1
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
Inami K, Usui N, Mochizuki M. Effect of Sulfur-Containing Side Chains on Transnitrosation of N-Nitroso Compounds of Thiazolidines. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
3
|
Tavares G, Alves P, Simões P. Recent Advances in Hydrogel-Mediated Nitric Oxide Delivery Systems Targeted for Wound Healing Applications. Pharmaceutics 2022; 14:pharmaceutics14071377. [PMID: 35890273 PMCID: PMC9315818 DOI: 10.3390/pharmaceutics14071377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the noticeable evolution in wound treatment over the centuries, a functional material that promotes correct and swift wound healing is important, considering the relative weight of chronic wounds in healthcare. Difficult to heal in a fashionable time, chronic wounds are more prone to infections and complications thereof. Nitric oxide (NO) has been explored for wound healing applications due to its appealing properties, which in the wound healing context include vasodilation, angiogenesis promotion, cell proliferation, and antimicrobial activity. NO delivery is facilitated by molecules that release NO when prompted, whose stability is ensured using carriers. Hydrogels, popular materials for wound dressings, have been studied as scaffolds for NO storage and delivery, showing promising results such as enhanced wound healing, controlled and sustained NO release, and bactericidal properties. Systems reported so far regarding NO delivery by hydrogels are reviewed.
Collapse
|
4
|
Ahmed R, Augustine R, Chaudhry M, Akhtar UA, Zahid AA, Tariq M, Falahati M, Ahmad IS, Hasan A. Nitric oxide-releasing biomaterials for promoting wound healing in impaired diabetic wounds: State of the art and recent trends. Pharmacotherapy 2022; 149:112707. [PMID: 35303565 DOI: 10.1016/j.biopha.2022.112707] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Impaired diabetic wounds are serious pathophysiological complications associated with persistent microbial infections including failure in the closure of wounds, and the cause of a high frequency of lower limb amputations. The healing of diabetic wounds is attenuated due to the lack of secretion of growth factors, prolonged inflammation, and/or inhibition of angiogenic activity. Diabetic wound healing can be enhanced by supplying nitric oxide (NO) endogenously or exogenously. NO produced inside the cells by endothelial nitric oxide synthase (eNOS) naturally aids wound healing through its beneficial vasculogenic effects. However, during hyperglycemia, the activity of eNOS is affected, and thus there becomes an utmost need for the topical supply of NO from exogenous sources. Thus, NO-donors that can release NO are loaded into wound healing patches or wound coverage matrices to treat diabetic wounds. The burst release of NO from its donors is prevented by encapsulating them in polymeric hydrogels or nanoparticles for supplying NO for an extended duration of time to the diabetic wounds. In this article, we review the etiology of diabetic wounds, wound healing strategies, and the role of NO in the wound healing process. We further discuss the challenges faced in translating NO-donors as a clinically viable nanomedicine strategy for the treatment of diabetic wounds with a focus on the use of biomaterials for the encapsulation and in vivo controlled delivery of NO-donors.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar; Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Maryam Chaudhry
- Department of Continuing Education, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Usman A Akhtar
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, Mirpur 10250, AJK, Pakistan
| | - Mojtaba Falahati
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus Medical Center, 3015GE Rotterdam, The Netherlands
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana Champaign, IL, USA
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
5
|
Lee JI, Park JH, Kim YR, Gwon K, Hwang HW, Jung G, Lee JY, Sun JY, Park JW, Shin JH, Ok MR. Delivery of nitric oxide-releasing silica nanoparticles for in vivo revascularization and functional recovery after acute peripheral nerve crush injury. Neural Regen Res 2022; 17:2043-2049. [PMID: 35142695 PMCID: PMC8848604 DOI: 10.4103/1673-5374.335160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide (NO) has been shown to promote revascularization and nerve regeneration after peripheral nerve injury. However, in vivo application of NO remains challenging due to the lack of stable carrier materials capable of storing large amounts of NO molecules and releasing them on a clinically meaningful time scale. Recently, a silica nanoparticle system capable of reversible NO storage and release at a controlled and sustained rate was introduced. In this study, NO-releasing silica nanoparticles (NO-SNs) were delivered to the peripheral nerves in rats after acute crush injury, mixed with natural hydrogel, to ensure the effective application of NO to the lesion. Microangiography using a polymer dye and immunohistochemical staining for the detection of CD34 (a marker for revascularization) results showed that NO-releasing silica nanoparticles increased revascularization at the crush site of the sciatic nerve. The sciatic functional index revealed that there was a significant improvement in sciatic nerve function in NO-treated animals. Histological and anatomical analyses showed that the number of myelinated axons in the crushed sciatic nerve and wet muscle weight excised from NO-treated rats were increased. Moreover, muscle function recovery was improved in rats treated with NO-SNs. Taken together, our results suggest that NO delivered to the injured sciatic nerve triggers enhanced revascularization at the lesion in the early phase after crushing injury, thereby promoting axonal regeneration and improving functional recovery.
Collapse
Affiliation(s)
- Jung Il Lee
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Ji Hun Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Yeong-Rim Kim
- Medical Sensor Biomaterial Research Institute, Kwangwoon University, Seoul, Republic of Korea
| | - Kihak Gwon
- Medical Sensor Biomaterial Research Institute, Kwangwoon University, Seoul, Republic of Korea
| | - Hae Won Hwang
- Center for Biomaterials, Korea Institute of Science & Technology; Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Gayoung Jung
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul, Republic of Korea
| | - Joo-Yup Lee
- Department of Orthopedic Surgery, College of Medicine, Catholic University, Seoul, Republic of Korea
| | - Jeong-Yun Sun
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jong Woong Park
- Department of Orthopedic Surgery, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Ho Shin
- Medical Sensor Biomaterial Research Institute; Department of Chemistry, Kwangwoon University, Seoul, Republic of Korea
| | - Myoung-Ryul Ok
- Center for Biomaterials, Korea Institute of Science & Technology, Seoul, Republic of Korea
| |
Collapse
|
6
|
Poh WH, Rice SA. Recent Developments in Nitric Oxide Donors and Delivery for Antimicrobial and Anti-Biofilm Applications. Molecules 2022; 27:molecules27030674. [PMID: 35163933 PMCID: PMC8839391 DOI: 10.3390/molecules27030674] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
The use of nitric oxide (NO) is emerging as a promising, novel approach for the treatment of antibiotic resistant bacteria and biofilm infections. Depending on the concentration, NO can induce biofilm dispersal, increase bacteria susceptibility to antibiotic treatment, and induce cell damage or cell death via the formation of reactive oxygen or reactive nitrogen species. The use of NO is, however, limited by its reactivity, which can affect NO delivery to its target site and result in off-target effects. To overcome these issues, and enable spatial or temporal control over NO release, various strategies for the design of NO-releasing materials, including the incorporation of photo-activable, charge-switchable, or bacteria-targeting groups, have been developed. Other strategies have focused on increased NO storage and delivery by encapsulation or conjugation of NO donors within a single polymeric framework. This review compiles recent developments in NO drugs and NO-releasing materials designed for applications in antimicrobial or anti-biofilm treatment and discusses limitations and variability in biological responses in response to the use of NO for bacterial eradiation.
Collapse
Affiliation(s)
- Wee Han Poh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- Correspondence:
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore;
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- The iThree Institute, The University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
7
|
Hu J, Fang Y, Huang X, Qiao R, Quinn JF, Davis TP. Engineering macromolecular nanocarriers for local delivery of gaseous signaling molecules. Adv Drug Deliv Rev 2021; 179:114005. [PMID: 34687822 DOI: 10.1016/j.addr.2021.114005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
In addition to being notorious air pollutants, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) have also been known as endogenous gaseous signaling molecules (GSMs). These GSMs play critical roles in maintaining the homeostasis of living organisms. Importantly, the occurrence and development of many diseases such as inflammation and cancer are highly associated with the concentration changes of GSMs. As such, GSMs could also be used as new therapeutic agents, showing great potential in the treatment of many formidable diseases. Although clinically it is possible to directly inhale GSMs, the precise control of the dose and concentration for local delivery of GSMs remains a substantial challenge. The development of gaseous signaling molecule-releasing molecules provides a great tool for the safe and convenient delivery of GSMs. In this review article, we primarily focus on the recent development of macromolecular nanocarriers for the local delivery of various GSMs. Learning from the chemistry of small molecule-based donors, the integration of these gaseous signaling molecule-releasing molecules into polymeric matrices through physical encapsulation, post-modification, or direct polymerization approach renders it possible to fabricate numerous macromolecular nanocarriers with optimized pharmacokinetics and pharmacodynamics, revealing improved therapeutic performance than the small molecule analogs. The development of GSMs represents a new means for many disease treatments with unique therapeutic outcomes.
