1
|
Marin RE, Uzal FA. Lisosomal storage disease caused by ingestion of Astragalus spp in llamas: an emergent concern. Vet Res Commun 2024; 48:1999-2005. [PMID: 38758424 DOI: 10.1007/s11259-024-10397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Lysosomal storage diseases are inherited or acquired disorders characterized by dysfunctional lysosomes that lead to intracytoplasmic accumulation of undegraded substrates, causing impaired cellular function and death. Many acquired lysosomal storage diseases are produced by toxic plants, which have indolizidine alkaloids, including swainsonine, that inhibits lysosomal α-mannosidase and Golgi α-mannosidase II. Swainsonine-induced nervous disease associated with various plants has been reported, including species of the genus Astragalus, Sida, Oxitropis, Swainsona, and Ipomoea. Two species of Astragalus (i.e. Astragalus garbancillo and Astragalus punae) have been found to cause neurologic disease in llamas. In addition, A. garbancillo was also associated with malformations in the offspring, and possibly abortions and neonatal mortality in llamas. The diagnosis of Astragalus spp. intoxication is established based on clinical signs, microscopic and ultrastructural findings, lectin histochemistry, abundance of these plants in the grazing area and determination of swainsonine in plant specimens.
Collapse
Affiliation(s)
- Raúl E Marin
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy, Jujuy, Argentina
| | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, University of CA-Davis, 105 W Central Ave, San Bernardino, CA, 92408, USA.
| |
Collapse
|
2
|
Xu M, Antonova M, Salavei P, Illek K, Meléndez AV, Omidvar R, Thuenauer R, Makshakova O, Römer W. Dimeric Lectin Chimeras as Novel Candidates for Gb3-Mediated Transcytotic Drug Delivery through Cellular Barriers. Pharmaceutics 2023; 15:225. [PMID: 36678854 PMCID: PMC9864468 DOI: 10.3390/pharmaceutics15010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Receptor-mediated transcytosis is an elegant and promising strategy for drug delivery across biological barriers. Here, we describe a novel ligand-receptor pair based on a dimeric, engineered derivative of the Pseudomonas aeruginosa lectin LecA, here termed Di-LecA, and the host cell glycosphingolipid Gb3. We characterized the trafficking kinetics and transcytosis efficiencies in polarized Gb3-positive and -negative MDCK cells using mainly immunofluorescence in combination with confocal microscopy. To evaluate the delivery capacity of dimeric LecA chimeras, EGFP was chosen as a fluorescent model protein representing macromolecules, such as antibody fragments, and fused to either the N- or C-terminus of monomeric LecA using recombinant DNA technology. Both LecA/EGFP fusion proteins crossed cellular monolayers in vitro. Of note, the conjugate with EGFP at the N-terminus of LecA (EGFP-LecA) showed a higher release rate than the conjugate with EGFP at the C-terminus (LecA-EGFP). Based on molecular dynamics simulations and cross-linking studies of giant unilamellar vesicles, we speculate that EGFP-LecA tends to be a dimer while LecA-EGFP forms a tetramer. Overall, we confidently propose the dimeric LecA chimeras as transcytotic drug delivery tools through Gb3-positive cellular barriers for future in vivo tests.
Collapse
Affiliation(s)
- Maokai Xu
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Maria Antonova
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Pavel Salavei
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Katharina Illek
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Ramin Omidvar
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Roland Thuenauer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center for Structural Systems Biology (CSSB), 22607 Hamburg, Germany
- Technology Platform Light Microscopy, University of Hamburg, 20146 Hamburg, Germany
- Technology Platform Microscopy and Image Analysis (TPMIA), Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Olga Makshakova
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Gonzalez EA, Nader H, Siebert M, Suarez DA, Alméciga-Díaz CJ, Baldo G. Genome Editing Tools for Lysosomal Storage Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:127-155. [PMID: 37486520 DOI: 10.1007/978-3-031-33325-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Genome editing has multiple applications in the biomedical field. They can be used to modify genomes at specific locations, being able to either delete, reduce, or even enhance gene transcription and protein expression. Here, we summarize applications of genome editing used in the field of lysosomal disorders. We focus on the development of cell lines for study of disease pathogenesis, drug discovery, and pathogenicity of specific variants. Furthermore, we highlight the main studies that use gene editing as a gene therapy platform for these disorders, both in preclinical and clinical studies. We conclude that gene editing has been able to change quickly the scenario of these disorders, allowing the development of new therapies and improving the knowledge on disease pathogenesis. Should they confirm their hype, the first gene editing-based products for lysosomal disorders could be available in the next years.
Collapse
Affiliation(s)
- Esteban Alberto Gonzalez
- Cell, Tissue and Gene Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helena Nader
- Departamento de Bioquímica, Instituto de Farmacologia e Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Marina Siebert
- Postgraduate Program in Sciences of Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Basic Research and Advanced Investigations in Neurosciences Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Unit of Laboratorial Research, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos J Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Guilherme Baldo
- Cell, Tissue and Gene Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
A Roadmap for Potential Improvement of Newborn Screening for Inherited Metabolic Diseases Following Recent Developments and Successful Applications of Bivariate Normal Limits for Pre-Symptomatic Detection of MPS I, Pompe Disease, and Krabbe Disease. Int J Neonatal Screen 2022; 8:ijns8040061. [PMID: 36412587 PMCID: PMC9680456 DOI: 10.3390/ijns8040061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The mucopolysaccharidoses (MPS), Pompe Disease (PD), and Krabbe disease (KD) are inherited conditions known as lysosomal storage disorders (LSDs) The resulting enzyme deficiencies give rise to progressive symptoms. The United States Department of Health and Human Services' Recommended Uniform Screening Panel (RUSP) suggests LSDs for inclusion in state universal newborn screening (NBS) programs and has identified screening deficiencies in MPS I, KD, and PD NBS programs. MPS I NBS programs utilize newborn dried blood spots and assay alpha L-iduronidase (IDUA) enzyme to screen for potential cases. Glycosaminoglycans (GAGs) offer potential as a confirmatory test. KD NBS programs utilize galactocerebrosidase (GaLC) as an initial test, with psychosine (PSY) activity increasingly used as a confirmatory test for predicting onset of Krabbe disease, though with an excessive false positive rate. PD is marked by a deficiency in acid α-glucosidase (GAA), causing increased glycogen, creatine (CRE), and other biomarkers. Bivariate normal limit (BVNL) methods have been applied to GaLC and PSY activity to produce a NBS tool for KD, and more recently, to IDUA and GAG activity to develop a NBS tool for MPS I. A BVNL tool based on GAA and CRE is in development for infantile PD diagnosis. Early infantile KD, MPS I, and PD cases were pre-symptomatically identified by BVNL-based NBS tools. This article reviews these developments, discusses how they address screening deficiencies identified by the RUSP and may improve NBS more generally.
Collapse
|
5
|
Lécuyer T, Seguin J, Balfourier A, Delagrange M, Burckel P, Lai-Kuen R, Mignon V, Ducos B, Tharaud M, Saubaméa B, Scherman D, Mignet N, Gazeau F, Richard C. Fate and biological impact of persistent luminescence nanoparticles after injection in mice: a one-year follow-up. NANOSCALE 2022; 14:15760-15771. [PMID: 36239706 DOI: 10.1039/d2nr03546d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) are attracting growing interest for non-invasive optical imaging of tissues with a high signal to noise ratio. PLNPs can emit a persistent luminescence signal through the tissue transparency window for several minutes, after UV light excitation before systemic administration or directly in vivo through visible irradiation, allowing us to get rid of the autofluorescence signal of tissues. PLNPs constitute a promising alternative to the commercially available optical near infrared probes thanks to their versatile functionalization capabilities for improvement of the circulation time in the blood stream. Nevertheless, while biodistribution for a short time is well known, the long-term fate and toxicity of the PLNP's inorganic core after injection have not been dealt with in depth. Here we extend the current knowledge on ZnGa1.995O4Cr0.005 NPs (or ZGO) with a one-year follow-up of their fate after a single systemic administration in mice. We investigated the organ tissue uptake of ZGO with two different coatings and determined their intracellular processing up to one year after injection. The biopersistence of ZGO was assessed, with a long-term retention, quantified by ICP-MS, mostly in the liver and spleen, parallel with a loss of their luminescence properties. The analysis of the toxicity related to combining an animal's weight, key hematological and metabolic markers, histological observations of liver tissues and quantification of the expression of 31 genes linked to different metabolic reactions did not reveal any signs of noxiousness, from the macro scale to the molecular level. Therefore, the ZGO imaging probe has been proven to be a safe and relevant candidate for preclinical studies, allowing its long term use without any in vivo disturbance of the general metabolism.
