1
|
Zhang J, Shen M, Yin Y, Chen Y, Deng X, Mo J, Zhou X, Lin J, Chen X, Xie X, Wu X, Chen X. Carnosic acid reduces lipid content, enhances gut health, and modulates microbiota composition and metabolism in diet-induced obese mice. Food Funct 2025; 16:1888-1902. [PMID: 39932492 DOI: 10.1039/d4fo04534c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Carnosic acid (CA) is a bioactive phenolic diterperne compound found in sage and rosemary. The present study investigated the beneficial effects of CA (50 and 100 mg per kg bw) in diet-induced obese mice and the underlying mechanisms of action. After the intervention, the physiology, lipid metabolism, and tissue morphology, as well as the inflammation, gut microbiota, and metabolomics in the colon were measured. We found that CA improved the composition and metabolism of the gut microbiota in obese mice, with Akkermansia being the dominant bacterium negatively correlated with obesity and various fecal metabolites. Regarding the intestinal barrier function, CA promoted the expression of tight junction proteins and inhibited the TLR4/MyD88/NF-κB signaling pathway in obese mice to alleviate colonic inflammation. These results suggest that CA improved multiple aspects of gut health in diet-induced obesity in mice, providing a scientific basis for future clinical studies in humans.
Collapse
Affiliation(s)
- Jing Zhang
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Mengzhu Shen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Yue Yin
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Yuru Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xianying Deng
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Jingyun Mo
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xiaoling Zhou
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Juanying Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xinxin Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xinwei Xie
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| | - Xian Wu
- Department of Kinesiology, Nutrition, and Health, Miami University, Oxford, Ohio 45056, USA.
| | - Xuexiang Chen
- School of Public Health, Guangzhou Medical University, Guangzhou 510642, Guangdong, P. R. China.
| |
Collapse
|
2
|
Hussein H, Van Remoortel S, Boeckxstaens GE. Irritable bowel syndrome: When food is a pain in the gut. Immunol Rev 2024; 326:102-116. [PMID: 39037230 DOI: 10.1111/imr.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Irritable bowel syndrome (IBS) is a chronic gastrointestinal condition associated with altered bowel habits and recurrent abdominal pain, often triggered by food intake. Current treatments focus on improving stool pattern, but effective treatments for pain in IBS are still lacking due to our limited understanding of pathophysiological mechanisms. Visceral hypersensitivity (VHS), or abnormal visceral pain perception, underlies abdominal pain development in IBS, and mast cell activation has been shown to play an important role in the development of VHS. Our work recently revealed that abdominal pain in response to food intake is induced by the sensitization of colonic pain-sensing neurons by histamine produced by activated mast cells following a local IgE response to food. In this review, we summarize the current knowledge on abdominal pain and VHS pathophysiology in IBS, we outline the work leading to the discovery of the role of histamine in abdominal pain, and we introduce antihistamines as a novel treatment option to manage chronic abdominal pain in patients with IBS.
Collapse
Affiliation(s)
- Hind Hussein
- Center for Intestinal Neuro-Immune Interactions, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Samuel Van Remoortel
- Center for Intestinal Neuro-Immune Interactions, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Center for Intestinal Neuro-Immune Interactions, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Yuan Y, Wang X, Huang S, Wang H, Shen G. Low-level inflammation, immunity, and brain-gut axis in IBS: unraveling the complex relationships. Gut Microbes 2023; 15:2263209. [PMID: 37786296 PMCID: PMC10549202 DOI: 10.1080/19490976.2023.2263209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder, and it has been shown that the etiology of irritable bowel syndrome is a multifactorial complex of neurological, inflammatory, and immunological changes. There is growing evidence of low-grade chronic inflammation in irritable bowel patients. The peripheral action response of their intestinal immune factors is integrated into the central nervous system, while the microbiota interacts with the brain-gut axis contributing to the development of low-grade chronic inflammation. The objective of this review is to present a discussion about the impact of immune-brain-gut axis-inflammation interactions on irritable bowel syndrome, its clinical relevance in the course of irritable bowel syndrome disease, and possible therapeutic modalities.
Collapse
Affiliation(s)
- Yi Yuan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiyang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shun Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guoming Shen
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Wilson B, Kanno T, Slater R, Rossi M, Irving PM, Lomer MC, Probert C, Mason AJ, Whelan K. Faecal and urine metabolites, but not gut microbiota, may predict response to low FODMAP diet in irritable bowel syndrome. Aliment Pharmacol Ther 2023; 58:404-416. [PMID: 37313992 DOI: 10.1111/apt.17609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/12/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND The low FODMAP diet (LFD) leads to clinical response in 50%-80% of patients with irritable bowel syndrome (IBS). It is unclear why only some patients respond. AIMS To determine if differences in baseline faecal microbiota or faecal and urine metabolite profiles may separate clinical responders to the diet from non-responders allowing predictive algorithms to be proposed. METHODS We recruited adults fulfilling Rome III criteria for IBS to a blinded randomised controlled trial. Patients were randomised to sham diet with a placebo supplement (control) or LFD supplemented with either placebo (LFD) or 1.8 g/d B-galactooligosaccharide (LFD/B-GOS), for 4 weeks. Clinical response was defined as adequate symptom relief at 4 weeks after the intervention (global symptom question). Differences between responders and non-responders in faecal microbiota (FISH, 16S rRNA sequencing) and faecal (gas-liquid chromatography, gas-chromatography mass-spectrometry) and urine (1 H NMR) metabolites were analysed. RESULTS At 4 weeks, clinical response differed across the 3groups with adequate symptom relief of 30% (7/23) in controls, 50% (11/22) in the LFD group and 67% (16/24) in the LFD/B-GOS group (p = 0.048). In the control and the LFD/B-GOS groups, microbiota and metabolites did not separate responders from non-responders. In the LFD group, higher baseline faecal propionate (sensitivity 91%, specificity 89%) and cyclohexanecarboxylic acid esters (sensitivity 80%, specificity 78%), and urine metabolite profile (Q2 0.296 vs. randomised -0.175) predicted clinical response. CONCLUSIONS Baseline faecal and urine metabolites may predict response to the LFD.
Collapse
Affiliation(s)
- Bridgette Wilson
- Department of Nutritional Sciences, King's College London, London, UK
- Department of Nutrition and Dietetics, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Tokuwa Kanno
- King's College London, Institute of Pharmaceutical Science, London, UK
| | - Rachael Slater
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| | - Megan Rossi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Peter M Irving
- Department of Gastroenterology, Guys and St Thomas' NHS Foundation Trust, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Miranda C Lomer
- Department of Nutritional Sciences, King's College London, London, UK
- Department of Nutrition and Dietetics, Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Chris Probert
- University of Liverpool, Institute of Systems, Molecular and Integrative Biology, Liverpool, UK
| | - A James Mason
- King's College London, Institute of Pharmaceutical Science, London, UK
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, London, UK
| |
Collapse
|
5
|
Dimitrova-Yurukova D, Boyanov N, Nakov V, Nakov R. Diagnosis and management of irritable bowel syndrome-like symptoms in ulcerative colitis. Folia Med (Plovdiv) 2022; 64:733-739. [PMID: 36876537 DOI: 10.3897/folmed.64.e66075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/29/2021] [Indexed: 03/07/2023] Open
Abstract
Both ulcerative colitis (UC) and irritable bowel syndrome (IBS) are chronic gastrointestinal (GI) conditions that show some typical features. Persistent GI symptoms typical for IBS are observed in patients with diagnosed UC. Both IBS and UC are characterised by dysregulation of the enteric nervous system, alterations in the gut flora, low-grade mucosal inflammation, and activation of the brain-gut axis. Therefore, it appears that there may be some overlap between the two conditions. It is rather difficult to tell if the lower gastrointestinal symptoms are secondary to coexisting IBS or a hidden UC condition.
Collapse
Affiliation(s)
| | - Nikola Boyanov
- Department of Gastroenterology, Pulmed University Hospital, Plovdiv, Bulgaria
| | | | | |
Collapse
|
6
|
Primary Cortical Cell Tri-Culture-Based Screening of Neuroinflammatory Response in Toll-like Receptor Activation. Biomedicines 2022; 10:biomedicines10092122. [PMID: 36140221 PMCID: PMC9495748 DOI: 10.3390/biomedicines10092122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
The activation of toll-like receptors (TLRs) in the central nervous system (CNS) can lead to neuroinflammation and contribute to many neurological disorders, including autoimmune diseases. Cell culture models are powerful tools for studying specific molecular and cellular mechanisms that contribute to these disease states and identifying potential therapeutics. However, most cell culture models have limitations in capturing biologically relevant phenomena, due in part to the non-inclusion of necessary cell types. Neurons, astrocytes, and microglia (critical cell types that play a role in neuroinflammation) all express at least a subset of TLRs. However, the response of each of these cell types to various TLR activation, along with their relative contribution to neuroinflammatory processes, is far from clear. In this study, we demonstrate the screening capabilities of a primary cortical cell tri-culture of neuron, astrocyte, and microglia from neonatal rats. Specifically, we compare the neuroinflammatory response of tri-cultures to that of primary neuron-astrocyte co-cultures to a suite of known TLR agonists. We demonstrate that microglia are required for observation of neurotoxic neuroinflammatory responses, such as increased cell death and apoptosis, in response to TLR2, 3, 4, and 7/8 activation. Additionally, we show that following TLR3 agonist treatment, microglia and astrocytes play opposing roles in the neuroinflammatory response, and that the observed response is dictated by the degree of TLR3 activation. Overall, we demonstrate that microglia play a significant role in the neuroinflammatory response to TLR activation in vitro and, hence, the tri-culture has the potential to serve as a screening platform that better replicates the in vivo responses.
Collapse
|
7
|
Mallaret G, Lashermes A, Meleine M, Boudieu L, Barbier J, Aissouni Y, Gelot A, Chassaing B, Gewirtz AT, Ardid D, Carvalho FA. Involvement of toll-like receptor 5 in mouse model of colonic hypersensitivity induced by neonatal maternal separation. World J Gastroenterol 2022; 28:3903-3916. [PMID: 36157543 PMCID: PMC9367235 DOI: 10.3748/wjg.v28.i29.3903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic abdominal pain is the most common cause for gastroenterology consultation and is frequently associated with functional gastrointestinal disorders including irritable bowel syndrome and inflammatory bowel disease. These disorders present similar brain/gut/microbiota trialogue alterations, associated with abnormal intestinal permeability, intestinal dysbiosis and colonic hypersensitivity (CHS). Intestinal dysbiosis can alter colon homeostasis leading to abnormal activation of the innate immunity that promotes CHS, perhaps involving the toll-like receptors (TLRs), which play a central role in innate immunity.
AIM To understand the mechanisms between early life event paradigm on intestinal permeability, fecal microbiota composition and CHS development in mice with TLRs expression in colonocytes.
METHODS Maternal separation model (NMS) CHS model, which mimics deleterious events in childhood that can induce a wide range of chronic disorders during adulthood were used. Colonic sensitivity of NMS mice was evaluated by colorectal distension (CRD) coupled with intracolonic pressure variation (IPV) measurement. Fecal microbiota composition was analyzed by 16S rRNA sequencing from weaning to CRD periods. TLR mRNA expression was evaluated in colonocytes. Additionally, the effect of acute intrarectal instillation of the TLR5 agonist flagellin (FliC) on CHS in adult naive wildtype mice was analyzed.
RESULTS Around 50% of NMS mice exhibited increased intestinal permeability and CHS associated with intestinal dysbiosis, characterized by a significant decrease of species richness, an alteration of the core fecal microbiota and a specific increased relative abundance of flagellated bacteria. Only TLR5 mRNA expression was increased in colonocytes of NMS mice with CHS. Acute intrarectal instillation of FliC induced transient increase of IPV, reflecting transient CHS appearance.
CONCLUSION Altogether, these data suggest a pathophysiological continuum between intestinal dysbiosis and CHS, with a role for TLR5.
