise new species, genera, families, or even orders. Some groups of viruses were detected that currently are only known to infect organisms other than plants. It indicates a wider host range for members of these clades than previously recognized theoretically. We cannot rule out that some viruses could be from plant contaminating organisms, although some methods were taken to get rid of them as much as possible. The same viral species could be found in different plants and co-infections were common. CONCLUSIONS Our data describe a complex viral community within a single plant ecosystem and expand our understanding of plant-associated viral diversity and their possible host ranges.
Collapse
Affiliation(s)
- Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- International Genome Center, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qingqing Mao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yan Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jingxian He
- Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jie Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xu Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuqing Xiao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yumin He
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Min Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Zijun Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyuan Dai
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qi Liu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuxin Yao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiang Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hong Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rui Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jian Zeng
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wang Li
- Department of Laboratory Medicine, Jiangsu Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Chenglin Zhou
- Department of Laboratory Medicine, Jiangsu Taizhou People's Hospital, Taizhou, 225300, Jiangsu, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hui Xu
- The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, 94118, USA
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94118, USA
| | - Tongling Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- International Genome Center, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
26
|
Medberry A, Tzanetakis IE. Identification, Characterization, and Detection of a Novel Strawberry Cytorhabdovirus. PLANT DISEASE 2022; 106:2784-2787. [PMID: 36176214 DOI: 10.1094/pdis-11-21-2449-sc] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In 2020, a novel agent was discovered in strawberry, a rhabdovirus closely related to lettuce necrotic yellows virus. The new virus, named strawberry virus 2 (StrV-2), was discovered in an accession of the Fragaria virus collection of the National Clonal Germplasm Repository (NCGR), and for this reason, it was studied in-depth. The complete StrV-2 genome was obtained and investigated in silico. Transmission was assessed using two aphid species whereas a multiplex RT-PCR test targeting plant and virus genes was developed and used to screen the NCGR Fragaria virus collection.
Collapse
Affiliation(s)
- Ava Medberry
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
27
|
Waite DW, Liefting L, Delmiglio C, Chernyavtseva A, Ha HJ, Thompson JR. Development and Validation of a Bioinformatic Workflow for the Rapid Detection of Viruses in Biosecurity. Viruses 2022; 14:v14102163. [PMID: 36298719 PMCID: PMC9610911 DOI: 10.3390/v14102163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022] Open
Abstract
The field of biosecurity has greatly benefited from the widespread adoption of high-throughput sequencing technologies, for its ability to deeply query plant and animal samples for pathogens for which no tests exist. However, the bioinformatics analysis tools designed for rapid analysis of these sequencing datasets are not developed with this application in mind, limiting the ability of diagnosticians to standardise their workflows using published tool kits. We sought to assess previously published bioinformatic tools for their ability to identify plant- and animal-infecting viruses while distinguishing from the host genetic material. We discovered that many of the current generation of virus-detection pipelines are not adequate for this task, being outperformed by more generic classification tools. We created synthetic MinION and HiSeq libraries simulating plant and animal infections of economically important viruses and assessed a series of tools for their suitability for rapid and accurate detection of infection, and further tested the top performing tools against the VIROMOCK Challenge dataset to ensure that our findings were reproducible when compared with international standards. Our work demonstrated that several methods provide sensitive and specific detection of agriculturally important viruses in a timely manner and provides a key piece of ground truthing for method development in this space.
Collapse
Affiliation(s)
- David W. Waite
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
- Correspondence:
| | - Lia Liefting
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | - Catia Delmiglio
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| | | | - Hye Jeong Ha
- Animal Health Laboratory, Ministry for Primary Industries, Upper Hutt 5018, New Zealand
| | - Jeremy R. Thompson
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland 1140, New Zealand
| |
Collapse
|
28
|
Zhong J, Li P, Gao BD, Zhong SY, Li XG, Hu Z, Zhu JZ. Novel and diverse mycoviruses co-infecting a single strain of the phytopathogenic fungus Alternaria dianthicola. Front Cell Infect Microbiol 2022; 12:980970. [PMID: 36237429 PMCID: PMC9552818 DOI: 10.3389/fcimb.2022.980970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alternaria dianthicola is a pathogenic fungus that causes serious leaf or flower blight on some medicinal plants worldwide. In this study, multiple dsRNA bands in the range of 1.2-10 kbp were found in a Alternaria dianthus strain HNSZ-1, and eleven full-length cDNA sequences of these dsRNA were obtained by high-throughput sequencing, RT-PCR detection and conventional Sanger sequencing. Homology search and phylogenetic analyses indicated that the strain HNSZ-1 was infected by at least nine mycoviruses. Among the nine, five viruses were confirmed to represent novel viruses in the families Hypoviridae, Totiviridae, Mymonaviridae and a provisional family Ambiguiviridae. Virus elimination and horizontal transmission indicated that the (-) ssRNA virus, AdNSRV1, might be associated with the slow growth and irregular colony phenotype of the host fungus. As far as we know, this is the first report for virome characterization of A. dianthus, which might provide important insights for screening of mycovirus for biological control and for studying of the interactions between viruses or viruses and their host.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Ping Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Bi Da Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Shuang Yu Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
| | - Xiao Gang Li
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Zhao Hu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| | - Jun Zi Zhu
- Hunan Engineering Research Center of Agricultural Pest Early Warning and Control, Hunan Agricultural University, Changsha City, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha City, China
- *Correspondence: Jun Zi Zhu, ; Zhao Hu, ; Xiao Gang Li,
| |
Collapse
|
29
|
Rashid S, Wani F, Ali G, Sofi TA, Dar ZA, Hamid A. Viral metatranscriptomic approach to study the diversity of virus(es) associated with Common Bean (Phaseolus vulgaris L.) in the North-Western Himalayan region of India. Front Microbiol 2022; 13:943382. [PMID: 36212886 PMCID: PMC9532741 DOI: 10.3389/fmicb.2022.943382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Plant viruses are a major threat to legume production worldwide. In recent years, new virus strains have emerged with increasing frequencies in various legume cropping systems, which demands the development of cutting-edge virus surveillance techniques. In this study, we surveyed the common bean fields of Kashmir valley for virus infection using a total of 140 symptomatic and non-symptomatic leaf samples collected from different locations. The genetic diversity of viruses was examined by high-throughput sequencing (HTS) with three viruses being identified, namely, Bean Common Mosaic Virus (BCMV), Bean Common Mosaic Necrosis Virus (BCMNV), and Clover Yellow Vein Virus (ClYVV). BCMNV and ClYVV are new reports from India. De novo assembly of transcriptome constructed near-complete genomes of these viruses. RT-PCR results confirmed the presence of these viruses with an emerge incidence of 56. 4% for BCMV, 27.1% for BCMNV and 16.4 for ClYVV in the valley. Several samples were found to contain multiple virus infections with BCMV being the most predominant. Recombination events were detected in the genomes of BCMV and ClYVV, but not BCMNV. Phylogenetic and pairwise identity matrix evidence suggests viral import from multiple countries. Our results demonstrate that HTS followed by multiplex PCR assay is a simple, rapid, and reliable approach for simultaneous diagnosis of plant viruses.