Collapse
Affiliation(s)
- Thomas Lécuyer
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, Faculté de Pharmacie, 75006 Paris, France.
- Université Paris Cité, CNRS UMR 7057, Matières et Systèmes Complexes (MSC), 75006 Paris, France.
| | - Johanne Seguin
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, Faculté de Pharmacie, 75006 Paris, France.
| | - Alice Balfourier
- Université Paris Cité, CNRS UMR 7057, Matières et Systèmes Complexes (MSC), 75006 Paris, France.
| | - Marine Delagrange
- High Throughput qPCR Core Facility of the ENS, Université PSL, Institut de Biologie de l'École normale supérieure, F-75005 Paris, France
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Pierre Burckel
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - René Lai-Kuen
- Université de Paris, Inserm, CNRS, US25 Inserm, UMS3612 CNRS, Cellular and Molecular Imaging facility, Faculté de Pharmacie de Paris, F-75006, Paris, France
| | - Virginie Mignon
- Université de Paris, Inserm, CNRS, US25 Inserm, UMS3612 CNRS, Cellular and Molecular Imaging facility, Faculté de Pharmacie de Paris, F-75006, Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Core Facility of the ENS, Université PSL, Institut de Biologie de l'École normale supérieure, F-75005 Paris, France
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Michael Tharaud
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
| | - Bruno Saubaméa
- Université de Paris, Inserm, CNRS, US25 Inserm, UMS3612 CNRS, Cellular and Molecular Imaging facility, Faculté de Pharmacie de Paris, F-75006, Paris, France
| | - Daniel Scherman
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, Faculté de Pharmacie, 75006 Paris, France.
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, Faculté de Pharmacie, 75006 Paris, France.
| | - Florence Gazeau
- Université Paris Cité, CNRS UMR 7057, Matières et Systèmes Complexes (MSC), 75006 Paris, France.
| | - Cyrille Richard
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, Faculté de Pharmacie, 75006 Paris, France.
| |
Collapse
|
6
|
Kofoed RH, Dibia CL, Noseworthy K, Xhima K, Vacaresse N, Hynynen K, Aubert I. Efficacy of gene delivery to the brain using AAV and ultrasound depends on serotypes and brain areas. J Control Release 2022; 351:667-680. [DOI: 10.1016/j.jconrel.2022.09.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
|
7
|
Lu B, Ku J, Flojo R, Olson C, Bengford D, Marriott G. Exosome- and extracellular vesicle-based approaches for the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114465. [PMID: 35878794 DOI: 10.1016/j.addr.2022.114465] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 12/16/2022]
Abstract
Cell-generated extracellular vesicles (EVs) are being engineered as biologically-inspired vehicles for targeted delivery of therapeutic agents to treat difficult-to-manage human diseases, including lysosomal storage disorders (LSDs). Engineered EVs offer distinct advantages for targeted delivery of therapeutics compared to existing synthetic and semi-synthetic nanoscale systems, for example with regard to their biocompatibility, circulation lifetime, efficiencies in delivery of drugs and biologics to target cells, and clearance from the body. Here, we review literature related to the design and preparation of EVs as therapeutic carriers for targeted delivery and therapy of drugs and biologics with a focus on LSDs. First, we introduce the basic pathophysiology of LDSs and summarize current approaches to diagnose and treat LSDs. Second, we will provide specific details about EVs, including subtypes, biogenesis, biological properties and their potential to treat LSDs. Third, we review state-of-the-art approaches to engineer EVs for treatments of LSDs. Finally, we summarize explorative basic research and applied applications of engineered EVs for LSDs, and highlight current challenges, and new directions in developing EV-based therapies and their potential impact on clinical medicine.
Collapse
Affiliation(s)
- Biao Lu
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Joy Ku
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Renceh Flojo
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Chris Olson
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - David Bengford
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, California 94720, USA.
| |
Collapse
|
8
|
Nishida T, Yokoyama R, Kubohira Y, Maeda Y, Takeo T, Nakagata N, Takagi H, Ishikura K, Yanagihara K, Misumi S, Kishimoto N, Ishitsuka Y, Kondo Y, Irie T, Soga M, Era T, Onodera R, Higashi T, Motoyama K. Lactose-Appended Hydroxypropyl-β-Cyclodextrin Lowers Cholesterol Accumulation and Alleviates Motor Dysfunction in Niemann-Pick Type C Disease Model Mice. ACS APPLIED BIO MATERIALS 2022; 5:2377-2388. [PMID: 35506864 DOI: 10.1021/acsabm.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Niemann-Pick disease type C (NPC) is characterized by the accumulation of glycolipids such as free cholesterol, sphingomyelin, and gangliosides in late endosomes/lysosomes (endolysosomes) due to abnormalities in the membrane proteins NPC1 or NPC2. The main symptoms of NPC caused by free cholesterol accumulation in various tissues vary depending on the time of onset, but hepatosplenomegaly and neurological symptoms accompanied by decreased motor, cognitive, and mental functions are observed in all age groups. However, the efficacy of NPC treatment remains limited. Herein, we have fabricated lactose-appended hydroxypropyl-β-cyclodextrin (Lac-HPβCD) and evaluated its lowering effects on cholesterol accumulation in NPC model mice. We reveal that Lac-HPβCD lowers cholesterol accumulation in the liver and spleen by reducing the amount of free cholesterol. Moreover, Lac-HPβCD reduces the amount of free cholesterol in the cerebrum and slightly alleviates motor dysfunction. These results suggest that Lac-HPβCD has potential for the treatment of NPC.
Collapse
Affiliation(s)
- Takumi Nishida
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryoma Yokoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuto Kubohira
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Takeo
- Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroki Takagi
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Kandai Ishikura
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Kazunori Yanagihara
- Research Institute of Nihon Shokuhin Kako Co., Ltd., 30 Tajima, Fuji 417-8530, Shizuoka, Japan
| | - Shogo Misumi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Naoki Kishimoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Minami Soga
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.,Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
9
|
Yazd HS, Bazargani SF, Vanbeek CA, King-Morris K, Heldermon C, Segal MS, Clapp WL, Garrett TJ. LC-MS lipidomics of renal biopsies for the diagnosis of Fabry disease. J Mass Spectrom Adv Clin Lab 2021; 22:71-78. [PMID: 34918004 PMCID: PMC8646168 DOI: 10.1016/j.jmsacl.2021.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
Fabry is an X-linked lysosomal storage disease with deficiency in α-galactosidase. This deficiency results in the accumulation of glycosphinogolipids. Diagnosis is often made by analysis of globotriaosylceramide in fluids and tissues. Fabry is often misdiagnosed in female patients due to residual enzyme activity. Lipidomics by LC-HRMS enables identification of new biomarkers in Fabry.
Introduction Lipidomics analysis or lipid profiling is a system-based analysis of all lipids in a sample to provide a comprehensive understanding of lipids within a biological system. In the last few years, lipidomics has made it possible to better understand the metabolic processes associated with several rare disorders and proved to be a powerful tool for their clinical investigation. Fabry disease is a rare X-linked lysosomal storage disorder (LSD) caused by a deficiency in α-galactosidase A (α-GAL A). This deficiency results in the progressive accumulation of glycosphingolipids, mostly globotriaosylceramide (Gb3), globotriaosylsphingosine (lyso-Gb3), as well as galabiosylceramide (Ga2) and their isoforms/analogs in the vascular endothelium, nerves, cardiomyocytes, renal glomerular podocytes, and biological fluids. Objectives The primary objective of this study was to evaluate lipidomic signatures in renal biopsies to help understand variations in Fabry disease markers that could be used in future diagnostic tests. Methods Lipidomic analysis was performed by ultra-high pressure liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) on kidney biopsies that were left over after clinical pathology analysis to diagnose Fabry disease. Results We employed UHPLC-HRMS lipidomics analysis on the renal biopsy of a patient suspicious for Fabry disease. Our result confirmed α-GAL A enzyme activity declined in this patient since a Ga2-related lipid biomarker was substantially higher in the patient's renal tissue biopsy compared with two controls. This suggests this patient has a type of LSD that could be non-classical Fabry disease. Conclusion This study shows that lipidomics analysis is a valuable tool for rare disorder diagnosis, which can be conducted on leftover tissue samples without disrupting normal patient care.
