1
|
|
2
|
Blumenberg A, Hughes A, Reckers A, Ellison R, Gerona R. Flualprazolam: Report of an Outbreak of a New Psychoactive Substance in Adolescents. Pediatrics 2020; 146:peds.2019-2953. [PMID: 32581001 DOI: 10.1542/peds.2019-2953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/30/2019] [Indexed: 11/24/2022] Open
Abstract
Flualprazolam is a nonregistered drug in the benzodiazepine family and constitutes a new psychoactive substance (NPS). Since 2014, a growing number of designer benzodiazepines have become available over the Internet and on the counterfeit drug market. In June 2019, a cluster of patients intoxicated with flualprazolam was identified by the Oregon Poison Center. As an emerging drug of abuse, the clinical characteristics of flualprazolam have been poorly characterized thus far. Over a one-week period, 6 teenagers presented to local emergency departments after ingesting illegally obtained counterfeit alprazolam, which led to sedation. Other symptoms included slurred speech, confusion, and mild respiratory depression. All 6 patients had resolution of their symptoms within 6 hours of ingestion. Blood and urine samples, as well as a tablet fragment, were obtained from 3 patients. The tablet and biological samples were analyzed by using liquid chromatography-quadrupole time-of-flight mass spectrometry and were found to contain the NPS flualprazolam without other drugs or intoxicants. With this case series, we add to the medical literature a clinical description of an emerging drug of abuse. Flualprazolam appears to share the clinical properties of other benzodiazepines. As flualprazolam and other NPSs become more common, physicians must be aware of their availability and characteristics. Sedation lasting <6 hours was observed in 6 of 6 patients exposed to flualprazolam. No effects that would be unexpected from benzodiazepine intoxication were seen among the patients. Specifically, none developed prolonged symptoms or required intubation and mechanical ventilation, ICU admission, or antidotal therapy.
Collapse
Affiliation(s)
- Adam Blumenberg
- Department of Emergency Medicine, School of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Adrienne Hughes
- Department of Emergency Medicine, School of Medicine, Oregon Health and Science University, Portland, Oregon; and
| | - Andrew Reckers
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, San Francisco, California
| | - Ross Ellison
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, San Francisco, California
| | - Roy Gerona
- Clinical Toxicology and Environmental Biomonitoring Laboratory, University of California, San Francisco, San Francisco, California
| |
Collapse
|
3
|
Chan TS, Scaringella YS, Raymond K, Taub ME. Evaluation of Erythromycin as a Tool to Assess CYP3A Contribution of Low Clearance Compounds in a Long-Term Hepatocyte Culture. Drug Metab Dispos 2020; 48:690-697. [PMID: 32503882 DOI: 10.1124/dmd.120.090951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Long-term hepatocyte culture systems such as HepatoPac are well suited to evaluate the metabolic turnover of low clearance (CL) drugs because of their sustained metabolic capacity and longer-term viability. Erythromycin (ERY), a moderate, mechanism-based inhibitor of CYP3A, was evaluated as a tool in the HepatoPac model to assess contribution of CYP3A to the clearance of drug candidates. ERY inhibited CYP3A activity by 58% and 80% at 3 and 10 μM, respectively, for up to 72 hours. At 30 µM, ERY inhibited midazolam hydroxylation by >85% for the entire 144-hour duration of the incubation. Alprazolam CLint was inhibited 58% by 3 μM of ERY, 75% by 15 μM of ERY, 89% by 30 μM of ERY, and 94% by 60 μM of ERY. ERY (30 μM) did not markedly affect CLint of substrates for several other major cytochrome P450 isoforms evaluated and did not markedly inhibit uridine diphosphoglucuronosyl transferase (UGT) isoforms 1A1, 1A3, 1A4, 1A6, 1A9, 2B7, or 2B15 as assessed using recombinant UGTs. ERY only mildly increased CYP3A4 gene expression by 2.1-fold (14% of rifampicin induction) at 120 µM, indicating that at effective concentrations for inhibition of CYP3A activity (30-60 µM), arylhydrocarbon receptor, constitutive androstane receptor, and pregnane-X-receptor activation are not likely to markedly increase levels of other drug-metabolizing enzymes or transporters. ERY at concentrations up to 60 µM was not toxic for up to 6 days of incubation. Use of ERY to selectively inhibit CYP3A in high-functioning, long-term hepatocyte models such as HepatoPac can be a valuable strategy to evaluate the contribution of CYP3A metabolism to the overall clearance of slowly metabolized drug candidates. SIGNIFICANCE STATEMENT: This work describes the use of erythromycin as a selective inhibitor of CYP3A to assess the contribution of CYP3A in the metabolism of compounds using long-term hepatocyte cultures.
Collapse
Affiliation(s)
- Tom S Chan
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Young-Sun Scaringella
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Klairynne Raymond
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Mitchell E Taub
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| |
Collapse
|
4
|
Sugimoto A, Suzuki Y, Orime N, Hayashi T, Egawa J, Sugai T, Inoue Y, Someya T. Non-Linear Pharmacokinetics of Atomoxetine in Adult Japanese Patients With ADHD. J Atten Disord 2020; 24:490-493. [PMID: 27474159 DOI: 10.1177/1087054716661235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: The objective was to reveal the relationship between dose and concentration of atomoxetine. Method: Fifty-five blood samples of 33 patients with ADHD were examined using high-performance liquid chromatography. Results: The plasma concentrations were 53.2 ± 67.0, 298.0 ± 390.5, and 639.3 ± 831.9 ng/mL at doses of 40 mg, 80 mg, and 120 mg, and the concentration/dose were 1.33 ± 1.67, 3.73 ± 4.88, and 5.33 ± 6.93 ng/mL/mg, respectively. Statistical analyses revealed a significant correlation between the concentration and the dose of atomoxetine (p = .004), and a trending toward significance in the difference in the concentration/dose in the three dosage groups (p = .064). The concentration/dose at 40 and 80 + 120 mg/day were 1.33 ± 1.67 and 4.22 ± 5.53 ng/mL/mg, the latter was significantly higher than the former (p = .006), which suggested non-linear pharmacokinetics. Conclusion: Clinicians should carefully titrate in high dose atomoxetine treatment.
Collapse
|
5
|
Abrudan MB, Popa DS, Muntean DM, Gheldiu AM, Vlase L. Pharmacokinetic interactions study between carvedilol and some antidepressants in rat liver microsomes - a comparative study. Med Pharm Rep 2019; 92:158-164. [PMID: 31086844 PMCID: PMC6510361 DOI: 10.15386/mpr-1225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 11/23/2022] Open
Abstract
Background and aims Cardiovascular diseases and depressive disorders are some of the most frequent diseases. The probability of concomitant prescription of antihypertensive and antidepressive medication is increasing. The aim of this study was to investigate the enzyme inhibition by bupropion, sertraline and fluvoxamine on the metabolism of carvedilol using rat pooled liver microsomes and to assess the importance of these interactions from the pharmacokinetic mechanism point of view. Methods Two substrate concentrations (0.5 and 1 μM) and four inhibitor concentrations (0, 0.1, 0.75 and 1.5 μM) were used for each tested inhibitor. Results The results of the in vitro experiments showed a significant decrease of the metabolic rate of carvedilol to 4′-hydroxyphenyl carvedilol, for all tested inhibitors, when the inhibitor was added to the incubation mixture containing the substrate. Moreover, an increase of the area under the concentration-time curve for carvedilol was observed after incubation with each tested inhibitor compared with the control state (no inhibitor). The most potent inhibitor was sertraline, followed by fluvoxamine and bupropion. Conclusion The co-administration of tested antidepressants led to a significant alteration of carvedilol’s metabolism in vitro. CYP2D6 inhibition is the main pharmacokinetic mechanism that can explain these drug-drug interactions, with possible clinical implications.
Collapse
Affiliation(s)
- Maria Bianca Abrudan
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daniela Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ana Maria Gheldiu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
6
|
De Buck S, Kucher K, Hara H, Gray C, Woessner R. CYP3A but not P-gp plays a relevant role in the in vivo intestinal and hepatic clearance of the delta-specific phosphoinositide-3 kinase inhibitor leniolisib. Biopharm Drug Dispos 2018; 39:394-402. [PMID: 30171694 DOI: 10.1002/bdd.2157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
This study investigated the effect of itraconazole, a strong dual inhibitor of cytochrome P450 (CYP) 3A4 and P-glycoprotein (P-gp), on the single dose pharmacokinetics of leniolisib. In order to differentiate the specific contribution of CYP3A from P-gp, the potential interaction with quinidine, a strong inhibitor of P-gp but not CYP3A, was studied as well. Using a fixed-sequence, 3-way crossover design, 20 healthy male subjects received single oral doses of 10 mg leniolisib during three phases separated by a washout: (1) leniolisib alone, (2) 200 mg itraconazole once daily for 9 days plus leniolisib on day 5, and (3) 300 mg quinidine administered 1 h before and 3 h after leniolisib. Itraconazole increased the leniolisib oral drug exposure (AUCinf ) by on average 2.1-fold, whereas the peak drug concentration (Cmax ) was less impacted (1.25-fold). The terminal elimination half-life (T1/2 ) of leniolisib was also increased by ~2-fold. Neither oral AUCinf nor Cmax or T1/2 was found to be altered by quinidine. These findings suggest that the interaction with itraconazole occurred mainly systemically through inhibition of CYP3A, and corroborate our in vitro findings that leniolisib is neither a sensitive CYP3A substrate nor a relevant in vivo substrate for intestinal or hepatic P-gp. Assuming itraconazole levels achieved complete inhibition of CYP3A, the fractional contribution of CYP3A to the overall disposition of leniolisib is estimated to be about 50%. The concomitant use of leniolisib with strong inhibitors of CYP3A as well as strong and moderate inducers of CYP3A is best avoided.
Collapse
Affiliation(s)
- Stefan De Buck
- Novartis Pharma AG, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Klaus Kucher
- Novartis Pharma AG, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Hisanori Hara
- Novartis Pharma AG, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Cathy Gray
- Novartis Pharma AG, Novartis Institute for Biomedical Research, East Hanover, NJ, USA
| | - Ralph Woessner
- Novartis Pharma AG, Novartis Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
7
|
Schoedel KA, Morrow SA, Sellers EM. Evaluating the safety and efficacy of dextromethorphan/quinidine in the treatment of pseudobulbar affect. Neuropsychiatr Dis Treat 2014; 10:1161-74. [PMID: 25061302 PMCID: PMC4079824 DOI: 10.2147/ndt.s30713] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pseudobulbar affect (PBA) is a common manifestation of brain pathology associated with many neurological diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, stroke, multiple sclerosis, Parkinson's disease, and traumatic brain injury. PBA is defined by involuntary and uncontrollable expressed emotion that is exaggerated and inappropriate, and also incongruent with the underlying emotional state. Dextromethorphan/quinidine (DM/Q) is a combination product indicated for the treatment of PBA. The quinidine component of DM/Q inhibits the cytochrome P450 2D6-mediated metabolic conversion of dextromethorphan to its active metabolite dextrorphan, thereby increasing dextromethorphan systemic bioavailability and driving the pharmacology toward that of the parent drug and away from adverse effects of the dextrorphan metabolite. Three published efficacy and safety studies support the use of DM/Q in the treatment of PBA; significant effects were seen on the primary end point, the Center for Neurologic Study-Lability Scale, as well as secondary efficacy end points and quality of life. While concentration-effect relationships appear relatively weak for efficacy parameters, concentrations of DM/Q may have an impact on safety. Some special safety concerns exist with DM/Q, primarily because of the drug interaction and QT prolongation potential of the quinidine component. However, because concentrations of dextrorphan (which is responsible for many of the parent drug's side effects) and quinidine are lower than those observed in clinical practice with these drugs administered alone, some of the perceived safety issues may not be as relevant with this low dose combination product. However, since patients with PBA have a variety of other medical problems and are on numerous other medications, they may not tolerate DM/Q adverse effects, or may be at risk for drug interactions. Some caution is warranted when initiating DM/Q treatment, particularly in patients with underlying risk factors for torsade de pointes and in those receiving medications that may interact with DM/Q.