Collapse
Affiliation(s)
- Shahjahan Rashid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Farhana Wani
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Gowhar Ali
- Department of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Tariq A. Sofi
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Zahoor Ahmed Dar
- Department of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
| | - Aflaq Hamid
- Department of Plant Pathology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Srinagar, India
- *Correspondence: Aflaq Hamid
| |
Collapse
|
30
|
Rubio L, Guinot-Moreno FJJ, Sanz-López C, Galipienso L. Discovery and Diagnosis of a New Sobemovirus Infecting Cyperus esculentus Showing Leaf Yellow Mosaic and Dwarfism Using Small-RNA High Throughput Sequencing. PLANTS 2022; 11:plants11152002. [PMID: 35956480 PMCID: PMC9370808 DOI: 10.3390/plants11152002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
C. esculentus is a profitable crop in Valencia, Spain, but the emergence of a disease causing of leaf yellow mosaic, dwarfism, and a drastic decrease in tuber production has become a problem. The small-RNA high-throughput sequencing (HTS) of a diseased C. esculentus plant identified only one virus, which could be the causal agent of this disease. The amino-acid comparison with viral sequences from GenBank and phylogenetic analyses indicated that this was a new species of genus Sobemovirus, and the name Xufa yellow dwarf virus was proposed. Completion with Sanger sequencing yielded a contig of 3072 nt corresponding to about 75% of the typical genome of sobemoviruses, including ORFs 2a (polyprotein-containing protease, VPG, and other proteins), 2b (RNA-dependent RNA polymerase), and 3 (coat protein). The nucleotide sequence was used to develop fast and accurate methods for the detection and quantification of xufa yellow dwarf virus (XYDV) based on reverse transcription (RT) and DNA amplification. XYDV was detected in leaves and tubers and showed a high incidence in the field in both symptomatic (almost 100%) and asymptomatic (70%) plants, but its accumulation was much higher in symptomatic plants. The relevance of these results for disease control was discussed.
Collapse
Affiliation(s)
- Luis Rubio
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain; (L.R.); (F.J.J.G.-M.); (C.S.-L.)
| | - Francisco J. J. Guinot-Moreno
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain; (L.R.); (F.J.J.G.-M.); (C.S.-L.)
- Universidad Católica de Valencia “San Vicente Mártir”, 46002 Valencia, Valencia, Spain
| | - Carmen Sanz-López
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain; (L.R.); (F.J.J.G.-M.); (C.S.-L.)
- Universitat Politècnica de València, 46022 Valencia, Valencia, Spain
| | - Luis Galipienso
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain; (L.R.); (F.J.J.G.-M.); (C.S.-L.)
- Correspondence:
| |
Collapse
|
31
|
Adeleke IA, Kavalappara SR, McGregor C, Srinivasan R, Bag S. Persistent, and Asymptomatic Viral Infections and Whitefly-Transmitted Viruses Impacting Cantaloupe and Watermelon in Georgia, USA. Viruses 2022; 14:1310. [PMID: 35746780 PMCID: PMC9227350 DOI: 10.3390/v14061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Cucurbits in Southeastern USA have experienced a drastic decline in production over the years due to the effect of economically important viruses, mainly those transmitted by the sweet potato whitefly (Bemisia tabaci Gennadius). In cucurbits, these viruses can be found as a single or mixed infection, thereby causing significant yield loss. During the spring of 2021, surveys were conducted to evaluate the incidence and distribution of viruses infecting cantaloupe (n = 80) and watermelon (n = 245) in Georgia. Symptomatic foliar tissues were collected from six counties and sRNA libraries were constructed from seven symptomatic samples. High throughput sequencing (HTS) analysis revealed the presence of three different new RNA viruses in Georgia: cucumis melo endornavirus (CmEV), cucumis melo amalgavirus (CmAV1), and cucumis melo cryptic virus (CmCV). Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed the presence of CmEV and CmAV1 in 25% and 43% of the total samples tested, respectively. CmCV was not detected using RT-PCR. Watermelon crinkle leaf-associated virus 1 (WCLaV-1), recently reported in GA, was detected in 28% of the samples tested. Furthermore, RT-PCR and PCR analysis of 43 symptomatic leaf tissues collected from the fall-grown watermelon in 2019 revealed the presence of cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and cucurbit leaf crumple virus (CuLCrV) at 73%, 2%, and 81%, respectively. This finding broadens our knowledge of the prevalence of viruses in melons in the fall and spring, as well as the geographical expansion of the WCLaV-1 in GA, USA.
