1
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 PMCID: PMC10187093 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D. Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
2
|
An adverse outcome pathway on the disruption of retinoic acid metabolism leading to developmental craniofacial defects. Toxicology 2021; 458:152843. [PMID: 34186166 DOI: 10.1016/j.tox.2021.152843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
Adverse outcome pathway (AOP) is a conceptual framework that links a molecular initiating event (MIE) via intermediate key events (KEs) with adverse effects (adverse outcomes, AO) relevant for risk assessment, through defined KE relationships (KERs). The aim of the present work is to describe a linear AOP, supported by experimental data, for skeletal craniofacial defects as the AO. This AO was selected in view of its relative high incidence in humans and the suspected relation to chemical exposure. We focused on inhibition of CYP26, a retinoic acid (RA) metabolizing enzyme, as MIE, based on robust previously published data. Conazoles were selected as representative stressors. Intermediate KEs are RA disbalance, aberrant HOX gene expression, disrupted specification, migration, and differentiation of neural crest cells, and branchial arch dysmorphology. We described the biological basis of the postulated events and conducted weight of evidence (WoE) assessments. The biological plausibility and the overall empirical evidence were assessed as high and moderate, respectively, the latter taking into consideration the moderate evidence for concordance of dose-response and temporal relationships. Finally, the essentiality assessment of the KEs, considered as high, supported the robustness of the presented AOP. This AOP, which appears of relevance to humans, thus contributes to mechanistic underpinning of selected test methods, thereby supporting their application in integrated new approach test methodologies and strategies and application in a regulatory context.
Collapse
|
3
|
Everts HB, Akuailou EN. Retinoids in Cutaneous Squamous Cell Carcinoma. Nutrients 2021; 13:E153. [PMID: 33466372 PMCID: PMC7824907 DOI: 10.3390/nu13010153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Animal studies as early as the 1920s suggested that vitamin A deficiency leads to squamous cell metaplasia in numerous epithelial tissues including the skin. However, humans usually die from vitamin A deficiency before cancers have time to develop. A recent long-term cohort study found that high dietary vitamin A reduced the risk of cutaneous squamous cell carcinoma (cSCC). cSCC is a form of nonmelanoma skin cancer that primarily occurs from excess exposure to ultraviolet light B (UVB). These cancers are expensive to treat and can lead to metastasis and death. Oral synthetic retinoids prevent the reoccurrence of cSCC, but side effects limit their use in chemoprevention. Several proteins involved in vitamin A metabolism and signaling are altered in cSCC, which may lead to retinoid resistance. The expression of vitamin A metabolism proteins may also have prognostic value. This article reviews what is known about natural and synthetic retinoids and their metabolism in cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX 76209, USA
| | | |
Collapse
|
4
|
Yamamoto T, Nagata Y, Hayashi S, Kadowaki M. Isoflavones Suppress Cyp26b1 Expression in the Murine Colonic Lamina Propria. Biol Pharm Bull 2020; 43:1945-1949. [PMID: 33268713 DOI: 10.1248/bpb.b20-00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isoflavones have many biological activities and are major bioactive components of kakkonto, a traditional Japanese herbal medicine. We previously reported that the combined therapy of oral immune therapy (OIT) and kakkonto downregulates the mRNA expression of Cyp26b1, a major retinoic acid (RA)-degrading enzyme, in the colon of food allergy mice and thereby ameliorates allergic symptoms. In this study, we evaluated the effects of various isoflavones on Cyp26b1 expression in primary cultured lamina propria (LP) cells isolated from the mouse colon. The mRNA expression of Cyp26b1 was extremely downregulated by all isoflavones tested in the LP cells except for puerarin. In particular, genistein and genistin markedly suppressed Cyp26b1 mRNA expression without affecting RA-synthesizing enzyme expression. Moreover, to evaluate the effects of isoflavones on allergic reactions, genistein and genistin were administered to ovalbumin (OVA)-induced food allergy mice. Oral administration of genistin suppressed the development of allergic symptoms. These results raise the possibility that isoflavones elevated the level of RA in the colon by inhibiting RA degradation and then the high concentration of RA in the colon might exert immunosuppressive and antiallergic effects on food allergy mice.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama
| | - Yuka Nagata
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama.,Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama
| |
Collapse
|
5
|
Veit JGS, De Glas V, Balau B, Liu H, Bourlond F, Paller AS, Poumay Y, Diaz P. Characterization of CYP26B1-Selective Inhibitor, DX314, as a Potential Therapeutic for Keratinization Disorders. J Invest Dermatol 2020; 141:72-83.e6. [PMID: 32505549 DOI: 10.1016/j.jid.2020.05.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