Collapse
Affiliation(s)
- Geoffroy Mallaret
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Amandine Lashermes
- Department of Microbiology, Université Paris-Saclay, National Research Institute for Agriculture, Food and the Environment, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Mathieu Meleine
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Ludivine Boudieu
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Julie Barbier
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Youssef Aissouni
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Agathe Gelot
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Benoit Chassaing
- Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, INSERM U1016, CNRS UMR 8104, Université Paris Cité, Paris 75014, France
| | - Andrew T Gewirtz
- Center for Inflammation, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA30033, United States
| | - Denis Ardid
- Department of Pharmacology, UMR 1107 NeuroDol, University of Clermont Auvergne, Clermont-Ferrand 63000, France
| | - Frederic Antonio Carvalho
- Department of Pharmacology, INSERM 1107 NeuroDOL/University of Clermont Auvergne, Clermont-Ferrand 63000, France
| |
Collapse
|
8
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Peripheral apelin mediates visceral hypersensitivity and impaired gut barrier in a rat irritable bowel syndrome model. Neuropeptides 2022; 94:102248. [PMID: 35526468 DOI: 10.1016/j.npep.2022.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022]
Abstract
Growing evidence indicates that visceral hypersensitivity and impaired gut barrier play an important role in the pathophysiology of irritable bowel syndrome (IBS). In animal models, these changes are known to be mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4 (TLR4)-proinflammatory cytokine signaling. Apelin, an endogenous ligand of APJ, was reported to modulate CRF-induced enhanced colonic motility. In this context, we hypothesized that apelin also modulates visceral sensation and gut barrier, and tested this hypothesis. We measured visceral pain threshold in response to colonic balloon distention by abdominal muscle contractions assessed by electromyogram in rats. Colonic permeability was estimated by quantifying the absorbed Evans blue in colonic tissue. Intraperitoneal (ip) administration of [Ala13]-apelin-13, an APJ antagonist, blocked lipopolysaccharide (LPS)- or CRF-induced visceral hypersensitivity and colonic hyperpermeability (IBS model) in a dose-response manner. These inhibitory effects were blocked by compound C, an AMPK inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor or naloxone in the LPS model. On the other hand, ip [Pyr1]-apelin-13, an APJ agonist, caused visceral hypersensitivity and colonic hyperpermeability, and these effects were reversed by astressin, a CRF receptor antagonist, TAK-242, a TLR4 antagonist or anakinra, an interleukin-1 receptor antagonist. APJ system modulated CRF-TLR4-proinflammatory cytokine signaling to cause visceral hypersensitivity and colonic hyperpermeability. APJ antagonist blocked these GI changes in IBS models, which were mediated via AMPK, NO and opioid signaling. Apelin may contribute to the IBS pathophysiology, and the inhibition of apelinergic signaling may be a promising therapeutic option for IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
9
|
Pawlik RJ, Petrakova L, Brotte L, Engler H, Benson S, Elsenbruch S. Circulating Pro-inflammatory Cytokines Do Not Explain Interindividual Variability in Visceral Sensitivity in Healthy Individuals. Front Neurosci 2022; 16:876490. [PMID: 35860299 PMCID: PMC9289472 DOI: 10.3389/fnins.2022.876490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
A role of the immune system in the pathophysiology of pain and hyperalgesia has received growing attention, especially in the context of visceral pain and the gut-brain axis. While acute experimental inflammation can induce visceral hyperalgesia as part of sickness behavior in healthy individuals, it remains unclear if normal plasma levels of circulating pro-inflammatory cytokines contribute to interindividual variability in visceral sensitivity. We herein compiled data from a tightly screened and well-characterized sample of healthy volunteers (N = 98) allowing us to assess associations between visceral sensitivity and gastrointestinal symptoms, and plasma concentrations of three selected pro-inflammatory cytokines (i.e., TNF-α, IL-6, and IL-8), along with cortisol and stress-related psychological variables. For analyses, we compared subgroups created to have distinct pro-inflammatory cytokine profiles, modelling healthy individuals at putative risk or resilience, respectively, for symptoms of the gut-brain axis, and compared them with respect to rectal sensory and pain thresholds and subclinical GI symptoms. Secondly, we computed multiple regression analyses to test if circulating pro-inflammatory markers predict visceral sensitivity in the whole sample. Despite pronounced subgroup differences in pro-inflammatory cytokine and cortisol concentrations, we observed no differences in measures of visceroception. In regression analyses, cytokines did not emerge as predictors. The pain threshold was predicted by emotional state and trait variables, especially state anxiety, together explaining 10.9% of the variance. These negative results do not support the hypothesis that systemic cytokine levels contribute to normal interindividual variability in visceroception in healthy individuals. Trajectories to visceral hyperalgesia as key marker in disorders of gut-brain interactions likely involve complex interactions of biological and psychological factors in keeping with a psychosocial model. Normal variations in systemic cytokines do not appear to constitute a vulnerability factor in otherwise healthy individuals, calling for prospective studies in at risk populations.
Collapse
Affiliation(s)
- Robert J. Pawlik
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Liubov Petrakova
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
| | - Lisa Brotte
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Engler
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Benson
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Institute for Medical Education, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sigrid Elsenbruch
- Department of Medical Psychology and Medical Sociology, Ruhr University Bochum, Bochum, Germany
- Department of Neurology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Sigrid Elsenbruch,
| |
Collapse
|
10
|
Liu J, Wang B, Lai Q, Lu Y, Li L, Li Y, Liu S. Boosted growth performance, immunity, antioxidant capacity and disease resistance of crucian carp (Carassius auratus) by single or in combination dietary Bacillus subtilis and xylo-oligosaccharides. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109296. [PMID: 35189356 DOI: 10.1016/j.cbpc.2022.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
In this study, a total of 420 healthy crucian carp (9.77 ± 0.04 g) were randomly divided into CK, B·S, XOS and B·S + XOS group, and cultured for 8 weeks. Results showed that the dietary Bacillus subtilis (B. subtilis) and xylo-oligosaccharides (XOS) can significantly increased the final weight, weight gain, specific growth rate, feed efficiency, protein efficiency and survival rate of crucian carp. Dietary B. subtilis and XOS can significantly increased the activities of catalase, glutathione, superoxide dismutase and total antioxidant capacity, significantly decreased the contents of malondialdehyde, and significantly increased the activities of alkaline phosphatase, acid phosphatase, lysozyme and the contents of complement component 3,4 and immunoglobulin M in crucian carp serum. In addition, compared with CK group, the expression levels of TGF-β and IL-10 in B·S, XOS and B·S + XOS group were significantly increased, and the expression levels of TNF-α, HSP90, IL-1β, TLR4 and MyD88 were significantly decreased. Supplementation of B. subtilis and XOS can also improve the intestinal tissue morphology of crucian carp. After injection of 1 × 107 CFU/mL Aeromonas hydrophila (A. hydrophila), compared with CK group, the survival rates of the B·S group, the XOS group and the B·S + XOS group were increased by 13.98%, 10.56% and 30.74%, respectively. These results show that dietary B. subtilis and XOS can significantly improve the growth performance, antioxidant capacity, immunity and resistance to A. hydrophila of crucian carp, and the combined effect is better than that of single addition.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Bo Wang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Yuting Lu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Liang Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
11
|
Till SR, Nakamura R, Schrepf A, As-Sanie S. Approach to Diagnosis and Management of Chronic Pelvic Pain in Women. Obstet Gynecol Clin North Am 2022; 49:219-239. [DOI: 10.1016/j.ogc.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Burns GL, Talley NJ, Keely S. Immune responses in the irritable bowel syndromes: time to consider the small intestine. BMC Med 2022; 20:115. [PMID: 35354471 PMCID: PMC8969236 DOI: 10.1186/s12916-022-02301-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is considered a disorder of gut-brain interaction (DGBI), presenting as chronic abdominal pain and altered defaecation. Symptoms are often food related. Much work in the field has focused on identifying physiological, immune and microbial abnormalities in the colon of patients; however, evidence of small intestinal immune activation and microbial imbalance has been reported in small studies. The significance of such findings has been largely underappreciated despite a growing body of work implicating small intestinal homeostatic imbalance in the pathogenesis of DGBIs. MAIN TEXT Small intestinal mechanosensation is a characteristic feature of IBS. Furthermore, altered small intestinal barrier functions have been demonstrated in IBS patients with the diarrhoea-predominant subtype. Small intestinal bacterial overgrowth and increased populations of small intestinal mast cells are frequently associated with IBS, implicating microbial imbalance and low-grade inflammation in the pathogenesis of IBS. Furthermore, reports of localised food hypersensitivity responses in IBS patients implicate the small intestine as the site of immune-microbial-food interactions. CONCLUSIONS Given the association of IBS symptoms with food intake in a large proportion of patients and the emerging evidence of immune activation in these patients, the current literature suggests the pathogenesis of IBS is not limited to the colon but rather may involve dysfunction of the entire intestinal tract. It remains unclear if regional variation in IBS pathology explains the various symptom phenotypes and further work should consider the intestinal tract as a whole to answer this question.
Collapse
Affiliation(s)
- Grace L Burns
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Callaghan, New South Wales, Australia.,College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia.,Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nicholas J Talley
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Callaghan, New South Wales, Australia.,College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia.,Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Callaghan, New South Wales, Australia. .,College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia. .,Immune Health Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| |
Collapse
|
13
|
Piccione M, Facchinello N, Schrenk S, Gasparella M, Pathak S, Ammar RM, Rabini S, Dalla Valle L, Di Liddo R. STW 5 Herbal Preparation Modulates Wnt3a and Claudin 1 Gene Expression in Zebrafish IBS-like Model. Pharmaceuticals (Basel) 2021; 14:ph14121234. [PMID: 34959635 PMCID: PMC8704787 DOI: 10.3390/ph14121234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by chronic abdominal pain and stool irregularities. STW 5 has proven clinical efficacy in functional gastrointestinal disorders, including IBS, targeting pathways that suppress inflammation and protect the mucosa. Wnt signaling is known to modulate NF-kβ-dependent inflammatory cytokine production. This sparked the idea of evaluating the impact of STW 5 on the expression of inflammatory-response and Wnt/β catenin-target genes in an IBS-like model. Main methods: We used zebrafish and dextran sodium sulfate (DSS) treatment to model IBS-like conditions in vivo and in vitro and examined the effects of subsequent STW 5 treatment on the intestines of DSS-treated fish and primary cultured intestinal and neuronal cells. Gross gut anatomy, histology, and the expression of Wnt-signaling and cytokine genes were analyzed in treated animals and/or cells, and in controls. Key findings: DSS treatment up-regulated the expression of interleukin-8, tumor necrosis factor-α, wnt3a, and claudin-1 in explanted zebrafish gut. Subsequent STW 5 treatment abolished both the macroscopic signs of gut inflammation, DSS-induced mucosecretory phenotype, and normalized the DSS-induced upregulated expression of il10 and Wnt signaling genes, such as wnt3a and cldn1 in explanted zebrafish gut. Under inflammatory conditions, STW 5 downregulated the expression of the pro-inflammatory cytokine genes il1β, il6, il8, and tnfα while it upregulated the expression of the anti-inflammatory genes il10 and wnt3a in enteric neuronal cells in vitro. Significance: Wnt signaling could be a novel target for the anti-inflammatory and intestinal permeability-restoring effects of STW 5, possibly explaining its clinical efficacy in IBS.
Collapse
Affiliation(s)
- Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
| | - Nicola Facchinello
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (L.D.V.)
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
| | - Marco Gasparella
- Department of Pediatric Surgery, Ca’ Foncello Hospital, 31100 Treviso, Italy;
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India;
| | - Ramy M. Ammar
- BAYER Consumer Health, Global Medical Affairs, 64295 Darmstadt, Germany; (R.M.A.); (S.R.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafr-El Sheikh 33516, Egypt
| | - Sabine Rabini
- BAYER Consumer Health, Global Medical Affairs, 64295 Darmstadt, Germany; (R.M.A.); (S.R.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (N.F.); (L.D.V.)