Collapse
Affiliation(s)
| | | | - Edward M Sellers
- DL Global Partners, Inc., Toronto, Canada ; University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Handa K, Nakagome I, Yamaotsu N, Gouda H, Hirono S. Three-dimensional quantitative structure-activity relationship analysis of inhibitors of human and rat cytochrome P4503A enzymes. Drug Metab Pharmacokinet 2013; 28:345-55. [PMID: 23358262 DOI: 10.2133/dmpk.dmpk-12-rg-133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is a member of the CYP family and is an important enzyme in drug metabolism. A compound that inhibits CYP3A4 activity could also affect the pharmacokinetics of other substrates, resulting in drug-drug interactions (DDIs) that could cause side effects. Pharmacokinetic data from drug-development studies in rats often determine the dosage used in human clinical trials. It is therefore useful to understand differences in metabolism in different species at an early stage in drug development. Human and rat CYP3A enzymes show different inhibition profiles with different drugs, although the mechanisms involved are not yet clear. Here we built three-dimensional quantitative structure-activity relationship (3D-QSAR) models using structure-based comparative molecular field analysis (CoMFA), to predict the direct inhibitory activity of ligands for human CYP3A4 and rat CYP3A1, based on computer-ligand docking. The alignment of the ligand docking poses suggested that key amino acid-ligand interactions (e.g., Thr309 in CYP3A4 and Pro310 in CYP3A1) characterized the different potencies with which the ligands inhibited CYP3A4 and CYP3A1. The 3D-QSAR models for human and rat CYP3A family inhibitors predicted the potency of inhibitors and could be useful for assessing DDIs at an early stage in drug discovery.
Collapse
Affiliation(s)
- Koichi Handa
- School of Pharmacy, Kitasato University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
9
|
de Maat MMR, Huitema ADR, Mulder JW, Meenhorst PL, van Gorp ECM, Mairuhu ATA, Beijnen JH. Drug Interaction of Fluvoxamine and Fluoxetine with Nevirapine in HIV-1-Infected Individuals. Clin Drug Investig 2012; 23:629-37. [PMID: 17535078 DOI: 10.2165/00044011-200323100-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To evaluate the possible pharmacokinetic interactions between nevirapine and fluvoxamine or fluoxetine in patients with HIV-1 infection. PATIENTS AND METHODS Patients who were using fluvoxamine or fluoxetine concomitantly were chosen from an unselected cohort (n = 173) of HIV-1-infected individuals using a nevirapine-containing regimen (study group). HIV-1-infected patients using nevirapine without fluvoxamine or fluoxetine and non-HIV-infected individuals who were using fluvoxamine and fluoxetine were included as controls. The influence of fluvoxamine and fluoxetine on the pharmacokinetics of nevirapine was investigated with a previously developed population pharmacokinetic model. Concomitant use of fluvoxamine or fluoxetine was tested independently as covariate for apparent clearance (CL/F) of nevirapine using nonlinear mixed-effect modelling (NONMEM). Furthermore, to explore the influence of nevirapine on the pharmacokinetics of fluvoxamine and fluoxetine, dose-normalised concentrations of fluvoxamine and fluoxetine from the study group were compared with those of the controls. RESULTS Of the 173 HIV-1-infected individuals, 14 were using fluoxetine (n = 7) or fluvoxamine (n = 7) simultaneously with nevirapine. In addition, 17 and 29 individuals were identified as controls for the fluoxetine- and fluvoxamine-group, respectively. Concomitant use of fluvoxamine resulted in a significant reduction of 33.7% in CL/F of nevirapine; this reduction in CL/F appeared to be dose-dependent. Concomitant use of fluoxetine had no influence on the pharmacokinetics of nevirapine. Conversely, nevirapine significantly lowered plasma levels of fluoxetine plus norfluoxetine (seproxetine). In contrast, no significant difference was observed in dose-normalised concentrations of fluvoxamine when the controls were compared with the study group. CONCLUSION We advise that special attention is paid to HIV-1-infected indivi-duals using a nevirapine-containing regimen and fluvoxamine or fluoxetine con-comitantly, since pharmacokinetic interactions have been observed.
Collapse
Affiliation(s)
- Monique M R de Maat
- Department of Pharmacy and Pharmacology, Slotervaart Hospital, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Greenblatt DJ, Zhao Y, Venkatakrishnan K, Duan SX, Harmatz JS, Parent SJ, Court MH, von Moltke LL. Mechanism of cytochrome P450-3A inhibition by ketoconazole. J Pharm Pharmacol 2011; 63:214-21. [PMID: 21235585 DOI: 10.1111/j.2042-7158.2010.01202.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Ketoconazole is extensively used as an index inhibitor of cytochrome P450-3A (CYP3A) activity in vitro and in vivo, but the mechanism of ketoconazole inhibition of CYP3A still is not clearly established. METHODS Inhibition of metabolite formation by ketoconazole (seven concentrations from 0.01 to 1.0 µm) was studied in human liver microsomes (n = 4) at six to seven substrate concentrations for triazolam, midazolam, and testosterone, and at two substrate concentrations for nifedipine. KEY FINDINGS Analysis of multiple data points per liver sample based on a mixed competitive-noncompetitive model yielded mean inhibition constant K(i) values in the range of 0.011 to 0.045 µm. Ketoconazole IC50 increased at higher substrate concentrations, thereby excluding pure noncompetitive inhibition. For triazolam, testosterone, and midazolam α-hydroxylation, mean values of α (indicating the 'mix' of competitive and noncompetitive inhibition) ranged from 2.1 to 6.3. However, inhibition of midazolam 4-hydroxylation was consistent with a competitive process. Determination of K(i) and α based on the relation between 50% inhibitory concentration values and substrate concentration yielded similar values. Pre-incubation of ketoconazole with microsomes before addition of substrate did not enhance inhibition, whereas inhibition by troleandomycin was significantly enhanced by pre-incubation. CONCLUSIONS Ketoconazole inhibition of triazolam α- and 4-hydroxylation, midazolam α-hydroxylation, testosterone 6β-hydroxylation, and nifedipine oxidation appeared to be a mixed competitive-noncompetitive process, with the noncompetitive component being dominant but not exclusive. Quantitative estimates of K(i) were in the low nanomolar range for all four substrates.
Collapse
Affiliation(s)
- David J Greenblatt
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and Tufts Medical Center, 136 Harrison Ave., Boston, MA 02111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re-evaluation of P450 isoform selectivity. Eur J Drug Metab Pharmacokinet 2011; 36:1-16. [PMID: 21336516 DOI: 10.1007/s13318-011-0024-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/01/2011] [Indexed: 01/24/2023]
Abstract
The majority of marketed small-molecule drugs undergo metabolism by hepatic Cytochrome P450 (CYP) enzymes (Rendic 2002). Since these enzymes metabolize a structurally diverse number of drugs, metabolism-based drug-drug interactions (DDIs) can potentially occur when multiple drugs are coadministered to patients. Thus, a careful in vitro assessment of the contribution of various CYP isoforms to the total metabolism is important for predicting whether such DDIs might take place. One method of CYP phenotyping involves the use of potent and selective chemical inhibitors in human liver microsomal incubations in the presence of a test compound. The selectivity of such inhibitors plays a critical role in deciphering the involvement of specific CYP isoforms. Here, we review published data on the potency and selectivity of chemical inhibitors of the major human hepatic CYP isoforms. The most selective inhibitors available are furafylline (in co-incubation and pre-incubation conditions) for CYP1A2, 2-phenyl-2-(1-piperidinyl)propane (PPP) for CYP2B6, montelukast for CYP2C8, sulfaphenazole for CYP2C9, (-)-N-3-benzyl-phenobarbital for CYP2C19 and quinidine for CYP2D6. As for CYP2A6, tranylcypromine is the most widely used inhibitor, but on the basis of initial studies, either 3-(pyridin-3-yl)-1H-pyrazol-5-yl)methanamine (PPM) and 3-(2-methyl-1H-imidazol-1-yl)pyridine (MIP) can replace tranylcypromine as the most selective CYP2A6 inhibitor. For CYP3A4, ketoconazole is widely used in phenotyping studies, although azamulin is a far more selective CYP3A inhibitor. Most of the phenotyping studies do not include CYP2E1, mostly because of the limited number of new drug candidates that are metabolized by this enzyme. Among the inhibitors for this enzyme, 4-methylpyrazole appears to be selective.
Collapse
|
12
|
Fenneteau F, Poulin P, Nekka F. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates. J Pharm Sci 2010; 99:486-514. [PMID: 19479982 DOI: 10.1002/jps.21802] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The first objective of the present study was to predict the pharmacokinetics of selected CYP3A substrates administered at a single oral dose to human. The second objective was to predict pharmacokinetics of the selected drugs in presence of inhibitors of the intestinal and/or hepatic CYP3A activity. We developed a whole-body physiologically based pharmacokinetics (WB-PBPK) model accounting for presystemic elimination of midazolam (MDZ), alprazolam (APZ), triazolam (TRZ), and simvastatin (SMV). The model also accounted for concomitant administration of the above-mentioned drugs with CYP3A inhibitors, namely ketoconazole (KTZ), itraconazole (ITZ), diltiazem (DTZ), saquinavir (SQV), and a furanocoumarin contained in grape-fruit juice (GFJ), namely 6',7'-dihydroxybergamottin (DHB). Model predictions were compared to published clinical data. An uncertainty analysis was performed to account for the variability and uncertainty of model parameters when predicting the model outcomes. We also briefly report on the results of our efforts to develop a global sensitivity analysis and its application to the current WB-PBPK model. Considering the current criterion for a successful prediction, judged satisfied once the clinical data are captured within the 5th and 95th percentiles of the predicted concentration-time profiles, a successful prediction has been obtained for a single oral administration of MDZ and SMV. For APZ and TRZ, however, a slight deviation toward the 95th percentile was observed especially for C(max) but, overall, the in vivo profiles were well captured by the PBPK model. Moreover, the impact of DHB-mediated inhibition on the extent of intestinal pre-systemic elimination of MDZ and SMV has been accurately predicted by the proposed PBPK model. For concomitant administrations of MDZ and ITZ, APZ and KTZ, as well as SMV and DTZ, the in vivo concentration-time profiles were accurately captured by the model. A slight deviation was observed for SMV when coadministered with ITZ, whereas more important deviations have been obtained between the model predictions and in vivo concentration-time profiles of MDZ coadministered with SQV. The same observation was made for TRZ when administered with KTZ. Most of the pharmacokinetic parameters predicted by the PBPK model were successfully predicted within a two-fold error range either in the absence or presence of metabolism-based inhibition. Overall, the present study demonstrated the ability of the PBPK model to predict DDI of CYP3A substrates with promising accuracy.