Collapse
|
8
|
Han C, Yu Q, Jiang J, Zhang X, Wang F, Jiang M, Yu R, Deng T, Yu C. Bioenzyme-responsive L-arginine-based carbon dots: the replenishment of nitric oxide for nonpharmaceutical therapy. Biomater Sci 2021; 9:7432-7443. [PMID: 34609389 DOI: 10.1039/d1bm01184g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is a short-lived, bioactive gas that has been found to have affinitive effects on cardiovascular diseases as well as cancer biology, while NO deficiency may cause serious pathological responses. The existing chemically-synthesized NO donors have inevitable systemic toxicity and cannot be released adaptively. Hence, L-arginine, an endogenous NO precursor, merits investigation as a natural efficient NO donor. Herein, we designed amino acid-doped L-arginine CDs-based bioenzyme-responsive NO donors, which could adaptively replenish NO/ONOO- in response to different microenvironments. Our results indicated the mechanism of the NO/ONOO- supplementation of L-arginine-based CDs and their potential for nonpharmaceutical gas-involving theranostics for the first time.
Collapse
Affiliation(s)
- Chuyi Han
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qinghua Yu
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Junhao Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xianming Zhang
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Fan Wang
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mingyue Jiang
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ruihong Yu
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Centre, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tao Deng
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Chao Yu
- Research Centre of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China. .,Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.,Chongqing Pharmacodynamic Evaluation Engineering Technology Research Centre, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
9
|
Pinto RV, Carvalho S, Antunes F, Pires J, Pinto ML. Emerging Nitric Oxide and Hydrogen Sulfide Releasing Carriers for Skin Wound Healing Therapy. ChemMedChem 2021; 17:e202100429. [PMID: 34714595 DOI: 10.1002/cmdc.202100429] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2 S) have been recognized as important signalling molecules involved in multiple physiological functions, including wound healing. Their exogenous delivery has been established as a new route for therapies, being the topical application the nearest to commercialization. Nevertheless, the gaseous nature of these therapeutic agents and their toxicity at high levels imply additional challenges in the design of effective delivery systems, including the tailoring of their morphology and surface chemistry to get controllable release kinetics and suitable lifetimes. This review highlights the increasing interest in the use of these gases in wound healing applications by presenting the various potential strategies in which NO and/or H2 S are the main therapeutic agents, with focus on their conceptual design, release behaviour and therapeutic performance. These strategies comprise the application of several types of nanoparticles, polymers, porous materials, and composites as new releasing carriers of NO and H2 S, with characteristics that will facilitate the application of these molecules in the clinical practice.
Collapse
Affiliation(s)
- Rosana V Pinto
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.,CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Sílvia Carvalho
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.,CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Fernando Antunes
- CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - João Pires
- CQE-Ciências-Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 16, 1749-016, Lisboa, Portugal
| | - Moisés L Pinto
- CERENA-Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| |
Collapse
|
10
|
Massa CM, Liu Z, Taylor S, Pettit AP, Stakheyeva MN, Korotkova E, Popova V, Atochina-Vasserman EN, Gow AJ. Biological Mechanisms of S-Nitrosothiol Formation and Degradation: How Is Specificity of S-Nitrosylation Achieved? Antioxidants (Basel) 2021; 10:antiox10071111. [PMID: 34356344 PMCID: PMC8301044 DOI: 10.3390/antiox10071111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
The modification of protein cysteine residues underlies some of the diverse biological functions of nitric oxide (NO) in physiology and disease. The formation of stable nitrosothiols occurs under biologically relevant conditions and time scales. However, the factors that determine the selective nature of this modification remain poorly understood, making it difficult to predict thiol targets and thus construct informatics networks. In this review, the biological chemistry of NO will be considered within the context of nitrosothiol formation and degradation whilst considering how specificity is achieved in this important post-translational modification. Since nitrosothiol formation requires a formal one-electron oxidation, a classification of reaction mechanisms is proposed regarding which species undergoes electron abstraction: NO, thiol or S-NO radical intermediate. Relevant kinetic, thermodynamic and mechanistic considerations will be examined and the impact of sources of NO and the chemical nature of potential reaction targets is also discussed.
Collapse
Affiliation(s)
- Christopher M. Massa
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Ziping Liu
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Sheryse Taylor
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Ashley P. Pettit
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Marena N. Stakheyeva
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Elena Korotkova
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Valentina Popova
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J. Gow
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Correspondence: ; Tel.: +1-848-445-4612
| |
Collapse
|
11
|
Xu Z, Liang B, Tian J, Wu J. Anti-inflammation biomaterial platforms for chronic wound healing. Biomater Sci 2021; 9:4388-4409. [PMID: 34013915 DOI: 10.1039/d1bm00637a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, there has been an increase in the number of people with chronic wounds, which has resulted in serious health problems worldwide. The rate-limiting stage of chronic wound healing has been found to be the inflammation stage, and strategies for shortening the prolonged inflammatory response have proven to be effective for increasing the healing rate. Recently, various anti-inflammatory strategies (such as anti-inflammatory drugs, antioxidant, NO regulation, antibacterial, immune regulation and angiogenesis) have attracted attention as potential therapeutic pathways. Moreover, various biomaterial platforms based on anti-inflammation therapy strategies have also emerged in the spotlight as potential therapies to accelerate the repair of chronic wounds. In this review, we systematically investigated the advances of various biomaterial platforms based on anti-inflammation strategies for chronic wound healing, to provide valuable guidance for future breakthroughs in chronic wound treatment.
Collapse
Affiliation(s)
- Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| | - Biao Liang
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Junzhang Tian
- Center of Digestive Endoscopy, Guangdong Second Provincial general Hospital, No. 466, Xingang Middle Road, Guangzhou 510317, Haizhu District, China.
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China.
| |
Collapse
|
12
|
Gutierrez Cisneros C, Bloemen V, Mignon A. Synthetic, Natural, and Semisynthetic Polymer Carriers for Controlled Nitric Oxide Release in Dermal Applications: A Review. Polymers (Basel) 2021; 13:760. [PMID: 33671032 PMCID: PMC7957520 DOI: 10.3390/polym13050760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO•) is a free radical gas, produced in the human body to regulate physiological processes, such as inflammatory and immune responses. It is required for skin health; therefore, a lack of NO• is known to cause or worsen skin conditions related to three biomedical applications- infection treatment, injury healing, and blood circulation. Therefore, research on its topical release has been increasing for the last two decades. The storage and delivery of nitric oxide in physiological conditions to compensate for its deficiency is achieved through pharmacological compounds called NO-donors. These are further incorporated into scaffolds to enhance therapeutic treatment. A wide range of polymeric scaffolds has been developed and tested for this purpose. Hence, this review aims to give a detailed overview of the natural, synthetic, and semisynthetic polymeric matrices that have been evaluated for antimicrobial, wound healing, and circulatory dermal applications. These matrices have already set a solid foundation in nitric oxide release and their future perspective is headed toward an enhanced controlled release by novel functionalized semisynthetic polymer carriers and co-delivery synergetic platforms. Finally, further clinical tests on patients with the targeted condition will hopefully enable the eventual commercialization of these systems.
Collapse
Affiliation(s)
- Carolina Gutierrez Cisneros
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
| | - Veerle Bloemen
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Arn Mignon
- Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium; (C.G.C.); (V.B.)
| |
Collapse
|
13
|
Oliver S, Pham TTP, Li Y, Xu FJ, Boyer C. More than skin deep: using polymers to facilitate topical delivery of nitric oxide. Biomater Sci 2021; 9:391-405. [PMID: 32856653 DOI: 10.1039/d0bm01197e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Skin, the largest organ in the human body, provides several important functions, including providing protection from mechanical impacts, micro-organisms, radiation and chemicals; regulation of body temperature; the sensations of touch and temperature; and the synthesis of several substances including vitamin D, melanin, and keratin. Common dermatological disorders (CDDs) include inflammatory or immune-mediated skin diseases, skin infection, skin cancer, and wounds. In the treatment of skin disorders, topical administration has advantages over other routes of administration, and polymers are widely used as vehicles to facilitate the delivery of topical therapeutic agents, serving as matrices to keep therapeutic agents in contact with the skin. Nitric oxide (NO), a cellular signalling molecule, has attracted significant interest in treating a broad spectrum of diseases, including various skin disorders. However, there are a number of challenges in effectively delivering NO. It must be delivered in a controlled manner at sufficient concentrations to be efficacious and the delivery system must be stable during storage. The use of polymer-based systems to deliver NO topically can be an effective strategy to overcome these challenges. There are three main approaches for incorporating NO with polymers in topical delivery systems: (i) physical incorporation of NO donors into polymer bases; (ii) covalent attachment of NO donors to polymers; and (iii) encapsulation of NO donors in polymer-based particles. The latter two approaches provide the greatest control over NO release and have been used by numerous researchers in treating CDDs, including chronic wounds and skin cancer.