Inhibition of CYP450-mediated retinoic acid (RA) metabolism by RA metabolism blocking agents increases endogenous retinoids and is an alternative to retinoid therapy. Currently available RA metabolism blocking agents (i.e., liarozole and talarozole) tend to have fewer adverse effects than traditional retinoids but lack target specificity. Substrate-based inhibitor DX314 has enhanced selectivity for RA-metabolizing enzyme CYP26B1 and may offer an improved treatment option for keratinization disorders such as congenital ichthyosis and Darier disease. In this study, we used RT-qPCR, RNA sequencing, pathway, upstream regulator, and histological analyses to demonstrate that DX314 can potentiate the effects of all-trans-RA in healthy and diseased reconstructed human epidermis. We unexpectedly discovered that DX314, but not all-trans-RA or previous RA metabolism blocking agents, appears to protect epidermal barrier integrity. In addition, DX314-induced keratinization and epidermal proliferation effects are observed in a rhino mice model. Altogether, the results indicate that DX314 inhibits all-trans-RA metabolism with minimal off-target activity and shows therapeutic similarity to topical retinoids in vitro and in vivo. Findings of a barrier-protecting effect require further mechanistic study but may lead to a unique strategy in barrier-reinforcing therapies. DX314 is a promising candidate compound for further study and development in the context of keratinization disorders.
Collapse
Affiliation(s)
- Joachim G S Veit
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA
| | | | - Benoît Balau
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Haoming Liu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Florence Bourlond
- Service de Dermatologie, Hôpital Erasme, Université Libre de Bruxelles, Belgique
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yves Poumay
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA; DermaXon LLC, Missoula, Montana, USA.
| |
Collapse
|
6
|
Rhie A, Son HY, Kwak SJ, Lee S, Kim DY, Lew BL, Sim WY, Seo JS, Kwon O, Kim JI, Jo SJ. Genetic variations associated with response to dutasteride in the treatment of male subjects with androgenetic alopecia. PLoS One 2019; 14:e0222533. [PMID: 31525235 PMCID: PMC6746394 DOI: 10.1371/journal.pone.0222533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/31/2019] [Indexed: 12/30/2022] Open
Abstract
Dutasteride, a dual inhibitor of both type I and II 5α-reductases, is used to treat male pattern hair loss (MPHL). However, patient response to dutasteride varies in each individual, the cause of which is yet to be identified. To identify genetic variants associated with response to dutasteride treatment for MPHL, a total of 42 men with moderate MPHL who had been treated with dutasteride for 6 months were genotyped and analysed by quantitative linear regression, case-control association tests, and Fisher’s exact test. The synonymous single nucleotide polymorphism (SNP) rs72623193 in DHRS9 was most significantly associated with response to dutasteride, followed by the non-synonymous SNP rs2241057 in CYP26B1. Additionally, variants in ESR1, SRD5A1, CYP19A1, and RXRG are suggested to be associated with response to dutasteride. Cumulative effect and interaction among these SNPs were presented in both additive and non-additive models.
Collapse
Affiliation(s)
- Arang Rhie
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ho-Young Son
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Jung Kwak
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Seungbok Lee
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Young Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Bark-Lynn Lew
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woo-Young Sim
- Department of Dermatology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Sun Seo
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Ohsang Kwon
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute (GMI), Medical Research Center, Seoul National University, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Cutaneous Aging and Hair Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
7
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
8
|
Adamus J, Feng L, Hawkins S, Kalleberg K, Lee JM. Climbazole boosts activity of retinoids in skin. Int J Cosmet Sci 2017; 39:411-418. [DOI: 10.1111/ics.12390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - L. Feng
- Unilever R&D; Trumbull CT 06611 USA
| | | | | | - J-M. Lee
- Unilever R&D; Trumbull CT 06611 USA
| |
Collapse
|
9
|
Jumper N, Hodgkinson T, Arscott G, Har-Shai Y, Paus R, Bayat A. The Aldo-Keto Reductase AKR1B10 Is Up-Regulated in Keloid Epidermis, Implicating Retinoic Acid Pathway Dysregulation in the Pathogenesis of Keloid Disease. J Invest Dermatol 2016; 136:1500-1512. [PMID: 27025872 DOI: 10.1016/j.jid.2016.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
Abstract
Keloid disease is a recurrent fibroproliferative cutaneous tumor of unknown pathogenesis for which clinical management remains unsatisfactory. To obtain new insights into hitherto underappreciated aspects of keloid pathobiology, we took a laser capture microdissection-based, whole-genome microarray analysis approach to identify distinct keloid disease-associated gene expression patterns within defined keloid regions. Identification of the aldo-keto reductase enzyme AKR1B10 as highly up-regulated in keloid epidermis suggested that an imbalance of retinoic acid metabolism is likely associated with keloid disease. Here, we show that AKR1B10 transfection into normal human keratinocytes reproduced the abnormal retinoic acid pathway expression pattern we had identified in keloid epidermis. Cotransfection of AKR1B10 with a luciferase reporter plasmid showed reduced retinoic acid response element activity, supporting the hypothesis of retinoic acid synthesis deficiency in keloid epidermis. Paracrine signals released by AKR1B10-overexpressing keratinocytes into conditioned medium resulted in up-regulation of transforming growth factor-β1, transforming growth factor-β2, and collagens I and III in both keloid and normal skin fibroblasts, mimicking the typical profibrotic keloid profile. Our study results suggest that insufficient retinoic acid synthesis by keloid epidermal keratinocytes may contribute to the pathogenesis of keloid disease. We refocus attention on the role of injured epithelium in keloid disease and identify AKR1B10 as a potential new target in future management of keloid disease.