Collapse
Affiliation(s)
- Frederique Fenneteau
- Faculté de Pharmacie, Université de Montréal, CP 6128, Succursale Centre Ville, Montréal, Québec, Canada
| | | | | |
Collapse
|
13
|
Greenblatt DJ, Venkatakrishnan K, Harmatz JS, Parent SJ, von Moltke LL. Sources of variability in ketoconazole inhibition of human cytochrome P450 3Ain vitro. Xenobiotica 2010; 40:713-20. [DOI: 10.3109/00498254.2010.506224] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Stresser DM, Mason AK, Perloff ES, Ho T, Crespi CL, Dandeneau AA, Morgan L, Dehal SS. Differential time- and NADPH-dependent inhibition of CYP2C19 by enantiomers of fluoxetine. Drug Metab Dispos 2009; 37:695-8. [PMID: 19144769 DOI: 10.1124/dmd.108.025726] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluoxetine [+/--N-methyl-3-phenyl-3-[(alpha, alpha, (-trifluoro-p-tolyl)oxy]-propylamine)] a selective serotonin reuptake inhibitor, is widely used in treating depression and other serotonin-dependent disease conditions. Racemic, (R)- and (S)-fluoxetine are potent reversible inhibitors of CYP2D6, and the racemate has been shown to be a mechanism-based inhibitor of CYP3A4. Racemic fluoxetine also demonstrates time- and concentration-dependent inhibition of CYP2C19 catalytic activity in vitro. In this study, we compared fluoxetine, its (R)- and (S)-enantiomers, ticlopidine, and S-benzylnirvanol as potential time-dependent inhibitors of human liver microsomal CYP2C19. In a reversible inhibition protocol (30 min preincubation with liver microsomes without NADPH), we found (R)-, (S)- and racemic fluoxetine to be moderate inhibitors with IC(50) values of 21, 93, and 27 microM, respectively. However, when the preincubation was supplemented with NADPH, IC(50) values shifted to 4.0, 3.4, and 3.0 microM, respectively resulting in IC(50) shifts of 5.2-, 28-, and 9.3-fold. Ticlopidine showed a 1.8-fold shift in IC(50) value, and S-benzylnirvanol shifted right (0.41-fold shift). Follow-up K(I) and k(inact) determinations with fluoxetine confirmed time-dependent inhibition [K(I) values of 6.5, 47, and 14 microM; k(inact) values of 0.023, 0.085, 0.030 min(-1) for (R)-, (S)-, and racemate, respectively]. Although the (S)-isomer exhibits a much lower affinity for CYP2C19 inactivation relative to the (R)-enantiomer, it exhibits a more rapid rate of inactivation. Racemic norfluoxetine exhibited an 11-fold shift (18-1.5 microM) in IC(50) value, suggesting that conversion of fluoxetine to this metabolite represents a metabolic pathway leading to time-dependent inhibition. These data provide an improved understanding of the drug-interaction potential of fluoxetine.
Collapse
Affiliation(s)
- David M Stresser
- BD Biosciences, BD Gentest Contract Research Services, 6 Henshaw Street, Woburn, MA 01801, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Dose-Dependent Effect of the CYP2D6 Genotype on the Steady-state Fluvoxamine Concentration. Ther Drug Monit 2008; 30:705-8. [DOI: 10.1097/ftd.0b013e31818d73b3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Allqvist A, Miura J, Bertilsson L, Mirghani RA. Inhibition of CYP3A4 and CYP3A5 catalyzed metabolism of alprazolam and quinine by ketoconazole as racemate and four different enantiomers. Eur J Clin Pharmacol 2007; 63:173-9. [PMID: 17200836 DOI: 10.1007/s00228-006-0230-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 10/24/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The antifungal drug ketoconazole (KTZ) is known as an inhibitor of, especially, the CYP3A subfamily, which catalyzes the metabolism of a large variety of drugs. Interactions between KTZ and CYP3A substrates have been reported both in vivo and in vitro. Most of them, however, involved the KTZ racemate. KTZ racemate and the separate enantiomers, 2R,4R; 2R,4S; 2S,4S, and 2S,4R, were evaluated for their selectivity in inhibiting alprazolam and quinine metabolism. METHODS The inhibition of alprazolam and quinine metabolism was studied in an in vitro system of human liver microsomes (HLM), recombinant of CYP3A4 and CYP3A5. The concentrations of formed 3-hydroxyquinine and 4- and alpha-hydroxyalprazolam were measured by HPLC and LC-MS, respectively. RESULTS Quinine 3-hydroxylation was catalyzed to a similar extent by CYP3A4 and CYP3A5. The formation rate of 4-hydroxyalprazolam was higher than that of alpha-hydroxyalprazolam for each HLM, CYP3A4 and CYP3A5. KTZ racemate and enantiomers showed differential inhibitory effects of quinine and alprazolam metabolism. Quinine metabolism catalyzed by HLM, CYP3A4 and CYP3A5 was potently inhibited by the trans-enantiomer KTZ 2S,4S, with IC(50) value of 0.16 microM for HLM, 0.04 microM for CYP3A4 and 0.11 microM for CYP3A5. The same enantiomer showed the lowest IC(50) values of 0.11 microM for HLM and 0.04 microM for CYP3A5 with respect to alprazoalm 4-hydroxylation and also the same pattern for alprazolamalpha-hydroxylation, 0.13 microM for HLM and 0.05 microM for CYP3A5. Alprazolam metabolism (both alpha- and 4- hydroxylations) catalyzed by CYP3A4 was inhibited potently by the cis-enantiomer KTZ 2S,4R, with IC(50) values of 0.03 microM. CONCLUSIONS Alprazolam and quinine metabolism is catalyzed by both CYP3A4 and CYP3A5. The present study showed that different KTZ enantiomers inhibit CYP3A4 and CYP3A5 to different degrees, indicating that structural differences among the enantiomers would be related to their inhibitory potency on these two enzymes.
Collapse
Affiliation(s)
- Annika Allqvist
- Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Pharmacology at Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | | | | | | |
Collapse
|
17
|
Sandson NB, Armstrong SC, Cozza KL. An overview of psychotropic drug-drug interactions. PSYCHOSOMATICS 2005; 46:464-94. [PMID: 16145193 DOI: 10.1176/appi.psy.46.5.464] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The psychotropic drug-drug interactions most likely to be relevant to psychiatrists' practices are examined. The metabolism and the enzymatic and P-glycoprotein inhibition/induction profiles of all antidepressants, antipsychotics, and mood stabilizers are described; all clinically meaningful drug-drug interactions between agents in these psychotropic classes, as well as with frequently encountered nonpsychotropic agents, are detailed; and information on the pharmacokinetic/pharmacodynamic results, mechanisms, and clinical consequences of these interactions is presented. Although the range of drug-drug interactions involving psychotropic agents is large, it is a finite and manageable subset of the much larger domain of all possible drug-drug interactions. Sophisticated computer programs will ultimately provide the best means of avoiding drug-drug interactions. Until these programs are developed, the best defense against drug-drug interactions is awareness and focused attention to this issue.
Collapse
Affiliation(s)
- Neil B Sandson
- Division of Education and Residency Training, Sheppard Pratt Health System, Towson, MD, USA
| | | | | |
Collapse
|
18
|
Larsen JT, Brøsen K. Consumption of Charcoal-Broiled Meat as an Experimental Tool for Discerning CYP1A2-Mediated Drug Metabolism in vivo. Basic Clin Pharmacol Toxicol 2005; 97:141-8. [PMID: 16128907 DOI: 10.1111/j.1742-7843.2005.pto_97365.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 1A2 (CYP1A2) is a major drug-metabolising enzyme. Polycyclic aromatic hydrocarbons, present in high concentrations in tobacco smoke and charcoal-broiled meat, are known to induce CYP1A2. The purpose of the present study was to validate enzyme induction by consumption of charcoal-broiled meat as an experimental tool for discerning CYP1A2-mediated drug metabolism in vivo. Twenty-four healthy, non-smoking men, all extensive metabolisers of sparteine (CYP2D6), participated in the study. All participants were genotyped for a putative CYP1A2-inducibility genotype. In the study diet period charcoal-broiled meat was served for lunch and dinner for five consecutive days. All participants were tested with probe reactions for CYP1A2 (caffeine) and CYP2C19 (proguanil) before and after consuming the study diet. Further, in three subgroups, they were tested with either the CYP1A2-substrate tacrine or probe reactions for CYP3A4 (quinidine) or CYP2C9 (tolbutamide). Neither probe reactions for CYP1A2, CYP2C9, CYP2C19 or CYP3A4 were affected by consumption of charcoal-broiled meat as practised in this study. No modifying role of the CYP1A2-inducibility genotype was evident. A number of experimental limitations are discussed, among them the lack of standardisation of exposure, the timing of phenotyping, and the choice of probe reactions. In conclusion, consumption of charcoal-broiled meat as practised in the present study appears not to be a useful experimental tool for discerning CYP1A2-mediated metabolism in vivo.
Collapse
Affiliation(s)
- John Teilmann Larsen
- Clinical Pharmacology, Institute of Public Health, University of Southern Denmark, Odense, Denmark.
| | | |
Collapse
|
19
|
Suzuki Y, Kawashima Y, Shioiri T, Someya T. Effects of Concomitant Fluvoxamine on the Plasma Concentration of Etizolam in Japanese Psychiatric Patients. Ther Drug Monit 2004; 26:638-42. [PMID: 15570188 DOI: 10.1097/00007691-200412000-00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Administration of fluvoxamine with concomitant benzodiazepines is common in clinical situations. This study investigated the effects of the coadministration of fluvoxamine on plasma concentrations of etizolam and evaluated the effects of various fluvoxamine doses on drug interactions with etizolam. Subjects were 18 Japanese outpatients concomitantly treated with fluvoxamine before or after monotherapy with etizolam. Plasma concentrations of etizolam were measured using a column-switching high-performance liquid chromatographic method with ultraviolet detection. In 17 subjects treated concomitantly with fluvoxamine at 25 mg or 50 mg, the ranges of plasma concentrations of etizolam corrected for the dose increased from 2.0-13.3 (mean 6.3 +/- 3.6, n = 17) in monotherapy to 2.7-18.2 (mean 9.6 +/- 5.1, n = 17) ng/mL/mg in concomitant doses. Wide variations were observed in the drug interactions; however, coadministration with fluvoxamine produced significant changes in the plasma concentrations of etizolam (P < 0.0001) with a median of 42.9% (range 0.0 to 235.0%). Although the sleepiness of the subjects was evaluated using the Stanford Sleepiness Scale, no changes in sleepiness were found between the etizolam-monotherapy and the fluvoxamine-concomitant states. Of the 12 subjects treated concomitantly with fluvoxamine at 25 mg, 2 subjects received fluvoxamine at a dose increased up to 150 mg, and another received fluvoxamine at a dose increased up to 200 mg. They showed an increase in the plasma concentrations of etizolam in a fluvoxamine dose-dependent manner; more particularly, the increased dose of fluvoxamine (150 mg and 200 mg) resulted in about a twofold variation in plasma concentrations of etizolam.