Collapse
Affiliation(s)
- Susan Oliver
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Thi Thu Phuong Pham
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Cyrille Boyer
- Australian Centre for NanoMedicine (ACN) and Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia 2052.
| |
Collapse
|
14
|
Ghalei S, Mondal A, Hopkins S, Singha P, Devine R, Handa H. Silk Nanoparticles: A Natural Polymeric Platform for Nitric Oxide Delivery in Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53615-53623. [PMID: 33205962 DOI: 10.1021/acsami.0c13813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, the preparation and characterization of nitric oxide (NO) releasing silk fibroin nanoparticles (SF NPs) are described for the first time. S-Nitroso-N-acetylpenicillamine (SNAP)-loaded SF NPs (SNAP-SF NPs) were prepared via an antisolvent/self-assembling method by adding a SNAP/ethanol solution to an aqueous SF solution and freeze-thawing. The prepared SNAP-SF NPs had a diameter ranging from 300 to 400 nm and an overall negative charge of -28.76 ± 0.73 mV. Among the different SNAP/SF ratios tested, the highest encapsulation efficiency (18.3 ± 1.3%) and loading capacity (9.1 ± 0.6%) values were attributed to the 1:1 ratio. The deconvolution of the amide I band in the FTIR spectra of SF NPs and SNAP-SF NPs showed an increase in the β-sheet content for SNAP-SF NPs, confirming the hydrophobic interactions between SNAP and silk macromolecules. SNAP-SF NPs released up to 1.31 ± 0.02 × 10-10 mol min-1 mg-1 NO over a 24 h period. Moreover, SNAP-SF NPs showed concentration-dependent antibacterial effects against methicillin-resistant Staphylococcus aureus and Escherichia coli. Furthermore, they did not elicit any marked cytotoxicity against 3T3 mouse fibroblast cells at concentrations equal to or below 2 mg/mL. Overall, these results demonstrated that SNAP-SF NPs have great potential to be used as a NO delivery platform for biomedical applications such as tissue engineering and wound healing, where synergistic properties of SF and NO are desired.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sean Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
15
|
Pelegrino MT, Paganotti A, Seabra AB, Weller RB. Photochemistry of nitric oxide and S-nitrosothiols in human skin. Histochem Cell Biol 2020; 153:431-441. [PMID: 32162135 PMCID: PMC7300104 DOI: 10.1007/s00418-020-01858-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO) is related to a wide range of physiological processes such as vasodilation, macrophages cytotoxicity and wound healing. The human skin contains NO precursors (NOx). Those are mainly composed of nitrite (NO2-), nitrate (NO3-), and S-nitrosothiols (RSNOs) which forms a large NO store. These NOx stores in human skin can mobilize NO to blood stream upon ultraviolet (UV) light exposure. The main purpose of this study was to evaluate the most effective UV light wavelength to generate NO and compare it to each NO precursor in aqueous solution. In addition, the UV light might change the RSNO content on human skin. First, we irradiated pure aqueous solutions of NO2- and NO3- and mixtures of NO2- and glutathione and NO3- and S-nitrosoglutathione (GSNO) to identify the NO release profile from those species alone. In sequence, we evaluated the NO generation profile on human skin slices. Human skin was acquired from redundant plastic surgical samples and the NO and RSNO measurements were performed using a selective NO electrochemical sensor. The data showed that UV light could trigger the NO generation in skin with a peak at 280-285 nm (UVB range). We also observed a significant RSNO formation in irradiated human skin, with a peak at 320 nm (UV region) and at 700 nm (visible region). Pre-treatment of the human skin slice using NO2- and thiol (RSHs) scavengers confirmed the important role of these molecules in RSNO formation. These findings have important implications for clinical trials with potential for new therapies.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - André Paganotti
- Laboratory of Materials and Mechanical Manufacture, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal Do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil
| | - Richard B Weller
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
16
|
Park K, Dawson JI, Oreffo ROC, Kim YH, Hong J. Nanoclay-Polyamine Composite Hydrogel for Topical Delivery of Nitric Oxide Gas via Innate Gelation Characteristics of Laponite. Biomacromolecules 2020; 21:2096-2103. [PMID: 32267672 DOI: 10.1021/acs.biomac.0c00086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Because nitric oxide (NO) gas is an endogenously produced signaling molecule related to numerous physiological functions, manystudies have been conducted to develop NO delivery systems for potential biomedical applications. However, NO is a reactive radical gas molecule that has a very short life-time and readily transforms into nitrogen oxide species via reaction with oxygen species. Therefore, it is necessary to develop an NO delivery carrier that allows local release of the NO gas at the site of application. In this study, Laponite (LP) nanoclay was used to fabricate an NO delivery carrier through the formation of Laponite-polyamine (LP-PAn) composites. The Laponite clay and pentaethylenehexamine (PEHA) formed a macromolecular structure by electrostatic interaction and the nitric oxide donor, N-diazeniumdiolate (NONOates), was synthesized into the LP-PAn composite. We investigated the conformation of the LP-PAn composite structure and the NO donor formation by ζ potential, X-ray diffraction, and UV-vis and Fourier transform infrared (FT-IR) spectroscopies and also by analyzing the NO release profile. Additionally, we confirmed the applicability in biomedical applications via a cell viability and in vitro endothelial cell tube formation assay.
Collapse
Affiliation(s)
- Kyungtae Park
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jonathan I Dawson
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Yang-Hee Kim
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Jinkee Hong
- School of Chemical & Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
17
|
Urzedo AL, Gonçalves MC, Nascimento MHM, Lombello CB, Nakazato G, Seabra AB. Cytotoxicity and Antibacterial Activity of Alginate Hydrogel Containing Nitric Oxide Donor and Silver Nanoparticles for Topical Applications. ACS Biomater Sci Eng 2020; 6:2117-2134. [DOI: 10.1021/acsbiomaterials.9b01685] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alessandro L. Urzedo
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Marcelly C. Gonçalves
- Department of Microbiology, Universidade Estadual de Londrina (UEL), Campus Universitário, CEP 86055-990, Londrina, Paraná, Brazil
| | - Mônica H. M. Nascimento
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Christiane B. Lombello
- Center for Engineering, Modeling and Applied Social Sciences, Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Universidade Estadual de Londrina (UEL), Campus Universitário, CEP 86055-990, Londrina, Paraná, Brazil
| | - Amedea B. Seabra
- Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), CEP 09210-580, Santo André, São Paulo, Brazil
| |
Collapse
|
18
|
H. M. Nascimento M, T. Pelegrino M, C. Pieretti J, B. Seabra A. How can nitric oxide help osteogenesis? AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Yapor JP, Gordon JL, Henderson CN, Reynolds MM. Nitric Oxide-Releasing Emulsion with Hyaluronic Acid and Vitamin E. RSC Adv 2019; 9:21873-21880. [PMID: 33791091 PMCID: PMC8009199 DOI: 10.1039/c9ra03840j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
S-Nitrosoglutathione (GSNO) is a naturally available S-nitrosothiol that can be incorporated into non-toxic formulations intended for topical use. The value of nitric oxide (NO) delivered topically relates to its well-studied physiological functions such as vasodilation, angiogenesis, cell proliferation and broad-spectrum antibacterial activity. Previously reported topical NO-releasing substrates include polymeric materials that exhibit non-toxic behaviors on dermal tissue such as polyethylene glycol. However, they do not serve as humectants nor provide vitamins to the skin. In this study, GSNO was added to an emulsion that was fortified with α-tocopheryl acetate (vitamin E) and hyaluronic acid. The average total NO content for the NO-releasing emulsion was 58 ± 8 μmol g−1 at 150 °C and the cumulative NO release over 53 h at physiological temperature (37.4 °C) was 46 ± 4 μmol g−1. The GSNO concentration in the lotion was optimized in order to reach a pH value similar to that of human skin (pH 5.5). The viscosity was analyzed using a rotational viscometer for the S-nitrosated and the non-nitrosated emulsions to obtain a material that can be readily spread on dermal tissue. The viscosity values obtained ranged from 7.88 ± 0.99 to 8.50 ± 0.36 Pa s. Previous studies have determined that the viscosity maximum for lotions is 100 Pa s. A low viscosity increases the diffusion coefficient of active ingredients to the skin given that they are inversely proportional as described by the Einstein–Smoluchowski equation. The effect of the S-nitrosated and non-nitrosated emulsions on adult human dermal fibroblasts (HDFs) was assessed in comparison to untreated HDFs using Colorimetric Cell Viability Kit I-WST-8. The findings indicate that neither the S-nitrosated nor non-nitrosated emulsions induced cytotoxicity in HDFs. S-Nitrosoglutathione (GSNO) is a naturally available S-nitrosothiol that can be incorporated into non-toxic formulations intended for topical use.![]()
Collapse
Affiliation(s)
- Janet P Yapor
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Jenna L Gordon
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Christina N Henderson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Melissa M Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
20
|
Malone-Povolny MJ, Maloney SE, Schoenfisch MH. Nitric Oxide Therapy for Diabetic Wound Healing. Adv Healthc Mater 2019; 8:e1801210. [PMID: 30645055 PMCID: PMC6774257 DOI: 10.1002/adhm.201801210] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) represents a potential wound therapeutic agent due to its ability to regulate inflammation and eradicate bacterial infections. Two broad strategies exist to utilize NO for wound healing; liberating NO from endogenous reservoirs, and supplementing NO from exogenous sources. This progress report examines the efficacy of a variety of NO-based methods to improve wound outcomes, with particular attention given to diabetes-associated chronic wounds.