Collapse
Affiliation(s)
- Natalie Jumper
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Tom Hodgkinson
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Guyan Arscott
- Department of Plastic and Reconstructive Surgery, University of West Indies, Kingston, Jamaica
| | - Yaron Har-Shai
- Plastic Surgery Unit, Carmel Medical Center, Haifa, Israel
| | - Ralf Paus
- Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK; Department of Dermatology, University of Münster, D-48149, Münster, Germany
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Everts HB, Suo L, Ghim S, Bennett Jenson A, Sundberg JP. Retinoic acid metabolism proteins are altered in trichoblastomas induced by mouse papillomavirus 1. Exp Mol Pathol 2015; 99:546-51. [PMID: 26416148 DOI: 10.1016/j.yexmp.2015.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Skin cancer burden is significant as treatment costs have skyrocketed to $8.1 million annually and some forms metastasize, such as cutaneous squamous cell carcinoma (cSCC) and melanoma. cSCC is caused by altered growth factor signaling induced by chemical carcinogens, ultraviolet light (UV) exposure, and infections with papillomaviruses (PVs). One of the few options for preventing cSCC in high-risk patients is oral retinoids. While much is understood about retinoid treatments and metabolism in mouse models of chemically and UV exposure induced cSCC, little is known about the role of retinoids in PV-induced cSCC. To better understand how retinoid metabolism is altered in cSCC, we examined the expression of this pathway in the newly discovered mouse papillomavirus (MmuPV1), which produces trichoblastomas in dorsal skin but not cSCC. We found significant increases in a rate-limiting enzyme involved in retinoic acid synthesis and retinoic acid binding proteins, suggestive of increased RA synthesis, in MmuPV1-induced tumors in B6.Cg-Foxn1(nu)/J mice. Similar increases in these proteins were seen after acute UVB exposure in Crl:SKH1-Hr(hr) mice and in regressing pre-cancerous lesions in a chemically-induced mouse model, suggesting a common mechanism in limiting the progression of papillomas to full blown cSCC.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States.
| | - Liye Suo
- Department of Human Sciences (Nutrition), The Ohio State University, Columbus, OH, United States
| | - Shinge Ghim
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | - A Bennett Jenson
- The James Graham Brown Cancer Center, The University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
11
|
Role of Retinoic Acid-Metabolizing Cytochrome P450s, CYP26, in Inflammation and Cancer. ADVANCES IN PHARMACOLOGY 2015; 74:373-412. [PMID: 26233912 DOI: 10.1016/bs.apha.2015.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vitamin A (retinol) and its active metabolite, all-trans-retinoic acid (atRA), play critical roles in regulating the differentiation, growth, and migration of immune cells. Similarly, as critical signaling molecules in the regulation of the cell cycle, retinoids are important in cancers. Concentrations of atRA are tightly regulated in tissues, predominantly by the availability of retinol, synthesis of atRA by ALDH1A enzymes and metabolism and clearance of atRA by CYP26 enzymes. The ALDH1A and CYP26 enzymes are expressed in several cell types in the immune system and in cancer cells. In the immune system, the ALDH1A and CYP26 enzymes appear to modulate RA concentrations. Consequently, alterations in the activity of ALDH1A and CYP26 enzymes are expected to change disease outcomes in inflammation. There is increasing evidence from various disease models of intestinal and skin inflammation that treatment with atRA has a positive effect on disease markers. However, whether aberrant atRA concentrations or atRA synthesis and metabolism play a role in inflammatory disease development and progression is not well understood. In cancers, especially in acute promyelocytic leukemia and neuroblastoma, increasing intracellular concentrations of atRA appears to provide clinical benefit. Inhibition of the CYP26 enzymes to increase atRA concentrations and combat therapy resistance has been pursued as a drug target in these cancers. This chapter covers the current knowledge of how atRA and retinol regulate the immune system and inflammation, how retinol and atRA metabolism is altered in inflammation and cancer, and what roles atRA-metabolizing enzymes have in immune responses and cancers.