Collapse
Affiliation(s)
- Yutaro Suzuki
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | |
Collapse
|
20
|
Sawamura K, Suzuki Y, Someya T. Effects of dosage and CYP2D6-mutated allele on plasma concentration of paroxetine. Eur J Clin Pharmacol 2004; 60:553-7. [PMID: 15349705 DOI: 10.1007/s00228-004-0792-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We investigated the effect of dosages of paroxetine and cytochrome P450 (CYP) 2D6 genotypes on the plasma concentration of paroxetine in Japanese patients being treated with paroxetine. METHODS Blood samples were collected from 73 individuals after at least 2 weeks of the same daily dose of paroxetine. The plasma paroxetine concentration was measured using HPLC, and the CYP2D6 genotypes were identified by PCR. Genotype groups were compared by one-way analysis of variance at different paroxetine doses. RESULTS The mean plasma paroxetine concentrations at daily doses of 10, 20, 30, and 40 ng/ml were 6.6+/-7.4, 34.9+/-26.8, 74.8+/-37.2, and 130.5+/-96.8 ng/ml, respectively, showing a disproportionate and nonlinear increase in plasma drug levels of paroxetine upon increasing doses. Plasma paroxetine concentrations in patients with CYP2D6*10 alleles were significantly higher than those without *10 allele at 10 mg/day (7.3+/-6.11 vs. 2.99+/-3.52 ng/ml), but there was no significant difference between *1/ *1, *1/ *10 and *10/ *10 genotypes at the higher doses. Similarly, patients with CYP2D6*5 alleles showed higher plasma paroxetine concentrations than those without *5 allele, although differences in the plasma paroxetine concentration did not reach statistical significance level because of the small number of subjects with *5 alleles. CONCLUSIONS Our results indicate the possibility of saturation in paroxetine metabolism with an increase in paroxetine dose, and that CYP2D6*10 allele(s) have significant impact on plasma paroxetine concentration at low doses in Japanese population.
Collapse
Affiliation(s)
- Kazushi Sawamura
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, 757 Asahimachidori-ichibancho, 951-8510 Niigata, Japan
| | | | | |
Collapse
|
21
|
Spina E, D'Arrigo C, Migliardi G, Morgante L, Zoccali R, Ancione M, Madia A. Plasma Risperidone Concentrations During Combined Treatment with Sertraline. Ther Drug Monit 2004; 26:386-90. [PMID: 15257068 DOI: 10.1097/00007691-200408000-00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effect of sertraline on the steady-state plasma concentrations of risperidone and its active metabolite 9-hydroxyrisperidone (9-OH-risperidone) was studied in 11 patients with schizophrenia or schizoaffective disorder. To treat concomitant depressive symptoms, additional sertraline, at the dose of 50 mg/d, was administered for 4 weeks to patients stabilized on risperidone (4-6 mg/d). Mean plasma concentrations of risperidone, 9-OH-risperidone, and the active moiety (sum of the concentrations of risperidone and 9-OH-risperidone) did not change significantly during combined treatment with sertraline. At the end of week 4, sertraline dosage was adjusted in some patients on the basis of the individual response and then maintained until the end of week 8. At final evaluation, mean plasma levels of risperidone active moiety were not modified in the 4 patients who were still receiving the initial sertraline dose, but concentrations were slightly but not significantly increased (by a mean 15% over pretreatment) in the subgroup of 5 subjects treated with a final dose of 100 mg/d. In the 2 patients receiving the highest dose of sertraline, 150 mg/d, at week 8 total plasma risperidone concentrations were increased by 36% and 52%, respectively, as compared with baseline values. Sertraline coadministration with risperidone was well tolerated, and no patient developed extrapyramidal symptoms. These findings indicate that sertraline at dosages up to 100 mg/d is not associated with clinically significant changes in plasma risperidone concentrations. However, higher doses of sertraline may elevate plasma risperidone levels, presumably as a result of a dose-dependent inhibitory effect of sertraline on CYP2D6-mediated 9-hydroxylation of risperidone.
Collapse
Affiliation(s)
- Edoardo Spina
- Section of Pharmacology, Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Fletcher PJ, Sinyard J, Salsali M, Baker GB. Fluoxetine, but not sertraline or citalopram, potentiates the locomotor stimulant effect of cocaine: possible pharmacokinetic effects. Psychopharmacology (Berl) 2004; 174:406-13. [PMID: 14740149 DOI: 10.1007/s00213-003-1747-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 11/28/2003] [Indexed: 10/26/2022]
Abstract
RATIONALE The selective serotonin reuptake inhibitor (SSRI) fluoxetine enhances some of the behavioural effects of cocaine, including locomotor stimulation. While this effect has often been interpreted as evidence for a serotonergic component to the behavioural effects of cocaine, direct evidence for this hypothesis is lacking. One alternative explanation is that fluoxetine, by inhibiting cytochrome P450 (CYP) enzymes, interferes with the metabolism of cocaine. OBJECTIVES These experiments were undertaken to: 1) compare the effects of fluoxetine with those of two other SSRIs, sertraline and citalopram, on cocaine-induced locomotor activity, 2) examine the effects of fluoxetine on cocaine-stimulated locomotion in rats depleted of serotonin (5-hydroxytryptamine; 5-HT), and 3) determine the effect of fluoxetine on cocaine levels in the brain. METHODS Locomotor activity was measured, using photocell based activity monitors, in rats habituated to those monitors. Depletion of 5-HT was achieved by injecting 5,7-dihydroxytryptamine (5,7-DHT) into the dorsal and median raphe nuclei. Cocaine levels in whole brain were measured using high-performance liquid chromatography with ultraviolet detection. RESULTS In experiment 1, 5 mg/kg fluoxetine enhanced the ability of 10 and 15 mg/kg cocaine to increase locomotor activity. Neither citalopram nor sertraline (5 and 10 mg/kg) altered the stimulant effect of 10 mg/kg cocaine. Experiment 2 showed that this effect of fluoxetine was also apparent in rats with large and widespread depletion of brain 5-HT levels. The 5-HT depletion also failed to alter the response to cocaine itself. In experiment 3, brain levels of cocaine were elevated in rats pretreated with fluoxetine compared with rats that received cocaine alone. CONCLUSION Fluoxetine enhanced the ability of cocaine to increase locomotor activity. This effect appears not to depend upon increasing 5-HT function since fluoxetine was also effective in rats with substantial 5-HT depletions, and two other SSRIs did not alter the effects of cocaine. Fluoxetine-treated rats had higher brain levels of cocaine than rats treated with cocaine alone. This effect suggests that fluoxetine slows the metabolism of cocaine, perhaps by inhibition of CYP enzymes involved in metabolizing cocaine. The results also indicate that 5-HT reuptake inhibition may not play a prominent role in mediating the stimulant effects of cocaine.
Collapse
Affiliation(s)
- Paul J Fletcher
- Section of Biopsychology, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada.
| | | | | | | |
Collapse
|
23
|
Pomara N, Willoughby LM, Ritchie JC, Sidtis JJ, Greenblatt DJ, Nemeroff CB. Interdose elevation in plasma cortisol during chronic treatment with alprazolam but not lorazepam in the elderly. Neuropsychopharmacology 2004; 29:605-11. [PMID: 14694352 DOI: 10.1038/sj.npp.1300365] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Benzodiazepines (BZPs) have been shown to reduce hypothalamic-pituitary-adrenal (HPA) axis activity acutely in normal humans. In contrast, the effects of chronic BZP treatment on the HPA axis have not been well studied, especially in the geriatric population. This study examined the acute and chronic effects (3 weeks) of alprazolam and lorazepam on plasma cortisol in 68 subjects (60-83 years) who received 0.25 or 0.50 mg b.i.d. alprazolam, or 0.50 or 1.0 mg b.i.d. lorazepam, or placebo orally according to a randomized, double-blind, placebo-controlled parallel design. Memory assessment and blood samples for plasma cortisol were obtained prior to the morning dose on days 0, 7, 14, and 21, and at 1, 2.5, and 5 h postdrug on days 0 and 21. Assessments of anxiety and depression were carried out at days 0, 7, 14, and 21 before drug administration. Plasma cortisol was affected compared to placebo only by the 0.5 mg alprazolam dose. During the first and the last day of treatment, there was a significant drop in cortisol at 2.5 h after alprazolam compared to placebo. The predose cortisol levels increased significantly during chronic alprazolam treatment, and correlations were found between these cortisol changes and changes in depression, anxiety, and memory scores. These findings suggest that even a short period of chronic treatment with alprazolam, but not lorazepam, may result in interdose HPA axis activation in the elderly, consistent with drug withdrawal. If confirmed, this effect may contribute to an increased risk for drug escalation and dependence during chronic alprazolam treatment.
Collapse
Affiliation(s)
- Nunzio Pomara
- Geriatric Psychiatry Program, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | | | | | | | | | |
Collapse
|
24
|
DeVane CL, Donovan JL, Liston HL, Markowitz JS, Cheng KT, Risch SC, Willard L. Comparative CYP3A4 inhibitory effects of venlafaxine, fluoxetine, sertraline, and nefazodone in healthy volunteers. J Clin Psychopharmacol 2004; 24:4-10. [PMID: 14709940 DOI: 10.1097/01.jcp.0000104908.75206.26] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
An antidepressant for use in the patient receiving concomitant drug treatment, over-the-counter medications, or herbal products should lack cytochrome P-450 (CYP) 3A4 inductive or inhibitory activity to provide the least likelihood of a drug-drug interaction. This study addresses the potential of 4 diverse antidepressants (venlafaxine, nefazodone, sertraline, and fluoxetine) to inhibit or induce CYP3A4. In a 4-way crossover design, 16 subjects received clinically relevant doses of venlafaxine, nefazodone, or sertraline for 8 days or fluoxetine for 11 days. Treatments were separated by a 7- to 14-day washout period and fluoxetine was always the last antidepressant taken. CYP3A4 activity was evaluated for each subject at baseline and following each antidepressant using the erythromycin breath test (EBT) and by the pharmacokinetics of alprazolam (ALPZ) after 2-mg dose of oral ALPZ. Compared to baseline, venlafaxine, sertraline, and fluoxetine caused no apparent inhibition or induction of erythromycin metabolism (P > 0.05). For nefazodone, a statistically significant inhibition was observed (P < 0.0005). Nefazodone was also the only antidepressant that caused a significant change in ALPZ disposition, decreasing its area under the concentration-versus-time curve (AUC; P < 0.01), and increasing its elimination half-life (16.4 vs. 12.3 hours; P < 0.05) compared with values at baseline. No significant differences were found in the pharmacokinetics of ALPZ with any of the other antidepressants tested. These results demonstrate in vivo that, unlike nefazodone, venlafaxine, sertraline, and fluoxetine do not possess significant metabolic inductive or inhibitory effects on CYP3A4.
