1
|
Abla N, Marrast AC, Jambert E, Richardson N, Duparc S, Almond L, Rowland Yeo K, Pan X, Tarning J, Zhao P, Culpepper J, Waitt C, Koldeweij C, Cole S, Butler AS, Khier S, Möhrle JJ, El Gaaloul M. Addressing health equity for breastfeeding women: primaquine for Plasmodium vivax radical cure. Malar J 2024; 23:287. [PMID: 39334094 PMCID: PMC11438061 DOI: 10.1186/s12936-024-05112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Plasmodium vivax malaria remains a global health challenge, with approximately 6.9 million estimated cases in 2022. The parasite has a dormant liver stage, the hypnozoite, which reactivates to cause repeated relapses over weeks, months, or years. These relapses erode patient health, contribute to the burden of malaria, and promote transmission. Radical cure to prevent relapses requires administration of an 8-aminoquinoline, either primaquine or tafenoquine. However, malaria treatment guidelines updated by the World Health Organization (WHO) in October 2023 restrict primaquine use for women breastfeeding children < 6 months of age, or women breastfeeding older children if their child is G6PD deficient or if the child's G6PD status is unknown. Primaquine restrictions assume that 8-aminoquinoline exposures in breast milk would be sufficient to cause haemolysis in the nursing infant should they be G6PD deficient. WHO recommendations for tafenoquine are awaited. Notably, the WHO recommends that infants are breastfed for the first 2 years of life, and exclusively until 6 months old. Repeated pregnancies, followed by extended breastfeeding leaves women in P. vivax endemic regions potentially vulnerable to relapses for many years. This puts women's health at risk, increases the malaria burden, and perpetuates transmission, hindering malaria control and elimination. The benefits of lifting restrictions on primaquine administration to breastfeeding women are significant, avoiding the adverse consequences of repeated episodes of acute malaria, such as severe anaemia. Recent data challenge the restriction of primaquine in breastfeeding women. Clinical pharmacokinetic data in breastfeeding infants ≥ 28 days old show that the exposure to primaquine is very low and less than 1% of the maternal exposure, indicating negligible risk to infants, irrespective of their G6PD status. Physiologically-based pharmacokinetic modelling complements the clinical data, predicting minimal primaquine exposure to infants and neonates via breast milk from early post-partum. This article summarizes the clinical and modelling evidence for a favourable benefit:risk evaluation of P. vivax radical cure with primaquine for breastfeeding women without the need for infant G6PD testing, supporting a change in policy. This adjustment to current treatment guidelines would support health equity in regard to effective interventions to protect women and their children, enhance malaria control strategies, and advance P. vivax elimination.
Collapse
Affiliation(s)
- Nada Abla
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland.
| | - Anne Claire Marrast
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Elodie Jambert
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | | | - Stephan Duparc
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Lisa Almond
- Certara Predictive Technologies, Simcyp Division, Sheffield, UK
| | | | - Xian Pan
- Certara Predictive Technologies, Simcyp Division, Sheffield, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Ping Zhao
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Catriona Waitt
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Charlotte Koldeweij
- Division of Pharmacology Toxicology, Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Susan Cole
- Medicines and Healthcare products Regulatory Agency (MHRA), 10 South Colonnade, London, UK
| | - Andrew S Butler
- Medicines and Healthcare products Regulatory Agency (MHRA), 10 South Colonnade, London, UK
| | - Sonia Khier
- Pharmacokinetic and Modelling Department, School of Pharmacy, IMAG, CNRS, INRIA, UMR 5149, University of Montpellier, Montpellier, France
| | - Jörg J Möhrle
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Myriam El Gaaloul
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| |
Collapse
|
2
|
Hanpithakpong W, Day NPJ, White NJ, Tarning J. Simultaneous and enantiospecific quantification of primaquine and carboxyprimaquine in human plasma using liquid chromatography-tandem mass spectrometry. Malar J 2022; 21:169. [PMID: 35659684 PMCID: PMC9166498 DOI: 10.1186/s12936-022-04191-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background The enantiomers of the 8-aminoquinoline anti-malarial primaquine have different pharmacological properties. Development of an analytical method for simultaneous quantification of the enantiomers of primaquine and its metabolite, carboxyprimaquine, will support clinical pharmacometric assessments. Methods A simple and sensitive method consisting of liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) was developed for simultaneous and enantiospecific determination of primaquine and its metabolite, carboxyprimaquine, in human plasma. Stable isotopes were used as internal standards to compensate for potential interference and matrix effects. Plasma samples (100 µL) were precipitated with 1% formic acid in acetonitrile followed by phospholipid removal solid phase extraction. Primaquine and carboxyprimaquine enantiomers were separated on a Chiralcel OD-3R (150 mm × 4.6 mm; I.D. 3 μm) column using a LC gradient mode. For separation of racemic primaquine and carboxyprimaquine, the LC method was modified and validated using a reverse phase column (Hypersil Gold 100 mm × 4.6 mm; I.D. 3 µm) and a mobile phase composed of 10 mM ammonium acetate buffer, pH 3.5 and acetonitrile in the isocratic mode. Method validation was performed according to regulatory guidelines. Results The calibration range was set to 0.571–260 ng/mL and 2.44–2,500 ng/mL for primaquine and carboxyprimaquine enantiomers, respectively, resulting in a correlation coefficient (r2) ≥ 0.0998 for all calibration curves. The intra- and inter-day assay precisions were < 10% and the accuracy was between 94.7 to 103% for all enantiomers of primaquine and carboxyprimaquine. The enantiospecific method was also modified and validated to quantify racemic primaquine and carboxyprimaquine, reducing the total run time from 30 to 8 min. The inter-, intra-day assay precision of the racemic quantification method was < 15%. The absolute recoveries of primaquine and carboxyprimaquine were between 70 and 80%. Stability was demonstrated for up to 2 years in − 80 °C. Both the enantiomeric and racemic LC–MS/MS methods were successfully implemented in pharmacokinetic studies in healthy volunteers. Conclusions Simple, sensitive and accurate LC–MS/MS methods for the quantification of enantiomeric and racemic primaquine and carboxyprimaquine in human plasma were validated successfully and implemented in clinical routine drug analysis.
Collapse
Affiliation(s)
- Warunee Hanpithakpong
- Department of Clinical Pharmacology, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Department of Clinical Pharmacology, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Department of Clinical Pharmacology, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Department of Clinical Pharmacology, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Measurements of 5,6 orthoquinone, surrogate for presumed active primaquine metabolite 5-hydroxyprimaquine, in the urine of Cambodian adults. Antimicrob Agents Chemother 2022; 66:e0182121. [DOI: 10.1128/aac.01821-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The active metabolites of primaquine, in particular 5-hydroxyprimaquine, likely responsible for clearance of dormant hypnozoites, are produced through the hepatic CYP450 2D6 (CYP2D6) enzymatic pathway. With the inherent instability of 5-hydroxyprimaquine, a stable surrogate, 5,6 orthoquinone, can now be detected and measured in the urine as part of primaquine pharmacokinetic studies. This study performed CYP450 2D6 genotyping and primaquine pharmacokinetic testing, to include urine 5,6 orthoquinone, in 27 healthy adult Cambodians, as a preliminary step to prepare for future clinical studies assessing primaquine efficacy for
Plasmodium vivax
infections. The CYP2D6 *10 reduced activity allele was found in 57% of volunteers, and the CYP2D6 genotypes were dominated by *1/*10 (33%) and *10/*10 (30%). Predicted phenotypes were evenly split between Normal Metabolizer (NM) and Intermediate Metabolizer (IM) except one volunteer with a gene duplication and unclear phenotype, classifying as either IM or NM. Median plasma PQ area under the curve (AUC) was lower in the NM group (460 hr*ng/mL) compared to the IM group (561 hr*ng/mL), although not statistically significant. Similar to what has been found in the US study, no 5,6 orthoquinone was detected in the plasma. The urine creatinine-corrected 5,6 orthoquinone AUC in the NM group was almost three times higher than in the IM group, with peak measurements (T
max
) at 4 hours. Although there is variation among individuals, future studies examining the relationship between the levels of urine 5,6 orthoquinone and primaquine radical cure efficacy could result in a metabolism biomarker predictive of radical cure.
Collapse
|
4
|
Sharma P, Tailang M. Design, optimization, and evaluation of hydrogel of primaquine loaded nanoemulsion for malaria therapy. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00035-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The present study aimed to design, optimize, and evaluate primaquine loaded nanoemulgel for malaria treatment. Nanoemulgel was prepared with the help of different components such as castor oil, Tween 80:Transcutol P (Smix ratio), and polymers. Pseudoternary phase diagram was constructed to optimize Smix ratio. Response surface methodology was used for the optimization of nanoemulsion preparation based on characterization parameters such as droplet size (nm), zeta potential (mv), polydispersity index (PDI), viscosity (mPa·S), conductivity (mS/cm), and percent drug release. Based on these parameter results, F5 formulation was selected as an optimized formulation. F5 formulation was loaded in hydrogel preparation which was developed by using hydroxypropyl methylcellulose (HPMC K15M) 1-2% concentrations. The prepared nanoemulgel was evaluated with the following parameters: percent drug content, in vitro drug release, ex vivo skin permeation, pH determination, spreadability determination, and viscosity measurement.