Collapse
Affiliation(s)
- Maggie J Malone-Povolny
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sara E Maloney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
21
|
Douglass ME, Goudie MJ, Pant J, Singha P, Hopkins S, Devine R, Schmiedt CW, Handa H. Catalyzed Nitric Oxide Release Via Cu Nanoparticles Leads to an Increase in Antimicrobial Effects and Hemocompatibility for Short Term Extracorporeal Circulation. ACS APPLIED BIO MATERIALS 2019; 2:2539-2548. [PMID: 33718805 DOI: 10.1021/acsabm.9b00237] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Devices used for extracorporeal circulation are met with two major medical concerns: thrombosis and infection. A device that allows for anticoagulant-free circulation while reducing risk of infection has yet to be developed. We report the use of a copper nanoparticle (Cu NP) catalyst for the release of nitric oxide (NO) from the endogenous donor S-nitrosoglutathione (GSNO) in a coating applied to commercial Tygon S3™ E-3603 poly(vinyl chloride) tubing in order to reduce adhered bacterial viability and the occurrence thrombosis for the first time in an animal model. Cu GSNO coated material demonstrated a nitric oxide (NO) release flux ranging from an initial flux of 6.3 ± 0.9 ×10-10 mol cm-2 min-1 to 7.1 ± 0.4 ×10-10 mol cm-2 min-1 after 4 h of release, while GSNO loops without Cu NPs only ranged from an initial flux of 1.1 ± 0.2 ×10-10 mol cm-2 min-1 to 2.3 ± 0.2 ×10-10 mol cm-2 min-1 after 4 h of release, indicating that the addition of Cu NPs can increase NO flux up to five times in the same 4 h period. Additionally, a 3-log reduction in S. aureus and 1-log reduction in P. aeruginosa was observed in viable bacterial adhesion over a 24 h period compared to control loops. A Cell Counting Kit-8 (CCK-8) assay was used to validate no overall cytotoxicity towards 3T3 mouse fibroblasts. Finally, extracorporeal circuits were coated and exposed to 4 h of blood flow under an in vivo rabbit model. The Cu GSNO combination was successful in maintaining 89.3% of baseline platelet counts, while the control loops were able to maintain 67.6% of the baseline. These results suggest that the combination of Cu NPs with GSNO increases hemocompatibility and antimicrobial properties of ECC loops without any cytotoxic effects towards mammalian cells.
Collapse
Affiliation(s)
- Megan E Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Marcus J Goudie
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Sean Hopkins
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Ryan Devine
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, University of Georgia, Athens, GA, USA
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA, USA
| |
Collapse
|
22
|
Influence of Pluronic F127 microenvironments on the photochemical nitric oxide release from S-nitrosoglutathione. J Colloid Interface Sci 2019; 544:217-229. [DOI: 10.1016/j.jcis.2019.02.087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/21/2022]
|
23
|
de Souza GFP, Denadai JP, Picheth GF, de Oliveira MG. Long-term decomposition of aqueous S-nitrosoglutathione and S-nitroso-N-acetylcysteine: Influence of concentration, temperature, pH and light. Nitric Oxide 2019; 84:30-37. [PMID: 30630056 DOI: 10.1016/j.niox.2019.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/17/2018] [Accepted: 01/04/2019] [Indexed: 02/03/2023]
Abstract
Primary S-nitrosothiols (RSNOs) have received significant attention for their ability to modulate NO signaling in many physiological and pathophysiological processes. Such actions and their potential pharmaceutical uses demand a better knowledge of their stability in aqueous solutions. Herein, we investigated the effects of concentration, temperature, pH, room light and metal ions on the long-term kinetic behavior of two representative primary RSNOs, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylcysteine (SNAC). The thermal decomposition of GSNO and SNAC were shown to be affected by the auto-catalytic action of the thiyl radicals. At 25 °C in the dark and protected from the catalytic action of metal ions, GSNO and SNAC solutions 1 mM showed half-lives of 49 and 76 days, and apparent activation energies of 84 ± 14 and 90 ± 6 kJ mol-1, respectively. Both GSNO and SNAC exhibited increased stability in the pH range 5-7. At high pH the decomposition pathway of GSNO involves the formation of an intermediate (GS-NO22-), which decomposes generating GSH and nitrite. GSNO solutions displayed lower sensitivity to the catalytic action of metal ions than SNAC and the exposure to room light led to a 5-fold increase in the initial rates of decomposition of both RSNOs. In all comparisons, SNAC solutions showed higher stability than GSNO solutions. These findings provide strategic information about the stability of GSNO and SNAC and may open new perspectives for their use as experimental or therapeutic NO donors.
Collapse
Affiliation(s)
| | | | - Guilherme F Picheth
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | | |
Collapse
|
24
|
Rolim WR, Pieretti JC, Renó DLS, Lima BA, Nascimento MHM, Ambrosio FN, Lombello CB, Brocchi M, de Souza ACS, Seabra AB. Antimicrobial Activity and Cytotoxicity to Tumor Cells of Nitric Oxide Donor and Silver Nanoparticles Containing PVA/PEG Films for Topical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6589-6604. [PMID: 30653288 DOI: 10.1021/acsami.8b19021] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Because of their antibacterial activity, silver nanoparticles (AgNPs) have been explored in biomedical applications. Similarly, nitric oxide (NO) is an important endogenous free radical with an antimicrobial effect and toxicity toward cancer cells that plays pivotal roles in several processes. In this work, biogenic AgNPs were prepared using green tea extract and the principles of green chemistry, and the NO donor S-nitrosoglutathione (GSNO) was prepared by the nitrosation of glutathione. To enhance the potentialities of GSNO and AgNPs in biomedical applications, the NO donor and metallic nanoparticles were individually or simultaneously incorporated into polymeric solid films of poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG). The resulting solid nanocomposites were characterized by several techniques, and the diffusion profiles of GSNO and AgNPs were investigated. The results demonstrated the formation of homogeneous PVA/PEG solid films containing GSNO and nanoscale AgNPs that are distributed in the polymeric matrix. PVA/PEG films containing AgNPs demonstrated a potent antibacterial effect against Gram-positive and Gram-negative bacterial strains. GSNO-containing PVA/PEG films demonstrated toxicity toward human cervical carcinoma and human prostate cancer cell lines. Interestingly, the incorporation of AgNPs in PVA/PEG/GSNO films had a superior effect on the decrease of cell viability of both cancer cell lines, compared with cells treated with films containing GSNO or AgNPs individually. To our best knowledge, this is the first report to describe the preparation of PVA/PEG solid films containing GSNO and/or biogenically synthesized AgNPs. These polymeric films might find important biomedical applications as a solid material with antimicrobial and antitumorigenic properties.
Collapse
Affiliation(s)
| | | | | | - Bruna A Lima
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology , University of Campinas (UNICAMP) , Campinas , São Paulo 13083-862 , Brazil
| | | | | | | | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology , University of Campinas (UNICAMP) , Campinas , São Paulo 13083-862 , Brazil
| | | | | |
Collapse
|
25
|
Khashim Z, Samuel S, Duraisamy N, Krishnan K. Potential Biomolecules and Current Treatment Technologies for Diabetic Foot Ulcer: An Overview. Curr Diabetes Rev 2019; 15:2-14. [PMID: 28523994 DOI: 10.2174/1573399813666170519102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diabetic foot ulceration remains a major challenge and is one of the most expensive and leading causes of major and minor amputations among patients with diabetic foot ulcer. Hence the purpose of this review is to emphasize on potential molecular markers involved in diabetic foot ulcer physiology, the efficacy of different types of dressing materials, adjunct therapy and newer therapeutic approach like nanoparticles for the treatment of diabetic foot ulcer. METHODS We conducted a systematic literature review search by using Pubmed and other web searches. The quality evidence of diabetic foot ulcer biomolecules and treatments was collected, summarized and compared with other studies. RESULTS The present investigation suggested that impaired wound healing in diabetic patients is an influence of several factors. All the advanced therapies and foot ulcer dressing materials are not suitable for all types of diabetic foot ulcers, however more prospective follow ups and in vivo and in vitro studies are needed to draw certain conclusion. Several critical wound biomolecules have been identified and are in need to be investigated in diabetic foot ulcers. The application of biocompatible nanoparticles holds a promising approach for designing dressing materials for the treatment of diabetic foot ulcer. CONCLUSION Understanding the cellular and molecular events and identifying the appropriate treatment strategies for different foot ulcer grades will reduce recurrence of foot ulcer and lower limb amputation.