Collapse
Affiliation(s)
- C Lindsay DeVane
- Department of Psychiatry, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The objective of this review is to evaluate the risks associated with the discovery and development of cytochrome p450 (CYP) 3A substrates. CYP3A is the most abundant p450 enzyme in human liver and is highly expressed in the intestinal tract. The enzyme contributes substantially to metabolism of approximately 50% of currently marketed drugs that undergo oxidative metabolism. As a result, drug-drug interactions involving inhibitors of CYP3A-mediated metabolism can be of great clinical consequence. It is the position of the authors that, because of the factors responsible for the broad substrate specificity of CYP3A, discovery and development of compounds across a large and broad portfolio that are completely devoid of CYP3A metabolism is not feasible. Thus, it is important that scientifically valid approaches to the discovery and development of compounds metabolised by CYP3A be realised. The clinical relevance of CYP3A metabolism is dependent on a multitude of factors that include the degree of intestinal and hepatic CYP3A-mediated first-pass extraction, the therapeutic index of the compound and the adverse event associated with inhibition of CYP3A metabolism. Thus, a better understanding of the disposition of a CYP3A-metabolised compound relative to the projected or observed therapeutic index (or safety margin) can provide ample evidence to support the continued development of a CYP3A substrate. This document will highlight current practices as well as the benefits and risks associated with those practices.
Collapse
Affiliation(s)
- Megan A Gibbs
- Clinical Pharmacokinetics and Pharmacodynamics, Pfizer Inc, Groton, Connecticut, USA
| | | |
Collapse
|
26
|
Abstract
Bicalutamide is a nonsteroidal pure antiandrogen given at a dosage of 150 mg once daily as monotherapy for the treatment of early (localised or locally advanced) nonmetastatic prostate cancer. It is used at a dosage of 50 mg once daily in combination with a luteinising hormone-releasing hormone analogue or surgical castration for the treatment of advanced prostate cancer. Bicalutamide is a racemate and its antiandrogenic activity resides almost exclusively in the (R)-enantiomer, with little, if any, activity in the (S)-enantiomer. (R)-Bicalutamide is slowly and saturably absorbed, but absorption is unaffected by food. It has a long plasma elimination half-life (1 week) and accumulates about 10-fold in plasma during daily administration. (S)-Bicalutamide is much more rapidly absorbed and cleared from plasma; steady-state concentrations (Css) of (R)-bicalutamide are 100-fold higher than those of (S)-bicalutamide. Css increases linearly with doses up to 50 mg, but nonlinearly at higher doses, reaching a plateau above 300 mg. Css is higher in Japanese than in Caucasians, but no relationship with degree of renal impairment, bodyweight or age exists. Although mild-to-moderate hepatic impairment does not affect pharmacokinetics, there is evidence for slower elimination of (R)-bicalutamide in subjects with severe hepatic impairment. Bicalutamide metabolites are excreted almost equally in urine and faeces with little or no unchanged drug excreted in urine; conversely, unchanged drug predominates in plasma. Bicalutamide in faeces is thought to arise from hydrolysis of bicalutamide glucuronide and from unabsorbed drug. Bicalutamide appears to be cleared almost exclusively by metabolism; this is largely mediated by cytochrome P450 (CYP) for (R)-bicalutamide, but glucuronidation is the predominant metabolic route for (S)-bicalutamide. (S)-Bicalutamide is metabolised in vitro by CYP3A4, and it is probable that this isoenzyme is also responsible for the metabolism of (R)-bicalutamide. In vitro data suggest that (R)-bicalutamide has the potential to inhibit CYP3A4 and, to a lesser extent, CYP2C9, 2C19 and 2D6. However, using midazolam as a specific CYP3A4 marker, no clinically relevant inhibition is observed in vivo with bicalutamide 150mg. Although bicalutamide is a CYP inducer in laboratory animals, dosages < or = 150 mg/day have shown no evidence of enzyme induction in humans. Daily administration of bicalutamide increases circulating levels of gonadotrophins and sex hormones; although testosterone increases by up to 80%, concentrations in most patients remain within the normal range. Bicalutamide produces a dose-related decrease in prostate-specific antigen (PSA) at dosages < or = 150 mg/day. However, little relationship is observed between median PSA reduction and (R)-bicalutamide Css.
Collapse
|
27
|
XU ZHENHUA, XIE HONGGUANG, ZHOU HONGHAO. In vivo
inhibition of CYP2C19 but not CYP2D6 by fluvoxamine. Br J Clin Pharmacol 2003. [PMID: 8904628 DOI: 10.1111/j.1365-2125.1996.tb00019.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Hall J, Naranjo CA, Sproule BA, Herrmann N. Pharmacokinetic and pharmacodynamic evaluation of the inhibition of alprazolam by citalopram and fluoxetine. J Clin Psychopharmacol 2003; 23:349-57. [PMID: 12920410 DOI: 10.1097/01.jcp.0000085407.08426.e1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The selective serotonin reuptake inhibitor antidepressant fluoxetine inhibits alprazolam metabolism in vivo by inhibition of the cytochrome P450 3A4 enzyme. Citalopram is a selective serotonin reuptake inhibitor antidepressant that has not yet been fully evaluated with respect to its potential for cytochrome P450 3A4-mediated drug interactions in vivo. Building on the existing in vitro and in vivo evidence that suggest a minimal effect of citalopram on cytochrome P450 3A4, we hypothesized that therapeutic doses of citalopram (20 mg/d), as compared with fluoxetine (20 mg/d), would cause less impairment in the metabolism of the probe drug alprazolam (1 mg) through inhibition of the cytochrome P450 3A4 isozyme as measured by pharmacokinetic and pharmacodynamic parameters in vivo. We found that fluoxetine prolonged the half-life of alprazolam by 16% and increased the area under the curve 0-infinity of alprazolam by 32%, while citalopram did not affect these parameters, although the time of maximum concentration of alprazolam was prolonged by 30 minutes after citalopram administration. Neither selective serotonin reuptake inhibitor significantly affected the pharmacodynamic profile of alprazolam. This experiment suggests differential effects by citalopram and fluoxetine on alprazolam kinetics.
Collapse
Affiliation(s)
- Judith Hall
- Psychopharmacology Research Program, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | | | | | | |
Collapse
|
29
|
Projean D, Baune B, Farinotti R, Flinois JP, Beaune P, Taburet AM, Ducharme J. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos 2003; 31:748-54. [PMID: 12756207 DOI: 10.1124/dmd.31.6.748] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In humans, the antimalarial drug chloroquine (CQ) is metabolized into one major metabolite, N-desethylchloroquine (DCQ). Using human liver microsomes (HLM) and recombinant human cytochrome P450 (P450), we performed studies to identify the P450 isoform(s) involved in the N-desethylation of CQ. In HLM incubated with CQ, only DCQ could be detected. Apparent Km and Vmax values (mean +/- S.D.) for metabolite formation were 444 +/- 121 microM and 617 +/- 128 pmol/min/mg protein, respectively. In microsomes from a panel of 16 human livers phenotyped for 10 different P450 isoforms, DCQ formation was highly correlated with testosterone 6beta-hydroxylation (r = 0.80; p < 0.001), a CYP3A-mediated reaction, and CYP2C8-mediated paclitaxel alpha-hydroxylation (r = 0.82; p < 0.001). CQ N-desethylation was diminished when coincubated with quercetin (20-40% inhibition), ketoconazole, or troleandomycin (20-30% inhibition) and was strongly inhibited (80% inhibition) by a combination of ketoconazole and quercetin, which further corroborates the contribution of CYP2C8 and CYP3As. Of 10 cDNA-expressed human P450s examined, only CYP1A1, CYP2D6, CYP3A4, and CYP2C8 produced DCQ. CYP2C8 and CYP3A4 constituted low-affinity/high-capacity systems, whereas CYP2D6 was associated with higher affinity but a significantly lower capacity. This property may explain the ability of CQ to inhibit CYP2D6-mediated metabolism in vitro and in vivo. At therapeutically relevant concentrations ( approximately 100 microM CQ in the liver), CYP2C8, CYP3A4, and, to a much lesser extent, CYP2D6 are expected to account for most of the CQ N-desethylation.
Collapse
Affiliation(s)
- Denis Projean
- AstraZeneca R & D Montréal, 7171 Frederick-Banting, Ville Saint-Laurent, Québec, Canada, H4S 1Z9
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Sertraline is a naphthalenamine derivative with the predominant pharmacological action of inhibiting presynaptic reuptake of serotonin from the synaptic cleft. It was initially marketed for the treatment of major depressive disorder and is now approved for the management of panic disorder, obsessive-compulsive disorder and post-traumatic stress disorder. Sertraline is slowly absorbed following oral administration and undergoes extensive first-pass oxidation to form N-desmethyl-sertraline, a weakly active metabolite that accumulates to a greater concentration in plasma than the parent drug at steady state. Sertraline is eliminated from the body by other metabolic pathways to form a ketone and an alcohol, which are largely excreted renally as conjugates. The elimination half-life of sertraline ranges from 22-36 hours, and once-daily administration is therapeutically effective. Steady-state plasma concentrations vary widely, up to 15-fold, in patients receiving usual antidepressant dosages between 50 and 150 mg/day. However, only sparse data have been published that support useful correlations between sertraline plasma concentrations and therapeutic or adverse effects to justify therapeutic drug monitoring. Sertraline has minimal inhibitory effects on the major cytochrome P450 enzymes, and few drug-drug interactions of clinical significance have been documented. Like other selective serotonin reuptake inhibitors, sertraline is well tolerated in therapeutic dosages and relatively safe in overdosage.
Collapse
Affiliation(s)
- C Lindsay DeVane
- Laboratory of Drug Disposition and Pharmacogenetics, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, 67 President Street, Charleston, SC 29425-0742, USA.
| | | | | |
Collapse
|
31
|
Yao C, Kunze KL, Trager WF, Kharasch ED, Levy RH. Comparison of in vitro and in vivo inhibition potencies of fluvoxamine toward CYP2C19. Drug Metab Dispos 2003; 31:565-71. [PMID: 12695344 DOI: 10.1124/dmd.31.5.565] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A previous study suggested that fluvoxamine inhibition potency toward CYP1A2 is 10 times greater in vivo than in vitro. The present study was designed to determine whether the same gap exists for CYP2C19, another isozyme inhibited by fluvoxamine. In vitro studies examined the effect of nonspecific binding on the determination of inhibition constant (K(i)) values of fluvoxamine toward CYP2C19 in human liver microsomes and in a cDNA-expressed microsomal (Supersomes) system using (S)-mephenytoin as a CYP2C19 probe. K(i) values based on total added fluvoxamine concentration (K(i,total)) and unbound fluvoxamine concentration (K(i,ub)) were calculated, and interindividual variability in K(i) values was examined in six nonfatty livers. K(i,total) values varied with microsomal protein concentration, whereas the corresponding K(i,ub) values were within a narrow range (70-80 nM). In vivo inhibition constants (K(i)iv) were obtained from a study of the disposition of a single oral dose (100 mg) of the CYP2C19 probe (S)-mephenytoin in 12 healthy volunteers receiving fluvoxamine at 0, 37.5, 62.6, and 87.5 mg/day to steady state. In this population, the ratio of (S)-4-hydroxy-mephenytoin formation clearances (uninhibited/inhibited) was positively correlated with fluvoxamine average steady-state concentration with an intercept of 0.85 (r(2) = 0.88, p < 0.001). The mean (+/-S.D.) values of K(i)iv based on total and unbound plasma concentrations were 13.5 +/- 5.6 and 1.9 +/- 1.1 nM, respectively. Comparison of in vitro and in vivo K(i) values, based on unbound fluvoxamine concentrations, suggests that fluvoxamine inhibition potency is roughly 40 times greater in vivo than in vitro.