Results
The droplets of primaquine loaded nanoemulsion were nanosized (10–200 nm) in the transmission electron microscope (TEM) images. Zeta potential for all formulations (F1-F9) was observed as − 0.7 ± 0.02 to 2.12 ± 0.04 mv. Response surface curves were plotted for optimization of perfect nanoemulsion preparation. Nanoemulgels (F5, F5a, F5b, and F5c) were evaluated for their different parameters such as pH (F5, 5.2 ± 0.2; F5a, 5.3 ± 0.1; F5b, 5.3 ± 0.1; and F5c, 5.4 ± 0.1), viscosity (mPa·S) (F5, 9876 ± 0.61; F5a, 14,564.6 ± 0.42; F5b, 14,841.9 ± 0.82; and F5c, 16,872.1 ± 0.921), spreadability (g.cm/s) (F5, 7.89 ± 0.10; F5a, 5.09 ± 0.03; F5b, 4.30 ± 0.02; and F5c, 3.13 ± 0.01), and percent drug content (F5, 100 ± 0.46; F5a, 98.10 ± 0.38; F5b, 99.70 ± 0.41; and F5c, 97.34 ± 0.51), and ex vivo skin flux of F5b was evaluated for 24 h. Ex vivo skin permeability was found ~ 70% within 12 h and ~ 86% within 24 h.
Conclusion
The nanoemulsion loaded hydrogel of primaquine with optimum viscosity was prepared for transdermal application. Nanoemulgel was prepared by using HPMC K15M into nanoemulsion because HPMC K15M was responsible for significant viscosity. The permeation rate of nanoemulgel was greater than other drug solutions. The great permeation rate was achieved by the incorporation of Transcutol P (cosurfactant). The optimized formulation was justified by using statistics. Stability studies confirmed that nanoemulgel is a promising carrier for the delivery of primaquine.
Collapse
|
5
|
Camarda G, Jirawatcharadech P, Priestley RS, Saif A, March S, Wong MHL, Leung S, Miller AB, Baker DA, Alano P, Paine MJI, Bhatia SN, O'Neill PM, Ward SA, Biagini GA. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat Commun 2019; 10:3226. [PMID: 31324806 PMCID: PMC6642103 DOI: 10.1038/s41467-019-11239-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Primaquine (PQ) is an essential antimalarial drug but despite being developed over 70 years ago, its mode of action is unclear. Here, we demonstrate that hydroxylated-PQ metabolites (OH-PQm) are responsible for efficacy against liver and sexual transmission stages of Plasmodium falciparum. The antimalarial activity of PQ against liver stages depends on host CYP2D6 status, whilst OH-PQm display direct, CYP2D6-independent, activity. PQ requires hepatic metabolism to exert activity against gametocyte stages. OH-PQm exert modest antimalarial efficacy against parasite gametocytes; however, potency is enhanced ca.1000 fold in the presence of cytochrome P450 NADPH:oxidoreductase (CPR) from the liver and bone marrow. Enhancement of OH-PQm efficacy is due to the direct reduction of quinoneimine metabolites by CPR with the concomitant and excessive generation of H2O2, leading to parasite killing. This detailed understanding of the mechanism paves the way to rationally re-designed 8-aminoquinolines with improved pharmacological profiles. Primaquine (PQ) is a widely used anti-malaria drug, but its mechanism of action is unclear. Here, Camarda et al. show that PQ’s activity against liver and sexual Plasmodium stages depends on generation of hydroxylated-PQ metabolites (OH-PQm), which, undergoing further reactions, results in production of H2O2.
Collapse
Affiliation(s)
- Grazia Camarda
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Piyaporn Jirawatcharadech
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Richard S Priestley
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.,ARUK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Ahmed Saif
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.,Clinical Laboratory sciences Department, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Sandra March
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael H L Wong
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Suet Leung
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Alex B Miller
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Mark J I Paine
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Sangeeta N Bhatia
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Stephen A Ward
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
6
|
Sridharan K, Sannala CKR, Mallayasamy S, Chaturvedula A, Kadam P, Hase N, Shukla A, Gogtay N, Thatte U. Population pharmacokinetics of primaquine and the effect of hepatic and renal dysfunction: An exploratory approach. Indian J Pharmacol 2019; 51:17-24. [PMID: 31031463 PMCID: PMC6444836 DOI: 10.4103/ijp.ijp_230_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES We attempted to develop a population pharmacokinetic model for primaquine (PQ) and evaluate the effect of renal and hepatic dysfunction on PQ pharmacokinetics. MATERIALS AND METHODS The data were collected from a prospective, nonrandomized clinical study in healthy volunteers and patients with mild-moderate hepatic dysfunction and renal dysfunction. Model development was conducted using NONMEM® software, and parameter estimation was conducted using first-order conditional estimation with interaction method. RESULTS Final data included a total of 53 study participants (13 healthy individuals, 12 with mild hepatic dysfunction, 6 with moderate hepatic dysfunction, and 22 with renal dysfunction) with 458 concentrations records. Absorption rate constant (Ka) was constrained to be higher than elimination rate constant to avoid flip-flop situation. Mild hepatic dysfunction was a significant covariate on volume of distribution, and it is approximately three folds higher compared to other subjects. Fixed effects parameter estimates of the final model - absorption rate constant (Ka), volume of distribution (V), and clearance (CL) - were 0.95/h, 498 L, and 39 L/h, respectively. Between-subject variability estimates (% CV) on Ka, V, and CL were 77, 66, and 65, respectively. Residual error was modeled as combination error model with the parameter estimates for proportion error 12% CV and additive error (standard deviation) 1.5 ng/ml. CONCLUSION Population pharmacokinetic modeling showed that the volume of distribution of PQ in subjects with moderate hepatic dysfunction increases approximately three folds resulting in a significantly lower plasma concentration.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | | | - Surulivelrajan Mallayasamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | | | - Prashant Kadam
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Nivrutti Hase
- Department of Nephrology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Akash Shukla
- Department of Gastroenterology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Nithya Gogtay
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Urmila Thatte
- Department of Clinical Pharmacology, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Mello AGNC, Vieira MVDF, Sena LWPD, Paixão TPD, Pinto ACG, Grisólia DPDA, Silva MT, Vieira JLF. Levels of primaquine and carboxyprimaquine in patients with malaria vivax from the Brazilian Amazon basin. Rev Inst Med Trop Sao Paulo 2018; 60:e66. [PMID: 30379233 PMCID: PMC6201764 DOI: 10.1590/s1678-9946201860066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 11/22/2022] Open
Abstract
In the last two years, a substantial increase in the number of malaria vivax
cases has occurred in the Brazilian Amazon basin. The adequate exposure of
hypnozoites to primaquine is a matter of interest as these dormant forms are
responsible for the maintenance or even the increase of malaria burden in
endemic areas. The aim of this study was to estimate the levels of primaquine
and carboxyprimaquine in whole blood samples of patients with P.
vivax treated with chloroquine and an abbreviated regimen of
primaquine (0.5 mg/kg/d for 7 days), with adequate clinical and parasitological
outcomes after 180 days of follow-up. A total of 40 male patients met the
criteria for inclusion in the study. Primaquine and carboxyprimaquine were
measured by high-performance liquid chromatography. The levels of primaquine in
whole blood samples ranged from 40-238 ng/mL, 42-196 ng/mL and 42-150 ng/mL on
days 1, 3 and 7. The levels of carboxyprimaquine in whole blood samples ranged
from 87-234 ng/mL, 96-252 ng/mL and 74-448 ng/mL on days 1, 3 and 7. These data
provide a reliable estimation of exposure of the infecting parasite to
primaquine. Based on the regional pattern of relapse, the estimated blood levels
of primaquine can be considered effective against hypnozoites of the local
circulating strains of P. vivax.