Collapse
Affiliation(s)
- Zenith Khashim
- Department of Biotechnology, University of Madras, Chennai, India
| | - Shila Samuel
- Department of Biochemistry, VRR Institute of Biomedical Science, 1/7, MRB Avenue, Kattupakkam, Chennai-600056, India
| | | | | |
Collapse
|
26
|
Champeau M, Póvoa V, Militão L, Cabrini FM, Picheth GF, Meneau F, Jara CP, de Araujo EP, de Oliveira MG. Supramolecular poly(acrylic acid)/F127 hydrogel with hydration-controlled nitric oxide release for enhancing wound healing. Acta Biomater 2018; 74:312-325. [PMID: 29777958 DOI: 10.1016/j.actbio.2018.05.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 05/15/2018] [Indexed: 01/20/2023]
Abstract
Topical nitric oxide (NO) delivery has been shown to accelerate wound healing. However, delivering NO to wounds at appropriate rates and doses requires new biomaterial-based strategies. Here, we describe the development of supramolecular interpolymer complex hydrogels comprising PEO-PPO-PEO (F127) micelles embedded in a poly(acrylic acid) (PAA) matrix, with S-nitrosoglutathione (GSNO) molecules dissolved in the hydrophilic domain. We show that PAA:F127/GSNO hydrogels start releasing NO upon hydration at rates controlled by their rates of water absorption. SAXS measurements indicate that the supramolecular structure of the hydrogels retains long-range order domains of F127 micelles. The PAA/F1227 hydrogels displayed dense morphologies and reduced rates of hydration. The NO release rates remain constant over the first 200 min, are directly correlated with the hydration rates of the PAA:F127/GSNO hydrogels, and can be modulated in the range of 40 nmol/g h to 1.5 μmol/g h by changing the PAA:F127 mass ratio. Long-term NO-release profiles over 5 days are governed by the first-order exponential decay of GSNO, with half-lives in the range of 0.5-3.4 days. A preliminary in vivo study on full-thickness excisional wounds in mice showed that topical NO release from the PAA:F127/GSNO hydrogels is triggered by exudate absorption and leads to increased angiogenesis and collagen fiber organization, as well as TGF-β, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue. In summary, these results suggest that hydration-controlled NO release from topical PAA:F127/GSNO hydrogels is a potential strategy for enhancing wound healing. STATEMENT OF SIGNIFICANCE The topical delivery of nitric oxide (NO) to wounds may provide significant beneficial results and represent a promising strategy to treat chronic wounds. However, wound dressings capable of releasing NO after application and allowing the modulation of NO release rates, demand new platforms. Here, we describe a novel strategy to overcome these challenges, based on the use of supramolecular poly(acrylic acid) (PAA):F127 hydrogels charged with the NO donor S-nitrosoglutathione (GSNO) from whereby the NO release can be triggered by exudate absorption and delivered to the wound at rates controlled by the PAA:F127 mass ratio. Preliminary in vivo results offer a proof of concept for this strategy by demonstrating increased angiogenesis; collagen fibers organization; and TGF-β, IGF-1, SDF-1, and IL-10 gene expressions in the cicatricial tissue after topical treatment with a PAA:F127/GSNO hydrogel.
Collapse
|
27
|
Lackmann JW, Wende K, Verlackt C, Golda J, Volzke J, Kogelheide F, Held J, Bekeschus S, Bogaerts A, Schulz-von der Gathen V, Stapelmann K. Chemical fingerprints of cold physical plasmas - an experimental and computational study using cysteine as tracer compound. Sci Rep 2018; 8:7736. [PMID: 29769633 PMCID: PMC5955931 DOI: 10.1038/s41598-018-25937-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen and nitrogen species released by cold physical plasma are being proposed as effectors in various clinical conditions connected to inflammatory processes. As these plasmas can be tailored in a wide range, models to compare and control their biochemical footprint are desired to infer on the molecular mechanisms underlying the observed effects and to enable the discrimination between different plasma sources. Here, an improved model to trace short-lived reactive species is presented. Using FTIR, high-resolution mass spectrometry, and molecular dynamics computational simulation, covalent modifications of cysteine treated with different plasmas were deciphered and the respective product pattern used to generate a fingerprint of each plasma source. Such, our experimental model allows a fast and reliable grading of the chemical potential of plasmas used for medical purposes. Major reaction products were identified to be cysteine sulfonic acid, cystine, and cysteine fragments. Less-abundant products, such as oxidized cystine derivatives or S-nitrosylated cysteines, were unique to different plasma sources or operating conditions. The data collected point at hydroxyl radicals, atomic O, and singlet oxygen as major contributing species that enable an impact on cellular thiol groups when applying cold plasma in vitro or in vivo.
Collapse
Affiliation(s)
- J-W Lackmann
- Biomedical Applications of Plasma Technology, Ruhr University Bochum, Universitätsstr 150, 44780, Bochum, Germany. .,ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - K Wende
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - C Verlackt
- PLASMANT, University of Antwerp, Universiteitsplein 1, 2610, Antwerp-Wilrijk, Belgium
| | - J Golda
- Experimental Physics II, Ruhr University Bochum, Universitätsstr 150, 44780, Bochum, Germany
| | - J Volzke
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - F Kogelheide
- Biomedical Applications of Plasma Technology, Ruhr University Bochum, Universitätsstr 150, 44780, Bochum, Germany
| | - J Held
- Experimental Physics II, Ruhr University Bochum, Universitätsstr 150, 44780, Bochum, Germany
| | - S Bekeschus
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - A Bogaerts
- PLASMANT, University of Antwerp, Universiteitsplein 1, 2610, Antwerp-Wilrijk, Belgium
| | - V Schulz-von der Gathen
- Experimental Physics II, Ruhr University Bochum, Universitätsstr 150, 44780, Bochum, Germany
| | - K Stapelmann
- Biomedical Applications of Plasma Technology, Ruhr University Bochum, Universitätsstr 150, 44780, Bochum, Germany.,Department of Nuclear Engineering, Plasma for Life Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
28
|
Forni MF, Peloggia J, Braga TT, Chinchilla JEO, Shinohara J, Navas CA, Camara NOS, Kowaltowski AJ. Caloric Restriction Promotes Structural and Metabolic Changes in the Skin. Cell Rep 2018; 20:2678-2692. [PMID: 28903047 DOI: 10.1016/j.celrep.2017.08.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/09/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022] Open
Abstract
Caloric restriction (CR) is the most effective intervention known to enhance lifespan, but its effect on the skin is poorly understood. Here, we show that CR mice display fur coat remodeling associated with an expansion of the hair follicle stem cell (HFSC) pool. We also find that the dermal adipocyte depot (dWAT) is underdeveloped in CR animals. The dermal/vennule annulus vasculature is enlarged, and a vascular endothelial growth factor (VEGF) switch and metabolic reprogramming in both the dermis and the epidermis are observed. When the fur coat is removed, CR mice display increased energy expenditure associated with lean weight loss and locomotion impairment. Our findings indicate that CR promotes extensive skin and fur remodeling. These changes are necessary for thermal homeostasis and metabolic fitness under conditions of limited energy intake, suggesting a potential adaptive mechanism.
Collapse
Affiliation(s)
- Maria Fernanda Forni
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Julia Peloggia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Tárcio T Braga
- Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1730, 05508-900 São Paulo, Brazil
| | | | - Jorge Shinohara
- Laboratório de Química Supramolecular e Nanotecnologia - LQSN, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil
| | - Carlos Arturo Navas
- Departamento de Fisiologia, Instituto de Biologia, Universidade de São Paulo, R. do Matão, 321, 05508-090 São Paulo, Brazil
| | - Niels Olsen Saraiva Camara
- Instituto de Ciências Biomédicas, Universidade de São Paulo. Av. Prof. Lineu Prestes, 1730, 05508-900 São Paulo, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
29
|
Pelegrino MT, De Araujo Lima B, Do Nascimento MHM, Lombello CB, Brocchi M, Seabra AB. Biocompatible and Antibacterial Nitric Oxide-Releasing Pluronic F-127/Chitosan Hydrogel for Topical Applications. Polymers (Basel) 2018; 10:E452. [PMID: 30966487 PMCID: PMC6415216 DOI: 10.3390/polym10040452] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 01/08/2023] Open
Abstract
Nitric oxide (NO) is involved in physiological processes, including vasodilatation, wound healing and antibacterial activities. As NO is a free radical, designing drugs to generate therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL)-chitosan (CS) hydrogel, with an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which corresponds to 1 mmol·L-1 of GSNO). Interestingly, the concentration range in which the NO-releasing hydrogel demonstrated an antibacterial effect was not found to be toxic to the Vero mammalian cell. Thus, the GSNO-PL/CS hydrogel is a suitable biomaterial for topical NO delivery applications.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
| | - Bruna De Araujo Lima
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Mônica H M Do Nascimento
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Christiane B Lombello
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Center for Engineering, Modeling and Applied Social Science, Universidade Federal do ABC, Alameda da Universidade sem numero, São Bernardo do Campo, SP, CEP 09606-045, Brazil.
| | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
| |
Collapse
|
30
|
Eilertsen M, Allin SM, Pearson RJ. New 4-aryl-1,3,2-oxathiazolylium-5-olates: Chemical synthesis and photochemical stability of a novel series of S-nitrosothiols. Bioorg Med Chem Lett 2018; 28:1106-1110. [PMID: 29482942 DOI: 10.1016/j.bmcl.2018.01.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 01/12/2023]
Abstract
S-nitrosothiols (RSNOs) remain one of the most popular classes of NO-donating compounds due to their ability to release nitric oxide (NO) under non-enzymatic means whilst producing an inert disulphide by-product. However, alligning these compounds to the different biological fields of NO research has proved to be problematic due to the inherent instability of such compounds under a variety of conditions including heat, light and the presence of copper ions. 1,3,2-Oxathiazolylium-5-olates (OZOs) represent an interesting subclass of S-nitrosothiols that lock the -SNO moiety into a five membered heterocyclic ring in an attempt to improve the compound's overall stability. The synthesis of a novel series of halogen-containing OZOs was comprehensively studied resulting in a seven-step route and overall yields ranging between 21 and 37%. The photochemical stability of these compounds was assessed to determine if S-nitrosothiols locked within these mesoionic ring systems can offer greater stability and thereby release NO in a more controllable fashion than their non-cyclic counterparts.
Collapse
Affiliation(s)
- Monica Eilertsen
- School of Pharmacy, Keele University, Hornbeam Building, Keele, Staffordshire ST5 5BG, UK
| | - Steve M Allin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Russell J Pearson
- School of Pharmacy, Keele University, Hornbeam Building, Keele, Staffordshire ST5 5BG, UK.
| |
Collapse
|
31
|
Pelegrino MT, de Araújo DR, Seabra AB. S-nitrosoglutathione-containing chitosan nanoparticles dispersed in Pluronic F-127 hydrogel: Potential uses in topical applications. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.10.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Hoang Thi TT, Lee Y, Le Thi P, Park KD. Nitric oxide-releasing injectable hydrogels with high antibacterial activity through in situ formation of peroxynitrite. Acta Biomater 2018; 67:66-78. [PMID: 29269330 DOI: 10.1016/j.actbio.2017.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is an endogenous molecule with many critical biological functions that depend on its concentration. At high levels, NO provides broad-spectrum antibacterial effects through both its pathogen inhibition and killing abilities. However, its short half-life has been a great challenge to its clinical application in pharmaceutical forms. In this study, we incorporated the NO donor S-nitrosothiolated gelatin (GelSNO) into injectable gelatin-based hydrogels (GHs) to controllably release NO. Under catalysis by horseradish peroxidase, H2O2 oxidizes phenol moieties functionalized on gelatin to quickly form phenol-phenol crosslinks that encapsulate GelSNO. Through thermal, visible light, and oxidizing agent-driven mechanisms, NO is released from the GH/GelSNO hydrogels. By varying the GelSNO concentration, the release of NO was controllable in a wide range, 0.054-2.050 μmol/mL, for up to 14 days. In addition, NO release was fine-tunable as a function of H2O2 concentration. Notably, the in situ formation of peroxynitrite (ONOO-) that produces potent antibacterial effects originated from H2O2 residues and nitrous acid formed by NO and oxygen in aqueous solution. The Kirby-Bauer method indicated that there was an inhibition zone against both Escherichia coli and Staphylococcus aureus incubated with GH/GelSNO hydrogels. The AlarmaBlue assay showed that E. coli and S. aureus were completely killed at NO concentrations of 0.39 and 0.58 μmol/mL. Cytotoxicity tests of GH/GelSNO hydrogels on human dermal fibroblasts at the indicated bactericidal NO concentrations induced no cell toxicity. In summary, GH/GelSNO hydrogels may provide a new platform for topical delivery of NO in treating wound infections and for various biomedical applications. STATEMENT OF SIGNIFICANCE NO is an effective antibacterial agent even in cases of antibiotic-resistant bacteria. Moreover, its intermediate, peroxynitrite, has been reported to have a much higher ability to kill bacteria. In this study, we utilized injectable GH/GelSNO hydrogels formed by HRP/H2O2 reaction not only to control NO release but also to generate peroxynitrite in situ from released NO and H2O2 residues. The GH/GelSNO hydrogels showed significant antibacterial ability on both gram-positive and negative bacteria, while no cytotoxicity was induced on human dermal fibroblasts. In addition, their tunable chemico-physical properties and controllable NO release within a wide range but narrow scale will make the hydrogels useful in various biomedical applications.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
33
|
Pelegrino MT, Weller RB, Chen X, Bernardes JS, Seabra AB. Chitosan nanoparticles for nitric oxide delivery in human skin. MEDCHEMCOMM 2017; 8:713-719. [PMID: 30108789 PMCID: PMC6072359 DOI: 10.1039/c6md00502k] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
The use of nanoparticle-based transdermal delivery systems is a promising approach to efficiently carry and deliver therapeutic agents for dermal and systemic administration. Nitric oxide (NO) is a key molecule that plays important roles in human skin such as the control of skin homeostasis, skin defense, control of dermal blood flow, and wound healing. In addition, human skin contains stores of NO derivatives that can be mobilized and release free NO upon UV irradiation with beneficial cardiovascular effects, for instance the control of blood pressure. In this work, the NO donor precursor glutathione (GSH) was encapsulated (encapsulation efficiency of 99.60%) into ultra-small chitosan nanoparticles (CS NPs) (hydrodynamic size of 30.65 ± 11.90 nm). GSH-CS NPs have a core-shell structure, as revealed by atomic force microscopy and X-ray photoelectron spectroscopy, in which GSH is protected in the nanoparticle core. Nitrosation of GSH by nitrous acid led to the formation of the NO donor S-nitrosogluthathione (GSNO) into CS NPs. The GSNO release from the CS NPs followed a Fickian diffusion described by the Higuchi mathematical model. Topical application of GSNO-CS NPs in intact human skin significantly increased the levels of NO and its derivatives in the epidermis, as assayed by confocal microscopy, and this effect was further enhanced by skin irradiation with UV light. Therefore, NO-releasing CS NPs are suitable materials for transdermal NO delivery to local and/or systemic therapies.
Collapse
Affiliation(s)
- M T Pelegrino
- Exact and Earth Sciences Departament , Universidade Federal de São Paulo , Rua São Nicolau, 210 , CEP 09913-030 , Diadema , SP , Brazil
- Center of Natural and Human Sciences , Universidade Federal do ABC , Av. dos Estados 5001 , CEP 09210-580 , Santo André , SP , Brazil . ; Tel: +55 11 4996 8374
| | - R B Weller
- Medical Research Council Centre for Inflammation Research , University of Edinburgh , Queen's Medical Research Institute , 47 Little France Crescent , Edinburgh , EH16 4TJ , UK
| | - X Chen
- Medical Research Council Centre for Inflammation Research , University of Edinburgh , Queen's Medical Research Institute , 47 Little France Crescent , Edinburgh , EH16 4TJ , UK
| | - J S Bernardes
- National Nanotechnology Laboratory (LNNano) , National Center for Energy and Materials (CNPEM) , Rua Giuseppe Máximo Scolfaro, 10.000 , CEP 13083-970 , Campinas , SP , Brazil
| | - A B Seabra
- Center of Natural and Human Sciences , Universidade Federal do ABC , Av. dos Estados 5001 , CEP 09210-580 , Santo André , SP , Brazil . ; Tel: +55 11 4996 8374
| |
Collapse
|
34
|
Qian Y, Matson JB. Gasotransmitter delivery via self-assembling peptides: Treating diseases with natural signaling gases. Adv Drug Deliv Rev 2017; 110-111:137-156. [PMID: 27374785 DOI: 10.1016/j.addr.2016.06.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 06/16/2016] [Accepted: 06/23/2016] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are powerful signaling molecules that play a variety of roles in mammalian biology. Collectively called gasotransmitters, these gases have wide-ranging therapeutic potential, but their clinical use is limited by their gaseous nature, extensive reactivity, short half-life, and systemic toxicity. Strategies for gasotransmitter delivery with control over the duration and location of release are therefore vital for developing effective therapies. An attractive strategy for gasotransmitter delivery is though injectable or implantable gels, which can ideally deliver their payload over a controllable duration and then degrade into benign metabolites. Self-assembling peptide-based gels are well-suited to this purpose due to their tunable mechanical properties, easy chemical modification, and inherent biodegradability. In this review we illustrate the biological roles of NO, CO, and H2S, discuss their therapeutic potential, and highlight recent efforts toward their controlled delivery with a focus on peptide-based delivery systems.