Collapse
|
10
|
Paget TL, Parkinson-Lawrence EJ, Orgeig S. The role of surfactant and distal lung dysfunction in the pathology of lysosomal storage diseases. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.100467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Tuermer A, Mausbach S, Kaade E, Damme M, Sylvester M, Gieselmann V, Thelen M. CLN6 deficiency causes selective changes in the lysosomal protein composition. Proteomics 2021; 21:e2100043. [PMID: 34432360 DOI: 10.1002/pmic.202100043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/31/2021] [Accepted: 08/17/2021] [Indexed: 11/06/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) collectively account for the highest prevalence of inherited neurodegenerative diseases in childhood. This disease group is classified by the deposition of similar autofluorescence storage material in lysosomes that is accompanied by seizures, blindness and premature mortality in later disease stages. Defects in several genes affecting various proteins lead to NCL, one of them being CLN6, a transmembrane protein resident in the endoplasmic reticulum. Dysfunctionality of CLN6 causes variant late infantile NCL (vLINCL). The function of CLN6 and how its deficiency affects lysosomal integrity remains unknown. In this work, we performed a comparative proteomic analysis of isolated lysosomal fractions from liver tissue of nclf mice, a natural mouse model displaying a similar disease course than its human counterpart. We could identify a drastic reduction in the protein amounts of selected lysosomal proteins, amongst them several members of the NCL protein family. Most of these proteins were N-glycosylated, soluble hydrolases and their reduction in protein levels was verified by western blotting and enzymatic assays. Hereby we could directly link Cln6 dysfunction to changes in the lysosomal compartment and to other NCL forms.
Collapse
Affiliation(s)
- Andreas Tuermer
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Simone Mausbach
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Edgar Kaade
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Markus Damme
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, Rheinische-Friedrich-Wilhelms-University, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
12
|
Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med 2021; 13:e12836. [PMID: 33459519 PMCID: PMC7863408 DOI: 10.15252/emmm.202012836] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Lysosomal storage diseases are a group of metabolic disorders caused by deficiencies of several components of lysosomal function. Most commonly affected are lysosomal hydrolases, which are involved in the breakdown and recycling of a variety of complex molecules and cellular structures. The understanding of lysosomal biology has progressively improved over time. Lysosomes are no longer viewed as organelles exclusively involved in catabolic pathways, but rather as highly dynamic elements of the autophagic-lysosomal pathway, involved in multiple cellular functions, including signaling, and able to adapt to environmental stimuli. This refined vision of lysosomes has substantially impacted on our understanding of the pathophysiology of lysosomal disorders. It is now clear that substrate accumulation triggers complex pathogenetic cascades that are responsible for disease pathology, such as aberrant vesicle trafficking, impairment of autophagy, dysregulation of signaling pathways, abnormalities of calcium homeostasis, and mitochondrial dysfunction. Novel technologies, in most cases based on high-throughput approaches, have significantly contributed to the characterization of lysosomal biology or lysosomal dysfunction and have the potential to facilitate diagnostic processes, and to enable the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Giancarlo Parenti
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.,SSM School for Advanced Studies, Federico II University, Naples, Italy
| |
Collapse
|
13
|
Yokoyama R, Taharabaru T, Nishida T, Ohno Y, Maeda Y, Sato M, Ishikura K, Yanagihara K, Takagi H, Nakamura T, Ito S, Ohtsuki S, Arima H, Onodera R, Higashi T, Motoyama K. Lactose-appended β-cyclodextrin as an effective nanocarrier for brain delivery. J Control Release 2020; 328:722-735. [PMID: 33002523 DOI: 10.1016/j.jconrel.2020.09.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The blood-brain barrier (BBB) prevents the permeability of drugs into the brain, and as such limits the management of various brain diseases. To overcome this barrier, drug-encapsulating nanoparticles or vesicles, drug conjugates, and other types of drug delivery systems (DDSs) have been developed. However, the brain-targeting ability of nanoparticles or vesicles is still insufficient. Recently, among the various brain-targeting ligands previously studied for facilitating transcellular BBB transport, several sugar-appended nanocarriers for brain delivery were identified. Meanwhile, cyclodextrins (CyDs) have been used as nanocarriers for drug delivery since they can encapsulate hydrophobic compounds with high biocompatibility. Therefore, in this study, we created various sugar-appended β-cyclodextrins (β-CyDs) to discover novel brain-targeting ligands. As a result, of the six sugar-appended CyDs, lactose-appended β-CyD (Lac-β-CyD) showed greater cellular uptake in hCMEC/D3 cells, human brain microvascular endothelial cells, than other sugar-appended β-CyDs did. In addition, the permeability of Lac-β-CyD within the in vitro human BBB model was greater than that of other sugar-appended β-CyDs. Moreover, Lac-β-CyD significantly accumulated in the mouse brain after intravenous administration. Thus, Lac-β-CyD efficiently facilitated the accumulation of the model drug into the mouse brain. These findings suggest that Lac-β-CyD has the potential to be a novel carrier for drugs across the BBB.
Collapse
Affiliation(s)
- Ryoma Yokoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takumi Nishida
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoshitaka Ohno
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masahiro Sato
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kandai Ishikura
- Research Institute of Nihon Shokuhin Kako Co., Ltd, 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Kazunori Yanagihara
- Research Institute of Nihon Shokuhin Kako Co., Ltd, 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Hiroki Takagi
- Research Institute of Nihon Shokuhin Kako Co., Ltd, 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shingo Ito
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
14
|
Reszka M, Serdiuk IE, Kozakiewicz K, Nowacki A, Myszka H, Bojarski P, Liberek B. Influence of a 4'-substituent on the efficiency of flavonol-based fluorescent indicators of β-glycosidase activity. Org Biomol Chem 2020; 18:7635-7648. [PMID: 32960207 DOI: 10.1039/d0ob01505a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article presents novel fluorescent probes, based on the excited-state intramolecular proton transfer (ESIPT) phenomenon and flavonols, sensitive to the action of specific glycosidases. 4'-Substituted flavonols were synthesized, using various approaches, and glycosylated with d-glucose, N-acetyl-d-glucosamine and d-glucuronic acid. Evaluation of the β-glycosidase activities was performed in neutral and acidic pH. In all the cases examined, an acidic environment accelerated enzymatic hydrolysis. It was demonstrated that the 4'-chloroflavonyl glycosides of all sugars tested, both in neutral and acidic pH, are the ones most sensitive to the presence of hydrolase. In turn, 4'-dimethylaminoflavonyl glucoside is not sensitive to glucosidase action at all. Generally, the rate of enzymatic hydrolysis increases as the electron-withdrawing nature of the 4'-substituent increases. An exception is the trifluoromethyl group which, in spite of having the most favourable Hammett constant, does not contribute enough to increase the rate of hydrolysis of its glucoside. The presented experimental results are supported by the electrostatic potential (ESP) analysis and related to the mechanisms of glycoside bond enzymatic hydrolysis.