Collapse
Affiliation(s)
| | | | - Luann Wendel Pereira de Sena
- Universidade Federal do Pará, Faculdade de Farmácia, Laboratório de Farmacocinética de Antimaláricos, Belém, Pará, Brazil
| | - Thiago Portal da Paixão
- Universidade Federal do Pará, Faculdade de Farmácia, Laboratório de Farmacocinética de Antimaláricos, Belém, Pará, Brazil
| | - Ana Carla Godinho Pinto
- Universidade Federal do Pará, Faculdade de Farmácia, Laboratório de Farmacocinética de Antimaláricos, Belém, Pará, Brazil
| | | | - Margareth Tavares Silva
- Universidade Federal do Pará, Faculdade de Farmácia, Laboratório de Farmacocinética de Antimaláricos, Belém, Pará, Brazil
| | - José Luiz Fernandes Vieira
- Universidade Federal do Pará, Faculdade de Farmácia, Laboratório de Farmacocinética de Antimaláricos, Belém, Pará, Brazil
| |
Collapse
|
8
|
Gilder ME, Hanpithakphong W, Hoglund RM, Tarning J, Win HH, Hilda N, Chu CS, Bancone G, Carrara VI, Singhasivanon P, White NJ, Nosten F, McGready R. Primaquine Pharmacokinetics in Lactating Women and Breastfed Infant Exposures. Clin Infect Dis 2018; 67:1000-1007. [PMID: 29590311 PMCID: PMC6137118 DOI: 10.1093/cid/ciy235] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/21/2018] [Indexed: 02/04/2023] Open
Abstract
Background Primaquine is the only drug providing radical cure of Plasmodium vivax malaria. It is not recommended for breastfeeding women as it causes hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals, and breast milk excretion and thus infant exposure are not known. Methods Healthy G6PD-normal breastfeeding women with previous P. vivax infection and their healthy G6PD-normal infants between 28 days and 2 years old were enrolled. Mothers took primaquine 0.5 mg/kg/day for 14 days. Primaquine and carboxyprimaquine concentrations were measured in maternal venous plasma, capillary plasma, and breast milk samples and infant capillary plasma samples taken on days 0, 3, 7, and 13. Results In 20 mother-infant pairs, primaquine concentrations were below measurement thresholds in all but 1 infant capillary plasma sample (that contained primaquine 2.6 ng/mL), and carboxyprimaquine was likewise unmeasurable in the majority of infant samples (maximum value 25.8 ng/mL). The estimated primaquine dose received by infants, based on measured breast milk levels, was 2.98 µg/kg/day (ie, ~0.6% of a hypothetical infant daily dose of 0.5 mg/kg). There was no evidence of drug-related hemolysis in the infants. Maternal levels were comparable to levels in nonlactating patients, and adverse events in mothers were mild. Conclusions The concentrations of primaquine in breast milk are very low and therefore very unlikely to cause adverse effects in the breastfeeding infant. Primaquine should not be withheld from mothers breastfeeding infants or young children. More information is needed in neonates. Clinical Trials Registration NCT01780753.
Collapse
Affiliation(s)
- Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
| | - Warunee Hanpithakphong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Htun Htun Win
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
| | - Naw Hilda
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
9
|
Flannery EL, Foquet L, Chuenchob V, Fishbaugher M, Billman Z, Navarro MJ, Betz W, Olsen TM, Lee J, Camargo N, Nguyen T, Schafer C, Sack BK, Wilson EM, Saunders J, Bial J, Campo B, Charman SA, Murphy SC, Phillips MA, Kappe SH, Mikolajczak SA. Assessing drug efficacy against Plasmodium falciparum liver stages in vivo. JCI Insight 2018; 3:92587. [PMID: 29321371 PMCID: PMC5821200 DOI: 10.1172/jci.insight.92587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 11/21/2017] [Indexed: 12/19/2022] Open
Abstract
Malaria eradication necessitates new tools to fight the evolving and complex Plasmodium pathogens. These tools include prophylactic drugs that eliminate Plasmodium liver stages and consequently prevent clinical disease, decrease transmission, and reduce the propensity for resistance development. Currently, the identification of these drugs relies on in vitro P. falciparum liver stage assays or in vivo causal prophylaxis assays using rodent malaria parasites; there is no method to directly test in vivo liver stage activity of candidate antimalarials against the human malaria-causing parasite P. falciparum. Here, we use a liver-chimeric humanized mouse (FRG huHep) to demonstrate in vivo P. falciparum liver stage development and describe the efficacy of clinically used and candidate antimalarials with prophylactic activity. We show that daily administration of atovaquone-proguanil (ATQ-PG; ATQ, 30 mg/kg, and PG, 10 mg/kg) protects 5 of 5 mice from liver stage infection, consistent with the use in humans as a causal prophylactic drug. Single-dose primaquine (60 mg/kg) has similar activity to that observed in humans, demonstrating the activity of this drug (and its active metabolites) in FRG huHep mice. We also show that DSM265, a selective Plasmodial dihydroorotate dehydrogenase inhibitor with causal prophylactic activity in humans, reduces liver stage burden in FRG huHep mice. Finally, we measured liver stage-to-blood stage transition of the parasite, the ultimate readout of prophylactic activity and measurement of infective capacity of parasites in the liver, to show that ATQ-PG reduces blood stage patency to below the limit of quantitation by quantitative PCR (qPCR). The FRG huHep model, thus, provides a platform for preclinical evaluation of drug candidates for liver stage causal prophylactic activity, pharmacokinetic/pharmacodynamics studies, and biological studies to investigate the mechanism of action of liver stage active antimalarials.
Collapse
Affiliation(s)
| | - Lander Foquet
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Vorada Chuenchob
- Center for Infectious Disease Research, Seattle, Washington, USA
| | | | - Zachary Billman
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | | | - William Betz
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Tayla M. Olsen
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Joshua Lee
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Nelly Camargo
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Thao Nguyen
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Carola Schafer
- Center for Infectious Disease Research, Seattle, Washington, USA
| | - Brandon K. Sack
- Center for Infectious Disease Research, Seattle, Washington, USA
| | | | - Jessica Saunders
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - John Bial
- Yecuris Corporation, Portland, Oregon, USA
| | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sean C. Murphy
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, Washington, USA
| | - Margaret A. Phillips
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas Texas, USA
| | - Stefan H.I. Kappe
- Center for Infectious Disease Research, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle Washington, USA
| | | |
Collapse
|
10
|
Kodchakorn C, Kesara NB. A review of clinical pharmacokinetics of chloroquine and primaquine and their application in malaria treatment in Thai population. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajpp2017.4828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Age, Weight, and CYP2D6 Genotype Are Major Determinants of Primaquine Pharmacokinetics in African Children. Antimicrob Agents Chemother 2017; 61:AAC.02590-16. [PMID: 28289025 PMCID: PMC5404566 DOI: 10.1128/aac.02590-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Low-dose primaquine is recommended to prevent Plasmodium falciparum malaria transmission in areas threatened by artemisinin resistance and areas aiming for malaria elimination. Community treatment campaigns with artemisinin-based combination therapy in combination with the gametocytocidal primaquine dose target all age groups, but no studies thus far have assessed the pharmacokinetics of this gametocytocidal drug in African children. We recruited 40 children participating in a primaquine efficacy trial in Burkina Faso to study primaquine pharmacokinetics. These children received artemether-lumefantrine and either a 0.25- or a 0.40-mg/kg primaquine dose. Seven blood samples were collected from each participant for primaquine and carboxy-primaquine plasma levels determinations: one sample was collected before primaquine administration and six after primaquine administration according to partially overlapping sampling schedules. Physiological population pharmacokinetic modeling was used to assess the impact of weight, age, and CYP2D6 genotype on primaquine and carboxy-primaquine pharmacokinetics. Despite linear weight normalized dosing, the areas under the plasma concentration-time curves and the peak concentrations for both primaquine and carboxy-primaquine increased with age and body weight. Children who were CYP2D6 poor metabolizers had higher levels of the parent compound, indicating a lower primaquine CYP2D6-mediated metabolism. Our data indicate that primaquine and carboxy-primaquine pharmacokinetics are influenced by age, weight, and CYP2D6 genotype and suggest that dosing strategies may have to be reconsidered to maximize the transmission-blocking properties of primaquine. (This study has been registered at ClinicalTrials.gov under registration no. NCT01935882.)
Collapse
|
12
|
Vieira JL, Ferreira MES, Ferreira MVD, Gomes MM. Primaquine in Plasma and Methemoglobinemia in Patients with Malaria Due to Plasmodium vivax in the Brazilian Amazon Basin. Am J Trop Med Hyg 2017; 96:1171-1175. [PMID: 28440745 DOI: 10.4269/ajtmh.15-0368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AbstractPrimaquine is the only licensed drug available for the elimination of Plasmodium vivax hypnozoites. Methemoglobinemia is currently reported in the course of treatment. There is evidence that metabolites of primaquine formed by the cytochrome pathway are responsible for methemoglobin formation; a genetic polymorphism of cytochrome isoforms; and a potential influence of gender in the activities of these enzymes requiring the establishment of dose × response curves profiles in different population groups. Concentrations of primaquine in plasma and methemoglobin levels were investigated in 54 patients with malaria due to P. vivax during the course of the standard regimen of chloroquine with primaquine (0.25 mg/kg/day for 14 days). All study subjects lived in an endemic area of the Brazilian Amazon Basin. The blood samples were collected before initiation of treatment and 3 hours (range 2-4 hours) after the administration of antimalarial drugs on days 2, 7, and 14. Plasma primaquine concentrations were similar in both genders (males: range = 164-191 ng/mL, females: range = 193-212 ng/mL). Methemoglobin levels ranged from 3.3% to 5.9% in males and from 3.1% to 6.5% in females. There were no significant correlations between the plasma primaquine concentrations or total dose and methemoglobin levels, suggesting that unidentified metabolites rather than parent drug were likely responsible for changes in methemoglobin levels. There was no significant influence of gender on primaquine concentrations in plasma or methemoglobin levels.