Collapse
Affiliation(s)
| | | | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA;
| | | | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA;
| |
Collapse
|
32
|
Xu Y, Ghanim M, Liu Y. Editorial: Mixed Infections of Plant Viruses in Nature and the Impact on Agriculture. Front Microbiol 2022; 13:922607. [PMID: 35774460 PMCID: PMC9238407 DOI: 10.3389/fmicb.2022.922607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yi Xu
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Rishon LeZion, Israel
| | - Yong Liu
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
33
|
Pecman A, Adams I, Gutiérrez-Aguirre I, Fox A, Boonham N, Ravnikar M, Kutnjak D. Systematic Comparison of Nanopore and Illumina Sequencing for the Detection of Plant Viruses and Viroids Using Total RNA Sequencing Approach. Front Microbiol 2022; 13:883921. [PMID: 35633678 PMCID: PMC9131090 DOI: 10.3389/fmicb.2022.883921] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
High-throughput sequencing (HTS) has become an important tool for plant virus detection and discovery. Nanopore sequencing has been rapidly developing in the recent years and offers new possibilities for fast diagnostic applications of HTS. With this in mind, a study was completed, comparing the most established HTS platform (MiSeq benchtop sequencer-Illumina), with the MinION sequencer (Oxford Nanopore Technologies) for the detection of plant viruses and viroids. Method comparisons were performed on five selected samples, containing two viroids, which were sequenced using nanopore technology for the first time and 11 plant viruses with different genome organizations. For all samples, sequencing libraries for the MiSeq were prepared from ribosomal RNA-depleted total RNA (rRNA-depleted totRNA) and for MinION sequencing, direct RNA sequencing of totRNA was used. Moreover, for one of the samples, which contained five different plant viruses and a viroid, three additional variations of sample preparation for MinION sequencing were also used: direct RNA sequencing of rRNA-depleted totRNA, cDNA-PCR sequencing of totRNA, and cDNA-PCR sequencing of rRNA-depleted totRNA. Whilst direct RNA sequencing of total RNA was the quickest of the tested approaches, it was also the least sensitive: using this approach, we failed to detect only one virus that was present in a sample at an extremely low titer. All other MinION sequencing approaches showed improved performance with outcomes similar to Illumina sequencing, with cDNA-PCR sequencing of rRNA-depleted totRNA showing the best performance amongst tested nanopore MinION sequencing approaches. Moreover, when enough sequencing data were generated, high-quality consensus viral genome sequences could be reconstructed from MinION sequencing data, with high identity to the ones generated from Illumina data. The results of this study implicate that, when an appropriate sample and library preparation are selected, nanopore MinION sequencing could be used for the detection of plant viruses and viroids with similar performance as Illumina sequencing. Taken as a balance of practicality and performance, this suggests that MinION sequencing may be an ideal tool for fast and affordable virus diagnostics.
Collapse
Affiliation(s)
- Anja Pecman
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia.,Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ian Adams
- Fera Science Ltd., York, United Kingdom
| | - Ion Gutiérrez-Aguirre
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Neil Boonham
- Institute for Agri-Food Research and Innovation, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maja Ravnikar
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Denis Kutnjak
- Department of Biotechnology and System Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
34
|
Lee HJ, Jeong RD. Metatranscriptomic Analysis of Plant Viruses in Imported Pear and Kiwifruit Pollen. THE PLANT PATHOLOGY JOURNAL 2022; 38:220-228. [PMID: 35678055 PMCID: PMC9343911 DOI: 10.5423/ppj.oa.03.2022.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Pollen is a vector for viral transmission. Pollen-mediated viruses cause serious economic losses in the fruit industry. Despite the commercial importance of pollen-associated viruses, the diversity of such viruses is yet to be fully explored. In this study, we performed metatranscriptomic analyses using RNA sequencing to investigate the viral diversity in imported apple and kiwifruit pollen. We identified 665 virus-associated contigs, which corresponded to four different virus species. We identified one virus, the apple stem grooving virus, from pear pollen and three viruses, including citrus leaf blotch virus, cucumber mosaic virus, and lychnis mottle virus in kiwifruit pollen. The assembled viral genome sequences were analyzed to determine phylogenetic relationships. These findings will expand our knowledge of the virosphere in fruit pollen and lead to appropriate management of international pollen trade. However, the pathogenic mechanisms of pollen-associated viruses in fruit trees should be further investigated.
Collapse
Affiliation(s)
| | - Rae-Dong Jeong
- Corresponding author. Phone) +82-62-530-2075, FAX) +82-62-530-2069, E-mail)
| |
Collapse
|
35
|
Iquebal MA, Jagannadham J, Jaiswal S, Prabha R, Rai A, Kumar D. Potential Use of Microbial Community Genomes in Various Dimensions of Agriculture Productivity and Its Management: A Review. Front Microbiol 2022; 13:708335. [PMID: 35655999 PMCID: PMC9152772 DOI: 10.3389/fmicb.2022.708335] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Agricultural productivity is highly influenced by its associated microbial community. With advancements in omics technology, metagenomics is known to play a vital role in microbial world studies by unlocking the uncultured microbial populations present in the environment. Metagenomics is a diagnostic tool to target unique signature loci of plant and animal pathogens as well as beneficial microorganisms from samples. Here, we reviewed various aspects of metagenomics from experimental methods to techniques used for sequencing, as well as diversified computational resources, including databases and software tools. Exhaustive focus and study are conducted on the application of metagenomics in agriculture, deciphering various areas, including pathogen and plant disease identification, disease resistance breeding, plant pest control, weed management, abiotic stress management, post-harvest management, discoveries in agriculture, source of novel molecules/compounds, biosurfactants and natural product, identification of biosynthetic molecules, use in genetically modified crops, and antibiotic-resistant genes. Metagenomics-wide association studies study in agriculture on crop productivity rates, intercropping analysis, and agronomic field is analyzed. This article is the first of its comprehensive study and prospects from an agriculture perspective, focusing on a wider range of applications of metagenomics and its association studies.