Collapse
|
12
|
Gressel KL, Duncan FJ, Oberyszyn TM, La Perle KM, Everts HB. Endogenous Retinoic Acid Required to Maintain the Epidermis Following Ultraviolet Light Exposure in SKH-1 Hairless Mice. Photochem Photobiol 2015; 91:901-8. [PMID: 25715879 DOI: 10.1111/php.12441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/23/2015] [Indexed: 12/22/2022]
Abstract
Ultraviolet light B (UVB) exposure induces cutaneous squamous cell carcinoma (cSCC), one of the most prevalent human cancers. Reoccurrence of cSCC in high-risk patients is prevented by oral retinoids. But oral retinoid treatment causes significant side effects; and patients develop retinoid resistance. Exactly how retinoids prevent UVB-induced cSCC is currently not well understood. Retinoid resistance blocks mechanistic studies in the leading mouse model of cSCC, the UVB-exposed SKH-1 hairless mouse. To begin to understand the role of retinoids in UVB-induced cSCC we first examined the localization pattern of key retinoid metabolism proteins by immunohistochemistry 48 h after UVB treatment of female SKH-1 mice. We next inhibited retinoic acid (RA) synthesis immediately after UVB exposure. Acute UVB increased RA synthesis, signaling and degradation proteins in the stratum granulosum. Some of these proteins changed their localization; while other proteins just increased in intensity. In contrast, acute UVB reduced the retinoid storage protein lectin:retinol acyltransferase (LRAT) in the epidermis. Inhibiting RA synthesis disrupted the epidermis and impaired differentiation. These data suggest that repair of the epidermis after acute UVB exposure requires endogenous RA synthesis.
Collapse
Affiliation(s)
- Katherine L Gressel
- Department of Human Sciences (Nutrition), the Ohio State University, Columbus, OH
| | - F Jason Duncan
- Department of Human Sciences (Nutrition), the Ohio State University, Columbus, OH
| | | | - Krista M La Perle
- Department of Veterinary Biosciences, the Ohio State University, Columbus, OH
| | - Helen B Everts
- Department of Human Sciences (Nutrition), the Ohio State University, Columbus, OH
| |
Collapse
|
13
|
|
14
|
Valente Duarte de Sousa IC. Novel pharmacological approaches for the treatment of acne vulgaris. Expert Opin Investig Drugs 2014; 23:1389-410. [PMID: 24890096 DOI: 10.1517/13543784.2014.923401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Acne vulgaris is the most common skin disease worldwide; yet, current treatment options, although effective, are associated with unwanted side effects, chronicity, relapses and recurrences. The adequate control of the four pathogenic mechanisms, involved in the appearance of acne lesions, is paramount to treatment success. AREAS COVERED The authors discuss and evaluate the pathogenic pathways related to the mechanisms of action of novel molecules, which are currently under investigation for the treatment of acne vulgaris. The manuscript is based on comprehensive searches made through PubMed, GoogleScholar and ClinicalTrial.gov, using different combination of key words, which include acne vulgaris, pathogenesis, treatment, sebogenesis and Propionibacterium acnes. EXPERT OPINION In the near future, more effective treatments with fewer side effects are expected. The use of topical antiandrogens, acetylcholine inhibitors and PPAR modulators seem to be promising options for controlling sebum production. Retinoic acid metabolism-blocking agents and IL-1α inhibitors have the potential to become legitimate alternative options to retinoid therapy in the management of infundibular dyskeratosis. Indeed, the authors believe that there will likely be a decline in the use of antibiotics for controlling P. acnes colonization and targeting the inflammation cascade.