Collapse
Affiliation(s)
| | | | | | - Margarete M Gomes
- Laboratório Central Macapa, Secretaria de Estado da Saúde do Amapá, Amapá, Brazil
| |
Collapse
|
13
|
Looareesuwan S, Buchachart K, Wilairatana P, Chalermrut K, Rattanapong Y, Amradee S, Siripiphat S, Chullawichit S, Thimasan K, Ittiverakul M, Triampon A, Walsh DS. Primaquine-tolerant vivax malaria in Thailand. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
14
|
Leang R, Khu NH, Mukaka M, Debackere M, Tripura R, Kheang ST, Chy S, Kak N, Buchy P, Tarantola A, Menard D, Roca-Felterer A, Fairhurst RM, Kheng S, Muth S, Ngak S, Dondorp AM, White NJ, Taylor WRJ. An optimised age-based dosing regimen for single low-dose primaquine for blocking malaria transmission in Cambodia. BMC Med 2016; 14:171. [PMID: 27784313 PMCID: PMC5081959 DOI: 10.1186/s12916-016-0701-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In 2012, the World Health Organization recommended the addition of single low-dose primaquine (SLDPQ, 0.25 mg base/kg body weight) to artemisinin combination therapies to block the transmission of Plasmodium falciparum without testing for glucose-6-phosphate dehydrogenase deficiency. The targeted group was non-pregnant patients aged ≥ 1 year (later changed to ≥ 6 months) with acute uncomplicated falciparum malaria, primarily in countries with artemisinin-resistant P. falciparum (ARPf). No dosing regimen was suggested, leaving malaria control programmes and clinicians in limbo. Therefore, we designed a user-friendly, age-based SLDPQ regimen for Cambodia, the country most affected by ARPf. METHODS By reviewing primaquine's pharmacology, we defined a therapeutic dose range of 0.15-0.38 mg base/kg (9-22.5 mg in a 60-kg adult) for a therapeutic index of 2.5. Primaquine doses (1-20 mg) were tested using a modelled, anthropometric database of 28,138 Cambodian individuals (22,772 healthy, 4119 with malaria and 1247 with other infections); age distributions were: 0.5-4 years (20.0 %, n = 5640), 5-12 years (9.1 %, n = 2559), 13-17 years (9.1 %, n = 2550), and ≥ 18 years (61.8 %, n = 17,389). Optimal age-dosing groups were selected according to calculated mg base/kg doses and proportions of individuals receiving a therapeutic dose. RESULTS Four age-dosing bands were defined: (1) 0.5-4 years, (2) 5-9 years, (3) 10-14 years, and (4) ≥15 years to receive 2.5, 5, 7.5, and 15 mg of primaquine base, resulting in therapeutic doses in 97.4 % (5494/5640), 90.5 % (1511/1669), 97.7 % (1473/1508), and 95.7 % (18,489/19,321) of individuals, respectively. Corresponding median (1st-99th centiles) mg base/kg doses of primaquine were (1) 0.23 (0.15-0.38), (2) 0.29 (0.18-0.45), (3) 0.27 (0.15-0.39), and (4) 0.29 (0.20-0.42). CONCLUSIONS This age-based SLDPQ regimen could contribute substantially to malaria elimination and requires urgent evaluation in Cambodia and other countries with similar anthropometric characteristics. It guides primaquine manufacturers on suitable tablet strengths and doses for paediatric-friendly formulations. Development of similar age-based dosing recommendations for Africa is needed.
Collapse
Affiliation(s)
- Rithea Leang
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Naw Htee Khu
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Mark Debackere
- MSF Belgium Cambodia Malaria Program, #19, Street 388, Sangkat Tuol Svay Prey, Khan Chamkarmon, PO Box 1933, Phnom Penh, Cambodia
| | - Rupam Tripura
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Soy Ty Kheang
- University Research Co., LLC, MK Building, House #10 (2nd floor), St. 214, Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Say Chy
- University Research Co., LLC, MK Building, House #10 (2nd floor), St. 214, Chey Chumneas, Daun Penh, Phnom Penh, Cambodia
| | - Neeraj Kak
- University Research Co., LLC Washington DC: 7200 Wisconsin Ave, Bethesda, MD, 20814, USA
| | - Philippe Buchy
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Arnaud Tarantola
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Didier Menard
- Institut Pasteur du Cambodge, 5 Monivong Boulevard, PO Box 983, Phnom Penh, 12201, Cambodia
| | - Arantxa Roca-Felterer
- Malaria Consortium, House #91 Street 95, Boeung Trabek, Chamkar Morn, Phnom Penh, Cambodia
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Sim Kheng
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Sinoun Muth
- National Center for Parasitology, Entomology and Malaria Control, Corner St. 92, Trapeng Svay Village, Sangkat Phnom Penh, Thmei, Khan Sen Sok, Phnom Penh, Cambodia
| | - Song Ngak
- FHI 360 Cambodia Office, #03, Street 330 Boeung Keng Kang III Khan Chamkamon, PO Box: 2586, Phnom Penh, Cambodia
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Walter Robert John Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand. .,Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK. .,Centre de Médecine Humanitaire, Hôpitaux Universitaires de Genève, Genève, Switzerland.
| |
Collapse
|
15
|
Marcsisin SR, Reichard G, Pybus BS. Primaquine pharmacology in the context of CYP 2D6 pharmacogenomics: Current state of the art. Pharmacol Ther 2016; 161:1-10. [PMID: 27016470 DOI: 10.1016/j.pharmthera.2016.03.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Primaquine is the only antimalarial drug available to clinicians for the treatment of relapsing forms of malaria. Primaquine development and usage dates back to the 1940s and has been administered to millions of individuals to treat and eliminate malaria infections. Primaquine therapy is not without disadvantages, however, as it can cause life threatening hemolysis in humans with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In addition, the efficacy of primaquine against relapsing malaria was recently linked to CYP 2D6 mediated activation to an active metabolite, the structure of which has escaped definitive identification for over 75years. CYP 2D6 is highly polymorphic among various human populations adding further complexity to a comprehensive understanding of primaquine pharmacology. This review aims to discuss primaquine pharmacology in the context of state of the art understanding of CYP 2D6 mediated 8-aminoquinoline metabolic activation, and shed light on the current knowledge gaps of 8-aminoquinoline mechanistic understanding against relapsing malaria.
Collapse
Affiliation(s)
- Sean R Marcsisin
- Military Malaria Research Program, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.
| | - Gregory Reichard
- Military Malaria Research Program, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| | - Brandon S Pybus
- Department of Pathology, Dwight D. Eisenhower Army Medical Center, FT. Gordon, GA 30905, USA
| |
Collapse
|
16
|
Differential cytochrome P450 2D metabolism alters tafenoquine pharmacokinetics. Antimicrob Agents Chemother 2015; 59:3864-9. [PMID: 25870069 DOI: 10.1128/aac.00343-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/08/2015] [Indexed: 01/06/2023] Open
Abstract
Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations.
Collapse
|
17
|
Tekwani BL, Avula B, Sahu R, Chaurasiya ND, Khan SI, Jain S, Fasinu PS, Herath HMTB, Stanford D, Nanayakkara NPD, McChesney JD, Yates TW, ElSohly MA, Khan IA, Walker LA. Enantioselective pharmacokinetics of primaquine in healthy human volunteers. Drug Metab Dispos 2015; 43:571-7. [PMID: 25637634 DOI: 10.1124/dmd.114.061127] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primaquine (PQ), a racemic drug, is the only treatment available for radical cure of relapsing Plasmodium vivax malaria and blocking transmission of P. falciparum malaria. Recent studies have shown differential pharmacologic and toxicologic profiles of individual PQ enantiomers in rodent, dog, and primate animal models. This study was conducted in six healthy adult human volunteers to determine the plasma pharmacokinetic profile of enantiomers of PQ and carboxyprimaquine (cPQ), the major plasma metabolite. The individuals were orally administered PQ diphosphate, equivalent to 45-mg base, 30 minutes after a normal breakfast. Blood samples were collected at different time intervals, and plasma samples were analyzed for enantiomers of PQ and cPQ. Plasma PQ concentrations were low and variable for both parent enantiomers and peaked around 2-4 hours. Peak (-)-(R)-PQ concentrations ranged from 121 ng/ml to 221 ng/ml, and peak (+)-(S)-PQ concentrations ranged from 168 ng/ml to 299 ng/ml. The cPQ concentrations were much higher and were surprisingly consistent from subject to subject. Essentially all the cPQ detected in plasma was (-)-cPQ. The peak concentrations of (-)-cPQ were observed at 8 hours (range: 1104-1756 ng/ml); however, very high concentrations were sustained through 24 hours. (+)-cPQ was two orders of magnitude lower than (-)-cPQ, and in a few subjects it was detected but only under the limit of quantification. In vitro studies with primary human hepatocytes also suggested more rapid metabolism of (-)-PQ compared with (+)-PQ. The results suggest more rapid metabolism of (-)-PQ to (-) cPQ compared with (+)-PQ. Alternatively, (+)-PQ or (+)-cPQ could be rapidly converted to another metabolite(s) or distributed to tissues. This is the first clinical report on enantioselective pharmacokinetic profiles of PQ and cPQ and supports further clinical evaluation of individual PQ enantiomers.