Collapse
Affiliation(s)
- Caiping Yao
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195-7610, USA
| | | | | | | | | |
Collapse
|
32
|
Suzuki Y, Shioiri T, Muratake T, Kawashima Y, Sato S, Hagiwara M, Inoue Y, Shimoda K, Someya T. Effects of concomitant fluvoxamine on the metabolism of alprazolam in Japanese psychiatric patients: interaction with CYP2C19 mutated alleles. Eur J Clin Pharmacol 2003; 58:829-33. [PMID: 12698310 DOI: 10.1007/s00228-003-0563-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Accepted: 01/13/2003] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Administration of fluvoxamine (FLV) with concomitant benzodiazepines is common in clinical situations. We studied the effects of the coadministration of FLV on plasma concentrations of alprazolam (ALP). We also studied the effects of CYP2C19(*)2 or CYP2C19(*)3 on these drug interactions. METHODS The subjects were 23 Japanese outpatients all concomitantly treated with FLV either before or after monotherapy with ALP. We measured the plasma concentrations of ALP and FLV using a column-switching, high-performance liquid chromatographic method with ultraviolet detection. The CYP2C19(*)2 or CYP2C19(*)3 alleles were identified using a polymerase chain reaction analysis. RESULTS Coadministration with FLV produced significant, on average 58%, increases in the plasma concentrations of ALP ( P<0.001). There were, however, wide variations in the interactive effects of the coadministration of FLV on the plasma concentrations of ALP. While there were some subjects who had greater increases in plasma ALP concentrations, more than 100%, in response to the coadministration of FLV among the subjects with no mutated or one mutated allele, there are no subjects who had increases in plasma ALP concentrations of more than 50% among the subjects with two mutated alleles. The differences of these variances among the three genotype groups reached a level of significance ( P<0.05). CONCLUSION Coadministration of FLV significantly increased the plasma concentrations of ALP compared with ALP monotherapy. Wide variations were observed in the drug interactions, with the CYP2C19 genotype possibly being related to these interactions.
Collapse
Affiliation(s)
- Yutaro Suzuki
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Science, 1-757 Asahimachi, 951-8510, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Weemhoff JL, von Moltke LL, Richert C, Hesse LM, Harmatz JS, Greenblatt DJ. Apparent mechanism-based inhibition of human CYP3A in-vitro by lopinavir. J Pharm Pharmacol 2003; 55:381-6. [PMID: 12724045 DOI: 10.1211/002235702739] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The influence of the viral protease inhibitor lopinavir on the activity of six human cytochrome P450 (CYP) enzymes was evaluated in a model system using human liver microsomes. Column chromatography methodology was developed to separate lopinavir from ritonavir starting from the commercially available lopinavir-ritonavir combination dosage form. Lopinavir produced negligible or weak inhibition of human CYP1A2, 2B6, 2C9, 2C19 and 2D6. However, lopinavir was an inhibitor of CYP3A. At 250 microM triazolam (the CYP3A index substrate), the mean (+/- s.e., n = 4) IC50 versus triazolam alpha-hydroxylation (where IC50 is the concentration producing a 50% decrement in reaction velocity) was 7.3 (+/- 0.5) microM. Pre-incubation of lopinavir with microsomes prior to addition of triazolam yielded a significantly lower IC50 of 4.1 (+/- 0.5) microM. This is consistent with mechanism-based inhibition of human CYP3A by lopinavir. Although lopinavir is less potent than ritonavir as an inhibitor of CYP3A, lopinavir is nonetheless likely to contribute to net CYP3A inhibition in-vivo during treatment with the lopinavir-ritonavir combination.
Collapse
Affiliation(s)
- James L Weemhoff
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
34
|
Greenblatt DJ, Von Moltke LL, Giancarlo GM, Garteiz DA. Human cytochromes mediating gepirone biotransformation at low substrate concentrations. Biopharm Drug Dispos 2003; 24:87-94. [PMID: 12619053 DOI: 10.1002/bdd.340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biotransformation of gepirone to 1-(2-pyrimidinyl)-piperazine (1-PP) and 3'-OH-gepirone, as well as two other hydroxylated metabolites, was studied in vitro using a human liver microsomal preparation and heterologously expressed human CYP3A4 and CYP2D6. The focus was on a low range of gepirone concentrations (1000 nM and below). Liver microsomes formed 1-PP and 3'-OH-gepirone with similar reaction velocities. Two other hydroxylated metabolites (2-OH- and 5-OH-gepirone) were also formed, but pure reference standards were not available for purposes of quantitative analysis. The CYP3A inhibitor ketoconazole completely eliminated 1-PP formation, reduced 3'-OH-gepirone formation to less than 20% of control, and reduced 2-OH-gepirone formation to 7% of control. All metabolites were formed by expressed CYP3A4; however, CYP2D6 formed 3'-OH- and 5-OH-gepirone, but not 1-PP or 2-OH-gepirone. Based on estimated relative abundances of the two isoforms in human liver, CYP3A4 was predicted to account for more than 95% of net clearance of gepirone in vivo at low concentrations approaching the therapeutic range. CYP2D6 would account for less than 5% of net clearance. The findings are consistent with previous in vitro studies of gepirone using higher substrate concentrations.
Collapse
Affiliation(s)
- David J Greenblatt
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Tufts-New England Medical Center, Boston MA 02111, USA.
| | | | | | | |
Collapse
|
35
|
Tran TH, Von Moltke LL, Venkatakrishnan K, Granda BW, Gibbs MA, Obach RS, Harmatz JS, Greenblatt DJ. Microsomal protein concentration modifies the apparent inhibitory potency of CYP3A inhibitors. Drug Metab Dispos 2002; 30:1441-5. [PMID: 12433817 DOI: 10.1124/dmd.30.12.1441] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The effect of microsomal protein concentration on the inhibitory potency of a series of CYP3A inhibitors was assessed in vitro using diazepam 3-hydroxylation (yielding temazepam) as an index of CYP3A activity. With diazepam concentrations fixed at 100 micro M, inhibition of temazepam formation by fixed concentrations of ritonavir, ketoconazole, itraconazole, OH-itraconazole, norfluoxetine, and fluvoxamine decreased substantially as active protein concentrations increased from 0.0625 to 3.0 mg/ml. However protein concentration had only a small effect on the inhibitory activity of fluconazole. Equilibrium dialysis indicated extensive microsomal binding of all inhibitors except fluconazole; binding increased with higher protein concentrations. Based on the CYP3A content of liver microsomes, decrements in inhibitory potency of stronger inhibitors (ketoconazole and ritonavir) could be explained by specific binding, whereas nonspecific binding is anticipated to account for the effect on weaker inhibitors (norfluoxetine and fluvoxamine). Thus, microsomal binding (specific, nonspecific, or a combination of both) may have a major effect on estimation of inhibitory potency of p450 inhibitors and may contribute to variations among laboratories. The effect can be minimized by use of the lowest possible microsomal protein concentration for in vitro studies of metabolic inhibition.
Collapse
Affiliation(s)
- Thanh Huu Tran
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine and New England Medical Center, Boston, Massachusetts 02111,USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Galetin A, Clarke SE, Houston JB. Quinidine and haloperidol as modifiers of CYP3A4 activity: multisite kinetic model approach. Drug Metab Dispos 2002; 30:1512-22. [PMID: 12433827 DOI: 10.1124/dmd.30.12.1512] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selection of appropriate substrates for investigating the potential inhibition of CYP3A4 is critical as the magnitude of effect is often substrate-dependent, and a weak correlation is often observed among different CYP3A4 substrates. This feature has been attributed to the existence of multiple binding sites and, therefore, relatively complex in vitro data modeling is required to avoid erroneous evaluation and to allow prediction of drug-drug interactions. This study, performed in lymphoblast-expressed CYP3A4 with oxidoreductase, provides a systematic comparison of the effects of quinidine (QUI) and haloperidol (HAL) as modifiers of CYP3A4 activity using a selection of CYP3A4 substrates: testosterone (TST), midazolam (MDZ), nifedipine (NIF), felodipine (FEL), and simvastatin (SV). The effect of QUI and HAL on CYP3A4-mediated pathways was substrate-dependent, ranging from potent inhibition of NIF (K(i) = 0.25 and 5.3 micro M for HAL and QUI, respectively), weak inhibition (TST), minimal effect (HAL on MDZ/SV) to QUI activation of FEL and SV metabolism. Inhibition of TST metabolite formation occurred but its autoactivation properties were maintained, indicating binding of a QUI/HAL molecule to a distinct effector site. Various multisite kinetic models have been applied to elucidate the mechanism of the drug-drug interactions observed. Kinetic models with two substrate-binding sites have been found to be appropriate to a number of interactions, provided the substrates show hyperbolic (MDZ, FEL, and SV) or substrate inhibition kinetic properties (NIF). In contrast, a three-site model approach is required for TST, a substrate showing positive cooperativity in its binding to CYP3A4.
Collapse
Affiliation(s)
- Aleksandra Galetin
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
37
|
Yao C, Levy RH. Inhibition-based metabolic drug-drug interactions: predictions from in vitro data. J Pharm Sci 2002; 91:1923-35. [PMID: 12210040 DOI: 10.1002/jps.10179] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There has been a growing interest in predicting in vivo metabolic drug-drug interactions from in vitro systems. High-throughput screening methods aimed at assessing the potential of drug candidates for drug interactions are widely used in industry. However, at present, there is no consensus on methodologies that would yield reliable quantitative predictions, because a number of issues remain unsolved, such as estimations of inhibition constants in vitro and inhibitor concentration around the enzyme site in vivo. In the present review, different approaches to estimation of inhibitor concentration around the enzyme site are summarized; also, the problems associated with estimation of in vitro K(i) values due to incubation conditions and environment differences between in vitro and in vivo are presented. A new approach based on comparisons of in vitro and in vivo inhibition potencies by calculation of in vivo inhibition constants is discussed. Examples of predictions of in vivo drug interactions based on mechanism-based inactivation are described. Unresolved issues that would allow further refinement of existing prediction models are also evaluated.