Collapse
Affiliation(s)
- Milena Reszka
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165570. [DOI: 10.1016/j.bbadis.2019.165570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022]
|
16
|
Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy. Cell Death Differ 2020; 28:320-336. [PMID: 32764647 DOI: 10.1038/s41418-020-0602-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/12/2020] [Accepted: 07/23/2020] [Indexed: 01/07/2023] Open
Abstract
Lysosome is a crucial organelle in charge of degrading proteins and damaged organelles to maintain cellular homeostasis. Transcription factor EB (TFEB) is the master transcription factor regulating lysosomal biogenesis and autophagy. Under external stimuli such as starvation, dephosphorylated TFEB transports into the nucleus to specifically recognize and bind to the coordinated lysosomal expression and regulation (CLEAR) elements at the promotors of autophagy and lysosomal biogenesis-related genes. The function of TFEB in the nucleus is fine regulated but the molecular mechanism is not fully elucidated. In this study, we discovered that miR-30b-5p, a small RNA which is known to regulate a series of genes through posttranscriptional regulation in the cytoplasm, was translocated into the nucleus, bound to the CLEAR elements, suppressed the transcription of TFEB-dependent downstream genes, and further inhibited the lysosomal biogenesis and the autophagic flux; meanwhile, knocking out the endogenous miR-30b-5p by CRISPR/Cas9 technique significantly increased the TFEB-mediated transactivation, resulting in the increased expression of autophagy and lysosomal biogenesis-related genes. Overexpressing miR-30b-5p in mice livers showed a decrease in lysosomal biogenesis and autophagy. These in vitro and in vivo data indicate that miR-30b-5p may inhibit the TFEB-dependent transactivation by binding to the CLEAR elements in the nucleus to regulate the lysosomal biogenesis and autophagy. This novel mechanism of nuclear miRNA regulating gene transcription is conducive to further elucidating the roles of miRNAs in the lysosomal physiological functions and helps to understand the pathogenesis of abnormal autophagy-related diseases.
Collapse
|
17
|
Taharabaru T, Yokoyama R, Higashi T, Mohammed AFA, Inoue M, Maeda Y, Niidome T, Onodera R, Motoyama K. Genome Editing in a Wide Area of the Brain Using Dendrimer-Based Ternary Polyplexes of Cas9 Ribonucleoprotein. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21386-21397. [PMID: 32315156 DOI: 10.1021/acsami.9b21667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A preassembled Cas9/single-guide RNA complex (Cas9 ribonucleoprotein; Cas9 RNP) induces genome editing efficiently, with small off-target effects compared with the conventional techniques, such as plasmid DNA and mRNA systems. However, penetration of Cas9 RNP through the cell membrane is low. In particular, the incorporation of Cas9 RNP into neurons and the brain is challenging. In the present study, we have reported the use of a dendrimer (generation 3; G3)/glucuronylglucosyl-β-cyclodextrin conjugate (GUG-β-CDE (G3)) as a carrier of Cas9 RNP and evaluated genome editing activity in the neuron and the brain. A Cas9 RNP ternary complex with GUG-β-CDE (G3) was prepared by only mixing the components. The resulting complex exhibited higher genome editing activity than the complex with the dendrimer (G3), Lipofectamine 3000 or Lipofectamine CRISPRMAX in SH-SY5Y cells, a human neuroblastoma cell line. In addition, GUG-β-CDE (G3) enhanced the genome editing activity of Cas9 RNP in the whole mouse brain after a single intraventricular administration. Thus, GUG-β-CDE (G3) is a useful Cas9 RNP carrier that can induce genome editing in the neuron and brain.
Collapse
Affiliation(s)
- Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ryoma Yokoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Ahmed Fouad Abdelwahab Mohammed
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Masamichi Inoue
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools 'Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program', Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Program for Leading Graduate Schools 'Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program', Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
18
|
|
19
|
Cougnoux A, Drummond RA, Fellmeth M, Navid F, Collar AL, Iben J, Kulkarni AB, Pickel J, Schiffmann R, Wassif CA, Cawley NX, Lionakis MS, Porter FD. Unique molecular signature in mucolipidosis type IV microglia. J Neuroinflammation 2019; 16:276. [PMID: 31883529 PMCID: PMC6935239 DOI: 10.1186/s12974-019-1672-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/09/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lysosomal storage diseases (LSD) are a large family of inherited disorders characterized by abnormal endolysosomal accumulation of cellular material due to catabolic enzyme and transporter deficiencies. Depending on the affected metabolic pathway, LSD manifest with somatic or central nervous system (CNS) signs and symptoms. Neuroinflammation is a hallmark feature of LSD with CNS involvement such as mucolipidosis type IV, but not of others like Fabry disease. METHODS We investigated the properties of microglia from LSD with and without major CNS involvement in 2-month-old mucolipidosis type IV (Mcoln1-/-) and Fabry disease (Glay/-) mice, respectively, by using a combination of flow cytometric, RNA sequencing, biochemical, in vitro and immunofluorescence analyses. RESULTS We characterized microglia activation and transcriptome from mucolipidosis type IV and Fabry disease mice to determine if impaired lysosomal function is sufficient to prime these brain-resident immune cells. Consistent with the neurological pathology observed in mucolipidosis type IV, Mcoln1-/- microglia demonstrated an activation profile with a mixed neuroprotective/neurotoxic expression pattern similar to the one we previously observed in Niemann-Pick disease, type C1, another LSD with significant CNS involvement. In contrast, the Fabry disease microglia transcriptome revealed minimal alterations, consistent with the relative lack of CNS symptoms in this disease. The changes observed in Mcoln1-/- microglia showed significant overlap with alterations previously reported for other common neuroinflammatory disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Indeed, our comparison of microglia transcriptomes from Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick disease, type C1 and mucolipidosis type IV mouse models showed an enrichment in "disease-associated microglia" pattern among these diseases. CONCLUSIONS The similarities in microglial transcriptomes and features of neuroinflammation and microglial activation in rare monogenic disorders where the primary metabolic disturbance is known may provide novel insights into the immunopathogenesis of other more common neuroinflammatory disorders. TRIAL REGISTRATION ClinicalTrials.gov, NCT01067742, registered on February 12, 2010.
Collapse
Affiliation(s)
- Antony Cougnoux
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 10CRC, Rm 5-2571, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Rebecca A Drummond
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mason Fellmeth
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 10CRC, Rm 5-2571, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Fatemeh Navid
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
| | - Amanda L Collar
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20879, USA
| | - Ashok B Kulkarni
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20879, USA
| | - James Pickel
- National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20879, USA
| | | | - Christopher A Wassif
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 10CRC, Rm 5-2571, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Niamh X Cawley
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 10CRC, Rm 5-2571, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, 10CRC, Rm 5-2571, 10 Center Dr, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Yu F, Jing X, Lin W. Single-/Dual-Responsive pH Fluorescent Probes Based on the Hybridization of Unconventional Fluorescence and Fluorophore for Imaging Lysosomal pH Changes in HeLa Cells. Anal Chem 2019; 91:15213-15219. [DOI: 10.1021/acs.analchem.9b04088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Faqi Yu
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Xinying Jing
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| | - Weiying Lin
- Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, University of Jinan, Jinan, Shandong 250022, P.R. China
| |
Collapse
|
21
|
Mohamed S, He QQ, Singh AA, Ferro V. Mucopolysaccharidosis type II (Hunter syndrome): Clinical and biochemical aspects of the disease and approaches to its diagnosis and treatment. Adv Carbohydr Chem Biochem 2019; 77:71-117. [PMID: 33004112 DOI: 10.1016/bs.accb.2019.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is a rare X-linked lysosomal storage disease caused by mutations of the gene encoding the lysosomal enzyme iduronate-2-sulfatase (IDS), the role of which is to hydrolytically remove O-linked sulfates from the two glycosaminoglycans (GAGs) heparan sulfate (HS) and dermatan sulfate (DS). HS and DS are linear, heterogeneous polysaccharides composed of repeating disaccharide subunits of l-iduronic acid (IdoA) or d-glucuronic acid, (1→4)-linked to d-glucosamine (for HS), or (1→3)-linked to 2-acetamido-2-deoxy-d-galactose (N-acetyl-d-galactosamine) (for DS). In healthy cells, IDS cleaves the sulfo group found at the C-2 position of terminal non-reducing end IdoA residues in HS and DS. The loss of IDS enzyme activity leads to progressive lysosomal storage of HS and DS in tissues and organs such as the brain, liver, spleen, heart, bone, joints and airways. Consequently, this leads to the phenotypic features characteristic of the disease. This review provides an overview of the disease profile and clinical manifestation, with a particular focus on the biochemical basis of the disease and chemical approaches to the development of new diagnostics, as well as discussing current treatment options and emerging new therapies.