Collapse
Affiliation(s)
- Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jaisri Jagannadham
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratna Prabha
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
- School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
36
|
Plant Viral Disease Detection: From Molecular Diagnosis to Optical Sensing Technology—A Multidisciplinary Review. REMOTE SENSING 2022. [DOI: 10.3390/rs14071542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plant viral diseases result in productivity and economic losses to agriculture, necessitating accurate detection for effective control. Lab-based molecular testing is the gold standard for providing reliable and accurate diagnostics; however, these tests are expensive, time-consuming, and labour-intensive, especially at the field-scale with a large number of samples. Recent advances in optical remote sensing offer tremendous potential for non-destructive diagnostics of plant viral diseases at large spatial scales. This review provides an overview of traditional diagnostic methods followed by a comprehensive description of optical sensing technology, including camera systems, platforms, and spectral data analysis to detect plant viral diseases. The paper is organized along six multidisciplinary sections: (1) Impact of plant viral disease on plant physiology and consequent phenotypic changes, (2) direct diagnostic methods, (3) traditional indirect detection methods, (4) optical sensing technologies, (5) data processing techniques and modelling for disease detection, and (6) comparison of the costs. Finally, the current challenges and novel ideas of optical sensing for detecting plant viruses are discussed.
Collapse
|
37
|
Tarquini G, Martini M, Maestri S, Firrao G, Ermacora P. The Virome of ‘Lamon Bean’: Application of MinION Sequencing to Investigate the Virus Population Associated with Symptomatic Beans in the Lamon Area, Italy. PLANTS 2022; 11:plants11060779. [PMID: 35336661 PMCID: PMC8951528 DOI: 10.3390/plants11060779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022]
Abstract
‘Lamon bean’ is a protected geographical indication (PGI) for a product of four varieties of bean (Phaseolus vulgaris L.) grown in a specific area of production, which is located in the Belluno district, Veneto region (N.E. of Italy). In the last decade, the ‘Lamon bean’ has been threatened by severe virus epidemics that have compromised its profitability. In this work, the full virome of seven bean samples showing different foliar symptoms was obtained by MinION sequencing. Evidence that emerged from sequencing was validated through RT-PCR and ELISA in a large number of plants, including different ecotypes of Lamon bean and wild herbaceous hosts that may represent a virus reservoir in the field. Results revealed the presence of bean common mosaic virus (BCMV), cucumber mosaic virus (CMV), peanut stunt virus (PSV), and bean yellow mosaic virus (BYMV), which often occurred as mixed infections. Moreover, both CMV and PSV were reported in association with strain-specific satellite RNAs (satRNAs). In conclusion, this work sheds light on the cause of the severe diseases affecting the ‘Lamon bean’ by exploitation of MinION sequencing.
Collapse
Affiliation(s)
- Giulia Tarquini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, I-33100 Udine, Italy; (G.T.); (M.M.); (G.F.)
| | - Marta Martini
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, I-33100 Udine, Italy; (G.T.); (M.M.); (G.F.)
| | - Simone Maestri
- Department of Biotechnology, University of Verona, I-37134 Verona, Italy;
| | - Giuseppe Firrao
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, I-33100 Udine, Italy; (G.T.); (M.M.); (G.F.)
| | - Paolo Ermacora
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, I-33100 Udine, Italy; (G.T.); (M.M.); (G.F.)
- Correspondence:
| |
Collapse
|
38
|
Gauthier MEA, Lelwala RV, Elliott CE, Windell C, Fiorito S, Dinsdale A, Whattam M, Pattemore J, Barrero RA. Side-by-Side Comparison of Post-Entry Quarantine and High Throughput Sequencing Methods for Virus and Viroid Diagnosis. BIOLOGY 2022; 11:263. [PMID: 35205129 PMCID: PMC8868628 DOI: 10.3390/biology11020263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023]
Abstract
Rapid and safe access to new plant genetic stocks is crucial for primary plant industries to remain profitable, sustainable, and internationally competitive. Imported plant species may spend several years in Post Entry Quarantine (PEQ) facilities, undergoing pathogen testing which can impact the ability of plant industries to quickly adapt to new global market opportunities by accessing new varieties. Advances in high throughput sequencing (HTS) technologies provide new opportunities for a broad range of fields, including phytosanitary diagnostics. In this study, we compare the performance of two HTS methods (RNA-Seq and sRNA-Seq) with that of existing PEQ molecular assays in detecting and identifying viruses and viroids from various plant commodities. To analyze the data, we tested several bioinformatics tools which rely on different approaches, including direct-read, de novo, and reference-guided assembly. We implemented VirusReport, a new portable, scalable, and reproducible nextflow pipeline that analyses sRNA datasets to detect and identify viruses and viroids. We raise awareness of the need to evaluate cross-sample contamination when analyzing HTS data routinely and of using methods to mitigate index cross-talk. Overall, our results suggest that sRNA analyzed using VirReport provides opportunities to improve quarantine testing at PEQ by detecting all regulated exotic viruses from imported plants in a single assay.
Collapse
Affiliation(s)
- Marie-Emilie A. Gauthier
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (M.-E.A.G.); (R.V.L.); (C.W.)
| | - Ruvini V. Lelwala
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (M.-E.A.G.); (R.V.L.); (C.W.)
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Candace E. Elliott
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Craig Windell
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (M.-E.A.G.); (R.V.L.); (C.W.)
| | - Sonia Fiorito
- Plant Innovation Centre, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (S.F.); (A.D.); (M.W.)
| | - Adrian Dinsdale
- Plant Innovation Centre, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (S.F.); (A.D.); (M.W.)
| | - Mark Whattam
- Plant Innovation Centre, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (S.F.); (A.D.); (M.W.)
| | - Julie Pattemore
- Science and Surveillance Group, Post Entry Quarantine, Department of Agriculture, Water and the Environment, Mickleham, VIC 3064, Australia; (C.E.E.); (J.P.)
| | - Roberto A. Barrero
- eResearch, Research Infrastructure, Academic Division, Queensland University of Technology, Brisbane, QLD 4001, Australia; (M.-E.A.G.); (R.V.L.); (C.W.)