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (M.P.); (S.S.)
- Correspondence: ; Tel.: +39-0498275636
| |
Collapse
|
14
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Chidambaram SB, Essa MM, Rathipriya AG, Bishir M, Ray B, Mahalakshmi AM, Tousif AH, Sakharkar MK, Kashyap RS, Friedland RP, Monaghan TM. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol Ther 2021; 231:107988. [PMID: 34536490 DOI: 10.1016/j.pharmthera.2021.107988] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The human microbiota comprises trillions of symbiotic microorganisms and is involved in regulating gastrointestinal (GI), immune, nervous system and metabolic homeostasis. Recent observations suggest a bidirectional communication between the gut microbiota and the brain via immune, circulatory and neural pathways, termed the Gut-Brain Axis (GBA). Alterations in gut microbiota composition, such as seen with an increased number of pathobionts and a decreased number of symbionts, termed gut dysbiosis or microbial intestinal dysbiosis, plays a prominent role in the pathogenesis of central nervous system (CNS)-related disorders. Clinical reports confirm that GI symptoms often precede neurological symptoms several years before the development of neurodegenerative diseases (NDDs). Pathologically, gut dysbiosis disrupts the integrity of the intestinal barrier leading to ingress of pathobionts and toxic metabolites into the systemic circulation causing GBA dysregulation. Subsequently, chronic neuroinflammation via dysregulated immune activation triggers the accumulation of neurotoxic misfolded proteins in and around CNS cells resulting in neuronal death. Emerging evidence links gut dysbiosis to the aggravation and/or spread of proteinopathies from the peripheral nervous system to the CNS and defective autophagy-mediated proteinopathies. This review summarizes the current understanding of the role of gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We also discuss novel therapeutic strategies targeting the modulation of gut dysbiosis through prebiotics, probiotics, synbiotics or dietary interventions, and faecal microbial transplantation (FMT) in the management of NDDs.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India.
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman; Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai 600 094, Tamil Nadu, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - A H Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rajpal Singh Kashyap
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, KY 40292, USA
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
17
|
Molina B, Mastroianni J, Suarez E, Soni B, Forsberg E, Finley K. Treatment with Bacterial Biologics Promotes Healthy Aging and Traumatic Brain Injury Responses in Adult Drosophila, Modeling the Gut-Brain Axis and Inflammation Responses. Cells 2021; 10:900. [PMID: 33919883 PMCID: PMC8070821 DOI: 10.3390/cells10040900] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Drosophila are widely used to study neural development, immunity, and inflammatory pathways and processes associated with the gut-brain axis. Here, we examine the response of adult Drosophila given an inactive bacteriologic (IAB; proprietary lysate preparation of Lactobacillus bulgaricus, ReseT®) and a probiotic (Lactobacillus rhamnosus, LGG). In vitro, the IAB activates a subset of conserved Toll-like receptor (TLR) and nucleotide-binding, oligomerization domain-containing protein (NOD) receptors in human cells, and oral administration slowed the age-related decline of adult Drosophila locomotor behaviors. On average, IAB-treated flies lived significantly longer (+23%) and had lower neural aggregate profiles. Different IAB dosages also improved locomotor function and longevity profiles after traumatic brain injury (TBI) exposure. Mechanistically, short-term IAB and LGG treatment altered baseline nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κβ) signaling profiles in neural and abdominal tissues. Overall, at select dosages, IAB and LGG exposure has a positive impact on Drosophila longevity, neural aging, and mild traumatic brain injury (TBI)-related responses, with IAB showing greater benefit. This includes severe TBI (sTBI) responses, where IAB treatment was protective and LGG increased acute mortality profiles. This work shows that Drosophila are an effective model for testing bacterial-based biologics, that IAB and probiotic treatments promote neuronal health and influence inflammatory pathways in neural and immune tissues. Therefore, targeted IAB treatments are a novel strategy to promote the appropriate function of the gut-brain axis.
Collapse
Affiliation(s)
- Brandon Molina
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| | - Jessica Mastroianni
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| | - Ema Suarez
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| | - Brijinder Soni
- Department Chemistry and Biohemistry, San Diego State University, San Diego, CA 92182, USA; (B.S.); (E.F.)
| | - Erica Forsberg
- Department Chemistry and Biohemistry, San Diego State University, San Diego, CA 92182, USA; (B.S.); (E.F.)
| | - Kim Finley
- Department of Biology, Shiley BioScience Center, San Diego State University, San Diego, CA 92182, USA; (B.M.); (J.M.); (E.S.)
| |
Collapse
|
18
|
Anton C, Ciobica A, Doroftei B, Maftei R, Ilea C, Darii Plopa N, Bolota M, Anton E. A Review of the Complex Relationship between Irritable Bowel Syndrome and Infertility. ACTA ACUST UNITED AC 2020; 56:medicina56110592. [PMID: 33172048 PMCID: PMC7694637 DOI: 10.3390/medicina56110592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Irritable bowel syndrome (IBS) is a gastrointestinal disease that negatively affects up to 20% of the population. Infertility is defined as a disorder of the reproductive system described by lack of success in achieving pregnancy after more than a year of regular unprotected sexual intercourse. The main purpose of our review was to analyze the available literature regarding the IBS-infertility connection. Another secondary purpose of the present paper was to find out if oxidative stress may be the missing puzzle that may explain this possible correlation. After analyzing the available literature we concluded that oxidative stress is a plausible mediator of the connection between both female and male fertility and IBS. However, the data lacks in direct evidence to confirm this hypothesis. Nevertheless, it is recommended that certain levels of oxidative stress should not be exceeded in order to decrease IBS symptoms and increase the odds of conception given that generation of reactive oxygen species (ROS) is an aftermath of metabolically active cells. Therefore, reducing the oxidative stress by living a healthier lifestyle with a balanced diet, rich in micronutrients, limited in caffeine and alcohol, avoiding smoking and maintaining a normal body mass index with regular physical exercise may promote fertility and help diminishing IBS symptomatology. Studies with measurements of biological samples are needed in order to assess the complex relationship between oxidative stress, IBS and infertility.
Collapse
Affiliation(s)
- Carmen Anton
- Department of Gastroenterology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 6th University Street, 700490 Iasi, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700490 Iasi, Romania
- Department Center of Biomedical Research, Romanian Academy, Iasi Branch, Nr. 8, Carol I Avenue, No. 8, 700490 Iasi, Romania
- Department of Biology, Academy of Romanian Scientists, Splaiul Independentei Nr. 54, Sector 5, 050094 Bucuresti, Romania
- Correspondence:
| | - Bogdan Doroftei
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 6th University Street, 700490 Iasi, Romania; (B.D.); (C.I.); (E.A.)
| | - Radu Maftei
- Clinical Department, Origyn Fertility Center, Palace Street, No 3C, 700032 Iasi, Romania;
| | - Ciprian Ilea
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 6th University Street, 700490 Iasi, Romania; (B.D.); (C.I.); (E.A.)
| | - Natalia Darii Plopa
- Department of of Obstetrics and Gynecology, Grand Hôpital De Charleroi, Avenue du Centenaries 73, 6061 Charleroi, Belgium;
| | - Maria Bolota
- Department of Obstetrics and Gynecology, Spitalul Clinic de Obstetrică și Ginecologie Cuza Vodă, 700032 Iasi, Romania;
| | - Emil Anton
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 6th University Street, 700490 Iasi, Romania; (B.D.); (C.I.); (E.A.)
| |
Collapse
|
19
|
Lee M, Hosseindoust A, Oh S, Ko H, Cho E, Sa S, Kim Y, Choi J, Kim J. Impact of an anti-Salmonella. Typhimurium Bacteriophage on intestinal microbiota and immunity status of laying hens. J Anim Physiol Anim Nutr (Berl) 2020; 105:952-959. [PMID: 32772452 DOI: 10.1111/jpn.13424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Typhoid is a distinct gastrointestinal disease that largely affects the public by consumption of inadequately or partially cooked eggs from contaminated laying hen farms. This has led the research on laying hens to focus on controlling the contamination by an effective anti-Salmonella spp. agent in the intestine. The treatments included, control, without challenge; PC, Salmonella typhimurium challenged (STC); BP5, 5 ppm bacteriophage/kg + STC; BP10, 10 ppm bacteriophage/kg + STC, on Salmonella shedding, body organs inflammatory reactions, and expression of toll-like receptor (TLR), pro-inflammatory cytokines, and heat shock protein (HSP) in the jejunum, liver,and thigh muscle in the STC laying hens. The RT-PCR method was used to enumerate the number of Salmonella typhimurium in the organs. The birds in the STC groups exhibited the increased population of Salmonella spp. in the excreta (p < .01). In the STC groups, the BP5 and BP10 laying hens exhibited a lower (p < .01) population of Salmonella spp. in the excreta at d 7 after STC. Supplementation of bacteriophage significantly decreased (p < .01) the colonization of S. Typhimurium in the spleen, oviduct, caecum and excreta. Among the STC treatments, the BP10 laying hens showed lower (p < .01) mRNA expression of interferon-γ (IFNγ) and TLR-4 in the jejunum compared with the PC treatment. After the STC, dietary supplementation with BP5 or BP10 decreased (p < .01) the mRNA expressions of IFNγ, HSP-27 and tumour necrosis factor-α in the liver compared with the PC treatment. These results suggest that bacteriophage can be used as an effective agent to decrease S. Typhimurium contamination in laying hens and possibly lower S. Typhimurium transfer to foods.
Collapse
Affiliation(s)
- MiJin Lee
- Poultry Science Division, Livestock Research Development, National Institute of Animal Science, RDA, Cheonan, Korea
| | | | - SeungMin Oh
- Gyeongsangbuk-do Livestock Research Institute, Yeongju, Korea
| | - HanSeo Ko
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Korea
| | - EunSeok Cho
- Poultry Science Division, Livestock Research Development, National Institute of Animal Science, RDA, Cheonan, Korea
| | - SooJin Sa
- Poultry Science Division, Livestock Research Development, National Institute of Animal Science, RDA, Cheonan, Korea
| | | | - JungWoo Choi
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Korea
| | - JinSoo Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
20
|
Ferreira AI, Garrido M, Castro-Poças F. Irritable Bowel Syndrome: News from an Old Disorder. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2020; 27:255-268. [PMID: 32775547 PMCID: PMC7383263 DOI: 10.1159/000503757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/20/2019] [Indexed: 12/16/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder, which can affect all members of a society, regardless of age, sex, race or socioeconomic status. Because of its high prevalence and chronic nature, it represents a significant economic burden. In fact, these patients have a relevant impairment of their quality of life, which limits their work productivity and daily social activities, especially when it is associated with other disorders, such as anxiety and depression. The diagnosis of IBS relies on symptom-based diagnostic criteria with normal results on a limited number of complementary tests that rule out other possible diagnoses. The aetiology of this condition is incompletely established. However, evidence suggests that it is a multifactorial disorder with several different mechanisms that have been implicated as responsible for the symptoms. Since the treatment strategy is usually based on predominant symptoms and their severity, it is important to recognise the underlying mechanisms in order to successfully relief the visceral pain and altered bowel habits. The aim of this non-systematic review of the literature was to explore the pathophysiology and treatment options of IBS, highlighting the most recent evidence, from the new Rome IV criteria to the new drug armamentarium.