Collapse
Affiliation(s)
- Shifaza Mohamed
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Qi Qi He
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Arti A Singh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
22
|
Muranjan M, Karande S. Enzyme replacement therapy in India: Lessons and insights. J Postgrad Med 2019; 64:195-199. [PMID: 29848835 PMCID: PMC6198701 DOI: 10.4103/jpgm.jpgm_41_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- M Muranjan
- Department of Pediatrics, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India
| | - S Karande
- Department of Pediatrics, Seth GS Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
23
|
Gigliobianco MR, Di Martino P, Deng S, Casadidio C, Censi R. New Advanced Strategies for the Treatment of Lysosomal Diseases Affecting the Central Nervous System. Curr Pharm Des 2019; 25:1933-1950. [DOI: 10.2174/1381612825666190708213159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
Lysosomal Storage Disorders (LSDs), also known as lysosomal diseases (LDs) are a group of serious genetic diseases characterized by not only the accumulation of non-catabolized compounds in the lysosomes due to the deficiency of specific enzymes which usually eliminate these compounds, but also by trafficking, calcium changes and acidification. LDs mainly affect the central nervous system (CNS), which is difficult to reach for drugs and biological molecules due to the presence of the blood-brain barrier (BBB). While some therapies have proven highly effective in treating peripheral disorders in LD patients, they fail to overcome the BBB. Researchers have developed many strategies to circumvent this problem, for example, by creating carriers for enzyme delivery, which improve the enzyme’s half-life and the overexpression of receptors and transporters in the luminal or abluminal membranes of the BBB. This review aims to successfully examine the strategies developed during the last decade for the treatment of LDs, which mainly affect the CNS. Among the LD treatments, enzyme-replacement therapy (ERT) and gene therapy have proven effective, while nanoparticle, fusion protein, and small molecule-based therapies seem to offer considerable promise to treat the CNS pathology. This work also analyzed the challenges of the study to design new drug delivery systems for the effective treatment of LDs. Polymeric nanoparticles and liposomes are explored from their technological point of view and for the most relevant preclinical studies showing that they are excellent choices to protect active molecules and transport them through the BBB to target specific brain substrates for the treatment of LDs.
Collapse
Affiliation(s)
- Maria R. Gigliobianco
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Siyuan Deng
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Cristina Casadidio
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| |
Collapse
|
24
|
Maeda Y, Motoyama K, Nishiyama R, Higashi T, Onodera R, Nakamura H, Takeo T, Nakagata N, Yamada Y, Ishitsuka Y, Kondo Y, Irie T, Era T, Arima H. In vivo Efficacy and Safety Evaluation of Lactosyl-β-cyclodextrin as a Therapeutic Agent for Hepatomegaly in Niemann-Pick Type C Disease. NANOMATERIALS 2019; 9:nano9050802. [PMID: 31130658 PMCID: PMC6566927 DOI: 10.3390/nano9050802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/02/2022]
Abstract
Niemann-Pick type C disease (NPC) is a fatal, autosomal recessive disorder, which causes excessive accumulation of free cholesterol in endolysosomes, resulting in progressive hepatomegaly and neurodegeneration. Currently, 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) is used at a high dose for the treatment of NPC, risking lung toxicity and hearing loss during treatment. One method to reduce the required dose of HP-β-CyD for the treatment of hepatomegaly is to actively deliver β-cyclodextrin (β-CyD) to hepatocytes. Previously, we synthesized lactosyl-β-CyD (Lac-β-CyD) and demonstrated that it lowers cholesterol in NPC model liver cells. In the present study, we studied the efficacy and safety of Lac-β-CyD treatment of hepatomegaly in Npc1−/− mice. After subcutaneous administration, Lac-β-CyD accumulated in the liver and reduced hepatomegaly with greater efficacy than HP-β-CyD. In addition, subcutaneous administration of a very high dose of Lac-β-CyD was less toxic to the lungs than HP-β-CyD. Notably, the accumulation of intracellular free cholesterol in endolysosomes of NPC-like liver cells was significantly lower after administration of Lac-β-CyD than after treatment with HP-β-CyD. In conclusion, these results suggest that Lac-β-CyD is a candidate for the effective treatment of hepatomegaly in NPC.
Collapse
Affiliation(s)
- Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan.
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Rena Nishiyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 862-0973, Japan.
| | | | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.
| | - Toru Takeo
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Naomi Nakagata
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Yusei Yamada
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Yoichi Ishitsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Yuki Kondo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan.
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
25
|
Zhang H, Zhu X, Liu G, Ding X, Wang J, Yang M, Zhang R, Zhang Z, Tian Y, Zhou H. Conformationally Induced Off-On Two-Photon Fluorescent Bioprobes for Dynamically Tracking the Interactions among Multiple Organelles. Anal Chem 2019; 91:6730-6737. [PMID: 31001974 DOI: 10.1021/acs.analchem.9b00806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unveiling the synergism among multiple organelles for fully exploring the mysteries of the cell has drawn more and more attention. Herein, we developed two two-photon fluorescent bioprobes (Lyso-TA and Mito-QA), of which the conformational change triggered an "off-on" fluorescent response. Lyso-TA can real-time monitor the fusion and movement of lysosomes as well as unveil the mitophagy process with the engagement of lysosomes. Mito-QA was transformed from Lyso-TA by one-step ambient temperature reaction, visualizing the dysfunctional mitochondria through a shift from mitochondria to nucleoli. With superior two-photon absorption cross section, good biocompatibility, and greater penetration depth, two small bioprobes were both applied in in vivo bioimaging of brain tissues and zebrafish.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Xiaojiao Zhu
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Gang Liu
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Xinzhi Ding
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Junjun Wang
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Mingdi Yang
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Ruilong Zhang
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Zhongping Zhang
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering , Anhui University and Key Labotatory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials , 230601 Hefei , P.R. China
| |
Collapse
|
26
|
Paget TL, Parkinson-Lawrence EJ, Orgeig S. Interstitial lung disease and surfactant dysfunction as a secondary manifestation of disease: insights from lysosomal storage disorders. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ddmod.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Skrinjar P, Schwarz M, Lexmüller S, Mechtler TP, Zeyda M, Greber-Platzer S, Trometer J, Kasper DC, Mikula H. Rapid and Modular Assembly of Click Substrates To Assay Enzyme Activity in the Newborn Screening of Lysosomal Storage Disorders. ACS CENTRAL SCIENCE 2018; 4:1688-1696. [PMID: 30648152 PMCID: PMC6311692 DOI: 10.1021/acscentsci.8b00668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Indexed: 05/13/2023]
Abstract
Synthetic substrates play a pivotal role in the development of enzyme assays for medical diagnostics. However, the preparation of these chemical tools often requires multistep synthetic procedures complicating structural optimization and limiting versatility. In particular, substrates for enzyme assays based on tandem mass spectrometry need to be designed and optimized to fulfill the requirements to finally enable the development of robust diagnostic assays. In addition, isotope-labeled standards need to be prepared to facilitate accurate quantification of enzyme assay products. Here we report the development of a building block strategy for rapid and modular assembly of enzyme substrates using click chemistry as a key step. These click substrates are made up of a sugar moiety as enzyme responsive unit, a linker that can easily be isotope-labeled for the synthesis of internal standards, and a modifier compound that can readily be exchanged for structural optimization and analytical/diagnostic tuning. Moreover, the building block assembly eliminates the need for extensive optimization of different glycosylation reactions as it enables the divergent synthesis of substrates using a clickable enzyme responsive unit. The outlined strategy has been applied to obtain a series of synthetic α-l-iduronates and sulfated β-d-galactosides as substrates for assaying α-l-iduronidase and N-acetylgalactosamine-6-sulfate sulfatase, enzymes related to the lysosomal storage disorders mucopolysaccharidosis type I and type IVa, respectively. Selected click substrates were finally shown to be suitable to assay enzyme activities in dried blood spot samples from affected patients and random newborns.