Collapse
|
15
|
Nelson CH, Buttrick BR, Isoherranen N. Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics. Curr Top Med Chem 2014; 13:1402-28. [PMID: 23688132 DOI: 10.2174/1568026611313120004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 02/21/2013] [Indexed: 12/27/2022]
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, is an important endogenous signaling molecule regulating cell cycle and maintenance of epithelia. RA isomers are also used as drugs to treat various cancers and dermatological diseases. However, the therapeutic uses of RA isomers are limited due to side effects such as teratogenicity and resistance to treatment emerging mainly from autoinduction of RA metabolism. To improve the therapeutic usefulness of retinoids, RA metabolism blocking agents (RAMBAs) have been developed. These inhibitors generally target the cytochrome P450 (CYP) enzymes because RA clearance is predominantly mediated by P450s. Since the initial identification of inhibitors of RA metabolism, CYP26 enzymes have been characterized as the main enzymes responsible for RA clearance. This makes CYP26 enzymes an attractive target for the development of novel therapeutics for cancer and dermatological conditions. The basic principle of development of CYP26 inhibitors is that endogenous RA concentrations will be increased in the presence of a CYP26 inhibitor, thus, potentiating the activity of endogenous RA in a cell-type specific manner. This will reduce side effects compared to administration of RA and allow for more targeted therapy. In clinical trials, inhibitors of RA metabolism have been effective in treatment of psoriasis and other dermatological conditions as well as in some cancers. However, no CYP26 inhibitor has yet been approved for clinical use. This review summarizes the history of development of RAMBAs, the clinical and preclinical studies with the various structural series and the available knowledge of structure activity relationships of CYP26 inhibitors.
Collapse
Affiliation(s)
- Cara H Nelson
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
16
|
Gillbro JM, Al-Bader T, Westman M, Olsson MJ, Mavon A. Transcriptional changes in organoculture of full-thickness human skin following topical application of all-trans retinoic acid. Int J Cosmet Sci 2014; 36:253-61. [PMID: 24697191 PMCID: PMC4265278 DOI: 10.1111/ics.12121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/09/2014] [Indexed: 12/28/2022]
Abstract
Objective Retinoids are used as therapeutic agents for numerous skin diseases, for example, psoriasis, acne and keratinization disorders. The same substances have also been recognized in the treatment for hyperpigmentation disorders such as melasma. Other studies on photo-damaged skin have shown that retinoids reduce wrinkles, surface roughness, mottled pigmentation, and visual skin appearance as a whole. We tested the hypothesis that an organoculture of full-thickness human skin could be used as a preclinical model to investigate the retinoid transcriptional profile in human skin in vitro. Methods Full-thickness skin explants were exposed to topically applied all-trans retinoic acid (RA) for 24 h. The gene expression profile was analysed using oligonucleotide microarrays, and data were validated with real-time (RT) PCR. Results We showed that the expression of 93 genes was significantly altered more than twofold. Several of the altered genes, for example, KRT4, CYP26 and LCN2, have previously been shown to be affected by RA in keratinocyte monocultures, reconstructed epidermis and skin biopsies from patients treated topically or orally with RA. In addition, genes, such as SCEL, NRIP1, DGAT2, RDH12 EfnB2, MAPK14, SAMD9 and CEACAM6 not previously reported to be affected by RA in human skin, were identified for the first time in this study. Conclusion The results in the present study show that full-thickness human explants represent a valuable pre-clinical model for studying the effects of retinoids in skin. Résumé
Collapse
Affiliation(s)
- J M Gillbro
- Oriflame Skin Research Institute, Mäster Samuelsgatan 56, Stockholm, 11121, Sweden
| | | | | | | | | |
Collapse
|
17
|
Rassouli FB, Matin MM, Bahrami AR, Ghaffarzadegan K, Cheshomi H, Lari S, Memar B, Kan MS. Evaluating stem and cancerous biomarkers in CD15+CD44+ KYSE30 cells. Tumour Biol 2013; 34:2909-20. [PMID: 23797812 DOI: 10.1007/s13277-013-0853-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/10/2013] [Indexed: 01/05/2023] Open
Abstract
Digestive system cancers are listed among the ten top causes of cancer-related death worldwide. Cancer stem cells (CSCs) are malignant cells that share some of their characteristics with normal stem cells, including self-renewal and multipotency, and also cancer cells, such as drug resistance and metastasis. Despite many reports on CSCs with digestive system origin, identification and characterization of esophageal CSCs have remained elusive. To examine the validity of routine SC, cancer cell and CSC markers in KYSE30 cells, derived from esophageal carcinoma, cells were first characterized by immunofluorescence and RT-PCR techniques, and then the significance of candidate biomarkers was evaluated in retinoic acid-treated cells by flow cytometry and/or real-time RT-PCR. Meanwhile, to study CD15 (a newly introduced CSC marker) expression in digestive tract cancers, human normal and tumoral tissues of esophagus, stomach, and colon were analyzed by immunohistochemistry. Using several experimental approaches, we show that CD44, but not CD15, could serve as a reliable marker for undifferentiated malignant squamous cells of esophagus. In conclusion, our study confirms the role of CD44 as a CSC marker in KYSE30 cells, an esophageal squamous cell carcinoma cell line, and for the first time indicates the expression of CD15 in non-neural stem-like cancer cells. Although the importance of CD15 was not indicated in diagnosis of digestive cancers, further studies are needed to better understand the biological identity and function of this molecule in non-neural malignancies.