Collapse
Affiliation(s)
- Ana Isabel Ferreira
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Mónica Garrido
- Department of Gastroenterology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Fernando Castro-Poças
- Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Gastroenterology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
21
|
β-Galactooligosaccharide in Conjunction With Low FODMAP Diet Improves Irritable Bowel Syndrome Symptoms but Reduces Fecal Bifidobacteria. Am J Gastroenterol 2020; 115:906-915. [PMID: 32433273 DOI: 10.14309/ajg.0000000000000641] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The low FODMAP diet (LFD) reduces symptoms and bifidobacteria in irritable bowel syndrome (IBS). β-galactooligosaccharides (B-GOS) may reduce the symptoms and increase bifidobacteria in IBS. We investigated whether B-GOS supplementation alongside the LFD improves IBS symptoms while preventing the decline in bifidobacteria. METHODS We performed a randomized, placebo-controlled, 3-arm trial of 69 Rome III adult patients with IBS from secondary care in the United Kingdom. Patients were randomized to a sham diet with placebo supplement (control) or LFD supplemented with either placebo (LFD) or 1.4 g/d B-GOS (LFD/B-GOS) for 4 weeks. Gastrointestinal symptoms, fecal microbiota (fluorescent in situ hybridization and 16S rRNA sequencing), fecal short-chain fatty acids (gas-liquid chromatography) and pH (probe), and urine metabolites (H NMR) were analyzed. RESULTS At 4 weeks, adequate symptom relief was higher in the LFD/B-GOS group (16/24, 67%) than in the control group (7/23, 30%) (odds ratio 4.6, 95% confidence interval: 1.3-15.6; P = 0.015); Bifidobacterium concentrations (log10 cells/g dry weight) were not different between LFD and LFD/B-GOS but were lower in the LFD/B-GOS (9.49 [0.73]) than in the control (9.77 [0.41], P = 0.018). A proportion of Actinobacteria was lower in LFD (1.9%, P = 0.003) and LFD/B-GOS (1.8%, P < 0.001) groups than in the control group (4.2%). Fecal butyrate was lower in the LFD (387.3, P = 0.028) and LFD/B-GOS (346.0, P = 0.007) groups than in the control group (609.2). DISCUSSION The LFD combined with B-GOS prebiotic produced a greater symptom response than the sham diet plus placebo, but addition of 1.4 g/d B-GOS did not prevent the reduction of bifidobacteria. The LFD reduces fecal Actinobacteria and butyrate thus strict long-term use should not be advised.
Collapse
|
22
|
Gut Microbiota Dysbiosis in Functional Dyspepsia. Microorganisms 2020; 8:microorganisms8050691. [PMID: 32397332 PMCID: PMC7285034 DOI: 10.3390/microorganisms8050691] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Functional dyspepsia (FD) is one of the most prevalent chronic functional gastrointestinal disorders. Several distinct pathophysiological mechanisms, including gastro duodenal motor disorders, visceral hypersensitivity, brain-gut interactions, duodenal subtle inflammation, and genetic susceptibility, have been implicated in the pathogenesis of the disease, so far. However, emerging evidence suggests that both quantitative and qualitative disturbances of the gastrointestinal microbiota may also be implicated. In this context, several studies have demonstrated differences of the commensal bacterial community between patients with FD and healthy controls, while others have shown that intestinal dysbiosis might associate with disease’s symptoms severity. Elucidating these complex interactions constituting the microbiota and host crosstalk, may eventually lead to the discovery of novel, targeted therapeutic approaches that may be efficacious in treating the multiple aspects of the disorder. In this review, we summarize the data of the latest research with focus on the association between gut microbiota alterations and host regarding the pathogenesis of FD.
Collapse
|
23
|
Balmus IM, Ciobica A, Cojocariu R, Luca AC, Gorgan L. Irritable Bowel Syndrome and Neurological Deficiencies: Is There A Relationship? The Possible Relevance of the Oxidative Stress Status. ACTA ACUST UNITED AC 2020; 56:medicina56040175. [PMID: 32295083 PMCID: PMC7230401 DOI: 10.3390/medicina56040175] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Background: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, exhibiting complex and controversial pathological features. Both oxidative stress and inflammation-related reactive oxygen species production may be involved in IBS pathological development. Thus, we focused on several aspects regarding the causes of oxidative stress occurrence in IBS. Additionally, in the molecular context of oxidative changes, we tried to discuss these possible neurological implications in IBS. Methods: The literature search included the main available databases (e.g., ScienceDirect, Pubmed/Medline, Embase, and Google Scholar). Articles in the English language were taken into consideration. Our screening was conducted based on several words such as “irritable bowel syndrome”, “gut brain axis”, “oxidative stress”, “neuroendocrine”, and combinations. Results: While no consistent evidence suggests clear pathway mechanisms, it seems that the inflammatory response may also be relevant in IBS. The mild implication of oxidative stress in IBS has been described through clinical studies and some animal models, revealing changes in the main markers such as antioxidant status and peroxidation markers. Moreover, it seems that the neurological structures involved in the brain-gut axis may be affected in IBS rather than the local gut tissue and functionality. Due to a gut-brain axis bidirectional communication error, a correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress can be suggested. Conclusions: Therefore, there is a possible correlation between neurological impairment, emotional over-responsiveness, mild inflammatory patterns, and oxidative stress that are not followed by tissue destruction in IBS patients. Moreover, it is not yet clear whether oxidative stress, inflammation, or neurological impairments are key determinants or in which way these three interact in IBS pathology. However, the conditions in which oxidative imbalances occur may be an interesting research lead in order to find possible explanations for IBS development.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, No. 11, 700506 Iași, Romania;
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
| | - Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Roxana Cojocariu
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| | - Alina-Costina Luca
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iași, Romania
- Correspondence: (A.C.); (A.-C.L.)
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700506 Iași, Romania; (R.C.); (L.G.)
| |
Collapse
|
24
|
Arredondo-Hernández R, Schmulson M, Orduña P, López-Leal G, Zarate AM, Alanis-Funes G, Alcaraz LD, Santiago-Cruz R, Cevallos MA, Villa AR, Ponce-de-León Rosales S, López-Vidal Y. Mucosal Microbiome Profiles Polygenic Irritable Bowel Syndrome in Mestizo Individuals. Front Cell Infect Microbiol 2020; 10:72. [PMID: 32266159 PMCID: PMC7098960 DOI: 10.3389/fcimb.2020.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/13/2020] [Indexed: 01/08/2023] Open
Abstract
Irritable bowel syndrome (IBS) is the most frequent functional gastrointestinal disorder, worldwide, with a high prevalence among Mestizo Latin Americans. Because several inflammatory disorders appear to affect this population, a further understanding of host genomic background variants, in conjunction with colonic mucosa dysbiosis, is necessary to determine IBS physiopathology and the effects of environmental pressures. Using a simple polygenic model, host single nucleotide polymorphisms (SNPs) and the taxonomic compositions of microbiota were compared between IBS patients and healthy subjects. As proof of concept, five IBS-Rome III patients and five healthy controls (HCs) were systematically studied. The human and bacterial intestinal metagenome of each subject was taxonomically annotated and screened for previously annotated IBS, ulcerative colitis, and Crohn's disease-associated SNPs or taxon abundance. Dietary data and fecal markers were collected and associated with the intestinal microbiome. However, more than 1,000 variants were found, and at least 76 SNPs differentiated IBS patients from HCs, as did associations with 4 phyla and 10 bacterial genera. In this study, we found elements supporting a polygenic background, with frequent variants, among the Mestizo population, and the colonic mucosal enrichment of Bacteroides, Alteromonas, Neisseria, Streptococcus, and Microbacterium, may serve as a hallmark for IBS.
Collapse
Affiliation(s)
- Rene Arredondo-Hernández
- Laboratorio de Microbioma, División de Estudios de Posgrado y División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Max Schmulson
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Orduña
- Laboratorio de Microbioma, División de Estudios de Posgrado y División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gamaliel López-Leal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Gerardo Alanis-Funes
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
| | - Luis David Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rubí Santiago-Cruz
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miguel A Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Antonio R Villa
- Laboratorio de Microbioma, División de Estudios de Posgrado y División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Samuel Ponce-de-León Rosales
- Laboratorio de Microbioma, División de Estudios de Posgrado y División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
25
|
Abstract
Irritable bowel syndrome (IBS) is an extremely common and often very debilitating chronic functional gastrointestinal disorder. Despite its prevalence, significant associated healthcare costs, and quality-of-life issues for affected individuals, our understanding of its etiology remained limited. However, it is now evident that microbial factors play key roles in IBS pathophysiology. Acute gastroenteritis following exposure to pathogens can precipitate the development of IBS, and studies have demonstrated changes in the gut microbiome in IBS patients. These changes may explain some of the symptoms of IBS, including visceral hypersensitivity, as gut microbes exert effects on the host immune system and gut barrier function, as well as the brain-gut axis. Microbial differences also appear to underlie the two main functional categories of IBS: diarrhea-predominant IBS (IBS-D) is associated with small intestinal bacterial overgrowth, which can be diagnosed by a positive hydrogen breath test, and constipation-predominant IBS (IBS-C) is associated with increased levels of methanogenic archaea, which can be diagnosed by a positive methane breath test. Mechanistically, the pathogens that cause gastroenteritis and trigger subsequent IBS development produce a common toxin, cytolethal distending toxin B (CdtB), and antibodies raised against CdtB cross-react with the cytoskeletal protein vinculin and impair gut motility, facilitating bacterial overgrowth. In contrast, methane gas slows intestinal contractility, which may facilitate the development of constipation. While antibiotics and dietary manipulations have been used to relieve IBS symptoms, with varying success, elucidating the specific mechanisms by which gut microbes exert their effects on the host may allow the development of targeted treatments that may successfully treat the underlying causes of IBS.
Collapse
Affiliation(s)
- Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Anthony Lembo
- Division of Gastroenterology, Beth Israel Deaconess Hospital, Boston, MA, USA
| |
Collapse
|
26
|
Andrews CN, Sidani S, Marshall JK. Clinical Management of the Microbiome in Irritable Bowel Syndrome. J Can Assoc Gastroenterol 2020; 4:36-43. [PMID: 33644675 PMCID: PMC7898379 DOI: 10.1093/jcag/gwz037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background A growing body of evidence suggests that dysbiosis contributes to the onset and symptomatology of irritable bowel syndrome (IBS) and other functional bowel disorders. Changes to the gastrointestinal microbiome may contribute to the underlying pathophysiology of IBS. Methods The present review summarizes the potential effects of microbiome changes on GI transit, intestinal barrier function, immune dysregulation and inflammation, gut–brain interactions and neuropsychiatric function. Results A multimodal approach to IBS management is recommended in accordance with current Canadian guidelines. Pharmacologic treatments are advised to target the presumed underlying pathophysiological mechanism, such as dysregulation of GI transit, peristalsis, intestinal barrier function and pain signalling. The management plan for IBS may also include treatments directed at dysbiosis, including dietary modification and use of probiotics, which may promote the growth of beneficial bacteria, affect intestinal gas production and modulate the immune response; and the administration of periodic short courses of a nonsystemic antibiotic such as rifaximin, which may re-establish microbiota diversity and improve IBS symptoms. Conclusion Dysregulated host–microbiome interactions are complex and the use of microbiome-directed therapies will necessarily be empiric in individual patients. A management algorithm comprising microbiome- and nonmicrobiome-directed therapies is proposed.