Collapse
Affiliation(s)
- Babu L Tekwani
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Bharathi Avula
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Rajnish Sahu
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Narayan D Chaurasiya
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Shabana I Khan
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Surendra Jain
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Pius S Fasinu
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - H M T Bandara Herath
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Donald Stanford
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - N P Dhammika Nanayakkara
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - James D McChesney
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Travis W Yates
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Mahmoud A ElSohly
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Ikhlas A Khan
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Larry A Walker
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| |
Collapse
|
18
|
Abstract
Chloroquine combined with primaquine has been the standard radical curative regimen for Plasmodium vivax and Plasmodium ovale malaria for over half a century. In an open-label crossover pharmacokinetic study, 16 healthy volunteers (4 males and 12 females) aged 20 to 47 years were randomized into two groups of three sequential hospital admissions to receive a single oral dose of 30 mg (base) primaquine, 600 mg (base) chloroquine, and the two drugs together. The coadministration of the two drugs did not affect chloroquine or desethylchloroquine pharmacokinetics but increased plasma primaquine concentrations significantly (P ≤ 0.005); the geometric mean (90% confidence interval [CI]) increases were 63% (47 to 81%) in maximum concentration and 24% (13 to 35%) in total exposure. There were also corresponding increases in plasma carboxyprimaquine concentrations (P ≤ 0.020). There were no significant electrocardiographic changes following primaquine administration, but there was slight corrected QT (QTc) (Fridericia) interval lengthening following chloroquine administration (median [range] = 6.32 [−1.45 to 12.3] ms; P < 0.001), which was not affected by the addition of primaquine (5.58 [1.74 to 11.4] ms; P = 0.642). This pharmacokinetic interaction may explain previous observations of synergy in preventing P. vivax relapse. This trial was registered at ClinicalTrials.gov under reference number NCT01218932.
Collapse
|
19
|
Validation of a method for the simultaneous quantification of chloroquine, desethylchloroquine and primaquine in plasma by HPLC-DAD. J Pharm Biomed Anal 2014; 95:200-6. [PMID: 24682018 DOI: 10.1016/j.jpba.2014.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/20/2022]
Abstract
One of the most important aspects regarding the therapeutic efficacy of antimalarials is its quantification in biologic fluids. The detection and measurement of antimalarial drug levels is important for demonstrating (1) adequate absorption of the drug being given, (2) compliance in taking the full regimen required for treatment and (3) the level of drug in the blood at any time during the test period that parasites reappear. There is a lack of validated methods that simultaneously quantify different antimalarials administered at the same time, such as the use of chloroquine (CQ) and primaquine (PQ) in infections caused by Plasmodium vivax. In this study, a bioanalytical method was validated for the simultaneous quantification of primaquine (PQ), chloroquine (CQ) and desethylchloroquine (DSCQ) in human plasma using liquid-liquid extraction and high performance liquid chromatography with a diode array detector (HPLC-DAD). The PQ was evaluated over a concentration range of 100-3000 nM and the CQ and DSCQ was evaluated over a concentration range of 20-2000 nM. The selectivity of the method was verified by checking for interference by commonly used antimalarials and plasma samples. The accuracy and precision of the method was assessed for drugs spiked into human plasma and recoveries of 83.7%, 92.3%, and 76.5% were obtained for CQ, DSCQ, and PQ, respectively. The applicability of this method was also demonstrated with blood samples from patients with vivax malaria that received combination CQ plus PQ treatment. The simultaneous detection and accurate measurement of CQ, DSCQ, and PQ levels in human plasma provides an important and economical method for validating and monitoring sensitivity/resistance of P. vivax to more common treatment regimen.
Collapse
|
20
|
Pharmacokinetic properties of single-dose primaquine in Papua New Guinean children: feasibility of abbreviated high-dose regimens for radical cure of vivax malaria. Antimicrob Agents Chemother 2013; 58:432-9. [PMID: 24189254 DOI: 10.1128/aac.01437-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Since conventional 14-day primaquine (PMQ) radical cure of vivax malaria is associated with poor compliance, and as total dose, not therapy duration, determines efficacy, a preliminary pharmacokinetic study of two doses (0.5 and 1.0 mg/kg of body weight) was conducted in 28 healthy glucose-6-phosphate dehydrogenase-normal Papua New Guinean children, aged 5 to 12 years, to facilitate development of abbreviated high-dose regimens. Dosing was with food and was directly observed, and venous blood samples were drawn during a 168-h postdose period. Detailed safety monitoring was performed for hepatorenal function and hemoglobin and methemoglobin concentrations. Plasma concentrations of PMQ and its metabolite carboxyprimaquine (CPMQ) were determined by liquid chromatography-mass spectrometry and analyzed using population pharmacokinetic methods. The derived models were used in simulations. Both single-dose regimens were well tolerated with no changes in safety parameters. The mean PMQ central volume of distribution and clearance relative to bioavailability (200 liters/70 kg and 24.6 liters/h/70 kg) were within published ranges for adults. The median predicted maximal concentrations (Cmax) for both PMQ and CPMQ after the last dose of a 1.0 mg/kg 7-day PMQ regimen were approximately double those at the end of 14 days of 0.5 mg/kg daily, while a regimen of 1.0 mg/kg twice daily resulted in a 2.38 and 3.33 times higher Cmax for PMQ and CPMQ, respectively. All predicted median Cmax concentrations were within ranges for adult high-dose studies that also showed acceptable safety and tolerability. The present pharmacokinetic data, the first for PMQ in children, show that further studies of abbreviated high-dose regimens are feasible in this age group.
Collapse
|
21
|
Kulkarni SP, Shah SR, Kadam PP, Sridharan K, Hase NK, Shetty PP, Thatte UM, Gogtay NJ. Pharmacokinetics of single-dose primaquine in patients with chronic kidney dysfunction. Indian J Pharmacol 2013; 45:330-3. [PMID: 24014905 PMCID: PMC3757598 DOI: 10.4103/0253-7613.114997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/17/2013] [Accepted: 04/23/2013] [Indexed: 11/04/2022] Open
Abstract
AIM The pharmacokinetics of primaquine has not been studied in special populations. Being a basic compound, preferential binding to alpha-1 acid glycoprotein and substrate for P-glycoprotein, may predispose the drug for an altered pharmacokinetics in states of renal dysfunction. This study attempts to evaluate the pharmacokinetics of a single oral dose (15 mg) of primaquine in severely impaired renal function and end stage renal dysfunction patients compared to healthy participants. MATERIALS AND METHODS Twelve patients each with chronic kidney disease classified as either Stage IV or V (not on dialysis) were recruited. Data from 12 healthy participants was used as concurrent controls. Serial blood collections were performed following a single dose 15 mg Primaquine orally. Primaquine concentrations were measured in the plasma using a validated HPLC method. RESULTS The Cmax [median (range) in ng/ml] was 29.3 (14.6-104.3), 40.3 (14.8 - 78.6), and 49.8 (15 - 169.6) and the tmax [median (range) in hours] was 3.0 (1.0- 6.0), 2.0 (1.5 - 8) and 2.0 (1.0 - 4.0) for healthy and stage IV, V (not on dialysis) CKD participants, respectively. No statistically significant difference was observed in any of the pharmacokinetic parameters between healthy, stage IV and V CKD participants. CONCLUSION Pharmacokinetics of single oral dose primaquine (15 mg) does not appear to be altered in patients with severely impaired renal function and end stage renal dysfunction. A change in dose or frequency of the drug administration perhaps may not be required in this population.
Collapse
Affiliation(s)
- Shaunak P. Kulkarni
- Department of Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India
| | - Sanjana R. Shah
- Department of Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India
| | - Prashant P. Kadam
- Department of Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India
| | - Kannan Sridharan
- Department of Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India
| | - Nivrutti K. Hase
- Department of Nephrology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India
| | - Partha P. Shetty
- Department of Nephrology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India
| | - Urmila M. Thatte
- Department of Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India
| | - Nithya J. Gogtay
- Department of Pharmacology, Seth GS Medical College and KEM Hospital, Parel, Mumbai, India
| |
Collapse
|
22
|
Herath HMTB, McChesney JD, Walker LA, Nanayakkara NPD. Synthesis of [13C6]primaquine. J Labelled Comp Radiopharm 2013; 56:341-3. [PMID: 24285435 DOI: 10.1002/jlcr.3039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 01/26/2013] [Indexed: 11/08/2022]
Abstract
In support of a program to identify toxic metabolites of the antimalarial, primaquine, its [(13)C6] analog was prepared from [(13)C6] anisole in seven steps.