Collapse
Affiliation(s)
- Yun Qian
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
35
|
Oliveira HC, Gomes BC, Pelegrino MT, Seabra AB. Nitric oxide-releasing chitosan nanoparticles alleviate the effects of salt stress in maize plants. Nitric Oxide 2016; 61:10-19. [DOI: 10.1016/j.niox.2016.09.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/28/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
|
36
|
Goudie MJ, Brainard BM, Schmiedt CW, Handa H. Characterization and in vivo performance of nitric oxide-releasing extracorporeal circuits in a feline model of thrombogenicity. J Biomed Mater Res A 2016; 105:539-546. [PMID: 27741554 DOI: 10.1002/jbm.a.35932] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022]
Abstract
Infection and thrombosis are the two leading complications associated with blood contacting medical devices, and have led to the development of active materials that can delivery antibiotics or antithrombotic agents. Two key characteristics of these materials are the ability to produce controlled delivery, as well as minimal systemic delivery of the agent outside of the device site. Nitric oxide (NO) releasing materials are attractive as NO plays pivotal roles in the body's natural defense against bacterial infection, as well as regulation of platelet adhesion and activation. This work characterizes an NO-releasing extracorporeal circuit (ECC) under flow conditions for the first time, examining the effect of incubation and application of the top coating on leaching of NO donor and NO-release kinetics. Top coated ECCs with incubation delivered ca. 1% of the total NO potential over the 4-h period, whereas uncoated ECCs delivered over 4.5% of the total NO. Incubated ECC loops maintained a flux of 1.83 ± 0.50 × 10-10 mol min-1 cm-2 for the full 4 h duration. The NO-releasing ECC loops significantly increased the time-to-clot as compared to the corresponding control (11 ± 3.6 min control, 132 ± 93.0 min NO-releasing) when evaluated in vivo in a feline animal model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 539-546, 2017.
Collapse
Affiliation(s)
- Marcus J Goudie
- College of Engineering, University of Georgia, Athens, Georgia
| | - Benjamin M Brainard
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - Hitesh Handa
- College of Engineering, University of Georgia, Athens, Georgia
| |
Collapse
|
37
|
Wu W, Perrin-Sarrado C, Ming H, Lartaud I, Maincent P, Hu XM, Sapin-Minet A, Gaucher C. Polymer nanocomposites enhance S-nitrosoglutathione intestinal absorption and promote the formation of releasable nitric oxide stores in rat aorta. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1795-1803. [DOI: 10.1016/j.nano.2016.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/08/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
|
38
|
Xiao Y, Ahadian S, Radisic M. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:9-26. [PMID: 27405960 DOI: 10.1089/ten.teb.2016.0200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.
Collapse
Affiliation(s)
- Yun Xiao
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Samad Ahadian
- 2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Milica Radisic
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
39
|
Wo Y, Brisbois EJ, Bartlett RH, Meyerhoff ME. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater Sci 2016; 4:1161-83. [PMID: 27226170 PMCID: PMC4955746 DOI: 10.1039/c6bm00271d] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomedical devices are essential for patient diagnosis and treatment; however, when blood comes in contact with foreign surfaces or homeostasis is disrupted, complications including thrombus formation and bacterial infections can interrupt device functionality, causing false readings and/or shorten device lifetime. Here, we review some of the current approaches for developing antithrombotic and antibacterial materials for biomedical applications. Special emphasis is given to materials that release or generate low levels of nitric oxide (NO). Nitric oxide is an endogenous gas molecule that can inhibit platelet activation as well as bacterial proliferation and adhesion. Various NO delivery vehicles have been developed to improve NO's therapeutic potential. In this review, we provide a summary of the NO releasing and NO generating polymeric materials developed to date, with a focus on the chemistry of different NO donors, the polymer preparation processes, and in vitro and in vivo applications of the two most promising types of NO donors studied thus far, N-diazeniumdiolates (NONOates) and S-nitrosothiols (RSNOs).
Collapse
Affiliation(s)
- Yaqi Wo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
40
|
The application of cold atmospheric plasma in medicine: The potential role of nitric oxide in plasma-induced effects. CLINICAL PLASMA MEDICINE 2016. [DOI: 10.1016/j.cpme.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
41
|
Saidkhani V, Asadizaker M, Khodayar MJ, Latifi SM. The effect of nitric oxide releasing cream on healing pressure ulcers. IRANIAN JOURNAL OF NURSING AND MIDWIFERY RESEARCH 2016; 21:322-30. [PMID: 27186212 PMCID: PMC4857669 DOI: 10.4103/1735-9066.180389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/04/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Pressure ulcer is one of the main concerns of nurses in medical centers around the world, which, if untreated, causes irreparable problems for patients. In recent years, nitric oxide (NO) has been proposed as an effective method for wound healing. This study was conducted to determine the effect of nitric oxide on pressure ulcer healing. MATERIALS AND METHODS In this clinical trial, 58 patients with pressure ulcer at hospitals affiliated to Ahvaz Jundishapur University of Medical Sciences were homogenized and later divided randomly into two groups of treatment (nitric oxide cream; n = 29) and control (placebo cream; n = 29). In this research, the data collection tool was the Pressure Ulcer Scale for Healing (PUSH). At the outset of the study (before using the cream), the patients' ulcers were examined weekly in terms of size, amount of exudates, and tissue type using the PUSH tool for 3 weeks. By integrating these three factors, wound healing was determined. Data were analyzed using SPSS. RESULTS Although no significant difference was found in terms of the mean of score size, the amount of exudates, and the tissue type between the two groups, the mean of total score (healing) between the two groups was statistically significant (P = 0.04). CONCLUSIONS Nitric oxide cream seems to accelerate wound healing. Therefore, considering its easy availability and cost-effectiveness, it can be used for treating pressure ulcers in the future.
Collapse
Affiliation(s)
- Vahid Saidkhani
- School of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Chronic Disease Care Research Center, Ahvaz, Iran
| | - Marziyeh Asadizaker
- Department of Medical Surgical, Chronic Disease Care Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Sayed Mahmoud Latifi
- Department of Biostatistics, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
42
|
Ganzarolli de Oliveira M. S-Nitrosothiols as Platforms for Topical Nitric Oxide Delivery. Basic Clin Pharmacol Toxicol 2016; 119 Suppl 3:49-56. [PMID: 27030007 DOI: 10.1111/bcpt.12588] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO) is a small radical species involved in several fundamental physiological processes, including the control of vascular tone, the immune response and neuronal signalling. Endothelial dysfunction with the decreased NO bioavailability is the underlying cause of several diseases and has led to the development of a wide range of systemic NO donor compounds to lower the blood pressure and control hypertensive crises. However, several potential therapeutic actions of NO, not related to the cardiovascular system, demand exclusively local actions. Primary S-nitrosothiols (RSNOs) are endogenously found NO carriers and donors and have emerged as platforms for the localized delivery of NO in topical applications. Formulations for this purpose have evolved from low molecular weight RSNOs incorporated in polymeric films, hydrogels and viscous vehicles, to polymeric RSNOs where the SNO moiety is covalently bound to the polymer backbone. The biological actions displayed by these formulations include the increase in dermal vasodilation, the acceleration of wound healing, the killing of infectious microorganisms and an analgesic action against inflammatory pain. This MiniReview focuses on the state of the art of experimental topical formulations for NO delivery based on S-nitrosothiols and their potential therapeutic applications.