Collapse
|
18
|
Hellmann-Regen J, Heuser I, Regen F. UV-A emission from fluorescent energy-saving light bulbs alters local retinoic acid homeostasis. Photochem Photobiol Sci 2013; 12:2177-85. [DOI: 10.1039/c3pp50206f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Abstract
C57BL/6 mice develop dermatitis and scarring alopecia resembling human cicatricial alopecias (CA), particularly the central centrifugal cicatricial alopecia (CCCA) type. To evaluate the role of retinoids in CA, expression of retinoid metabolism components were examined in these mice with mild, moderate, or severe CA compared to hair cycle matched mice with no disease. Two feeding studies were performed with dams fed either NIH 31 diet (study 1) or AIN93G diet (study 2). Adult mice were fed AIN93M diet with 4 (recommended), 28, or 56 IU vitamin A/g diet. Feeding the AIN93M diet to adults increased CA frequency over NIH 31 fed mice. Increased follicular dystrophy was seen in study 1 and increased dermal scars in study 2 in mice fed the 28 IU diet. These results indicate that retinoid metabolism is altered in CA in C57BL/6J mice that require precise levels of dietary vitamin A. Human patients with CCCA, pseudopelade (end stage scarring), and controls with no alopecia were also studied. Many retinoid metabolism proteins were increased in mild CCCA, but were undetectable in pseudopelade. Studies to determine if these dietary alterations in retinoid metabolism seen in C57BL/6J mice are also involved in different types of human CA are needed.
Collapse
|
20
|
Elmabsout AA, Kumawat A, Saenz-Méndez P, Krivospitskaya O, Sävenstrand H, Olofsson PS, Eriksson LA, Strid A, Valen G, Törmä H, Sirsjö A. Cloning and functional studies of a splice variant of CYP26B1 expressed in vascular cells. PLoS One 2012; 7:e36839. [PMID: 22666329 PMCID: PMC3362586 DOI: 10.1371/journal.pone.0036839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 04/09/2012] [Indexed: 11/18/2022] Open
Abstract
Background All-trans retinoic acid (atRA) plays an essential role in the regulation of gene expression, cell growth and differentiation and is also important for normal cardiovascular development but may in turn be involved in cardiovascular diseases, i.e. atherosclerosis and restenosis. The cellular atRA levels are under strict control involving several cytochromes P450 isoforms (CYPs). CYP26 may be the most important regulator of atRA catabolism in vascular cells. The present study describes the molecular cloning, characterization and function of atRA-induced expression of a spliced variant of the CYP26B1 gene. Methodology/Principal Findings The coding region of the spliced CYP26B1 lacking exon 2 was amplified from cDNA synthesized from atRA-treated human aortic smooth muscle cells and sequenced. Both the spliced variant and full length CYP26B1 was found to be expressed in cultured human endothelial and smooth muscle cells, and in normal and atherosclerotic vessel. atRA induced both variants of CYP26B1 in cultured vascular cells. Furthermore, the levels of spliced mRNA transcript were 4.5 times higher in the atherosclerotic lesion compared to normal arteries and the expression in the lesions was increased 20-fold upon atRA treatment. The spliced CYP26B1 still has the capability to degrade atRA, but at an initial rate one-third that of the corresponding full length enzyme. Transfection of COS-1 and THP-1 cells with the CYP26B1 spliced variant indicated either an increase or a decrease in the catabolism of atRA, probably depending on the expression of other atRA catabolizing enzymes in the cells. Conclusions/Significance Vascular cells express the spliced variant of CYP26B1 lacking exon 2 and it is also increased in atherosclerotic lesions. The spliced variant displays a slower and reduced degradation of atRA as compared to the full-length enzyme. Further studies are needed, however, to clarify the substrate specificity and role of the CYP26B1 splice variant in health and disease.