Collapse
Affiliation(s)
- H M T Bandara Herath
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS, 38677, USA
| | | | | | | |
Collapse
|
23
|
Pedro RS, Guaraldo L, Campos DP, Costa AP, Daniel-Ribeiro CT, Brasil P. Plasmodium vivax malaria relapses at a travel medicine centre in Rio de Janeiro, a non-endemic area in Brazil. Malar J 2012; 11:245. [PMID: 22839416 PMCID: PMC3416703 DOI: 10.1186/1475-2875-11-245] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 07/16/2012] [Indexed: 12/21/2022] Open
Abstract
Background Malaria is a potentially severe disease widely distributed in tropical and subtropical regions worldwide. Clinically, the progression of the disease can be life-threatening if it is not promptly diagnosed and properly treated. Through treatment, the radical cure of Plasmodium vivax infection can be achieved, thus preventing potential relapses and the emergence of new cases outside the Amazon region in Brazil. Surveillance for therapeutic failure in non-endemic areas is advantageous, as it is unlikely that recurrence of the disease can be attributed to a new malaria infection in these regions. Methods An observational study of 53 cases of P. vivax and mixed (P. vivax and Plasmodium falciparum) malaria was conducted at a travel medicine centre between 2005 and 2011 in Rio de Janeiro and a descriptive analysis of the potential factors related to recurrence of P. vivax malaria was performed. Groups with different therapeutic responses were compared using survival analysis based on the length of time to recurrence and a set of independent variables thought to be associated with recurrence. Results Twenty-one relapses (39.6%) of P. vivax malaria were observed. The overall median time to relapse, obtained by the Kaplan-Meier method, was 108 days, and the survival analysis demonstrated an association between non-weight-adjusted primaquine dosing and the occurrence of relapse (p < 0.03). Primaquine total dose at 3.6 mg/kg gave improved results in preventing relapses. Conclusions A known challenge to individual cure and environmental control of malaria is the possibility of an inappropriate, non-weight-based primaquine dosing, which should be considered a potential cause of P. vivax malaria relapse. Indeed, the total dose of primaquine associated with non-occurrence of relapses was higher than recommended by Brazilian guidelines.
Collapse
Affiliation(s)
- Renata S Pedro
- Instituto de Pesquisa Clínica Evandro Chagas (IPEC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Av, Brasil 4365, Manguinhos, Rio de Janeiro, RJ - CEP 21,045-900, RJ -, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Page-Sharp M, Ilett KF, Betuela I, Davis TME, Batty KT. Simultaneous determination of primaquine and carboxyprimaquine in plasma using solid phase extraction and LC-MS assay. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 902:142-6. [PMID: 22771236 DOI: 10.1016/j.jchromb.2012.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/28/2012] [Accepted: 06/17/2012] [Indexed: 10/28/2022]
Abstract
Sensitive bioanalytical methods are required for pharmacokinetic studies in children, due to the small volume and modest number of samples that can be obtained. We sought to develop a LC-MS assay for primaquine and its active metabolite, carboxyprimaquine, following simultaneous, solid phase extraction of both analytes from human plasma. The analysis was conducted on a single-quad LC-MS system (Shimadzu Model 2020) in ESI+ mode, with quantitation by selected ion monitoring. Primaquine, carboxyprimaquine and 8-aminoquinoline (internal standard) were separated using a mobile phase of 80:20 methanol:water with 0.1% (v/v) formic acid and a Luna C(18) HPLC column, at ambient temperature. Solid phase extraction of the analytes from plasma (0.5 mL) was achieved with Oasis(®) HLB cartridges. The retention times for primaquine, 8-aminoquinoline and carboxyprimaquine were 3.3, 5.7 and 8.5 min, respectively. The calibration curve range (2-1500 μg/L) was appropriate for the limits of quantification and detection for primaquine (2 μg/L and 1μ g/L, respectively) and carboxyprimaquine (2.5 μg/L and 1 μg/L) and the anticipated plasma concentrations of the analytes. Intra- and inter-day precision for both primaquine and carboxyprimaquine was <10% across the concentration range 5-1000 μg/L. Accuracy for both analytes was <15% (5-500 μg/L). This validated LC-MS method with solid phase extraction facilitates the simultaneous analysis of primaquine and carboxyprimaquine from small volumes of human plasma, with run time <10 min, recovery >85% and sensitivity of 1-2 μg/L.
Collapse
Affiliation(s)
- Madhu Page-Sharp
- School of Pharmacy, Curtin University, Bentley, Western Australia, Australia
| | | | | | | | | |
Collapse
|
25
|
Nair A, Abrahamsson B, Barends DM, Groot D, Kopp S, Polli JE, Shah VP, Dressman JB. Biowaiver Monographs for Immediate-Release Solid Oral Dosage Forms: Primaquine Phosphate. J Pharm Sci 2012; 101:936-45. [DOI: 10.1002/jps.23006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 01/15/2023]
|
26
|
Deen JL, von Seidlein L, Dondorp A. Therapy of uncomplicated malaria in children: a review of treatment principles, essential drugs and current recommendations. Trop Med Int Health 2008; 13:1111-30. [DOI: 10.1111/j.1365-3156.2008.02117.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Le nouvel âge de la primaquine contre le paludisme. Med Mal Infect 2008; 38:169-79. [DOI: 10.1016/j.medmal.2008.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/20/2007] [Accepted: 01/21/2008] [Indexed: 11/22/2022]
|
28
|
Al‐Badr AA. Primaquine Diphosphate: Comprehensive Profile. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS AND RELATED METHODOLOGY 2005; 32:153-208. [DOI: 10.1016/s0099-5428(05)32007-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
29
|
Kim YR, Kuh HJ, Kim MY, Kim YS, Chung WC, Kim SI, Kang MW. Pharmacokinetics of primaquine and carboxyprimaquine in korean patients with vivax malaria. Arch Pharm Res 2004; 27:576-80. [PMID: 15202566 DOI: 10.1007/bf02980134] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Primaquine is used for relapses caused by vivax malaria hypnozoites. No studies on the pharmacokinetics of primaquine (PMQ) has been reported in Korean patients. In our study, thirty vivax malaria patients were given 15 mg primaquine daily for 14 days after 3 days of chloroquine treatment. Plasma samples were taken at intervals after each daily dose of PMQ for 3 days. Plasma concentrations of PMQ and carboxyprimaquine (CPMQ), the major metabolite of primaquine, were measured by HPLC. The PMQ concentrations reached a maximum of 0.28+/-0.18 microg/mL at 1.5 h after the first dose. The maximum concentration of CPMQ was 0.32+/-0.13 microg/mL at 4 h. Higher drug concentrations with repeated dosing were observed for CPMQ, but not for the parent drug, PMQ. The elimination half-life was 3.76+/-1.8 h and 15.7+/-12.2 h, for PMQ and CPMQ, respectively. Large variation in the plasma concentrations of both drugs was observed. Overall, PMQ is absorbed and metabolized rapidly after oral administration. It was noted that the mean peak plasma concentration of PMQ was significantly higher and that of CPMQ was lower in our patients compared to other studies. This suggests a potential difference of inter-ethnic groups, which warrants further investigations.
Collapse
Affiliation(s)
- Yang-Ree Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, 137-040, Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Bjornsson TD, Wagner JA, Donahue SR, Harper D, Karim A, Khouri MS, Murphy WR, Roman K, Schneck D, Sonnichsen DS, Stalker DJ, Wise SD, Dombey S, Loew C. A review and assessment of potential sources of ethnic differences in drug responsiveness. J Clin Pharmacol 2003; 43:943-67. [PMID: 12971027 DOI: 10.1177/0091270003256065] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The International Conference on Harmonization (ICH) E5 guidelines were developed to provide a general framework for evaluating the potential impact of ethnic factors on the acceptability of foreign clinical data, with the underlying objective to facilitate global drug development and registration. It is well recognized that all drugs exhibit significant inter-subject variability in pharmacokinetics and pharmacologic response and that such differences vary considerably among individual drugs and depend on a variety of factors. One such potential factor involves ethnicity. The objective of the present work was to perform an extensive review of the world literature on ethnic differences in drug disposition and responsiveness to determine their general significance in relation to drug development and registration. A few examples of suspected ethnic differences in pharmacokinetics or pharmacodynamics were identified. The available literature, however, was found to be heterologous, including a variety of study designs and research methodologies, and most of the publications were on drugs that were approved a long time ago.