| |
Collapse
|
39
|
Jung JS, Ravindran B, Soundharrajan I, Awasthi MK, Choi KC. Improved performance and microbial community dynamics in anaerobic fermentation of triticale silages at different stages. BIORESOURCE TECHNOLOGY 2022; 345:126485. [PMID: 34871725 DOI: 10.1016/j.biortech.2021.126485] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Production of high-quality grass-based silages by microbial-mediated anaerobic fermentation is an effective strategy in livestock farms. In the present study, an ensiling process was used to preserve and enhance fermentative metabolites in triticale silages with novel inoculants of Lactobacillus rhamanosus -52 and, Lactobacillus rhamanosus-54. Triticale silages treated with LAB predominantly had lower pH values than control silages due to rapid changes of microbial counts. LAB addition improved anaerobic fermentation profiles showing higher lactic acid, but lower acetic acid and butyric acid concentrations. A background microbial dynamic study indicated that the addition of L. rhamanosus-52 and L. rhamanosus-54 improved silage fermentation, enriched Lactobacillus spp., and decreased microbial richness with diversity, leading to increased efficiency of lactic acid fermentation. In conclusion, LAB treatment can increase silage quality by enhancing the dominance of desirable Lactobacillus while inhibiting the growth of undesirable microbes.
Collapse
Affiliation(s)
- Jeong Sung Jung
- Grassland and Forage Division, National Institute of Animal Science, RDA, 31000, Republic of Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Ilavenil Soundharrajan
- Grassland and Forage Division, National Institute of Animal Science, RDA, 31000, Republic of Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, RDA, 31000, Republic of Korea.
| |
Collapse
|
40
|
Villamor DEV, Keller KE, Martin RR, Tzanetakis IE. Comparison of High Throughput Sequencing to Standard Protocols for Virus Detection in Berry Crops. PLANT DISEASE 2022; 106:518-525. [PMID: 34282931 DOI: 10.1094/pdis-05-21-0949-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We completed a comprehensive study comparing virus detection between high throughput sequencing (HTS) and standard protocols in 30 berry selections (12 Fragaria, 10 Vaccinium, and eight Rubus) with known virus profiles. The study examined temporal detection of viruses at four sampling times encompassing two growing seasons. Within the standard protocols, reverse transcription (RT) PCR proved better than biological indexing. Detection of known viruses by HTS and RT-PCR nearly mirrored each other. HTS provided superior detection compared with RT-PCR on a wide spectrum of variants and discovery of novel viruses. More importantly, in most cases in which the two protocols showed parallel virus detection, 11 viruses in 16 selections were not consistently detected by both methods at all sampling points. Based on these data, we propose a testing requirement of four sampling times over two growing seasons for berry and potentially other crops, to ensure that no virus remains undetected independent of titer, distribution, or other virus-virus or virus-host interactions.
Collapse
Affiliation(s)
- D E V Villamor
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| | - K E Keller
- U.S. Department of Agriculture Agricultural Research Service, Corvallis, OR 97330
| | - R R Martin
- U.S. Department of Agriculture Agricultural Research Service, Corvallis, OR 97330
| | - I E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701
| |
Collapse
|
41
|
Yang S, Johnson MA, Hansen MA, Bush E, Li S, Vinatzer BA. Metagenomic sequencing for detection and identification of the boxwood blight pathogen Calonectria pseudonaviculata. Sci Rep 2022; 12:1399. [PMID: 35082361 PMCID: PMC8791934 DOI: 10.1038/s41598-022-05381-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Pathogen detection and identification are key elements in outbreak control of human, animal, and plant diseases. Since many fungal plant pathogens cause similar symptoms, are difficult to distinguish morphologically, and grow slowly in culture, culture-independent, sequence-based diagnostic methods are desirable. Whole genome metagenomic sequencing has emerged as a promising technique because it can potentially detect any pathogen without culturing and without the need for pathogen-specific probes. However, efficient DNA extraction protocols, computational tools, and sequence databases are required. Here we applied metagenomic sequencing with the Oxford Nanopore Technologies MinION to the detection of the fungus Calonectria pseudonaviculata, the causal agent of boxwood (Buxus spp.) blight disease. Two DNA extraction protocols, several DNA purification kits, and various computational tools were tested. All DNA extraction methods and purification kits provided sufficient quantity and quality of DNA. Several bioinformatics tools for taxonomic identification were found suitable to assign sequencing reads to the pathogen with an extremely low false positive rate. Over 9% of total reads were identified as C. pseudonaviculata in a severely diseased sample and identification at strain-level resolution was approached as the number of sequencing reads was increased. We discuss how metagenomic sequencing could be implemented in routine plant disease diagnostics.
Collapse
Affiliation(s)
- Shu Yang
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Marcela A Johnson
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.,Graduate Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Mary Ann Hansen
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Elizabeth Bush
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Boris A Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
42
|
Identification of Viruses Infecting Oats in Korea by Metatranscriptomics. PLANTS 2022; 11:plants11030256. [PMID: 35161235 PMCID: PMC8839655 DOI: 10.3390/plants11030256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
Abstract
Controlling infectious plant viruses presents a constant challenge in agriculture. As a source of valuable nutrients for human health, the cultivation of oats (Avena sativa L.) has recently been increased in Korea. To date, however, few studies have been undertaken to identify the viruses infecting oats in this country. In this study, we carried out RNA-sequencing followed by bioinformatics analyses to understand the virosphere in six different geographical locations in Korea where oats are cultivated. We identified three different virus species, namely, barley yellow dwarf virus (BYDV) (BYDV-PAV and BYDV-PAS), cereal yellow dwarf virus (CYDV) (CYDV-RPS and CYDV-RPV), and rice black-streaked dwarf virus (RBSDV). Based on the number of virus-associated reads and contigs, BYDV-PAV was a dominant virus infecting winter oats in Korea. Interestingly, RBSDV was identified in only a single region, and this is the first report of this virus infecting oats in Korea. Single nucleotide polymorphisms analyses indicated that most BYDV, CYDV, and RBSDV isolates show considerable genetic variations. Phylogenetic analyses indicated that BYDVs and CYDVs were largely grouped in isolates from Asia and USA, whereas RBSDV was genetically similar to isolates from China. Overall, the findings of this study provide a preliminary characterization of the types of plant viruses infecting oats in six geographical regions of Korea.