Collapse
|
43
|
Wu W, Gaucher C, Fries I, Hu XM, Maincent P, Sapin-Minet A. Polymer nanocomposite particles of S -nitrosoglutathione: A suitable formulation for protection and sustained oral delivery. Int J Pharm 2015; 495:354-361. [DOI: 10.1016/j.ijpharm.2015.08.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/20/2022]
|
44
|
Wo Y, Li Z, Brisbois EJ, Colletta A, Wu J, Major T, Xi C, Bartlett RH, Matzger AJ, Meyerhoff ME. Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-D-penicillamine. ACS APPLIED MATERIALS & INTERFACES 2015; 7:22218-27. [PMID: 26393943 PMCID: PMC4613868 DOI: 10.1021/acsami.5b07501] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/22/2015] [Indexed: 05/20/2023]
Abstract
The prolonged and localized delivery of nitric oxide (NO), a potent antithrombotic and antimicrobial agent, has many potential biomedical applications. In this work, the origin of the long-term storage stability and sustained NO release mechanism of S-nitroso-N-acetyl-D-penicillamine (SNAP)-doped CarboSil 20 80A polymer, a biomedical thermoplastic silicone-polycarbonate-urethane, is explored. Long-term (22 days) localized NO release is achieved by utilizing a cross-linked silicone rubber as topcoats, which can greatly reduce the amount of SNAP, NAP, and NAP disulfide leaching from the SNAP-doped CarboSil films, as measured by LC-MS. Raman spectroscopy and powder X-ray diffraction characterization of SNAP-doped CarboSil films demonstrate that a polymer-crystal composite is formed during the solvent evaporation process when SNAP exceeds its solubility in CarboSil (ca. 3.4-4.0 wt %). Further, when exceeding this solubility threshold, SNAP exists in an orthorhombic crystal form within the bulk of the polymer. The proposed mechanism of sustained NO release in SNAP-doped CarboSil is that the solubilized SNAP in the polymer matrix decomposes and releases NO, primarily in the water-rich regions near the polymer/solution interface, and the dissolved SNAP in the bulk polymeric phase becomes unsaturated, resulting in the dissolution of crystalline SNAP within the bulk of the polymer. This is a very slow process that ultimately leads to NO release at the physiological flux levels for >3 weeks. The increased stability of SNAP within CarboSil is attributed to the intermolecular hydrogen bonds between the SNAP molecules that crystallize. This crystallization also plays a key role in maintaining RSNO stability within the CarboSil polymer for >8 months at 37 °C (88.5% remains). Further, intravascular catheters fabricated with this new material are demonstrated to significantly decrease the formation of Staphylococcus aureus biofilm (a leading cause of nosocomial bloodstream infections) (in vitro) over a 7 day period, with 5 log units reduction of viable cell count on catheter surfaces. It is also shown that the NO release catheters can greatly reduce thrombus formation on the catheter surfaces during 7 h implantation in rabbit veins, when compared to the control catheters fabricated without SNAP. These results suggest that the SNAP-doped CarboSil system is a very attractive new composite material for creating long-term NO release medical devices with increased stability and biocompatibility.
Collapse
Affiliation(s)
- Yaqi Wo
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Zi Li
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Elizabeth J. Brisbois
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Alessandro Colletta
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Jianfeng Wu
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Terry
C. Major
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Chuanwu Xi
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Robert H. Bartlett
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Adam J. Matzger
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
| | - Mark E. Meyerhoff
- Department
of Chemistry, Departmental of Surgery, University of Michigan Medical Center, and Department of
Environmental Health Sciences, University
of Michigan, Ann Arbor, Michigan 48109, United
States
- E-mail: . Phone: (734) 763-5916
| |
Collapse
|
45
|
Yang Y, Qi P, Yang Z, Huang N. Nitric oxide based strategies for applications of biomedical devices. BIOSURFACE AND BIOTRIBOLOGY 2015. [DOI: 10.1016/j.bsbt.2015.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
46
|
Combined nitric oxide-releasing poly(vinyl alcohol) film/F127 hydrogel for accelerating wound healing. Colloids Surf B Biointerfaces 2015; 130:182-91. [DOI: 10.1016/j.colsurfb.2015.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 02/07/2023]
|
47
|
Seabra AB, Kitice NA, Pelegrino MT, Lancheros CAC, Yamauchi LM, Pinge-Filho P, Yamada-Ogatta SF. Nitric oxide-releasing polymeric nanoparticles against Trypanosoma cruzi. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1742-6596/617/1/012020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
48
|
de Souza GFP, Taladriz-Blanco P, Velloso LA, de Oliveira MG. Nitric oxide released from luminal s-nitroso-N-acetylcysteine increases gastric mucosal blood flow. Molecules 2015; 20:4109-23. [PMID: 25749680 PMCID: PMC6272716 DOI: 10.3390/molecules20034109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/18/2015] [Accepted: 02/26/2015] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO)-mediated vasodilation plays a key role in gastric mucosal defense, and NO-donor drugs may protect against diseases associated with gastric mucosal blood flow (GMBF) deficiencies. In this study, we used the ex vivo gastric chamber method and Laser Doppler Flowmetry to characterize the effects of luminal aqueous NO-donor drug S-nitroso-N-acetylcysteine (SNAC) solution administration compared to aqueous NaNO2 and NaNO3 solutions (pH 7.4) on GMBF in Sprague-Dawley rats. SNAC solutions (600 μM and 12 mM) led to a rapid threefold increase in GMBF, which was maintained during the incubation of the solutions with the gastric mucosa, while NaNO2 or NaNO3 solutions (12 mM) did not affect GMBF. SNAC solutions (600 μM and 12 mM) spontaneously released NO at 37 °C at a constant rate of 0.3 or 14 nmol·mL-1·min-1, respectively, while NaNO2 (12 mM) released NO at a rate of 0.06 nmol·mL-1·min-1 and NaNO3 (12 mM) did not release NO. These results suggest that the SNAC-induced GMBF increase is due to their higher rates of spontaneous NO release compared to equimolar NaNO2 solutions. Taken together, our data indicate that oral SNAC administration is a potential approach for gastric acid-peptic disorder prevention and treatment.
Collapse
Affiliation(s)
- Gabriela F P de Souza
- Institute of Chemistry, University of Campinas, UNICAMP, CP 6154, Campinas, SP 13083-970, Brazil.
| | - Patricia Taladriz-Blanco
- Institute of Chemistry, University of Campinas, UNICAMP, CP 6154, Campinas, SP 13083-970, Brazil.
| | - Lício A Velloso
- Faculty of Medical Sciences, University of Campinas, UNICAMP, CP, Campinas, SP 13084-970, Brazil.
| | - Marcelo G de Oliveira
- Institute of Chemistry, University of Campinas, UNICAMP, CP 6154, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
49
|
Gonçalves FL, Bueno MP, Schmidt AF, Figueira RL, Sbragia L. Treatment of bowel in experimental gastroschisis with a nitric oxide donor. Am J Obstet Gynecol 2015; 212:383.e1-7. [PMID: 25263733 DOI: 10.1016/j.ajog.2014.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/18/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To reduce the harmful effect of bowel exposure to amniotic fluid in gastroschisis, we used the nitric oxide (NO) donor S-nitrosoglutathione (GSNO) in an animal model of gastroschisis and assessed the ideal concentration for treatment of changes in bowel. STUDY DESIGN Gastroschisis was surgically induced in rat fetuses on day 18.5 of gestation. The fetuses were divided into 5 groups (n = 12 animals/group): control (C), gastroschisis (G), gastroschisis + GSNO 5 μmol/L (GNO1), gastroschisis + GSNO 0.5 μmol/L (GNO2), and gastroschisis + GSNO 0.05 μmol/L (GNO3). On day 21.5 of gestation, fetuses were collected by cesarean delivery. Body and intestinal weight were measured and the bowels were either fixed for histometric and immunohistochemical study or frozen for Western blotting. We analyzed bowel morphometry on histological sections and expression of the NO synthase (NOS) enzymes by Western blotting and immunohistochemistry. Data were analyzed by analysis of variance or Kruskal-Wallis test when appropriate. RESULTS Morphological and histometric measurements of weight, diameter, and thickness of the layers of the intestinal wall decreased with GSNO treatment, especially in the GNO3 group, when compared with the G group (P < .05). The expression of neuronal NOS, endothelial NOS, and inducible NOS decreased mainly in GNO3 group compared to the G group (P < .05), with no difference compared to C group (P > .05). CONCLUSION Fetal treatment with 0.05 μmol/L GSNO resulted in significant improvement of bowel morphology in gastroschisis.
Collapse
|
50
|
State of the art, challenges and perspectives in the design of nitric oxide-releasing polymeric nanomaterials for biomedical applications. Biotechnol Adv 2015; 33:1370-9. [PMID: 25636971 DOI: 10.1016/j.biotechadv.2015.01.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/20/2014] [Accepted: 01/04/2015] [Indexed: 12/23/2022]
Abstract
Recently, an increasing number of publications have demonstrated the importance of the small molecule nitric oxide (NO) in several physiological and pathophysiological processes. NO acts as a key modulator in cardiovascular, immunological, neurological, and respiratory systems, and deficiencies in the production of NO or its inactivation has been associated with several pathologic conditions, ranging from hypertension to sexual dysfunction. Although the clinical administration of NO is still a challenge owing to its transient chemical nature, the combination of NO and nanocarriers based on biocompatible polymeric scaffolds has emerged as an efficient approach to overcome the difficulties associated with the biomedical administration of NO. Indeed, significant progress has been achieved by designing NO-releasing polymeric nanomaterials able to promote the spatiotemporal generation of physiologically relevant amounts of NO in diverse pharmacological applications. In this review, we summarize the recent advances in the preparation of versatile NO-releasing nanocarriers based on polymeric nanoparticles, dendrimers and micelles. Despite the significant innovative progress achieved using nanomaterials to tailor NO release, certain drawbacks still need to be overcome to successfully translate these research innovations into clinical applications. In this regard, this review discusses the state of the art regarding the preparation of innovative NO-releasing polymeric nanomaterials, their impact in the biological field and the challenges that need to be overcome. We hope to inspire new research in this exciting area based on NO and nanotechnology.
Collapse
|