Collapse
|
31
|
Orta-Salazar G, Bouchard RA, Morales-Salgado F, Salinas-Stefanon EM. Inhibition of cardiac Na+ current by primaquine. Br J Pharmacol 2002; 135:751-63. [PMID: 11834623 PMCID: PMC1573163 DOI: 10.1038/sj.bjp.0704460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2001] [Revised: 09/19/2001] [Accepted: 10/26/2001] [Indexed: 11/09/2022] Open
Abstract
The electrophysiological effects of the anti-malarial drug primaquine on cardiac Na(+) channels were examined in isolated rat ventricular muscle and myocytes. In isolated ventricular muscle, primaquine produced a dose-dependent and reversible depression of dV/dt during the upstroke of the action potential. In ventricular myocytes, primaquine blocked I(Na)(+) in a dose-dependent manner, with a K(d) of 8.2 microM. Primaquine (i) increased the time to peak current, (ii) depressed the slow time constant of I(Na)(+) inactivation, and (iii) slowed the fast component for recovery of I(Na)(+) from inactivation. Primaquine had no effect on: (i) the shape of the I - V curve, (ii) the reversal potential for Na(+), (iii) the steady-state inactivation and g(Na)(+) curves, (iv) the fast time constant of inactivation of I(Na)(+), and (v) the slow component of recovery from inactivation. Block of I(Na)(+) by primaquine was use-dependent. Data obtained using a post-rest stimulation protocol suggested that there was no closed channel block of Na(+) channels by primaquine. These results suggest that primaquine blocks cardiac Na(+) channels by binding to open channels and unbinding either when channels move between inactivated states or from an inactivated state to a closed state. Cardiotoxicity observed in patients undergoing malaria therapy with aminoquinolines may therefore be due to block of Na(+) channels, with subsequent disturbances of impulse conductance and contractility.
Collapse
Affiliation(s)
- Gerardo Orta-Salazar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Av. 14 Sur # 6301, C.U. Puebla, México
| | - Ron A Bouchard
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Av. 14 Sur # 6301, C.U. Puebla, México
| | - Fernando Morales-Salgado
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Av. 14 Sur # 6301, C.U. Puebla, México
| | - Eduardo M Salinas-Stefanon
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Av. 14 Sur # 6301, C.U. Puebla, México
| |
Collapse
|
32
|
|
33
|
Jeans CW, Heard CM. A therapeutic dose of primaquine can be delivered across excised human skin from simple transdermal patches. Int J Pharm 1999; 189:1-6. [PMID: 10518680 DOI: 10.1016/s0378-5173(99)00215-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work investigated the permeation of primaquine across full-thickness excised human skin from two acrylate transdermal adhesives. Primaquine base was formulated with National Starch 387-2516 and 387-2287 to provide aluminium foil-backed 1-cm diameter patches, each loaded with 10 mg drug. Other patches were prepared that included Migliol 840 as a potential penetration enhancer. The patches were applied to cadaver skin in Franz-type diffusion cells and the permeation of primaquine determined over a 24-h period. Relatively high fluxes were found, the highest being from those formulations lacking the Migliol 840: 5.68+/-0.30x10(-2) mg cm(-2) h(-1) from 387-2516; 4.94+/-0.20x10(-2) mg cm(-2) h(-1) from 387-2287. It was determined that a simple patch with a diameter of approximately 13 cm(2) could deliver a therapeutic in vivo dose, with possibilities for the treatment and prophylaxis of Plasmodium vivax, P. ovale and P. falciparum forms of malaria. The presence of Migliol 840 failed to produce the anticipated enhancing effect: flux rates that were approximately halved. These results could to a certain extent be rationalised in terms of thermodynamic activity.
Collapse
Affiliation(s)
- C W Jeans
- Welsh School of Pharmacy, Cardiff University, Cardiff, UK
| | | |
Collapse
|
34
|
Fryauff DJ, Richards AL, Baird JK, Richie TL, Mouzin E, Tjitra E, Sutamihardja MA, Ratiwayanto S, Hadiputranto H, Larasati RP, Pudjoprawoto N, Subianto B, Hoffman SL. Lymphocyte proliferative response and subset profiles during extended periods of chloroquine or primaquine prophylaxis. Antimicrob Agents Chemother 1996; 40:2737-42. [PMID: 9124832 PMCID: PMC163613 DOI: 10.1128/aac.40.12.2737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Immune suppression and disturbances of normal leukocyte populations are side effects attributed to many antimalarial drugs and were concerns during a recent year-long placebo-controlled trial that compared daily primaquine (0.5 mg of base per kg of body weight per day) with weekly chloroquine (300 mg of base one time per week) for malaria prophylaxis. The study took place in Irian Jaya, Indonesia, from July 1994 to August 1995 and enrolled 129 Javanese men with normal glucose-6-phosphate dehydrogenase function. Tests for lymphocyte function and subset composition were conducted blindly on a cross-section of subjects during weeks 10 (n = 42) and 48 (n = 72) of supervised prophylaxis. Lymphocyte function, measured as the proliferative response of peripheral blood mononuclear cells to a panel of mitogens (pokeweed mitogen, phytohemagglutinin, and concanavalin A) and antigens (purified protein derivative of Mycobacterium tuberculosis and Clostridium tetani toxoid) and expressed as a stimulation index, allowed for statistical comparison between groups and sampling times. The lymphocyte subset composition for each group and time point was based on flow cytometry profiling, and the results were expressed as the mean percentages of CD3 (total T cells), CD19 (total B cells), CD4+ (T-helper and inducer cells), and CD8+ (T suppressor and cytotoxic cells), CD3/CD16+ CD56 (natural killer cells), CD3/anti-HLA-DR (activated T cells) cells and the CD4+/CD8+ ratios. Lymphocyte stimulation indices were statistically comparable among the placebo, primaquine, and chloroquine groups at both time points, although the primaquine group was distinguished by having repeatedly greater proportions of subjects with high ( > 3.0) stimulation indices. The lymphocyte subset profiles of these groups at both time points were also similar and undistorted relative to those of healthy reference populations matched for age, sex, and ethnicity. The results provide quantitative support for the safety of daily primaquine prophylaxis.
Collapse
Affiliation(s)
- D J Fryauff
- U.S. Naval Medical Research Unit No. 2, Jakarta, Irian Jaya, Indonesia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dua VK, Kar PK, Sarin R, Sharma VP. High-performance liquid chromatographic determination of primaquine and carboxyprimaquine concentrations in plasma and blood cells in Plasmodium vivax malaria cases following chronic dosage with primaquine. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 675:93-8. [PMID: 8634775 DOI: 10.1016/0378-4347(95)00357-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A reversed-phase HPLC method using acetonitrile-methanol-1 M perchloric acid-water (30:9:1:95, v/v) at a flow-rate of 1.5 ml/min on a mu-Bondapak C18 column with UV detection at 254 nm was developed for the separation of primaquine, its major metabolite carboxyprimaquine and other metabolites such as N-acetylprimaquine, 4-hydroxyprimaquine, 5-hydroxyprimaquine, 5-hydroxy-6-methoxyprimaquine, demethylprimaquine and 6-methoxyprimaquine, and also other antimalarials. The calibration graphs were linear in the range 0.025-100 micrograms/ml for primaquine and 4-1000 micrograms/ml for carboxyprimaquine. The within-day and day-to-day coefficients of variation averaged 3.65 and 6.95%, respectively, for primaquine and 3.0 and 7.52%, respectively for carboxyprimaquine in plasma. The extraction recoveries for primaquine and carboxyprimaquine were 89 and 83%, respectively. The mean carboxyprimaquine concentration was much higher in plasma and blood cells of Plasmodium vivax patients than that in plasma from healthy subjects. The carboxyprimaquine level was also higher in blood cells than plasma whereas the primaquine concentration was the same in both cases.
Collapse
Affiliation(s)
- V K Dua
- Malaria Research Centre, Ranipur, Hardwar, India
| | | | | | | |
Collapse
|
36
|
Vöhringer HF, Arastéh K. Pharmacokinetic optimisation in the treatment of Pneumocystis carinii pneumonia. Clin Pharmacokinet 1993; 24:388-412. [PMID: 8504623 DOI: 10.2165/00003088-199324050-00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Several drugs and drug combinations are currently used in the treatment of patients with Pneumocystis carinii pneumonia (PCP)--pentamidine and cotrimoxazole (trimethoprim plus sulphamethoxazole), which are indicated for this usage, dapsone/trimethoprim and clindamycin/primaquine, which are not licensed for PCP, and trimetrexate/calcium folinate (leucovorin), eflornithine and BW-566C (566 C80) as investigational drugs. For most of these agents, recommendations regarding the use of pharmacokinetic parameters to establish individualised therapy cannot be made. The pharmacokinetics of antipneumocystis drugs are not well documented and clinical trials evaluating the relationship between the individual plasma pharmacokinetic profiles and responses to treatment are sparse. In clinical trials, the reduction of the daily dose of pentamidine to 3 or 2 mg/kg/day and of cotrimoxazole to 15 mg/kg of the trimethoprim component resulted in a substantial reduction of frequency and severity of adverse drug effects without diminishing efficacy. For pentamidine, a long half-life of > or = 4 days implies the need for a loading dose. Plasma concentrations of the parent drug at steady-state varied between 30 and 100 micrograms/L. The elimination pharmacokinetics are characterised by several elimination slopes indicating the existence of a deep peripheral compartment. Due to its very low renal clearance, dosage adjustments are not necessary in patients with renal impairment. The pharmacokinetics of cotrimoxazole follow first-order kinetics in PCP and the particular parameters are similar to those reported in the treatment of bacterial infection. Steady-state plasma concentrations of both trimethoprim and sulphamethoxazole are attained within 2 to 3 days, but the range of 'therapeutic' plasma concentrations must be newly defined, since elevated trimethoprim concentrations could not be correlated with the frequency and severity of adverse drug reactions. The concentrations of sulphamethoxazole may be at least as important as those of trimethoprim in defining a toxic range. With dapsone/trimethoprim, clindamycin/primaquine and BW-566C (566 C 80) good clinical response rates were found in groups of patients with mild to moderate PCP. Comparative trials with standard drugs are still ongoing. Therapeutic to toxic concentration ratios have not been established in patients with PCP. Pharmacokinetic data pertaining to patients with PCP are either nonexistent or incomplete, or are complicated by a drug interaction between dapsone and trimethoprim suggesting an inhibition of metabolism of dapsone. Eflornithine and trimetrexate/calcium folinate have been used under specific research protocols, showing partial success as salvage agents for desperately ill patients with AIDS. Regarding all antipneumocystis drugs, additional clinical and pharmacokinetic data are needed to optimise and more fully individualise the treatment regimens for this severe infection.