Collapse
Affiliation(s)
- Caiping Yao
- Department of Pharmaceutics, University of Washington, Seattle, Washington 98195-7610, USA
| | | |
Collapse
|
38
|
Kotegawa T, Laurijssens BE, Von Moltke LL, Cotreau MM, Perloff MD, Venkatakrishnan K, Warrington JS, Granda BW, Harmatz JS, Greenblatt DJ. In vitro, pharmacokinetic, and pharmacodynamic interactions of ketoconazole and midazolam in the rat. J Pharmacol Exp Ther 2002; 302:1228-37. [PMID: 12183684 DOI: 10.1124/jpet.102.035972] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions of midazolam and ketoconazole were studied in vivo and in vitro in rats. Ketoconazole (total dose of 15 mg/kg intraperitoneally) reduced clearance of intravenous midazolam (5 mg/kg) from 79 to 55 ml/min/kg (p < 0.05) and clearance of intragastric midazolam (15 mg/kg) from 1051 to 237 ml/min/kg (p < 0.05), increasing absolute bioavailability from 0.11 to 0.36 (p < 0.05). Presystemic extraction occurred mainly across the liver as opposed to the gastrointestinal tract mucosa. Midazolam increased electroencephalographic (EEG) amplitude in the beta-frequency range. Ketoconazole shifted the concentration-EEG effect relationship rightward (increase in EC(50)), probably because ketoconazole is a neutral benzodiazepine receptor ligand. Ketoconazole competitively inhibited midazolam hydroxylation by rat liver and intestinal microsomes in vitro, with nanomolar K(i) values. At a total serum ketoconazole of 2 microg/ml (3.76 microM) in vivo, the predicted reduction in clearance of intragastric midazolam by ketoconazole (to 6% of control) was slightly greater than the observed reduction in vivo (to 15% of control). However, unbound serum ketoconazole greatly underpredicted the observed clearance reduction. Although the in vitro and in vivo characteristics of midazolam in rats incompletely parallel those in humans, the experimental model can be used to assess aspects of drug interactions having potential clinical importance.
Collapse
Affiliation(s)
- Tsutomu Kotegawa
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Tufts-New England Medical Center, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Spina E, Avenoso A, Scordo MG, Ancione M, Madia A, Gatti G, Perucca E. Inhibition of risperidone metabolism by fluoxetine in patients with schizophrenia: a clinically relevant pharmacokinetic drug interaction. J Clin Psychopharmacol 2002; 22:419-23. [PMID: 12172343 DOI: 10.1097/00004714-200208000-00014] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of fluoxetine on the steady-state plasma concentrations of risperidone and its active metabolite 9-hydroxyrisperidone (9-OH-risperidone) was evaluated in 10 patients with schizophrenia or schizoaffective disorder. Patients stabilized on risperidone (4-6 mg/day) received additional fluoxetine (20 mg/day) to treat concomitant depression. One patient dropped out after 1 week due to the occurrence of akathisia associated with markedly increased plasma risperidone concentrations. In the other subjects, mean plasma concentrations of risperidone increased during fluoxetine administration from 12 +/- 9 ng/mL at baseline to 56 +/- 31 at week 4 (p < 0.001), while the levels of 9-OH-risperidone were not significantly affected. After 4 weeks of combined treatment, the levels of the active moiety (sum of the concentrations of risperidone and 9-OH-risperidone) increased by 75% (range, 9-204%, p < 0.01) compared with baseline. The mean plasma risperidone/9-OH-risperidone ratio also increased significantly. During the second week of adjunctive therapy, two patients developed Parkinsonian symptoms, which were controlled with anticholinergic medication. These findings indicate that fluoxetine, a potent inhibitor of the cytochrome P450 enzyme CYP2D6 and a less potent inhibitor of CYP3A4, reduces the clearance of risperidone by inhibiting its 9-hydroxylation or alternative metabolic pathways. This interaction may lead to toxic plasma risperidone concentrations. In addition to careful clinical observation, monitoring plasma risperidone levels may be of value in patients given adjunctive therapy with fluoxetine.
Collapse
Affiliation(s)
- Edoardo Spina
- Department of Clinical and Experimental Medicine and Pharmacology, Section of Pharmacology, University of Messina, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Tanaka E. Toxicological interactions between alcohol and benzodiazepines. JOURNAL OF TOXICOLOGY. CLINICAL TOXICOLOGY 2002; 40:69-75. [PMID: 11990206 DOI: 10.1081/clt-120002887] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND We review recentfindings on the toxicological interactions between alcohol (ethanol) and benzodiazepines, and the combined use of benzodiazepines and alcohol in fatal poisoning. Acute ingestion of alcohol combined with benzodiazepines is responsible for several toxicological interactions that can have significant clinical implications. In general, metabolism of these drugs is delayed when combined with acute alcohol ingestion although some reports suggest otherwise. Alternately, the drugs metabolized during chronic alcohol ingestion have an increased clearance. The net effect may also be influenced by internal (e.g., disease, age) and external (e.g., environment, diet) factors. Fatal poisoning involving coadministration of alcohol and benzodiazepine, especially triazolam, continues to be a serious problem.
Collapse
Affiliation(s)
- Einosuke Tanaka
- Department of Legal Medicine, Institute of Community Medicine, University of Tsukuba, Ibaraki-ken, Japan.
| |
Collapse
|
41
|
Liu ZQ, Tan ZR, Wang D, Huang SL, Wang LS, Zhou HH. Simultaneous determination of fluoxetine and its metabolite p-trifluoromethylphenol in human liver microsomes using a gas chromatographic-electron-capture detection procedure. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 769:305-11. [PMID: 11996496 DOI: 10.1016/s1570-0232(02)00016-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An gas chromatography-electron-capture detection method has been developed for simultaneous determination of fluoxetine and p-trifluoromethylphenol (TFMP), an O-dealkylated metabolite of fluoxetine in human liver microsomes. Prior to the analysis, aliquots of alkalinized microsomal mixture were extracted with ethyl acetate solvent containing acetonitrile (10%, v/v) and the derivatizing reagent, pentafluorobenzenesulfonyl chloride (0.1%, v/v). The organ phase was retained and taken to dryness, the residue was reconstituted in methanol, and the aliquot of extracts was injected directly into a gas chromatograph equipped with an electron-capture detector. 2,4-Dichlorophenol was added to the initial incubation mixture and carried through the procedure as the internal standard. The method provided the mean recoveries of up to 103% for fluoxetine and 104% for TFMP. Acceptable relative standard deviations were found for both within-run and day-to-day assays. The practical limit of detection (signal-to-noise ratio=3) was 1.62 ng/ml for TFMP and 6.92 ng/ml for fluoxetine in human liver microsomes, and the limit of quantitation was 8.1 pg for TFMP and 34.6 pg for fluoxetine. The assay is rapid and sensitive and has been applied successfully to simultaneous quantification of fluoxetine and TFMP in human liver microsomes with different CYP2C19 genotypes.
Collapse
Affiliation(s)
- Zhao-Qian Liu
- Pharmacogenetics Research Institute. Xiang-Ya School of Medicine, Central South University, Changsha, Hunan, China
| | | | | | | | | | | |
Collapse
|
42
|
Bonnabry P, Sievering J, Leemann T, Dayer P. Quantitative drug interactions prediction system (Q-DIPS): a dynamic computer-based method to assist in the choice of clinically relevant in vivo studies. Clin Pharmacokinet 2002; 40:631-40. [PMID: 11605713 DOI: 10.2165/00003088-200140090-00001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Metabolic drug interactions are a major source of clinical problems, but their investigation during drug development is often incomplete and poorly specific. In vitro studies give very accurate data on the interactions of drugs with selective cytochrome P450 (CYP) isozymes, but their interpretation in the clinical context is difficult. On the other hand, the design of in vivo studies is sometimes poor (choice of prototype substrate, doses, schedule of administration, number of volunteers), with the risk of minimising the real potential for interaction. To link in vitro and in vivo studies, several authors have suggested using extrapolation techniques, based on the comparison of in vitro inhibition data with the active in vivo concentrations of the inhibitor. However, the lack of knowledge of one or several important parameters (role of metabolites, intrahepatocyte accumulation) often limits the possibility for safe and accurate predictions. In consequence, these methods are useful to complement in vitro studies and help design clinically relevant in vivo studies, but they will not totally replace in vivo investigation in the future. We have developed a computerised application, the quantitative drug interactions prediction system (Q-DIPS), to make both qualitative deductions and quantitative predictions on the basis of a database containing updated information on CYP substrates, inhibitors and inducers, as well as pharmacokinetic parameters. We also propose a global approach to drug interactions problems--'good interactions practice--to help design rational drug interaction investigations, sequentially associating in vitro studies, in vitrolin vivo extrapolation and finally well-designed in vivo clinical studies.
Collapse
Affiliation(s)
- P Bonnabry
- Laboratory of Computer Assisted Therapeutics, Divisions of Clinical Pharmacology and Pharmacy, University Hospitals, Geneva, Switzerland.
| | | | | | | |
Collapse
|
43
|
Venkatakrishnan K, Von Moltke LL, Greenblatt DJ. Human drug metabolism and the cytochromes P450: application and relevance of in vitro models. J Clin Pharmacol 2001; 41:1149-79. [PMID: 11697750 DOI: 10.1177/00912700122012724] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cytochromes P450 (CYPs) constitute a superfamily of hemoprotein enzymes that are responsible for the biotransformation of numerous xenobiotics, including therapeutic agents. Studies of the biochemical and enzymatic properties of these enzymes and their molecular genetics and regulation of gene expression and activity have greatly enhanced our understanding of several aspects of clinical pharmacology such as pharmacokinetic variability, drug toxicity, and drug interactions. This review evaluates the major human hepatic drug-metabolizing CYP enzymes and their clinically relevant substrates, inhibitors, and inducers. Also discussed are the molecular bases and clinical implications of genetic polymorphisms that affect the CYPs. Much of the information on the specificity of substrates and inhibitors of the CYP enzymes is derived from in vitro studies using human liver microsomes and heterologously expressed CYP enzymes. These methods are discussed, and guidelines are provided for designing enzyme kinetic and reaction phenotyping studies using multiple approaches. The strengths, weaknesses, and discrepancies among the different approaches are considered using representative examples. The mathematical models used in predicting the pharmacokinetic clearance of a drug from in vitro estimates of intrinsic clearance and the principles of quantitative in vitro-in vivo scaling of metabolic drug interactions are also discussed.
Collapse
Affiliation(s)
- K Venkatakrishnan
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, New England Medical Center Hospital, Boston, MA 02111, USA
| | | | | |
Collapse
|
44
|
Spina E, Avenoso A, Facciolà G, Scordo MG, Ancione M, Madia A. Plasma Concentrations of Risperidone and 9-Hydroxyrisperidone During Combined Treatment With Paroxetine. Ther Drug Monit 2001; 23:223-7. [PMID: 11360029 DOI: 10.1097/00007691-200106000-00007] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY The effects of paroxetine on steady-state plasma concentrations of risperidone and its active metabolite 9-hydroxyrisperidone (9-OH-risperidone) were studied in 10 patients with schizophrenia or schizoaffective disorder. Patients stabilized using risperidone therapy (4-8 mg/d) also received paroxetine (20 mg/d) for 4 weeks. During paroxetine administration, mean plasma concentrations of risperidone increased significantly (P < 0.01), whereas levels of 9-OH-risperidone decreased slightly but not significantly. After 4 weeks of paroxetine treatment, the sum of the concentrations of risperidone and 9-OH-risperidone (active moiety) increased significantly by 45% (P < 0.05) over baseline. The mean plasma risperidone/9-OH-risperidone ratio was also significantly modified (P < 0.001) during paroxetine treatment. The drug combination was generally well tolerated with the exception of one patient who developed Parkinsonian symptoms in the second week of adjunctive therapy. In this patient total plasma levels of risperidone and its active metabolite increased by 62% during paroxetine co-administration. The authors' findings indicate that paroxetine, a potent inhibitor of CYP2D6, may impair the elimination of risperidone, primarily by inhibiting CYP2D6-mediated 9-hydroxylation and to a lesser extent by simultaneously affecting the further metabolism of 9-OH-risperidone or other pathways of risperidone biotransformation. Careful clinical observation and possibly monitoring of plasma risperidone levels may be useful whenever paroxetine is co-administered with risperidone.