Collapse
|
43
|
Chirkov SN, Sheveleva A, Snezhkina A, Kudryavtseva A, Krasnov G, Zakubanskiy A, Mitrofanova I. Highly divergent isolates of chrysanthemum virus B and chrysanthemum virus R infecting chrysanthemum in Russia. PeerJ 2022; 10:e12607. [PMID: 35036085 PMCID: PMC8742542 DOI: 10.7717/peerj.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/16/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Chrysanthemum is a popular ornamental and medicinal plant that suffers from many viruses and viroids. Among them, chrysanthemum virus B (CVB, genus Carlavirus, family Betaflexiviridae) is widespread in all chrysanthemum-growing regions. Another carlavirus, chrysanthemum virus R (CVR), has been recently discovered in China. Information about chrysanthemum viruses in Russia is very scarce. The objective of this work was to study the prevalence and genetic diversity of CVB and CVR in Russia. METHODS We surveyed the chrysanthemum (Chrysanthemum morifolium Ramat.) germplasm collection in the Nikita Botanical Gardens, Yalta, Russia. To detect CVB and CVR, we used RT-PCR with virus-specific primers. To reveal the complete genome sequences of CVB and CVR isolates, metatransciptomic analysis of the cultivars Ribonette, Fiji Yellow, and Golden Standard plants, naturally co-infected with CVB and CVR, was performed using Illumina high-throughput sequencing. The recombination detection tool (RDP4) was employed to search for recombination in assembled genomes. RESULTS A total of 90 plants of 23 local and introduced chrysanthemum cultivars were surveyed. From these, 58 and 43% plants tested positive for CVB and CVR, respectively. RNA-Seq analysis confirmed the presence of CVB and CVR, and revealed tomato aspermy virus in each of the three transcriptomes. Six near complete genomes of CVB and CVR were assembled from the RNA-Seq reads. The CVR isolate X21 from the cultivar Golden Standard was 92% identical to the Chinese isolate BJ. In contrast, genomes of the CVR isolates X6 and X13 (from the cultivars Ribonette and Fiji Yellow, respectively), were only 76% to 77% identical to the X21 and BJ, and shared 95% identity to one another and appear to represent a divergent group of the CVR. Two distantly related CVB isolates, GS1 and GS2, were found in a plant of the cultivar Golden Standard. Their genomes shared from 82% to 87% identity to each other and the CVB genome from the cultivar Fiji Yellow (isolate FY), as well as to CVB isolates from Japan and China. A recombination event of 3,720 nucleotides long was predicted in the replicase gene of the FY genome. It was supported by seven algorithms implemented in RDP4 with statistically significant P-values. The inferred major parent was the Indian isolate Uttar Pradesh (AM765837), and minor parent was unknown. CONCLUSION We found a wide distribution of CVB and CVR in the chrysanthemum germplasm collection of the Nikita Botanical Gardens, which is the largest in Russia. Six near complete genomes of CVR and CVB isolates from Russia were assembled and characterized for the first time. This is the first report of CVR in Russia and outside of China thus expanding the information on the geographical distribution of the virus. Highly divergent CVB and CVR isolates have been identified that contributes the better understanding the genetic diversity of these viruses.
Collapse
Affiliation(s)
- Sergei N. Chirkov
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia,Kurchatov Genomic Center-NBG-NSC, Yalta, Russia
| | - Anna Sheveleva
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasiya Snezhkina
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Kudryavtseva
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George Krasnov
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Zakubanskiy
- Department of Medical Genomics, Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - Irina Mitrofanova
- Kurchatov Genomic Center-NBG-NSC, Yalta, Russia,Plant Developmental Biology, Biotechnology and Biosafety Department, Nikita Botanical Gardens, Yalta, Russia
| |
Collapse
|
44
|
Raza A, Wu Q. Diagnosis of Viral Diseases Using Deep Sequencing and Metagenomics Analyses. Methods Mol Biol 2022; 2400:225-243. [PMID: 34905206 DOI: 10.1007/978-1-0716-1835-6_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Viruses are ubiquitous in nature and exist in a variety of habitats. The advancement in sequencing technologies has revolutionized the understanding of viral biodiversity associated with plant diseases. Deep sequencing combined with metagenomics is a powerful approach that has proven to be revolutionary in the last decade and involves the direct analysis of viral genomes present in a diseased tissue sample. This protocol describes the details of RNA extraction and purification from wild rice plant and their yield, RNA purity, and integrity assessment. As a final step, bioinformatics data analysis including demultiplexing, quality control, de novo transcriptome assembly, taxonomic allocation and read mapping following Illumina HiSeq small and total RNA sequencing are described. Furthermore, the total RNAs extraction protocol and an additional ribosomal rRNAs depletion step which are significantly important for viral genomes construction are provided.
Collapse
Affiliation(s)
- Ali Raza
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qingfa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
45
|
Vazquez-Iglesias I, McGreig S, Pufal H, Robinson R, Clover GRG, Fox A, Boonham N, Adams IP. A novel high-throughput sequencing approach reveals the presence of a new virus infecting Rosa: rosa ilarvirus-1 (RIV-1). J Virol Methods 2021; 300:114417. [PMID: 34902457 DOI: 10.1016/j.jviromet.2021.114417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/11/2023]
Abstract
Roses are one of the most valuable ornamental flowering shrubs grown worldwide. Despite the widespread of rose viruses and their impact on cultivation, they have not been studied in detail in the United Kingdom (UK) since the 1980's. As part of a survey of rose viruses entering the UK, 35 samples were collected at Heathrow Airport (London, UK) and were tested by RT-qPCR for different common rose viruses. Of the 35 samples tested using RT-qPCR for prunus necrotic ringspot virus (PNRSV; genus Ilarvirus), 10 were positive. Confirmatory testing was performed using RT-PCR with both PNRSV-specific and ilarvirus-generic primers, and diverse results were obtained: One sample was exclusively positive when using the ilarvirus-generic primers, and subsequent sequencing of the RT-PCR product revealed homology to other ilarviruses but not PNRSV. Further work to characterise the virus was performed using high throughput sequencing, both the MinION Flongle and Illumina MiSeq. The sequencing confirmed the presence of a new virus within group 2 of the genus Ilarvirus and we propose the name "rosa ilarvirus-1″ (RIV-1). Here, we describe the identification of a novel virus using the low-cost Flongle flow cell and discuss its potential as a front-line diagnostic tool.