Collapse
Affiliation(s)
- H F Vöhringer
- Auguste-Viktoria-Krankenhaus, Freien Universität Berlin, Federal Republic of Germany
| | | |
Collapse
|
37
|
Yoshimura H, Endoh YS, Ishihara Y, Nakamura S, Inoue Y. The pharmacokinetics of primaquine in calves after subcutaneous and intravenous administration. Vet Res Commun 1993; 17:129-36. [PMID: 8212522 DOI: 10.1007/bf01839241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The pharmacokinetics of primaquine was studied in calves of 180-300 kg live weight. Primaquine was injected at 0.29 mg/kg (0.51 mg/kg as primaquine diphosphate) intravenously (IV) or subcutaneously (SC) and the plasma concentrations of primaquine and its metabolite carboxyprimaquine were determined by high-performance liquid chromatography. The extrapolated concentration of primaquine at zero time after IV administration was 0.50 +/- 0.48 microgram/ml (mean +/- SD) which decreased with an elimination half-life of 0.16 +/- 0.07 h. Primaquine was rapidly converted to carboxyprimaquine after either route of administration. The peak concentration of carboxyprimaquine was 0.50 +/- 0.08 microgram/ml at 1.67 +/- 0.15 h after IV administration. The corresponding value was 0.47 +/- 0.07 micrograms/ml at 5.05 +/- 1.20 h after SC administration. The elimination half-lives of carboxyprimaquine after IV and SC administration were 15.06 +/- 0.99 and 12.26 +/- 3.06 h, respectively. The areas under the concentration-time curve for carboxyprimaquine were similar following either IV or SC administration of primaquine; the values were 11.85 +/- 2.62 micrograms.h/ml after the former and 10.95 +/- 2.65 micrograms.h/ml after the latter. The mean area under the concentration-time curve for primaquine was less than 0.1 micrograms.h/ml after either route of administration.
Collapse
Affiliation(s)
- H Yoshimura
- National Veterinary Assay Laboratory, Tokyo, Japan
| | | | | | | | | |
Collapse
|
38
|
Edwards G, McGrath CS, Ward SA, Supanaranond W, Pukrittayakamee S, Davis TM, White NJ. Interactions among primaquine, malaria infection and other antimalarials in Thai subjects. Br J Clin Pharmacol 1993; 35:193-8. [PMID: 8443039 PMCID: PMC1381514 DOI: 10.1111/j.1365-2125.1993.tb05685.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
1. The pharmacokinetics of rac-primaquine (45 mg base) and its principal plasma metabolite, carboxyprimaquine have been investigated in healthy Thai adults prior to and following a single oral dose of mefloquine (10 mg kg-1). 2. Primaquine was rapidly absorbed, attaining peak plasma concentrations (median and range) of 167 (113-532) micrograms l-1 in 2 (1-4) h. Thereafter, concentrations declined rapidly with an apparent terminal half-life of 6.1 (1.7-16.1) h and an oral clearance (CLpo) of 33.1 (17.6-49.3) l h-1. Administration of mefloquine had no effect on the values of any of these parameters at the 5% level of significance [Cmax 229 (114-503) micrograms l-1; tmax 3 (2-4) h; t1/2,z 3.9 (1.7-13.5) h; CLpo 34.0 (21.7-49.0) l h-1]. 3. The carboxylic acid metabolite of primaquine achieved maximum concentrations (median and range) of 890 (553-3634) micrograms l-1 at 6 (3-16) h. Thereafter, plasma concentrations of carboxyprimaquine declined to 346 (99-918) micrograms l-1 at 24 h. AUC (0,24 h) was 12737 (6837-27388) micrograms l-1 h. Administration of mefloquine had no effect on the plasma concentrations of this metabolite [Cmax 1035 (174-3015) micrograms l-1; tmax 8 (2-24) h; AUC(0,24) 13471 (2132-17863) micrograms l-1 h]. 4. The effect of falciparum malaria and treatment with quinine (10 mg salt kg-1 p.o.) on the pharmacokinetics of primaquine (45 mg base p.o.) has been investigated in adult Thai patients during and after infection with falciparum malaria.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Edwards
- Department of Pharmacology and Therapeutics, University of Liverpool
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Bergqvist Y, Churchill FC. Detection and determination of antimalarial drugs and their metabolites in body fluids. JOURNAL OF CHROMATOGRAPHY 1988; 434:1-20. [PMID: 3072344 DOI: 10.1016/0378-4347(88)80057-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review of methods for determining antimalarial drugs in biological fluids has focused on the various analytical techniques for the assay of chloroquine, quinine, amodiaquine, mefloquine, proguanil, pyrimethamine, sulphadoxine, primaquine and some of their metabolites. The methods for determining antimalarials and their metabolites in biological samples have changed rapidly during the last eight to ten years with the increased use of chromatographic techniques. Chloroquine is still the most used antimalarial drug, and various methods of different complexity exist for the determination of chloroquine and its metabolites in biological fluids. The pharmacokinetics of chloroquine and other antimalarials have been updated using these new methods. The various analytical techniques have been discussed, from simple colorimetric methods of intermediate selectivity and sensitivity to highly sophisticated, selective and sensitive chromatographic methods applied in a modern analytical laboratory. Knowledge concerning the method for a particular study is determined by the type of application and the facilities, equipment and personnel available. Often is it useful to apply various methods when conducting a clinical study in malaria-endemic areas. Field-adapted methods for the analysis of urine samples can be applied at the study site for screening, and corresponding blood samples can be preserved for subsequent analysis in the laboratory. Selecting samples for laboratory analysis is based on clinical, parasitological and field-assay data. The wide array of methods available for chloroquine permit carefully tailored approaches to acquire the necessary analytical information in clinical field studies concerning the use of this drug. The development of additional field-adapted and field-interfaced methods for other commonly used antimalarials will provide similar flexibility in field studies of these drugs.
Collapse
Affiliation(s)
- Y Bergqvist
- Department of Clinical Chemistry, Falun Central Hospital, Sweden
| | | |
Collapse
|
41
|
Affiliation(s)
- N J White
- Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Thailand
| |
Collapse
|
42
|
Bhatia SC, Saraph YS, Revankar SN, Doshi KJ, Bharucha ED, Desai ND, Vaidya AB, Subrahmanyam D, Gupta KC, Satoskar RS. Pharmacokinetics of primaquine in patients with P. vivax malaria. Eur J Clin Pharmacol 1986; 31:205-10. [PMID: 3542534 DOI: 10.1007/bf00606660] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The pharmacokinetics of primaquine (PQ) and its major carboxylic acid metabolite (PQC) have been studied in seven Indian patients with P. vivax malaria following PQ 15 mg/day p.o. for 14 days. After a single oral dose on Day 1, a mean peak blood concentration of 50.7 ng/ml PQ was attained after 2.3 h, which declined monoexponentially with a half-life of 5.6 h. The mean total body clearance was 37.6 l/h and the volume of distribution was 292 l. The mean renal excretion (0-24 h) of the drug was only 0.54% of the dose and renal clearance was 0.189 l/h. Following chronic administration, none of the pharmacokinetic parameters was affected, and a steady state blood concentration of 2.5-4.2 ng/ml PQ was attained. After the first dose of PQ, PQC had a mean area under the blood concentration - time curve 11-fold higher than that of the parent drug. In contrast to the rapid distribution and elimination of PQ, the metabolite showed a longer mean residence time and accumulation in the body. The mean Cmax and AUC of the metabolite on Day 14 were 48 and 40% higher than the corresponding Day 1 values. The metabolite could not be detected in urine at any time in any patient. PQ and its metabolite did not show any accumulation in blood cells.
Collapse
|