Collapse
Affiliation(s)
- Philipp Skrinjar
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
| | - Markus Schwarz
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
- ARCHIMED
Life Science GmbH, 1110 Vienna, Austria
| | - Stefan Lexmüller
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
| | | | - Maximilian Zeyda
- Department
of Pediatrics and Adolescent Medicine, Medical
University of Vienna, 1090 Vienna, Austria
| | - Susanne Greber-Platzer
- Department
of Pediatrics and Adolescent Medicine, Medical
University of Vienna, 1090 Vienna, Austria
| | - Joe Trometer
- PerkinElmer,
Diagnostics, Waltham, Massachusetts 02451, United States
| | | | - Hannes Mikula
- Institute
of Applied Synthetic Chemistry, Vienna University
of Technology (TU Wien), 1060 Vienna, Austria
- E-mail:
| |
Collapse
|
28
|
Khera D, John J, Singh K, Faruq M. Tay-Sachs disease: a novel mutation from India. BMJ Case Rep 2018; 11:11/1/e225916. [PMID: 30567231 DOI: 10.1136/bcr-2018-225916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lysosomal storage disorders or lipidoses are a wide spectrum of inherited diseases caused by deficiency of a specific lysosomal hydrolase. About 134 mutations have been described so far and this number is gradually increasing with newer mutations being reported. We report a 28-month-old child who presented to us with neurodevelopment regression, seizures and cherry red spot in both eyes. His hexosaminidase A enzyme activity was reduced and genetic testing revealed a homozygous novel variation in HEXA (hexosaminidase A) gene in the DNA sample of the patient.
Collapse
Affiliation(s)
- Daisy Khera
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Jodhpur, Rajasthan, India
| | - Joseph John
- Department of Pediatrics, All India Institute of Medical Sciences Bhubaneswar, Bhubaneswar, Odisha, India
| | - Kuldeep Singh
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, Jodhpur, Rajasthan, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
29
|
Stapleton M, Arunkumar N, Kubaski F, Mason RW, Tadao O, Tomatsu S. Clinical presentation and diagnosis of mucopolysaccharidoses. Mol Genet Metab 2018; 125:4-17. [PMID: 30057281 DOI: 10.1016/j.ymgme.2018.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 01/09/2023]
Abstract
Mucopolysaccharidoses (MPS) are estimated to affect1 in 25,000 live births although specific rates vary between the ethnic origin and country. MPS are a group of lysosomal storage disorders, which cause the buildup of GAG(s) due to insufficient or absent GAG-degrading enzymes. With seven types of MPS disorders and eleven subtypes, the MPS family presents unique challenges for early clinical diagnosis due to the molecular and clinical heterogeneity between groups and patients. Novel methods of early identification, particularly newborn screening through mass spectrometry, can change the flow of diagnosis, allowing enzyme and GAG quantification before the presentation of clinical symptoms improving outcomes. Genetic testing of patients and their families can also be conducted preemptively. This testing enables families to make informed decisions about family planning, leading to prenatal diagnosis. In this review, we discuss the clinical symptoms of each MPS type as they initially appear in patients, biochemical and molecular diagnostic methods, and the future of newborn screening for this group of disorders.
Collapse
Affiliation(s)
- Molly Stapleton
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Nivethitha Arunkumar
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Francyne Kubaski
- Department of Molecular Biology and Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Robert W Mason
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Orii Tadao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States; Department of Biological Sciences, University of Delaware, Newark, DE, United States; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pediatrics, Shimane University, Shimane, Japan.
| |
Collapse
|
30
|
Lowering effect of dimethyl-α-cyclodextrin on GM1-ganglioside accumulation in GM1-gangliosidosis model cells and in brain of β-galactosidase-knockout mice. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0835-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Reference Data on Neonatal Serum N-Acetyl- β-hexosaminidase Activity. DISEASE MARKERS 2018; 2018:6187245. [PMID: 30057650 PMCID: PMC6051087 DOI: 10.1155/2018/6187245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/12/2018] [Accepted: 05/13/2018] [Indexed: 11/24/2022]
Abstract
Background Determination of neonate serum's N-acetyl-β-hexosaminidase (HEX) activity and correlation results with Apgar scale and factors routinely determined in newborn serum. Aims Providing reference values of neonates serum HEX activities, and indicate their diagnostic significance. Study design The study was performed using random serum samples of 111 infants (53 ♂/58 ♀), aged 1–30 days. The activity of HEX was determined colorimetrically and expressed in nKat/L. Results Serum HEX activity of 111 newborns was 360.5 ± 114.0 nKat/L and significantly positively correlated with gestation week at the day of delivery, birth weight, weight on day of blood collection, sex, and serum CRP. Conclusions Reference values presented for neonatal serum activities of HEX may be used in neonatal diagnostics, for example, to detect inflammation and other diseases or for early assessment of the risk of Tay-Sachs and Sandhoff diseases.
Collapse
|
32
|
Comprehensive proteome analysis of lysosomes reveals the diverse function of macrophages in immune responses. Oncotarget 2018; 8:7420-7440. [PMID: 28088779 PMCID: PMC5352332 DOI: 10.18632/oncotarget.14558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/31/2016] [Indexed: 01/10/2023] Open
Abstract
Phagocytosis and autophagy in macrophages have been shown to be essential to both innate and adaptive immunity. Lysosomes are the main catabolic subcellular organelles responsible for degradation and recycling of both extracellular and intracellular material, which are the final steps in phagocytosis and autophagy. However, the molecular mechanisms underlying lysosomal functions after infection remain obscure. In this study, we conducted a quantitative proteomics analysis of the changes in constitution and glycosylation of proteins in lysosomes derived from murine RAW 264.7 macrophage cells treated with different types of pathogens comprising examples of bacteria (Listeria monocytogenes, L. m), DNA viruses (herpes simplex virus type-1, HSV-1) and RNA viruses (vesicular stomatitis virus, VSV). In total, 3,704 lysosome-related proteins and 300 potential glycosylation sites on 193 proteins were identified. Comparative analysis showed that the aforementioned pathogens induced distinct alterations in the proteome of the lysosome, which is closely associated with the immune functions of macrophages, such as toll-like receptor activation, inflammation and antigen-presentation. The most significant changes in proteins and fluctuations in glycosylation were also determined. Furthermore, Western blot analysis showed that the changes in expression of these proteins were undetectable at the whole cell level. Thus, our study provides unique insights into the function of lysosomes in macrophage activation and immune responses.
Collapse
|
33
|
Li M, Fan J, Li H, Du J, Long S, Peng X. A ratiometric fluorescence probe for lysosomal polarity. Biomaterials 2018; 164:98-105. [PMID: 29500991 DOI: 10.1016/j.biomaterials.2018.02.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Lysosomal polarity affects the interaction activities between enzymes and substrates at the cellular level. Abnormal lysosomal polarity closely linked with disorders and diseases is worthy of attention. The first fluorescence probe, which can image polarity ratiometrically and detect lysosomal polarity quantitatively, is reported herein. The probe termed NOH can emit dual-peaks both in solvents (λem = 474, 552 nm) and in micro-environment. NOH exhibits the Boltzmann function response of the fluorescence intensity ratio to the polarity in a wide range and localizes at lysosomes specifically (Rr = 0.97). In the method of ratiometric fluorescence imaging with NOH, the variation of lysosomal polarity (Δf) can be directly discerned by the color changes. In virtue of ratiometric fluorescence imaging and the Boltzmann function relationship between the fluorescence intensity ratio and the polarity, lysosomal polarity in MCF-7 cells was calculated to be 0.224 and the polarity in the condition of lysosomal storage disorders (or cell death) could also be obtained. This probe will be a promising tool for studying lysosome-related physiological or pathological processes.
Collapse
Affiliation(s)
- Miao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Hi-tech Zone, Dalian 116024, PR China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Hi-tech Zone, Dalian 116024, PR China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Hi-tech Zone, Dalian 116024, PR China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Hi-tech Zone, Dalian 116024, PR China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Hi-tech Zone, Dalian 116024, PR China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Rd., Hi-tech Zone, Dalian 116024, PR China.
| |
Collapse
|
34
|
Bhattacharya A, Brea RJ, Devaraj NK. De novo vesicle formation and growth: an integrative approach to artificial cells. Chem Sci 2017; 8:7912-7922. [PMID: 29619165 PMCID: PMC5858084 DOI: 10.1039/c7sc02339a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/13/2017] [Indexed: 12/22/2022] Open
Abstract
The assembly of synthetic membranes provides a powerful tool to reconstruct the structure and function of living cells.