Collapse
Affiliation(s)
- Christopher N Andrews
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sacha Sidani
- Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - John K Marshall
- Department of Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Pluta L, Yousefi B, Damania B, Khan AA. Endosomal TLR-8 Senses microRNA-1294 Resulting in the Production of NFḱB Dependent Cytokines. Front Immunol 2019; 10:2860. [PMID: 31867014 PMCID: PMC6909240 DOI: 10.3389/fimmu.2019.02860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
The primary function of toll-like receptor 8 (TLR-8) is the detection of viruses and other microbial pathogens. Recent evidence suggests that TLR-8 also senses host microRNAs (miRNAs) and implicate TLR-8 in autoimmune disorders. This study examined the interaction between miR-1294 and TLR-8. We first performed a BLAST search to identify miRNAs with the same sequences as two core motifs of miR-1294. Next, we examined NFḱB activation induced by the binding of miR-1294 mimic to endosomal TLR-8. HEK-Blue™ hTLR-8 cells (Invivogen), a HEK293 cell line co-transfected with human TLR-8 gene, were incubated with miR-1294 mimic. A TLR-8 agonist ssRNA40, was used as a positive control. Using the same experimental set up, we also examined the effects of miR-1294 and its two core motifs (Integrated DNA Technologies) on IL-8, IL-1β, and TNFα. Data were analyzed using t-test or one-way ANOVA and Dunnets post-hoc test. Using miRCarta we identified 29 other mature human miRNAs or their precursors which contain the same core motifs as miR-1294. Our data show that miR-1294 activates NFḱB in cells expressing TLR-8 (p < 0.05). miR-1294, and its core motifs induce expression of IL-8, IL-1β, and TNFα via TLR8 activation (p < 0.05). This constitutes a novel mechanism by which endosomal TLR-8 senses host miRNAs resulting in the release of pro-inflammatory cytokines and thus potentially contributing to autoimmune disorders.
Collapse
Affiliation(s)
- Linda Pluta
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Babak Yousefi
- Department of Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Asma A Khan
- Department of Endodontics, Dental School, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
29
|
Yang J, Shang B, Shi H, Zhu S, Lu G, Dai F. The role of toll-like receptor 4 and mast cell in the ameliorating effect of electroacupuncture on visceral hypersensitivity in rats. Neurogastroenterol Motil 2019; 31:e13583. [PMID: 30916854 DOI: 10.1111/nmo.13583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 02/24/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Visceral hypersensitivity is one of the main pathogenesis of irritable bowel syndrome (IBS) and mast cell activation is closely related to visceral hypersensitivity. As a critical molecule of the innate immune system, toll-like receptor 4 (TLR4) may modulate the activation of mast cell. Alleviating effect of electroacupuncture (EA) on visceral hypersensitivity has been proved, whereas, whether the TLR4 and mast cell is involved in this process remains unclear. METHODS Forty Sprague-Dawley rats were randomly divided into five groups: control group, model group, EA group, sham EA group, and mast cell stabilizer (MCS) group. Visceral sensitivity during colorectal distension was assessed by the measurement of visceral motor reflex (VMR). TLR4 mRNA and protein expression were assessed by real-time PCR and immunohistochemistry, respectively. Mast cell number and mast cell tryptase (MCT) expression were detected. The level of inflammatory cytokine in serum was detected with ELISA. KEY RESULTS Visceral sensitivity was significantly higher in the model group than in the control group. EA and MCS significantly reduced VMR score at 0.8 mL and 1.2 mL distention pressures. Compared with model group, TLR4 mRNA expression, the protein expression of TLR4 and MCT, and the number of mast cells with degranulation in the colonic tissue, serum concentration of IL-1β and IL-8 were all significantly decreased in EA and MCS group. CONCLUSIONS & INFERENCES Electroacupuncture ameliorated visceral hypersensitivity in colon-sensitized model probably via decreasing the level of pro-inflammatory cytokines released by mast cell which were decreased when the TLR4 expression in the colonic tissue was downregulated by EA.
Collapse
Affiliation(s)
- Juan Yang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China.,Department of Gastroenterology, Xi'an No.3 Hospital, Xi'an, China
| | - Boxin Shang
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China.,Department of Gastroenterology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Haitao Shi
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Shanshan Zhu
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Guolong Lu
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Fei Dai
- Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| |
Collapse
|
30
|
Activation of Peripheral Blood CD4+ T-Cells in IBS is not Associated with Gastrointestinal or Psychological Symptoms. Sci Rep 2019; 9:3710. [PMID: 30842618 PMCID: PMC6403230 DOI: 10.1038/s41598-019-40124-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Immune activation may underlie the pathogenesis of irritable bowel syndrome (IBS), but the evidence is conflicting. We examined whether peripheral CD4+ T-cells from IBS patients demonstrated immune activation and changes in cytokine production. To gain mechanistic insight, we examined whether immune activation correlated with psychological stress and changing symptoms over time. IBS patients (n = 29) and healthy volunteers (HV; n = 29) completed symptom and psychological questionnaires. IBS patients had a significant increase in CD4+ T-cells expressing the gut homing marker integrin β7 (p = 0.023) and lymphoid marker CD62L (p = 0.026) compared to HV. Furthermore, phytohaemagglutinin stimulated CD4+ T-cells from IBS-D patients demonstrated increased TNFα secretion when compared to HV (p = 0.044). Increased psychological scores in IBS did not correlate with TNFα production, while stress hormones inhibited cytokine secretion from CD4+ T-cells of HV in vitro. IBS symptoms, but not markers of immune activation, decreased over time. CD4+ T-cells from IBS-D patients exhibit immune activation, but this did not appear to correlate with psychological stress measurements or changing symptoms over time. This could suggest that immune activation is a surrogate of an initial trigger and/or ongoing parallel peripheral mechanisms.
Collapse
|
31
|
Yu LM, Zhao KJ, Wang SS, Wang X, Lu B. Corticotropin-releasing factor induces inflammatory cytokines via the NLRP6-inflammatory cytokine axis in a murine model of irritable bowel syndrome. J Dig Dis 2019; 20:143-151. [PMID: 30663229 DOI: 10.1111/1751-2980.12704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to determine the effect of corticotropin-releasing factor (CRF) on regulating the NOD-like receptor pyrin domain-containing protein 6 (NLRP6)-inflammatory cytokine axis in a murine model of irritable bowel syndrome (IBS). METHODS C57BL/6 mice were subjected to water avoidance stress (WAS) for 1 h per day for 10 days, and the abdominal withdrawal reflex (AWR) and colonic inflammation were assessed. We also measured the levels of CRF, NLRP6 inflammasome components, myeloperoxidase, D-lactate, interleukin (IL)-1β, and IL-18. In vitro experiments with Caco-2 cell line were also performed. In addition, we assessed the effect of Clostridium butyricum (C. butyricum) on IBS mice. RESULTS IBS mice exhibited visceral hypersensitivity and inflammation, accompanied by increases in CRF, myeloperoxidase, D-lactate, IL-1β, and IL-18 levels, but a decrease in NLRP6 expression. In vitro data showed that CRF suppressed NLRP6, but induced IL-1β and IL-18 levels, in Caco-2 cells. C. butyricum restored CRF levels and maintained the NLRP6-inflammatory cytokine axis in IBS mice. CONCLUSIONS CRF induces the NLRP6-inflammatory cytokine axis in IBS mice. C. butyricum could be beneficial in controlling IBS.
Collapse
Affiliation(s)
- Lei Min Yu
- Department of Gastroenterology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China.,Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Ke Jia Zhao
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Shuang Shuang Wang
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xi Wang
- The Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Bin Lu
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
32
|
Burns G, Carroll G, Mathe A, Horvat J, Foster P, Walker MM, Talley NJ, Keely S. Evidence for Local and Systemic Immune Activation in Functional Dyspepsia and the Irritable Bowel Syndrome: A Systematic Review. Am J Gastroenterol 2019; 114:429-436. [PMID: 30839392 DOI: 10.1038/s41395-018-0377-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Subtle histopathologic features such as eosinophilia and increased mast cells have been observed in functional gastrointestinal disorders (FGIDs), including functional dyspepsia (FD) and the irritable bowel syndrome (IBS). The mechanisms that drive recruitment of these cells to the gastrointestinal tract remain unexplained, largely due to the heterogeneity in phenotypes among patients diagnosed with such conditions. We aimed to systematically review the literature and collate the evidence for immune activation in FD and IBS, and where possible, detail the nature of activation. METHODS Seven literature databases were searched using the keywords: 'functional gastrointestinal disorder', FGID, 'functional dyspepsia', 'non-ulcer dyspepsia', 'idiopathic dyspepsia', 'irritable bowel syndrome', IBS and 'immun*'. RESULTS Fifty-one papers reporting discordant immune features met the selection criteria for this review. Changes in lymphocyte populations, including B and T lymphocyte numbers and activation status were reported in IBS and FD, in conjunction with duodenal eosinophilia in FD and increased colonic mast cells in IBS. Increases in circulating α4+β7+ gut-homing T cells appear to be linked to the pathophysiology of both FD and IBS. Studies in the area are complicated by poor phenotyping of patients into subgroups and the subtle nature of the immune activity involved in FD and IBS. CONCLUSIONS Alterations in proportions of gut-homing T lymphocytes in both FD and IBS indicate that a loss of mucosal homeostasis may drive the symptoms of FD and IBS. There is indirect evidence that Th17 responses may play a role in FGIDs, however the evidence for a Th2 immune phenotype in FD and IBS is limited. Although immune involvement is evident, large, well-characterised patient cohorts are required to elucidate the immune mechanisms driving the development of FGIDs.
Collapse
Affiliation(s)
- Grace Burns
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, NSW, Australia
| | - Georgia Carroll
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, NSW, Australia
- School of Medicine & Public Health, Faculty of Health & Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Andrea Mathe
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, NSW, Australia
| | - Jay Horvat
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia
| | - Paul Foster
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia
| | - Marjorie M Walker
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, NSW, Australia
- School of Medicine & Public Health, Faculty of Health & Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J Talley
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, NSW, Australia
- School of Medicine & Public Health, Faculty of Health & Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
33
|
Calcium Pyruvate Exerts Beneficial Effects in an Experimental Model of Irritable Bowel Disease Induced by DCA in Rats. Nutrients 2019; 11:nu11010140. [PMID: 30634696 PMCID: PMC6356508 DOI: 10.3390/nu11010140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Pyruvate is a normal constituent of the body that participates in carbohydrate metabolism and functions as a scavenger of free radicals. Calcium pyruvate monohydrate (CPM) is a more stable derivative that has proved its anti-inflammatory effect in experimental colitis, among other disorders, and that could also be considered a source of calcium. Thus, it would be useful for the treatment of diseases with an inflammatory component and a high prevalence of osteoporosis like the irritable bowel syndrome (IBS). The aim of the present study is to evaluate the effects of CPM in a rat model of chronic post-inflammatory visceral pain induced by deoxycholic acid (DCA) that resembles IBS. Rats were administered DCA for three days intracolonically and then treated daily with CPM (40 and 100 mg/kg) or gabapentin (70 mg/kg) (positive control) by oral gavage for 17 days. The treatments reduced the visceral hypersensitivity measured by response to colorectal distension and referred pain. DCA induced changes in the colonic immune response characterized by increased expression of the cytokine Il-1β and the inducible enzyme Cox-2, which was reduced by the treatments. DCA also decreased the gut expression of the mucins Muc-2 and Muc-3, which was normalized by CPM, whereas gabapentin only increased significantly Muc-3. Moreover, DCA increased the expression of Tlr3, which was decreased to basal levels by all the treatments. However, the serotonin receptor Htr-4, which was also elevated, was not affected by any of the treatments, indicating no effect through this signalling pathway. In conclusion, CPM ameliorated the visceral hypersensitivity and the referred pain caused by DCA, being as effective as the control drug. Furthermore, it improved the immune status of the animals, which could contribute to the visceral analgesia and the regeneration of the intestinal epithelial barrier integrity.