Collapse
Affiliation(s)
- Ali Ateia Elmabsout
- Department of Clinical Medicine, School of Health Sciences, Örebro University, Örebro, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Minakawa S, Matsuzaki Y, Nakano H, Sawamura D, Elenitsas R. Acantholysis caused repeated hemorrhagic bullae in a case of acantholytic acanthoma. J Dermatol 2012; 39:1107-8. [PMID: 22568826 DOI: 10.1111/j.1346-8138.2012.01564.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Ross AC, Zolfaghari R. Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annu Rev Nutr 2011; 31:65-87. [PMID: 21529158 DOI: 10.1146/annurev-nutr-072610-145127] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The active metabolite of vitamin A, retinoic acid (RA), is a powerful regulator of gene transcription. RA is also a therapeutic drug. The oxidative metabolism of RA by certain members of the cytochrome P450 (CYP) superfamily helps to maintain tissue RA concentrations within appropriate bounds. The CYP26 family--CYP26A1, CYP26B1, and CYP26C1--is distinguished by being both regulated by and active toward all-trans-RA (at-RA) while being expressed in different tissue-specific patterns. The CYP26A1 gene is regulated by multiple RA response elements. CYP26A1 is essential for embryonic development, whereas CYP26B1 is essential for postnatal survival as well as germ cell development. Enzyme kinetic studies have demonstrated that several CYP proteins are capable of metabolizing at-RA; however, it is likely that CYP26A1 plays a major role in RA clearance. Thus, pharmacological approaches to limiting the activity of CYP26 enzymes may extend the half-life of RA and could be useful clinically in the future.
Collapse
Affiliation(s)
- A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
23
|
Törmä H. Regulation of keratin expression by retinoids. DERMATO-ENDOCRINOLOGY 2011; 3:136-40. [PMID: 22110773 DOI: 10.4161/derm.3.3.15026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/25/2011] [Indexed: 11/19/2022]
Abstract
Vitamin A and its natural and synthetic metabolites (retinoids) affect growth and differentiation of human skin and among the genes affected by retinoids in epidermis are keratin genes. Keratins are intermediate filament proteins that have essential functions in maintaining the structural integrity of epidermis and its appendages. Their expressions are under strict control to produce keratins that are optimally adapted to their environment. In this article, retinoid regulation of keratin expression in cultured human epidermal keratinocytes and in human skin in vivo will be reviewed. The direct and indirect mechanisms involved will be discussed and novel therapeutic strategies will be proposed for utilizing retinoids in skin disorders due to keratin mutations (e.g., epidermolysis bullosa simplex and epidermolytic ichthyosis).
Collapse
Affiliation(s)
- Hans Törmä
- Department of Medical Sciences/Dermatology; Uppsala University; Uppsala, Sweden
| |
Collapse
|
24
|
Baert B, De Spiegeleer B. Local Skin Pharmacokinetics of Talarozole, a New Retinoic Acid Metabolism-Blocking Agent. Skin Pharmacol Physiol 2011; 24:151-9. [DOI: 10.1159/000323012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 11/22/2010] [Indexed: 01/25/2023]
|
25
|
Virtanen M, Sirsjö A, Vahlquist A, Törmä H. Keratins 2 and 4/13 in reconstituted human skin are reciprocally regulated by retinoids binding to nuclear receptor RARalpha. Exp Dermatol 2010; 19:674-81. [PMID: 20456496 DOI: 10.1111/j.1600-0625.2010.01079.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Disorders of keratinization are often treated with vitamin A derivatives (retinoids) which affect keratinocyte differentiation, including keratin (KRT) gene expression. In vivo, suprabasal keratinocytes normally express only keratin (K) 1, K2 and K10, but after topical application of all-trans retinoic acid (ATRA), the granular cells will additionally express K4 and K13, i.e. keratins normally present in oral mucosa and in cultured epidermal keratinocytes. To learn more about the retinoid regulation of keratin expression under in vivo-like conditions, we cultured keratinocytes on de-epidermized dermis in only 0.5% serum. These cells produce a normal-looking epidermis that expresses high mRNA levels of KRT1, KRT2 and KRT10, but minimal amounts of KRT4 and KRT13. Addition of ATRA to the medium for 48 h caused a dose-dependent increase in KRT4/KRT13 and a down-regulation of KRT2 mRNA. An increase in K4 protein was also found. The response was greater than the up-regulation of another retinoid-regulated gene, CRABPII. By studying 10 retinoids with different affinities for the retinoic acid receptors (RAR) and retinoid X receptors (RXR) isoforms, the reciprocal expression of KRT2 and KRT4/KRT13 could be connected with agonists for RARalpha. Two of these agonists, CD336/Am580 and CD2081, altered the expression profile with similar potency as the pan-RAR agonists ATRA and CD367. Co-addition of a pan-RAR antagonist (CD3106/AGN193109) markedly inhibited the induction of KRT4/KRT13 expression, whereas the down-regulation of KRT2 was less affected. In conclusion, RARalpha agonists elicit a reciprocal modulation of KRT2 and KRT4/KRT13 expression in human epidermis, but whether or not the keratin genes also possess RARalpha-specific regulatory elements is still unclear.