The assembly of artificial cells provides a novel strategy to reconstruct life's functions and shed light on how life emerged on Earth and possibly elsewhere. A major challenge to the development of artificial cells is the establishment of simple methodologies to mimic native membrane generation. An ambitious strategy is the bottom-up approach, which aims to systematically control the assembly of highly ordered membrane architectures with defined functionality. This perspective will cover recent advances and the current state-of-the-art of minimal lipid architectures that can faithfully reconstruct the structure and function of living cells. Specifically, we will overview work related to the de novo formation and growth of biomimetic membranes. These studies give us a deeper understanding of the nature of living systems and bring new insights into the origin of cellular life.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| | - Roberto J Brea
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , CA 92093 , USA .
| |
Collapse
|
35
|
Mohamed FE, Al-Gazali L, Al-Jasmi F, Ali BR. Pharmaceutical Chaperones and Proteostasis Regulators in the Therapy of Lysosomal Storage Disorders: Current Perspective and Future Promises. Front Pharmacol 2017; 8:448. [PMID: 28736525 PMCID: PMC5500627 DOI: 10.3389/fphar.2017.00448] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/22/2017] [Indexed: 02/05/2023] Open
Abstract
Different approaches have been utilized or proposed for the treatment of lysosomal storage disorders (LSDs) including enzyme replacement and hematopoietic stem cell transplant therapies, both aiming to compensate for the enzymatic loss of the underlying mutated lysosomal enzymes. However, these approaches have their own limitations and therefore the vast majority of LSDs are either still untreatable or their treatments are inadequate. Missense mutations affecting enzyme stability, folding and cellular trafficking are common in LSDs resulting often in low protein half-life, premature degradation, aggregation and retention of the mutant proteins in the endoplasmic reticulum. Small molecular weight compounds such as pharmaceutical chaperones (PCs) and proteostasis regulators have been in recent years to be promising approaches for overcoming some of these protein processing defects. These compounds are thought to enhance lysosomal enzyme activity by specific binding to the mutated enzyme or by manipulating components of the proteostasis pathways promoting protein stability, folding and trafficking and thus enhancing and restoring some of the enzymatic activity of the mutated protein in lysosomes. Multiple compounds have already been approved for clinical use to treat multiple LSDs like migalastat in the treatment of Fabry disease and others are currently under research or in clinical trials such as Ambroxol hydrochloride and Pyrimethamine. In this review, we are presenting a general overview of LSDs, their molecular and cellular bases, and focusing on recent advances on targeting and manipulation proteostasis, including the use of PCs and proteostasis regulators, as therapeutic targets for some LSDs. In addition, we present the successes, limitations and future perspectives in this field.
Collapse
Affiliation(s)
- Fedah E Mohamed
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Fatma Al-Jasmi
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates UniversityAl Ain, United Arab Emirates.,Zayed Bin Sultan Center for Health Sciences, United Arab Emirates UniversityAl-Ain, United Arab Emirates
| |
Collapse
|
36
|
Supriya M, De T, Christopher R. Effect of temperature on lysosomal enzyme activity during preparation and storage of dried blood spots. J Clin Lab Anal 2017; 32. [PMID: 28345760 DOI: 10.1002/jcla.22220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/25/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The use of dried blood spots (DBS) for the assay of lysosomal enzymes has facilitated the implementation of pilot studies for newborn screening for lysosomal storage disorders in various developed countries. The aim of the study was to determine the influence of ambient temperature during DBS preparation and storage on lysosomal enzyme activity in a developing, tropical country. METHODS Blood samples from 12 healthy subjects collected on a S&S 903 filter paper were dried and stored at different temperatures for different periods of time. Activities of five lysosomal enzymes (acid α-glucosidase, acid α-galactosidase, acid β-glucocerebrosidase, acid sphingomyelinase, and galactocerebrosidase) were determined by tandem mass spectrometric and fluorimetric (acid α-glucosidase and acid β-glucocerebrosidase only) assays. RESULTS The mean activities of all five enzymes decreased significantly when DBS was dried at temperatures above 24°C (P<.0001). DBS stored at 4°C, 24°C, 30°C, 37°C, and 45°C for 10 days and more, also showed significant reduction in activities of all five enzymes (P<.0001). CONCLUSION The results highlight the importance of maintaining the correct ambient temperature during DBS preparation and storage to avoid false positive results when screening for lysosomal storage disorders.
Collapse
Affiliation(s)
- Manjunath Supriya
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Tanima De
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| |
Collapse
|
37
|
Abstract
Lysosomes, the major membrane-bound degradative organelles, have a multitude of functions in eukaryotic cells. Lysosomes are the terminal compartments in the endocytic pathway, though they display highly dynamic behaviors, fusing with each other and with late endosomes in the endocytic pathway, and with the plasma membrane during regulated exocytosis and for wound repair. After fusing with late endosomes, lysosomes are reformed from the resulting hybrid organelles through a process that involves budding of a nascent lysosome, extension of the nascent lysosome from the hybrid organelle, while remaining connected by a membrane bridge, and scission of the membrane bridge to release the newly formed lysosome. The newly formed lysosomes undergo cycles of homotypic fusion and fission reactions to form mature lysosomes. In this study, we used a forward genetic screen in Caenorhabditis elegans to identify six regulators of lysosome biology. We show that these proteins function in different steps of lysosome biology, regulating lysosome formation, lysosome fusion, and lysosome degradation.
Collapse
|
38
|
Abstract
The formulation in which therapeutic proteins are administered plays a key role in retaining their biological activity. Enzyme wrapping, using synthetic polymers, is a strategy employed to provide enzymes with lower immunogenicity, longer circulation times, and better targeting capabilities. Protein-polymer complexation methods, involving covalent, noncovalent, and electrostatic interactions, that can provide means to develop formulations for retaining enzyme stability are discussed in this chapter. Amphiphilic self-cross-linkable polymer was used to encapsulate capsase-3 enzyme in the nanogel, while inverse emulsion polymerization method was used to entrap α-glucosidase enzyme in the nanogel. These nanogels were characterized by dynamic light scattering, transmission electron microscopy, and gel electrophoresis. Upon release of caspase-3 enzyme from polymeric nanogel, it retained nearly 86% of its original activity. Similarly, α-glucosidase that was encased in the acid cleavable polymeric nanogel exhibited substantial activity after release under acidic conditions (pH 5, 48h). Nano-armoring of the enzymes were nearly complete and provided high yields of the encased enzyme.
Collapse
|
39
|
Fang L, Gu C, Liu X, Xie J, Hou Z, Tian M, Yin J, Li A, Li Y. Metabolomics study on primary dysmenorrhea patients during the luteal regression stage based on ultra performance liquid chromatography coupled with quadrupole‑time‑of‑flight mass spectrometry. Mol Med Rep 2017; 15:1043-1050. [PMID: 28098892 PMCID: PMC5367332 DOI: 10.3892/mmr.2017.6116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/02/2016] [Indexed: 12/28/2022] Open
Abstract
Primary dysmenorrhea (PD) is a common gynecological disorder which, while not life‑threatening, severely affects the quality of life of women. Most patients with PD suffer ovarian hormone imbalances caused by uterine contraction, which results in dysmenorrhea. PD patients may also suffer from increases in estrogen levels caused by increased levels of prostaglandin synthesis and release during luteal regression and early menstruation. Although PD pathogenesis has been previously reported on, these studies only examined the menstrual period and neglected the importance of the luteal regression stage. Therefore, the present study used urine metabolomics to examine changes in endogenous substances and detect urine biomarkers for PD during luteal regression. Ultra performance liquid chromatography coupled with quadrupole‑time‑of‑flight mass spectrometry was used to create metabolomic profiles for 36 patients with PD and 27 healthy controls. Principal component analysis and partial least squares discriminate analysis were used to investigate the metabolic alterations associated with PD. Ten biomarkers for PD were identified, including ornithine, dihydrocortisol, histidine, citrulline, sphinganine, phytosphingosine, progesterone, 17‑hydroxyprogesterone, androstenedione, and 15‑keto‑prostaglandin F2α. The specificity and sensitivity of these biomarkers was assessed based on the area under the curve of receiver operator characteristic curves, which can be used to distinguish patients with PD from healthy controls. These results provide novel targets for the treatment of PD.