Collapse
|
34
|
Popa SL, Leucuta DC, Dumitrascu DL. Pressure management as an occupational stress risk factor in irritable bowel syndrome: A cross-sectional study. Medicine (Baltimore) 2018; 97:e13562. [PMID: 30544474 PMCID: PMC6310607 DOI: 10.1097/md.0000000000013562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Irritable Bowel Syndrome (IBS) is the most prevalent functional gastrointestinal disorder. Psychosocial stress is one of the pathogenic factors involved in the pathogenesis of IBS. The Pressure Management Indicator (PMI) is a validated questionnaire to analyze all aspects of occupational stress-a model involving sources of pressure, the mechanisms of coping, the personality, and the resulting effects of the interaction between these 3 elements. The purpose of this study was to analyze the association between socio-professional stress effects in IBS, and the relationship of IL-6 levels and salivary cortisol with occupational stress.We conducted a prospective cross-sectional study on 76 patients (39 patients with IBS, diagnosed according to the Rome III criteria and 37 healthy controls) who were investigated using a validated self-administered questionnaire: PMI. The biologic markers of chronic stress were analyzed using salivary cortisol and the immune response with serum interleukin 6 (IL-6).The IBS patients corresponded to the following subtypes: diarrhea-predominant: 22, constipation-predominant: 14 and mixed: 3. All the socio-professional pressure effects variables and scales were statistically significant, in an inversely proportional relation with IBS. Lower scores (poor effects) were found in IBS subjects. The adjusted odds ratios of having IBS versus healthy subjects for the socio-professional pressure effects scales were: 0.81 (95% confidence interval (CI) 0.72-0.88), for satisfaction, 0.85 (95% CI 0.78-0.91) for organization, 0.85 (95% CI 0.79-0.91) for mental wellbeing and 0.8 (95% CI 0.71-0.87) for physical wellbeing (P <.001). Also, the serum IL-6 levels were significantly higher in IBS than in controls (p < 0.001). There was no statistical difference between the salivary levels of cortisol between IBS patients and controls (P = .898).The level of occupational stress was higher in IBS patients compared to healthy subjects (socio-professional stress effects were lower in IBS patients) and correlated with IL-6 levels. Salivary cortisol was not associated with occupational pressure management.
Collapse
Affiliation(s)
| | - Daniel Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | |
Collapse
|
35
|
Duan J, Liang S, Feng L, Yu Y, Sun Z. Silica nanoparticles trigger hepatic lipid-metabolism disorder in vivo and in vitro. Int J Nanomedicine 2018; 13:7303-7318. [PMID: 30519016 PMCID: PMC6233484 DOI: 10.2147/ijn.s185348] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background As a promising nanocarrier in biomedical fields, silica nanoparticles (SiNPs) could transfer from the circulatory system to multiple organs. Among these, blood–liver molecular exchange is a critical factor in biological response to NPs. However, the potential effect of SiNPs on hepatic lipid metabolism is unclear. In this study, we employed three models to attempt discover whether and how SiNPs disturb hepatic lipid metabolism in vivo and in vitro. Methods Firstly we used ICR mice models to evaulated the effects of SiNPs on the serum and hepatic lipid levels through repeated intravenous administration, meanwhile, the protein expressions of protein markers of lipogenesis (ACC1 and FAS), the key enzyme of fatty acid β-oxidation, CPT1A,and leptin levels in liver were detected by western blot. For verification studies, the model organism zebrafish and cultured hepatic L02 cells were further performed. The TLR5 and adipocytokine-signaling pathway were verified. Results Inflammatory cell infiltration and mild steatosis induced by SiNPs were observed in the liver. Cholesterol, triglyceride, and low-density lipoprotein cholesterol levels were elevated significantly in both blood serum and liver tissue, whereas the ratio of high-density:low-density lipoprotein cholesterol was markedly decreased. Protein markers of lipogenesis (ACC1 and FAS) were elevated significantly in liver tissue, whereas the key enzyme of fatty acid β-oxidation, CPT1A, was decreased significantly. Interestingly, leptin levels in the SiNP-treated group were also elevated markedly. In addition, SiNPs caused hepatic damage and steatosis in zebrafish and enhanced hyperlipemia in high-cholesterol diet zebrafish. Similarly, SiNPs increased the release of inflammatory cytokines (IL1β, IL6, IL8, and TNFα) and activated the TLR5-signaling pathway in hepatic L02 cells. Conclusion In summary, our study found that SiNPs triggered hyperlipemia and hepatic steatosis via the TLR5-signaling pathway. This suggests that regulation of TLR5 could be a novel therapeutic target to reduce side effects of NPs in living organisms.
Collapse
Affiliation(s)
- Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China, ; .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China, ;
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China, ; .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China, ;
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China, ; .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China, ;
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China, ; .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China, ;
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, PR China, ; .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, PR China, ;
| |
Collapse
|
36
|
Shukla R, Ghoshal U, Ranjan P, Ghoshal UC. Expression of Toll-like Receptors, Pro-, and Anti-inflammatory Cytokines in Relation to Gut Microbiota in Irritable Bowel Syndrome: The Evidence for Its Micro-organic Basis. J Neurogastroenterol Motil 2018; 24:628-642. [PMID: 30347939 PMCID: PMC6175562 DOI: 10.5056/jnm18130] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background/Aims A Subset of patients with irritable bowel syndrome (IBS) may have mild inflammation due to immune activation. Toll-like receptors (TLRs) and cytokines may cause intestinal inflammation. We studied their expression in relation to gut microbiota. Methods Expression of TLRs and cytokines was assessed in 47 IBS patients (Rome III) and 25 controls using quantitative real-time polymerase chain reaction. Immunohistochemistry was further performed to confirm the expression of TLR-4 and TLR-5. Results Of 47 patients with IBS, 20 had constipation (IBS-C), 20 diarrhea (IBS-D), and 7 unclassified (IBS-U). The mRNA levels of TLR-4 and TLR-5 were up-regulated in IBS patients than controls (P = 0.013 and P < 0.001, respectively). Expression of TLR-4 and TLR-5 at protein level was 4.2-folds and 6.6-folds higher in IBS-D than controls. The mRNA levels of IL-6 (P = 0.003), C-X-C motif chemokine ligand 11 (CXCL-11) (P < 0.001) and C-X-C motif chemokine receptor 3 (CXCR-3) (P < 0.001) were higher among IBS patients than controls. Expression of IL-6 (P = 0.002), CXCL-11 (P < 0.001), and CXCR-3 (P < 0.001) were up-regulated and IL-10 (P = 0.012) was down-regulated in IBS-D patients than controls. Positive correlation was seen between TLR-4 and IL-6 (P = 0.043), CXCR-3, and CXCL-11 (P = 0.047), and IL-6 and CXCR-3 (P = 0.003). Stool frequency per week showed positive correlation with mRNA levels of TLR-4 (P = 0.016) and CXCR-3 (P = 0.005), but inversely correlated with IL-10 (P = 0.002). Copy number of Lactobacillus (P = 0.045) and Bifidobacterium (P = 0.011) showed correlation with IL-10 in IBS-C, while Gram-positive (P = 0.031) and Gram-negative bacteria (P = 0.010) showed correlation with CXCL-11 in IBS-D patients. Conclusions Altered immune activation in response to dysbiotic microbiota may promote intestinal inflammation in a subset of patients with IBS.
Collapse
Affiliation(s)
- Ratnakar Shukla
- Departments of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ujjala Ghoshal
- Departments of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhat Ranjan
- Departments of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Uday C Ghoshal
- Departments of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
37
|
Suzuki S, Gotoda T, Kusano C, Ikehara H, Miyakoshi Y, Fujii K. Effect of Ubiquinol Intake on Defecation Frequency and Stool Form: A Prospective, Double-Blinded, Randomized Control Study. J Med Food 2018; 22:81-86. [PMID: 30192695 DOI: 10.1089/jmf.2018.4233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bowel habits affect the quality of life (QOL) of patients with functional gastrointestinal disorders. This study evaluated the effects of reduced form coenzyme Q 10 (ubiquinol) intake on defecation frequency and stool form in patients with daily abdominal symptoms. This was a single-center, prospective, double-blind, randomized control study. Forty-one patients who had the daily symptom of constipation or diarrhea were randomly assigned at a 1:1 ratio to receive either ubiquinol (150 mg/day) or placebo for 12 weeks. Patients completed a daily diary to collect information regarding their numbers of defecations and stool forms according to the Bristol Stool Form (BSF) Scale for 7 days at baseline and 12 weeks. QOL was assessed using the 36-item short-form (SF-36) at baseline and 12 weeks. Twenty-one patients were assigned to the ubiquinol group, and 20 were assigned to the placebo group. At 12 weeks, the mean defecation frequency, compared to baseline, significantly decreased in the ubiquinol group (-0.1 times/day, P = .034) and increased in the placebo group (+0.3 times/day, P = .004). There was no significant change in the 12-week BSF Scale score of the ubiquinol group (+0.2, P = .123), whereas that of the placebo group was increased (+0.5, P < .001). The 12-week general health perception SF-36 score was significantly increased in the ubiquinol group (+3.5, P = .045), whereas there was no significant difference in that score in the placebo group (+1.2, P = .178). In conclusion, taking ubiquinol for 12 weeks decreased defecation frequencies and increased the QOL score, suggesting that ubiquinol may change the bowel habits and improve QOL in patients with abdominal distress.
Collapse
Affiliation(s)
- Sho Suzuki
- 1 Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takuji Gotoda
- 1 Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Chika Kusano
- 1 Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hisatomo Ikehara
- 1 Division of Gastroenterology and Hepatology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.,2 Department of Gastroenterology, Yuri Kumiai General Hospital, Akita, Japan
| | - Yo Miyakoshi
- 3 Supplemental Nutrition Division, Kaneka Corporation, Tokyo, Japan
| | - Kenji Fujii
- 3 Supplemental Nutrition Division, Kaneka Corporation, Tokyo, Japan
| |
Collapse
|
38
|
Lazaridis N, Germanidis G. Current insights into the innate immune system dysfunction in irritable bowel syndrome. Ann Gastroenterol 2018; 31:171-187. [PMID: 29507464 PMCID: PMC5825947 DOI: 10.20524/aog.2018.0229] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder associated with abdominal pain and alterations in bowel habits. The presence of IBS greatly impairs patients' quality of life and imposes a high economic burden on the community; thus, there is intense pressure to reveal its elusive pathogenesis. Many etiological mechanisms have been implicated, but the pathophysiology of the syndrome remains unclear. As a result, novel drug development has been slow and no pharmacological intervention is universally accepted. A growing evidence implicates the role of low-grade inflammation and innate immune system dysfunction, although contradictory results have frequently been presented. Mast cells (MC), eosinophils and other key immune cells together with their mediators seem to play an important role, at least in subgroups of IBS patients. Cytokine imbalance in the systematic circulation and in the intestinal mucosa may also characterize IBS presentation. Toll-like receptors and their emerging role in pathogen recognition have also been highlighted recently, as dysregulation has been reported to occur in patients with IBS. This review summarizes the current knowledge regarding the involvement of any immunological alteration in the development of IBS. There is substantial evidence to support innate immune system dysfunction in several IBS phenotypes, but additional studies are required to better clarify the underlying pathogenetic pathways. IBS heterogeneity could potentially be attributed to multiple causes that lead to different disease phenotypes, thus explaining the variability found between study results.
Collapse
Affiliation(s)
- Nikolaos Lazaridis
- Gastroenterology Department, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Georgios Germanidis
- Gastroenterology Department, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
39
|
Li D, Zheng J, Hu Y, Hou H, Hao S, Liu N, Wang Y. Amelioration of Intestinal Barrier Dysfunction by Berberine in the Treatment of Nonalcoholic Fatty Liver Disease in Rats. Pharmacogn Mag 2017; 13:677-682. [PMID: 29200733 PMCID: PMC5701411 DOI: 10.4103/pm.pm_584_16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/01/2017] [Indexed: 12/20/2022] Open
Abstract
Objective: To investigate the effect of berberine (BBR) on intestinal barrier function in nonalcoholic fat liver disease (NAFLD) in rats. Materials and Methods: Rats were divided into three groups: normal diet group (control group [CON group]), high-fat diet feeding group (HFD group), and HFD with BBR group. After 8 weeks of HFD feeding, rats in the BBR group were given BBR intragastrically at a dose of 150 mg/kg daily for 4 weeks. The same volume of normal saline was given to the CON and HFD groups. Liver index was detected, and Sudan black B staining was used to study fatty degeneration, also the expression level of occluding and intestinal flora was analyzed. Results: BBR administration significantly reduced HFD-induced increase in body weight (CON group: 379.83 ± 61.51 g, HFD group: 485.24 ± 50.15 g, and BBR group: 428.60 ± 37.37 g). It obviously alleviated the HFD-induced liver fatty degeneration and histopathological changes of intestinal mucosa according to liver index low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, and total cholesterol (P < 0.05). The triglyceride, alanine transaminase, and aspartate aminotransferase levels were greatly elevated after BBR treatment (P < 0.05); while endotoxin, intestinal fatty acid-binding protein, and tumor necrosis factor-α were significantly reduced (P < 0.05). Moreover, we found that BBR could obviously elevate the level of occludin and decrease the level of Faecalibacterium prausnitzii and upregulate the level of bacteroides. Conclusion: BBR provides significant protection in NAFLD through ameliorating intestinal barrier function. SUMMARY Berberine (BBR), an alkaloid that can be isolated from many plants, has been medically used for its wide range of antimicrobial and anti-inflammatory effects This is a study of BBR on liver function and intestinal barrier function in nonalcoholic fat liver disease (NAFLD) BBR treatment for NAFLD could significantly restore the liver function and provide significant protection in NAFLD through ameliorating intestinal barrier function.