Collapse
Affiliation(s)
- E Spina
- Department of Clinical and Experimental Medicine and Pharmacology, Section of Pharmacology, University of Messina, Centers of Mental Health, Azienda USL 5, Messina, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Presently in the United States, 21 compounds have been approved by the Food and Drug Administration as antidepressants. Two additional drugs marketed outside the United States as antidepressants have been approved for obsessive-compulsive disorder. Nearly one half of all these compounds became available within the past 12 years, whereas the first antidepressant was available more than 40 years ago. After the clinical aspects of depression are introduced in this article, the pharmacology of the newer generation drugs is reviewed in relationship to the older compounds. The information in this review will help clinicians treat acute depression with pharmacological agents.
Collapse
Affiliation(s)
- E Richelson
- Department of Psychiatry and Psychology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA.
| |
Collapse
|
46
|
Lundmark J, Reis M, Bengtsson F. Serum concentrations of fluoxetine in the clinical treatment setting. Ther Drug Monit 2001; 23:139-47. [PMID: 11294514 DOI: 10.1097/00007691-200104000-00008] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This article discusses fluoxetine serum concentrations as displayed in a clinical setting. A racemic serum fluoxetine and norfluoxetine high-performance liquid chromatography method, including ultraviolet light detection, was used for routine therapeutic drug monitoring (TDM) purposes. In all, 508 samples were analyzed. For the scientific investigation, predefined inclusion and exclusion criteria were applied and 150 samples representative of trough values in steady-state conditions with essential clinical information provided on the assay request forms were evaluated. Fluoxetine plus norfluoxetine concentration-to-dose (C/D) ratio showed Gaussian distribution. Interindividual coefficients of variation of fluoxetine and norfluoxetine serum concentrations after different doses were found to be 40-63%. Intraindividual fluoxetine TDM variability was low. The Spearman rank correlation coefficient for fluoxetine and norfluoxetine C/D ratios in first and second samples was 0.68. Minor increases in norfluoxetine C/D and fluoxetine plus norfluoxetine C/D ratios were found in elderly patients compared with younger adult patients. A higher body-mass index was associated with minor decreases in fluoxetine and fluoxetine plus norfluoxetine C/D ratios. New fluoxetine pharmacokinetic data are added to the results from earlier phases of drug development. Moreover, the results of this study support the usefulness of a fluoxetine TDM procedure for individual dose optimization, detection of drug interactions, and assessments of patient compliance.
Collapse
Affiliation(s)
- J Lundmark
- Department of Neuroscience and Locomotion, Linköping University Hospital, Sweden.
| | | | | |
Collapse
|
47
|
D'Souza DL, Levasseur LM, Nezamis J, Robbins DK, Simms L, Koch KM. Effect of alosetron on the pharmacokinetics of alprazolam. J Clin Pharmacol 2001; 41:452-4. [PMID: 11304902 DOI: 10.1177/00912700122010168] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lotronex (alosetron hydrochloride) is a 5-HT3 receptor antagonist indicated for the treatment of irritable bowel syndrome (IBS) in females whose predominant bowel habit is diarrhea. Alosetron is extensively metabolized by multiple cytochrome P450 (CYP) enzymes, including CYP 2C9 and 3A4. Alprazolam is a short-acting benzodiazepine commonly prescribed for the treatment of anxiety disorders and a potential comedication in patients with IBS. Alprazolam is extensively metabolized by CYP3A4. This clinical study was conducted to assess the potential for a metabolic drug interaction between these two CYP3A4 substrates. This was an open-label, randomized, two-period, crossover study in 12 healthy female and male volunteers to determine the effect of concomitant administration of alosetron at the recommended dose of 1 mg p.o. bid on the pharmacokinetics of alprazolam following a single oral 1 mg dose. The results showed no effect of alosetron on the pharmacokinetics of alprazolam. Mean alprazolam AUC was 210 and 202 ng.h/mL in the absence and the presence of alosetron, respectively. Therefore, alprazolam may be safely coadministered with alosetron without the need for dosage adjustment.
Collapse
Affiliation(s)
- D L D'Souza
- Department of Clinical Pharmacology, Glaxo Wellcome Canada, Mississauga, Ontario
| | | | | | | | | | | |
Collapse
|
48
|
Hirota N, Ito K, Iwatsubo T, Green CE, Tyson CA, Shimada N, Suzuki H, Sugiyama Y. In vitro/in vivo scaling of alprazolam metabolism by CYP3A4 and CYP3A5 in humans. Biopharm Drug Dispos 2001; 22:53-71. [PMID: 11745908 DOI: 10.1002/bdd.261] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We attempted to predict the in vivo metabolic clearance of alprazolam from in vitro metabolic studies using human liver microsomes and human CYP recombinants. Good correlations were observed between the intrinsic clearance (CL(int)) for 4-hydroxylation and CYP3A4 content and between the CL(int) for alpha-hydroxylation and CYP3A5 content in ten human liver microsomal samples. Using the recombinant CYP isoforms expressed in insect cells, the CL(int) for CYP3A4 was about 2-fold higher than the CL(int) for CYP3A5 in the case of 4-hydroxylation. However, the CL(int) for CYP3A5 was about 3-fold higher than the CL(int) for CYP3A4 in the case of alpha-hydroxylation. The metabolic rates for 4- and alpha-hydroxylation increased as the added amount of cytochrome b(5) increased, and their maximum values were 3- to 4-fold higher than those without cytochrome b(5). The values of CL(int), in vivo predicted from in vitro studies using human liver microsomes and CYP3A4 and CYP3A5 recombinants were within 2.5 times of the observed value calculated from literature data. The average CL(int) value (sum of 4- and alpha-hydroxylation) obtained using three human liver microsomal samples was 4-fold higher than that obtained using three small intestinal microsomal samples from the same donors, indicating the minor contribution of intestinal metabolism to alprazolam disposition. The area under the plasma concentration-time curve (AUC) of alprazolam is reported to increase following co-administration of ketoconazole and the magnitude of the increase predicted from the in vitro K(i) values and reported pharmacokinetic parameters of ketoconazole was 2.30-2.45, which is close to the value observed in vivo (3.19). A quantitative prediction of the AUC increase by cimetidine was also successful (1.73-1.79 vs 1.58-1.64), considering the active transport of cimetidine into the liver. In conclusion, we have succeeded in carrying out an in vitro/in vivo scaling of alprazolam metabolism using human liver microsomes and human CYP3A4 and CYP3A5 recombinants.
Collapse
Affiliation(s)
- N Hirota
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hyland R, Roe EG, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br J Clin Pharmacol 2001; 51:239-48. [PMID: 11298070 PMCID: PMC2015027 DOI: 10.1046/j.1365-2125.2001.00318.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AIMS To characterize the cytochrome P450 (CYP) enzymes responsible for the N-demethylation of sildenafil to its main metabolite, UK-103 320, to investigate the potential inhibitory effects of sildenafil on CYP enzymes and to evaluate the potential of selected drugs to affect sildenafil metabolism. METHODS The metabolic pathways of sildenafil N-demethylation were studied using human liver microsomes, as well as microsomes expressing individual human CYP enzymes. Further studies to identify the individual enzymes were performed at 2.5 and 250 microM sildenafil, and employed a combination of chemical inhibition, correlation analysis, and metabolism by expressed recombinant CYP enzymes. In addition, the effect of sildenafil on the activity of the six major drug metabolizing enzymes was investigated. RESULTS Sildenafil conversion was found to be mediated by at least two CYP enzymes, for which the mean kinetic parameters were Km1 = 6(+/-3 microM), Km2 = 81(+/-45 microM), Vmax1 = 22(+/-9 pmol) and Vmax2 = 138(+/-77 pmol) UK-103 320 formed min(-1) mg(-1). At 250 microM sildenafil, N-demethylation was primarily mediated through the low-affinity, high-Km enzyme (approximately 83%), whilst at 2.5 microM there was a greater role for the high-affinity, low-Km enzyme (approximately 61%). Ketoconazole strongly inhibited metabolism at both sildenafil concentrations and was the only significant inhibitor at 250 microM sildenafil. At the lower sildenafil concentration, sulphaphenazole and quinidine also inhibited formation of UK-103 320. Overall, 75% or more of the N-demethylation of sildenafil at any concentration is probably attributable to CYP3A4. These results were supported by experiments using expressed human CYP enzymes, in which only CYP3A4 and CYP2C9 exhibited substantial sildenafil N-demethylase activity (respective Km values of 221 microM and 27 microM). Sildenafil metabolism was inhibited by potent CYP3A4 inhibitors which are used clinically, but was found to be only a weak inhibitor of drug metabolizing enzymes itself, the strongest inhibition occurring against CYP2C9 (Ki = 80 microM). CONCLUSIONS Evidence is provided for CYP3A4 and to a lesser extent CYP2C9-mediated metabolism of sildenafil. There is the possibility that elevated plasma concentrations of sildenafil could occur with coadministration of known inhibitors of CYP2C9 or CYP3A4. Since peak plasma concentrations of clinical doses of sildenafil are only 200 ng ml(-1) ( approximately 0.4 microM) it is very unlikely that sildenafil will significantly alter the plasma concentration of other compounds metabolized by cytochrome P450 enzymes.
Collapse
Affiliation(s)
- R Hyland
- Department of Drug Metabolism, Pfizer Global Research & Development, Sandwich, Kent, UK
| | | | | | | |
Collapse
|
50
|
Mamiya K, Kojima K, Yukawa E, Higuchi S, Ieiri I, Ninomiya H, Tashiro N. Phenytoin intoxication induced by fluvoxamine. Ther Drug Monit 2001; 23:75-7. [PMID: 11206048 DOI: 10.1097/00007691-200102000-00014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A patient had phenytoin intoxication after administration of fluvoxamine, a selective serotonin reuptake inhibitor. The serum concentration of phenytoin increased dramatically from 16.6 to 49.1 microg/mL when fluvoxamine was coadministered, although the daily dosage of phenytoin and other drugs had not changed. During phenytoin and fluvoxamine treatment, ataxia, a typical side effect of phenytoin, was observed. The genotypes of CYP2C9 and 2C19, the enzymes responsible for phenytoin metabolism, were homozygous for the wild-type alleles (CYP2C9*1/*1 and 2C19*1/ *1). The interaction may be a result of inhibition of both CYP2C9 and 2C19 by fluvoxamine.
Collapse
Affiliation(s)
- K Mamiya
- Hizen National Hospital, Saga, Japan
| | | | | | | | | | | | | |
Collapse
|