Collapse
Affiliation(s)
- Ines Vazquez-Iglesias
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, United Kingdom; School of Natural and Environmental Sciences, Agriculture Building, King's Road, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - Sam McGreig
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Hollie Pufal
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Rebekah Robinson
- The Royal Horticultural Society, Wisley, Woking, Surrey, GU23 6QB, United Kingdom
| | - Gerard R G Clover
- The Royal Horticultural Society, Wisley, Woking, Surrey, GU23 6QB, United Kingdom
| | - Adrian Fox
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Neil Boonham
- School of Natural and Environmental Sciences, Agriculture Building, King's Road, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Ian P Adams
- Fera Science Ltd., York Biotech Campus, Sand Hutton, York, YO41 1LZ, United Kingdom; Institute of Agri Food Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
46
|
Gao X, Jia ZQ, Tao HZ, Xu Y, Li YZ, Liu YT. Use of deep sequencing to profile small RNAs derived from tomato spotted wilt orthotospovirus and hippeastrum chlorotic ringspot orthotospovirus in infected Capsicum annuum. Virus Res 2021; 309:198648. [PMID: 34910964 DOI: 10.1016/j.virusres.2021.198648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
Abstract
Virus-derived small RNAs are one of the key factors of RNA silencing in plant defence against viruses. We obtained virus-derived small interfering RNA profiles from Tomato spotted wilt orthotospovirus and Hippeastrum chlorotic ringspot orthotospovirus infected Capsicum annuum XX19 and XY11 by deep sequencing one day after inoculation. The vsiRNAs data were mapped to the TSWV and HCRV genomes, and the results showed that the vsiRNAs measured 19-24 nucleotides in length. Most of the vsiRNAs were mapped to the S segment of the viral genome. For XX19 and XY11 infected with HCRV, the distribution range of vsiRNAs in S RNA was 52.06-55.20%, while for XX19 and XY11 infected with TSWV, the distribution range of vsiRNAs in S RNA was 87.76-89.07%. The first base at the 5' end of the siRNA from TSWV and HCRV was primarily biased towards A, U, or C. Compared with mock-inoculated XX19 and XY11, the expression level of CaRDR1 was upregulated in TSWV- and HCRV-inoculated XX19 and XY11. CaAGO2 and CaAGO5 were upregulated in XY11 against HCRV infection, and CaRDR2 was downregulated in TSWV-infected XY11 and XX19. The profile of HCRV and TSWV vsiRNA verified in this study could be useful for selecting key vsiRNA such as those in disease-resistant varieties by artificially synthesizing amiRNA.
Collapse
Affiliation(s)
- Xue Gao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Zhi-Qiang Jia
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Hong-Zheng Tao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China; School of Life Science and Technology, Honghe University, Mengzi, 661199, China
| | - Ye Xu
- College of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Zhong Li
- College of Tobacco Science, Yunnan Agricultural University, Kunming 650201, China.
| | - Ya-Ting Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
47
|
Redila CD, Prakash V, Nouri S. Metagenomics Analysis of the Wheat Virome Identifies Novel Plant and Fungal-Associated Viral Sequences. Viruses 2021; 13:2457. [PMID: 34960726 PMCID: PMC8705367 DOI: 10.3390/v13122457] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/29/2023] Open
Abstract
Wheat viruses including wheat streak mosaic virus, Triticum mosaic virus, and barley yellow dwarf virus cost substantial losses in crop yields every year. Although there have been extensive studies conducted on these known wheat viruses, currently, there is limited knowledge about all components of the wheat (Triticum aestivum L.) virome. Here, we determined the composition of the wheat virome through total RNA deep sequencing of field-collected leaf samples. Sequences were de novo assembled after removing the host reads, and BLASTx searches were conducted. In addition to the documented wheat viruses, novel plant and fungal-associated viral sequences were identified. We obtained the full genome sequence of the first umbra-like associated RNA virus tentatively named wheat umbra-like virus in cereals. Moreover, a novel bi-segmented putative virus tentatively named wheat-associated vipovirus sharing low but significant similarity with both plant and fungal-associated viruses was identified. Additionally, a new putative fungal-associated tobamo-like virus and novel putative Mitovirus were discovered in wheat samples. The discovery and characterization of novel viral sequences associated with wheat is important to determine if these putative viruses may pose a threat to the wheat industry or have the potential to be used as new biological control agents for wheat pathogens either as wild-type or recombinant viruses.
Collapse
Affiliation(s)
| | | | - Shahideh Nouri
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA; (C.D.R.); (V.P.)