Abbreviations used: BBR: Berberine, NAFLD: Nonalcoholic fat liver disease, ALT: Alanine transaminase, AST: Aspartate aminotransferase, TG: Triglyceride, I-FABP: Intestinal-fatty acid-binding protein, IBD: Inflammatory bowel disease.
Collapse
Affiliation(s)
- Donghao Li
- Department of Gastroenterology, Affiliated Hospital of Hebei University of Engineering, Handan 056038, China
| | - Jimin Zheng
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yiting Hu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Hongtao Hou
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Shurong Hao
- Department of Infectious Diseases, Handan County Hospital, Handan 056001, China
| | - Na Liu
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang 050051, China
| | - Yuzhen Wang
- Department of Gastroenterology, Hebei General Hospital, Shijiazhuang 050051, China
| |
Collapse
|
40
|
Bayer SB, Gearry RB, Drummond LN. Putative mechanisms of kiwifruit on maintenance of normal gastrointestinal function. Crit Rev Food Sci Nutr 2017; 58:2432-2452. [PMID: 28557573 DOI: 10.1080/10408398.2017.1327841] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kiwifruits are recognized as providing relief from constipation and symptoms of constipation-predominant irritable bowel syndrome (IBS-C). However, the underlying mechanisms, specifically in regards to gastrointestinal transit time and motility, are still not completely understood. This review provides an overview on the physiological and pathophysiological processes underlying constipation and IBS-C, the composition of kiwifruit, and recent advances in the research of kiwifruit and abdominal comfort. In addition, gaps in the research are highlighted and scientific studies of other foods with known effects on the gastrointestinal tract are consulted to find likely mechanisms of action. While the effects of kiwifruit fiber are well documented, observed increases in gastrointestinal motility caused by kiwifruit are not fully characterized. There are a number of identified mechanisms that may be activated by kiwifruit compounds, such as the induction of motility via protease-activated signaling, modulation of microflora, changes in colonic methane status, bile flux, or mediation of inflammatory processes.
Collapse
Affiliation(s)
- Simone Birgit Bayer
- a Department of Pathology , Center for Free Radical Research, University of Otago , 2 Riccarton Avenue, PO Box 4345, Christchurch , New Zealand
| | - Richard Blair Gearry
- b Department of Medicine , University of Otago , 2 Riccarton Avenue, PO Box 4345, Christchurch , New Zealand
| | - Lynley Ngaio Drummond
- c Drummond Food Science Advisory Ltd. , 1137 Drain Road, Killinchy RD 2, Leeston , New Zealand
| |
Collapse
|
41
|
Chandrashekaran V, Seth RK, Dattaroy D, Alhasson F, Ziolenka J, Carson J, Berger FG, Kalyanaraman B, Diehl AM, Chatterjee S. HMGB1-RAGE pathway drives peroxynitrite signaling-induced IBD-like inflammation in murine nonalcoholic fatty liver disease. Redox Biol 2017; 13:8-19. [PMID: 28551086 PMCID: PMC5447385 DOI: 10.1016/j.redox.2017.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/01/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Recent clinical studies found a strong association of colonic inflammation and Inflammatory bowel disease (IBD)-like phenotype with NonAlcoholic Fatty liver Disease (NAFLD) yet the mechanisms remain unknown. The present study identifies high mobility group box 1 (HMGB1) as a key mediator of intestinal inflammation in NAFLD and outlines a detailed redox signaling mechanism for such a pathway. NAFLD mice showed liver damage and release of elevated HMGB1 in systemic circulation and increased intestinal tyrosine nitration that was dependent on NADPH oxidase. Intestines from NAFLD mice showed higher Toll like receptor 4 (TLR4) activation and proinflammatory cytokine release, an outcome strongly dependent on the existence of NAFLD pathology and NADPH oxidase. Mechanistically intestinal epithelial cells showed the HMGB1 activation of TLR-4 was both NADPH oxidase and peroxynitrite dependent with the latter being formed by the activation of NADPH oxidase. Proinflammatory cytokine production was significantly blocked by the specific peroxynitrite scavenger phenyl boronic acid (FBA), AKT inhibition and NADPH oxidase inhibitor Apocynin suggesting NADPH oxidase-dependent peroxynitrite is a key mediator in TLR-4 activation and cytokine release via an AKT dependent pathway. Studies to ascertain the mechanism of HMGB1-mediated NADPH oxidase activation showed a distinct role of Receptor for advanced glycation end products (RAGE) as the use of inhibitors targeted against RAGE or use of deformed HMGB1 protein prevented NADPH oxidase activation, peroxynitrite formation, TLR4 activation and finally cytokine release. Thus, in conclusion the present study identifies a novel role of HMGB1 mediated inflammatory pathway that is RAGE and redox signaling dependent and helps promote ectopic intestinal inflammation in NAFLD.
Collapse
Affiliation(s)
- Varun Chandrashekaran
- Environmental Health and Disease Laboratory, Departments of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Departments of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Diptadip Dattaroy
- Environmental Health and Disease Laboratory, Departments of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Firas Alhasson
- Environmental Health and Disease Laboratory, Departments of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jacek Ziolenka
- Free Radical Research Center, Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James Carson
- Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | - Franklin G Berger
- Department of Biological Sciences and Center for Colon Cancer Research, University of South Carolina, SC 29208, USA
| | - Balaraman Kalyanaraman
- Free Radical Research Center, Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Duke University, Durham, NC 27707, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Departments of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
42
|
Peng Z, Chen L, Xiao J, Zhou X, Nüssler AK, Liu L, Liu J, Yang W. Review of mechanisms of deoxynivalenol-induced anorexia: The role of gut microbiota. J Appl Toxicol 2017; 37:1021-1029. [PMID: 28466983 DOI: 10.1002/jat.3475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Jie Xiao
- Department of Cardiovascular Surgery, Wuhan Union Hospital; Huazhong university of science and technology; Jiefang Road 1277#, Wuhan 430022 China
| | - Xiaoqi Zhou
- Department of Non-Communicable Chronic Disease Prevention and Control; Wuhan Center for Disease Prevention and Control; 24 Jianghan N. Road Wuhan 430015 China
| | - Andreas K. Nüssler
- Department of Traumatology, BG Trauma Center; Eberhard Karls University of Tübingen; Schnarrenbergstr. 95 72076 Tübingen Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| | - Jinping Liu
- Department of Cardiovascular Surgery, Wuhan Union Hospital; Huazhong university of science and technology; Jiefang Road 1277#, Wuhan 430022 China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Hangkong Road 13 430030 Wuhan China
| |
Collapse
|
43
|
Rodríguez-Fandiño OA, Hernández-Ruiz J, López-Vidal Y, Charúa-Guindic L, Escobedo G, Schmulson MJ. Maturation Phenotype of Peripheral Blood Monocyte/Macrophage After Stimulation with Lipopolysaccharides in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2017; 23:281-288. [PMID: 28044051 PMCID: PMC5383123 DOI: 10.5056/jnm16137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022] Open
Abstract
Background/Aims Abnormal immune regulation and increased intestinal permeability augmenting the passage of bacterial molecules that can activate immune cells, such as monocytes/macrophages, have been reported in irritable bowel syndrome (IBS). The aim was to compare the maturation phenotype of monocytes/macrophages (CD14+) from IBS patients and controls in the presence or absence of Escherichia coli lipopolysaccharides (LPS), in vitro. Methods Mononuclear cells were isolated from peripheral blood of 20 Rome II-IBS patients and 19 controls and cultured with or without LPS for 72 hours. The maturation phenotype was examined by flow cytometry as follows: M1-Early (CD11c+CD206−), M2-Advanced (CD11c−CD206+CX3CR1+); expression of membrane markers was reported as mean fluorescence intensity (MFI). The Mann-Whitney test was used and significance was set at P < 0.05. Results In CD14+ cells, CD11c expression decreased with vs without LPS both in IBS (MFI: 8766.0 ± 730.2 vs 12 920.0 ± 949.2, P < 0.001) and controls (8233.0 ± 613.9 vs 13 750.0 ± 743.3, P < 0.001). M1-Early cells without LPS, showed lower CD11c expression in IBS than controls (MFI: 11 540.0 ± 537.5 vs 13 860.0 ± 893.7, P = 0.040), while both groups showed less CD11c in response to LPS (P < 0.01). Furthermore, the percentage of “Intermediate” (CD11c+CD206+CX3CR1+) cells without LPS, was higher in IBS than controls (IBS = 9.5 ± 1.5% vs C = 4.9 ± 1.4%, P < 0.001). Finally, fractalkine receptor (CX3CR1) expression on M2-Advanced cells was increased when treated with LPS in controls but not in IBS (P < 0.001). Conclusions The initial phase of monocyte/macrophage maturation appears to be more advanced in IBS compared to controls. However, the decreased CX3CR1 in patients with IBS, compared to controls, when stimulated with LPS suggests a state of immune activation in IBS.
Collapse
Affiliation(s)
- Oscar A Rodríguez-Fandiño
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina-Universidad Nacional Autónoma de México (UNAM), Hospital General de México, Dr. Eduardo Liceaga, Mexico City, Mexico.,Dirección de Investigación, Fundación Universitaria-Unitrópico, Yopal, Colombia
| | - Joselín Hernández-Ruiz
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina-Universidad Nacional Autónoma de México (UNAM), Hospital General de México, Dr. Eduardo Liceaga, Mexico City, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina-Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis Charúa-Guindic
- Unidad de Coloproctología, Hospital General de México, Dr. Eduardo Liceaga, Mexico City, Mexico
| | - Galileo Escobedo
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina-Universidad Nacional Autónoma de México (UNAM), Hospital General de México, Dr. Eduardo Liceaga, Mexico City, Mexico
| | - Max J Schmulson
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina-Universidad Nacional Autónoma de México (UNAM), Hospital General de México, Dr. Eduardo Liceaga, Mexico City, Mexico
| |
Collapse
|
44
|
Kelly JR, Allen AP, Temko A, Hutch W, Kennedy PJ, Farid N, Murphy E, Boylan G, Bienenstock J, Cryan JF, Clarke G, Dinan TG. Lost in translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to modulate stress or cognitive performance in healthy male subjects. Brain Behav Immun 2017; 61:50-59. [PMID: 27865949 DOI: 10.1016/j.bbi.2016.11.018] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/28/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Preclinical studies have identified certain probiotics as psychobiotics - live microorganisms with a potential mental health benefit. Lactobacillus rhamnosus (JB-1) has been shown to reduce stress-related behaviour, corticosterone release and alter central expression of GABA receptors in an anxious mouse strain. However, it is unclear if this single putative psychobiotic strain has psychotropic activity in humans. Consequently, we aimed to examine if these promising preclinical findings could be translated to healthy human volunteers. OBJECTIVES To determine the impact of L. rhamnosus on stress-related behaviours, physiology, inflammatory response, cognitive performance and brain activity patterns in healthy male participants. METHODS An 8week, randomized, placebo-controlled, cross-over design was employed. Twenty-nine healthy male volunteers participated. Participants completed self-report stress measures, cognitive assessments and resting electroencephalography (EEG). Plasma IL10, IL1β, IL6, IL8 and TNFα levels and whole blood Toll-like 4 (TLR-4) agonist-induced cytokine release were determined by multiplex ELISA. Salivary cortisol was determined by ELISA and subjective stress measures were assessed before, during and after a socially evaluated cold pressor test (SECPT). RESULTS There was no overall effect of probiotic treatment on measures of mood, anxiety, stress or sleep quality and no significant effect of probiotic over placebo on subjective stress measures, or the HPA response to the SECPT. Visuospatial memory performance, attention switching, rapid visual information processing, emotion recognition and associated EEG measures did not show improvement over placebo. No significant anti-inflammatory effects were seen as assessed by basal and stimulated cytokine levels. CONCLUSIONS L. rhamnosus was not superior to placebo in modifying stress-related measures, HPA response, inflammation or cognitive performance in healthy male participants. These findings highlight the challenges associated with moving promising preclinical studies, conducted in an anxious mouse strain, to healthy human participants. Future interventional studies investigating the effect of this psychobiotic in populations with stress-related disorders are required.