Collapse
Affiliation(s)
- Marie Virtanen
- Department of Medical Sciences, Uppsala University, Sweden
| | | | | | | |
Collapse
|
26
|
Marotta F, Tiboni GM. Molecular aspects of azoles-induced teratogenesis. Expert Opin Drug Metab Toxicol 2010; 6:461-82. [DOI: 10.1517/17425251003592111] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Keratinocyte differentiation induced by calcium, phorbol ester or interferon-gamma elicits distinct changes in the retinoid signalling pathways. J Dermatol Sci 2010; 57:207-13. [PMID: 20122816 DOI: 10.1016/j.jdermsci.2009.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 12/04/2009] [Accepted: 12/28/2009] [Indexed: 11/20/2022]
Abstract
BACKGROUND Retinoids influence keratinocyte proliferation and differentiation via binding to nuclear retinoic acid receptors (RARalpha, -gamma) and retinoid X receptor alpha (RXRalpha). The effect of keratinocyte differentiation on expression of nuclear retinoid receptors and on the conversion of retinol into retinoic acid has not been examined earlier in depth. OBJECTIVES Our aim was to examine the expression of retinoid receptors and a retinoid-regulated gene CRABPII, as well as the metabolism of exogenous [(3)H]retinol in cultured human keratinocytes induced to differentiate by exposure to either calcium, phorbol 12-myristate 13-acetate (PMA), or interferon-gamma (IFNgamma). METHODS Normal human keratinocytes were cultured and exposed to differentiation-inducing agents. The mRNA and protein expression of retinoid receptors were examined using real-time PCR and Western blot. [(3)H]Retinol uptake and metabolism was monitored by HPLC with on-line radioactivity detection. RESULTS In calcium-exposed cells, increased expression of RARgamma and RXRalpha, enhanced metabolism of [(3)H]retinol to 3,4-didehydro-RA (ddRA), and an induction of CRABPII mRNA and protein was noted. In contrast, treatment with PMA and IFNgamma reduced the RARgamma and RXRalpha protein expression (preventable by the proteasome inhibitor MG132), increased the accumulation of [(3)H]RA and/or [(3)H]ddRA in the cells, and changed the CRABPII transcription. CONCLUSIONS Retinoid signalling is profoundly altered upon differentiation of keratinocytes and the effects depend on how cellular differentiation is initiated.
Collapse
|
28
|
Both all-trans retinoic acid and cytochrome P450 (CYP26) inhibitors affect the expression of vitamin A metabolizing enzymes and retinoid biomarkers in organotypic epidermis. Arch Dermatol Res 2009; 301:475-85. [PMID: 19294396 DOI: 10.1007/s00403-009-0937-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 02/17/2009] [Accepted: 02/27/2009] [Indexed: 12/21/2022]
Abstract
The biosynthesis of retinoic acid (RA) from retinol is controlled by several enzymes, e.g. dehydrogenases (RalDH2, RoDH-4) and retinol-esterifying enzyme (LRAT), whereas its degradation mainly involves CYP26 enzymes. In keratinocytes, RA activates the nuclear retinoid-receptors inducing the transcription of many genes. Here, we examined the effects of RA and the CYP26 inhibitors, liarozole and talarozole, on retinoid metabolism and RA-regulated genes in organotypic epidermis. RA induced the expression of CYP26 enzymes already after 8 h, whereas LRAT exhibited a later response and peaked at 48 h, indicating a feedback induction of retinol esterification. In line with a reduced biosynthesis of RA from retinol after exogenous RA, the expression of RDH16 reduced 80% in response to exogenous RA. The mRNA expression of RA-regulated genes (KRT2, KRT4, CRABPII and HBEGF) was altered within 24 h after RA exposure. In contrast, the CYP26 inhibitors caused only minor effects, except for a clear-cut induction of CYP26A1 only when combined with minute amounts of exogenous RA. Cellular accumulation of exogenous [3H]RA was higher after talarozole than after liarozole, probably indicating a greater CYP26-inhibitory potency of the former drug. The present study shows that CYP26A1 expression is extremely sensitive to both exogenous RA and increased endogenous RA levels, i.e. due to CYP26 inhibition, and thus an excellent biomarker for retinoid signalling in organotypic epidermis.
Collapse
|
29
|
Research Snippets. J Invest Dermatol 2009. [DOI: 10.1038/jid.2008.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|