| |
Collapse
|
48
|
Moradi Z, Mehrvar M. Whole-Genome Characterization of Alfalfa Mosaic Virus Obtained from Metagenomic Analysis of Vinca minor and Wisteria sinensis in Iran: with Implications for the Genetic Structure of the Virus. THE PLANT PATHOLOGY JOURNAL 2021; 37:619-631. [PMID: 34897253 PMCID: PMC8666234 DOI: 10.5423/ppj.oa.10.2021.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
Alfalfa mosaic virus (AMV), an economically important pathogen, is present worldwide with a very wide host range. This work reports for the first time the infection of Vinca minor and Wisteria sinensis with AMV using RNA sequencing and reverse transcription polymerase chain reaction confirmation. De novo assembly and annotating of contigs revealed that RNA1, RNA2, and RNA3 genomic fragments consist of 3,690, 2,636, and 2,057 nucleotides (nt) for IR-VM and 3,690, 2,594, and 2,057 nt for IR-WS. RNA1 and RNA3 segments of IR-VM and IR-WS closely resembled those of the Chinese isolate HZ, with 99.23-99.26% and 98.04-98.09% nt identity, respectively. Their RNA2 resembled that of Canadian isolate CaM and American isolate OH-2-2017, with 97.96-98.07% nt identity. The P2 gene revealed more nucleotide diversity compared with other genes. Genes in the AMV genome were under dominant negative selection during evolution, and the P1 and coat protein (CP) proteins were subject to the strongest and weakest purifying selection, respectively. In the population genetic analysis based on the CP gene sequences, all 107 AMV isolates fell into two main clades (A, B) and isolates of clade A were further divided into three groups with significant subpopulation differentiation. The results indicated moderate genetic variation within and no clear geographic or genetic structure between the studied populations, implying moderate gene flow can play an important role in differentiation and distribution of genetic diversity among populations. Several factors have shaped the genetic structure and diversity of AMV: selection, recombination/reassortment, gene flow, and random processes such as founder effects.
Collapse
Affiliation(s)
- Zohreh Moradi
- Department of Plant Pathology, Faculty of Crop Sciences, Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari,
Iran
| | - Mohsen Mehrvar
- Department of Plant Pathology, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91779-1163, Mashhad,
Iran
| |
Collapse
|
49
|
Rieux A, Campos P, Duvermy A, Scussel S, Martin D, Gaudeul M, Lefeuvre P, Becker N, Lett JM. Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history. Sci Rep 2021; 11:21280. [PMID: 34711837 PMCID: PMC8553777 DOI: 10.1038/s41598-021-00518-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022] Open
Abstract
Emerging viral diseases of plants are recognised as a growing threat to global food security. However, little is known about the evolutionary processes and ecological factors underlying the emergence and success of viruses that have caused past epidemics. With technological advances in the field of ancient genomics, it is now possible to sequence historical genomes to provide a better understanding of viral plant disease emergence and pathogen evolutionary history. In this context, herbarium specimens represent a valuable source of dated and preserved material. We report here the first historical genome of a crop pathogen DNA virus, a 90-year-old African cassava mosaic virus (ACMV), reconstructed from small RNA sequences bearing hallmarks of small interfering RNAs. Relative to tip-calibrated dating inferences using only modern data, those performed with the historical genome yielded both molecular evolution rate estimates that were significantly lower, and lineage divergence times that were significantly older. Crucially, divergence times estimated without the historical genome appeared in discordance with both historical disease reports and the existence of the historical genome itself. In conclusion, our study reports an updated time-frame for the history and evolution of ACMV and illustrates how the study of crop viral diseases could benefit from natural history collections.
Collapse
Affiliation(s)
- Adrien Rieux
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France.
| | - Paola Campos
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50, 75005, Paris, France
| | | | - Sarah Scussel
- CIRAD, UMR PVBMT, 97410, St Pierre, La Réunion, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Cape Town, South Africa
| | - Myriam Gaudeul
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50, 75005, Paris, France
- Herbier national (P), Muséum national d'Histoire Naturelle, CP39, 57 Rue Cuvier, 75005, Paris, France
| | | | - Nathalie Becker
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, CP 50, 75005, Paris, France
| | | |
Collapse
|
50
|
Tan ST, Liu F, Lv J, Liu QL, Luo HM, Xu Y, Ma Y, Chen XJ, Lan PX, Chen HR, Cao MJ, Li F. Identification of two novel poleroviruses and the occurrence of Tobacco bushy top disease causal agents in natural plants. Sci Rep 2021; 11:21045. [PMID: 34702954 PMCID: PMC8548504 DOI: 10.1038/s41598-021-99320-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
Tobacco bushy top disease (TBTD) is a devastating tobacco disease in the southwestern region of China. TBTD in the Yunnan Province is often caused by co-infections of several plant viruses: tobacco bushy top virus (TBTV), tobacco vein distorting virus (TVDV), tobacco bushy top virus satellite RNA (TBTVsatRNA) and tobacco vein distorting virus-associated RNA (TVDVaRNA). Through this study, two new poleroviruses were identified in two TBTD symptomatic tobacco plants and these two novel viruses are tentatively named as tobacco polerovirus 1 (TPV1) and tobacco polerovirus 2 (TPV2), respectively. Analyses of 244 tobacco samples collected from tobacco fields in the Yunnan Province through RT-PCR showed that a total of 80 samples were infected with TPV1 and/or TPV2, and the infection rates of TPV1 and TPV2 were 8.61% and 29.51%, respectively. Thirty-three TPV1 and/or TPV2-infected tobacco samples were selected for further test for TBTV, TVDV, TBTVsatRNA and TVDVaRNA infections. The results showed that many TPV1 and/or TPV2-infected plants were also infected with two or more other assayed viruses. In this study, we also surveyed TBTV, TVDV, TBTVsatRNA and TVDVaRNA infections in a total of 1713 leaf samples collected from field plants belonging to 29 plant species in 13 plant families and from 11 provinces/autonomous regions in China. TVDV had the highest infection rates of 37.5%, while TVDVaRNA, TBTV and TBTVsatRNA were found to be at 23.0%, 12.4% and 8.1%, respectively. In addition, TVDV, TBTV, TBTVsatRNA and TVDVaRNA were firstly detected of co-infection on 10 plants such as broad bean, pea, oilseed rape, pumpkin, tomato, crofton weed etc., and 1 to 4 of the TBTD causal agents were present in the samples collected from Guizhou, Hainan, Henan, Liaoning, Inner mongolia and Tibet autonomous regions. The results indicated that TBTD causal agents are expanding its host range and posing a risk to other crop in the field.
Collapse
Affiliation(s)
- Song-Tao Tan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Qin-Li Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng-Ming Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiao-Jiao Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping-Xiu Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Hai-Ru Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| | - Meng-Ji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| | - Fan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|