Collapse
Affiliation(s)
- John R Kelly
- APC Microbiome Institute, University College Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - Andrew P Allen
- APC Microbiome Institute, University College Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - Andriy Temko
- Department of Electrical and Electronic Engineering, University College Cork, Ireland
| | - William Hutch
- INFANT Research Centre and Department of Pediatrics & Child Health, University College Cork, Ireland
| | - Paul J Kennedy
- APC Microbiome Institute, University College Cork, Ireland
| | - Niloufar Farid
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - Eileen Murphy
- Alimentary Health Ltd., Cork Airport Business Park, Cork, Ireland
| | - Geraldine Boylan
- INFANT Research Centre and Department of Pediatrics & Child Health, University College Cork, Ireland
| | - John Bienenstock
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland.
| |
Collapse
|
45
|
Bhattarai Y, Muniz Pedrogo DA, Kashyap PC. Irritable bowel syndrome: a gut microbiota-related disorder? Am J Physiol Gastrointest Liver Physiol 2017; 312:G52-G62. [PMID: 27881403 PMCID: PMC5283907 DOI: 10.1152/ajpgi.00338.2016] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 01/31/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal (GI) disorders. Despite its prevalence, the pathophysiology of IBS is not well understood although multiple peripheral and central factors are implicated. Recent studies suggest a role for alterations in gut microbiota in IBS. Significant advances in next-generation sequencing technology and bioinformatics and the declining cost have now allowed us to better investigate the role of gut microbiota in IBS. In the following review, we propose gut microbiota as a unifying factor in the pathophysiology of IBS. We first describe how gut microbiota can be influenced by factors predisposing individuals to IBS such as host genetics, stress, diet, antibiotics, and early life experiences. We then highlight the known effects of gut microbiota on mechanisms implicated in the pathophysiology of IBS including disrupted gut brain axis (GBA), visceral hypersensitivity (VH), altered GI motility, epithelial barrier dysfunction, and immune activation. While there are several gaps in the field that preclude us from connecting the dots to establish causation, we hope this overview will allow us to identify and fill in the voids.
Collapse
Affiliation(s)
- Yogesh Bhattarai
- 1Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - David A. Muniz Pedrogo
- 1Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Purna C. Kashyap
- 1Enteric Neuroscience Program, Mayo Clinic, Rochester, Minnesota; and ,2Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
46
|
Buckley MM, O'Brien R, Devlin M, Creed AA, Rae MG, Hyland NP, Quigley EMM, McKernan DP, O'Malley D. Leptin modifies the prosecretory and prokinetic effects of the inflammatory cytokine interleukin-6 on colonic function in Sprague-Dawley rats. Exp Physiol 2016; 101:1477-1491. [PMID: 27676233 DOI: 10.1113/ep085917] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/23/2016] [Indexed: 03/03/2025]
Abstract
What is the central question of this study? Does crosstalk exist between leptin and interleukin-6 in colonic enteric neurons, and is this a contributory factor in gastrointestinal dysfunction associated with irritable bowel syndrome? What is the main finding and its importance? Leptin ameliorates the prosecretory and prokinetic effects of the pro-inflammatory cytokine interleukin-6 on rat colon. Leptin also suppresses the neurostimulatory effects of irritable bowel syndrome plasma, which has elevated concentrations of interleukin-6, on enteric neurons. This may indicate a regulatory role for leptin in immune-mediated bowel dysfunction. In addition to its role in regulating energy homeostasis, the adipokine leptin modifies gastrointestinal (GI) function. Indeed, leptin-resistant obese humans and leptin-deficient obese mice exhibit altered GI motility. In the functional GI disorder irritable bowel syndrome (IBS), circulating leptin concentrations are reported to differ from those of healthy control subjects. Additionally, IBS patients display altered cytokine profiles, including elevated circulating concentrations of the pro-inflammatory cytokine interleukin-6 (IL-6), which bears structural homology and similarities in intracellular signalling to leptin. This study aimed to investigate interactions between leptin and IL-6 in colonic neurons and their possible contribution to IBS pathophysiology. The functional effects of leptin and IL-6 on colonic contractility and absorptosecretory function were assessed in organ baths and Ussing chambers in Sprague-Dawley rat colon. Calcium imaging and immunohistochemical techniques were used to investigate the neural regulation of GI function by these signalling molecules. Our findings provide a neuromodulatory role for leptin in submucosal neurons, where it inhibited the stimulatory effects of IL-6. Functionally, this translated to suppression of IL-6-evoked potentiation of veratridine-induced secretory currents. Leptin also attenuated IL-6-induced colonic contractions, although it had little direct effect on myenteric neurons. Calcium responses evoked by IBS plasma in both myenteric and submucosal neurons were also suppressed by leptin, possibly through interactions with IL-6, which is elevated in IBS plasma. As leptin has the capacity to ameliorate the neurostimulatory effects of soluble mediators in IBS plasma and modulated IL-6-evoked changes in bowel function, leptin may have a role in immune-mediated bowel dysfunction in IBS patients.
Collapse
Affiliation(s)
- Maria M Buckley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Rebecca O'Brien
- Department of Physiology, University College Cork, Cork, Ireland
| | - Michelle Devlin
- Department of Physiology, University College Cork, Cork, Ireland
| | - Aisling A Creed
- Department of Physiology, University College Cork, Cork, Ireland
| | - Mark G Rae
- Department of Physiology, University College Cork, Cork, Ireland
| | - Niall P Hyland
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Eamonn M M Quigley
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Lynda K. and David M. Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Declan P McKernan
- Department of Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
O'Malley D. Neuroimmune Cross Talk in the Gut. Neuroendocrine and neuroimmune pathways contribute to the pathophysiology of irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2016; 311:G934-G941. [PMID: 27742703 PMCID: PMC5130550 DOI: 10.1152/ajpgi.00272.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/29/2016] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) is a common disorder characterized by recurrent abdominal pain, bloating, and disturbed bowel habit, symptoms that impact the quality of life of sufferers. The pathophysiological changes underlying this multifactorial condition are complex and include increased sensitivity to luminal and mucosal factors, resulting in altered colonic transit and visceral pain. Moreover, dysfunctional communication in the bidirectional signaling axis between the brain and the gut, which involves efferent and afferent branches of the peripheral nervous system, circulating endocrine hormones, and local paracrine and neurocrine factors, including immune and perhaps even microbial signaling molecules, has a role to play in this disorder. This minireview will examine recent advances in our understanding of the pathophysiology of IBS and assess how cross talk between hormones, immune, and microbe-derived factors and their neuromodulatory effects on peripheral nerves may underlie IBS symptomatology.
Collapse
Affiliation(s)
- Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and .,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
48
|
Bashashati M, Schmulson MJ. From gene polymorphisms to serum cytokine levels in irritable bowel syndrome. Clin Res Hepatol Gastroenterol 2016; 40:525-527. [PMID: 26872819 DOI: 10.1016/j.clinre.2016.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/05/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Mohammad Bashashati
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center/Paul L. Foster School of Medicine, El Paso, TX, United States.
| | - Max J Schmulson
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina-Universidad Nacional Autónoma de México (UNAM), Hospital General de México, México, DF, Mexico
| |
Collapse
|
49
|
Farzaei MH, Bahramsoltani R, Abdollahi M, Rahimi R. The Role of Visceral Hypersensitivity in Irritable Bowel Syndrome: Pharmacological Targets and Novel Treatments. J Neurogastroenterol Motil 2016; 22:558-574. [PMID: 27431236 PMCID: PMC5056566 DOI: 10.5056/jnm16001] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/26/2016] [Accepted: 04/17/2016] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is the most common disorder referred to gastroenterologists and is characterized by altered bowel habits, abdominal pain, and bloating. Visceral hypersensitivity (VH) is a multifactorial process that may occur within the peripheral or central nervous systems and plays a principal role in the etiology of IBS symptoms. The pharmacological studies on selective drugs based on targeting specific ligands can provide novel therapies for modulation of persistent visceral hyperalgesia. The current paper reviews the cellular and molecular mechanisms underlying therapeutic targeting for providing future drugs to protect or treat visceroperception and pain sensitization in IBS patients. There are a wide range of mediators and receptors participating in visceral pain perception amongst which substances targeting afferent receptors are attractive sources of novel drugs. Novel therapeutic targets for the management of VH include compounds which alter gut-brain pathways and local neuroimmune pathways. Molecular mediators and receptors participating in pain perception and visceroperception include histamine-1 receptors, serotonin (5-hydrodytryptamine) receptors, transient receptor potential vanilloid type I, tachykinins ligands, opioid receptors, voltage-gated channels, tyrosine receptor kinase receptors, protease-activated receptors, adrenergic system ligands, cannabinoid receptors, sex hormones, and glutamate receptors which are discussed in the current review. Moreover, several plant-derived natural compounds with potential to alleviate VH in IBS have been highlighted. VH has an important role in the pathology and severity of complications in IBS. Therefore, managing VH can remarkably modulate the symptoms of IBS. More preclinical and clinical investigations are needed to provide efficacious and targeted medicines for the management of VH.
Collapse
Affiliation(s)
- Mohammad H Farzaei
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roodabeh Bahramsoltani
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer RJ. Human Intestinal Barrier Function in Health and Disease. Clin Transl Gastroenterol 2016; 7:e196. [PMID: 27763627 PMCID: PMC5288588 DOI: 10.1038/ctg.2016.54] [Citation(s) in RCA: 570] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract consists of an enormous surface area that is optimized to efficiently absorb nutrients, water, and electrolytes from food. At the same time, it needs to provide a tight barrier against the ingress of harmful substances, and protect against a reaction to omnipresent harmless compounds. A dysfunctional intestinal barrier is associated with various diseases and disorders. In this review, the role of intestinal permeability in common disorders such as infections with intestinal pathogens, inflammatory bowel disease, irritable bowel syndrome, obesity, celiac disease, non-celiac gluten sensitivity, and food allergies will be discussed. In addition, the effect of the frequently prescribed drugs proton pump inhibitors and non-steroidal anti-inflammatory drugs on intestinal permeability, as well as commonly used methods to assess barrier function will be reviewed.
Collapse
Affiliation(s)
- Julia König
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Jerry Wells
- Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Tom MacDonald
- Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Annick Mercenier
- Nutrition and Health Research, Nestlé Research Center, Lausanne, Switzerland
| | - Jacqueline Whyte
- European Branch, The International Life Sciences Institute, Brussels, Belgium
| | - Freddy Troost
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, University Hospital Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robert-Jan Brummer
- Nutrition-Gut-Brain Interactions Research Centre, Faculty of Health and Medicine, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|