Collapse
Affiliation(s)
- Ling Fang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Caiyun Gu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Xinyu Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Jiabin Xie
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Zhiguo Hou
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Meng Tian
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Jia Yin
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Aizhu Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| | - Yubo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China
| |
Collapse
|
40
|
Giugliani R, Federhen A, Michelin-Tirelli K, Riegel M, Burin M. Relative frequency and estimated minimal frequency of Lysosomal Storage Diseases in Brazil: Report from a Reference Laboratory. Genet Mol Biol 2017; 40:31-39. [PMID: 28304074 PMCID: PMC5409780 DOI: 10.1590/1678-4685-gmb-2016-0268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/10/2016] [Indexed: 01/30/2023] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a heterogeneous group of more than 50 genetic conditions of inborn errors of metabolism (IEM) caused by a defect in lysosomal function. Although there are screening tests for some of these conditions, diagnosis usually depends on specific enzyme assays, which are only available in a few laboratories around the world. A pioneer facility for the diagnosis of IEM and LSDs was established in the South of Brazil in 1982 and has served as a reference service since then. Over the past 34 years, samples from 72,797 patients were referred for investigation of IEM, and 3,211 were confirmed as having an LSD (4.41%, or 1 in 22), with 3,099 of these patients originating from Brazil. The rate of diagnosis has increased over time, in part due to the creation of diagnostic networks involving a large number of Brazilian services. These cases, referred from Brazilian regions, provide insight about the relative frequency of LSDs in the country. The large amount of data available allows for the estimation of the minimal frequency of specific LSDs in Brazil. The reported data could help to plan health care policies, as there are specific therapies available for most of the cases diagnosed.
Collapse
Affiliation(s)
- Roberto Giugliani
- Medical Genetics Service, Hospital das Clínicas de Porto Alegre
(HCPA), Porto Alegre, RS, Brazil
- Department of Genetics, Universidade Federal de Rio Grande do Sul
(UFRGS), Porto Alegre, RS, Brazil
- Post-Graduate Program in Genetics and Molecular Biology, Universidade
Federal de Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Post-Graduate Program in Child and Adolescent Health, Universidade
Federal de Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Clinical Research Group on Medical Genetics, Hospital das Clínicas de
Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Andressa Federhen
- Post-Graduate Program in Child and Adolescent Health, Universidade
Federal de Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Mariluce Riegel
- Medical Genetics Service, Hospital das Clínicas de Porto Alegre
(HCPA), Porto Alegre, RS, Brazil
- Post-Graduate Program in Genetics and Molecular Biology, Universidade
Federal de Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maira Burin
- Medical Genetics Service, Hospital das Clínicas de Porto Alegre
(HCPA), Porto Alegre, RS, Brazil
| |
Collapse
|
41
|
Dersh D, Iwamoto Y, Argon Y. Tay-Sachs disease mutations in HEXA target the α chain of hexosaminidase A to endoplasmic reticulum-associated degradation. Mol Biol Cell 2016; 27:3813-3827. [PMID: 27682588 PMCID: PMC5170605 DOI: 10.1091/mbc.e16-01-0012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/29/2022] Open
Abstract
In Tay–Sachs disease, mutations in HEXA can lead to aberrant α subunits of the HexA enzyme. Two such mutants have folding defects and are cleared by endoplasmic reticulum-associated degradation. Toward the pursuit of therapeutic treatments, it was found that manipulating endoplasmic reticulum quality control can impair mutant α degradation and improve cellular Hex activity. Loss of function of the enzyme β-hexosaminidase A (HexA) causes the lysosomal storage disorder Tay–Sachs disease (TSD). It has been proposed that mutations in the α chain of HexA can impair folding, enzyme assembly, and/or trafficking, yet there is surprisingly little known about the mechanisms of these potential routes of pathogenesis. We therefore investigated the biosynthesis and trafficking of TSD-associated HexA α mutants, seeking to identify relevant cellular quality control mechanisms. The α mutants E482K and G269S are defective in enzymatic activity, unprocessed by lysosomal proteases, and exhibit altered folding pathways compared with wild-type α. E482K is more severely misfolded than G269S, as observed by its aggregation and inability to associate with the HexA β chain. Importantly, both mutants are retrotranslocated from the endoplasmic reticulum (ER) to the cytosol and are degraded by the proteasome, indicating that they are cleared via ER-associated degradation (ERAD). Leveraging these discoveries, we observed that manipulating the cellular folding environment or ERAD pathways can alter the kinetics of mutant α degradation. Additionally, growth of patient fibroblasts at a permissive temperature or with chemical chaperones increases cellular Hex activity by improving mutant α folding. Therefore modulation of the ER quality control systems may be a potential therapeutic route for improving some forms of TSD.
Collapse
Affiliation(s)
- Devin Dersh
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104
| | - Yuichiro Iwamoto
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104
| | - Yair Argon
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
42
|
Meneghini V, Frati G, Sala D, De Cicco S, Luciani M, Cavazzin C, Paulis M, Mentzen W, Morena F, Giannelli S, Sanvito F, Villa A, Bulfone A, Broccoli V, Martino S, Gritti A. Generation of Human Induced Pluripotent Stem Cell-Derived Bona Fide Neural Stem Cells for Ex Vivo Gene Therapy of Metachromatic Leukodystrophy. Stem Cells Transl Med 2016; 6:352-368. [PMID: 28191778 PMCID: PMC5442804 DOI: 10.5966/sctm.2015-0414] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/09/2016] [Indexed: 12/12/2022] Open
Abstract
Allogeneic fetal‐derived human neural stem cells (hfNSCs) that are under clinical evaluation for several neurodegenerative diseases display a favorable safety profile, but require immunosuppression upon transplantation in patients. Neural progenitors derived from patient‐specific induced pluripotent stem cells (iPSCs) may be relevant for autologous ex vivo gene‐therapy applications to treat genetic diseases with unmet medical need. In this scenario, obtaining iPSC‐derived neural stem cells (NSCs) showing a reliable “NSC signature” is mandatory. Here, we generated human iPSC (hiPSC) clones via reprogramming of skin fibroblasts derived from normal donors and patients affected by metachromatic leukodystrophy (MLD), a fatal neurodegenerative lysosomal storage disease caused by genetic defects of the arylsulfatase A (ARSA) enzyme. We differentiated hiPSCs into NSCs (hiPS‐NSCs) sharing molecular, phenotypic, and functional identity with hfNSCs, which we used as a “gold standard” in a side‐by‐side comparison when validating the phenotype of hiPS‐NSCs and predicting their performance after intracerebral transplantation. Using lentiviral vectors, we efficiently transduced MLD hiPSCs, achieving supraphysiological ARSA activity that further increased upon neural differentiation. Intracerebral transplantation of hiPS‐NSCs into neonatal and adult immunodeficient MLD mice stably restored ARSA activity in the whole central nervous system. Importantly, we observed a significant decrease of sulfatide storage when ARSA‐overexpressing cells were used, with a clear advantage in those mice receiving neonatal as compared with adult intervention. Thus, we generated a renewable source of ARSA‐overexpressing iPSC‐derived bona fide hNSCs with improved features compared with clinically approved hfNSCs. Patient‐specific ARSA‐overexpressing hiPS‐NSCs may be used in autologous ex vivo gene therapy protocols to provide long‐lasting enzymatic supply in MLD‐affected brains. Stem Cells Translational Medicine2017;6:352–368
Collapse
Affiliation(s)
- Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Giacomo Frati
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Davide Sala
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Silvia De Cicco
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Marco Luciani
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Chiara Cavazzin
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Marianna Paulis
- National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Francesco Morena
- Biochemistry and Molecular Biology Unit, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Serena Giannelli
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Francesca Sanvito
- Anatomy and Histopathology Department, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
- National Research Council, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Vania Broccoli
- Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| | - Sabata Martino
- Biochemistry and Molecular Biology Unit, Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele, Milan, Italy
| |
Collapse
|
43
|
Gallbladder abnormalities in children with metachromatic leukodystrophy. J Surg Res 2016; 208:187-191. [PMID: 27993207 DOI: 10.1016/j.jss.2016.08.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/21/2016] [Accepted: 08/24/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Metachromatic leukodystrophy (MLD) is a lysosomal storage disease that leads to neurological deterioration and visceral involvement, including sulphatide deposition in the gallbladder wall. Using our institution's extensive experience in treating MLD, we examined the incidence of gallbladder abnormalities in the largest cohort of children with MLD to date. METHODS We conducted a retrospective review of all children with MLD, adrenoleukodystrophy (ALD), or Krabbe disease who underwent hematopoietic stem cell transplantation (HSCT) at our institution between 1994 and 2015. Baseline characteristics and unadjusted outcomes were compared using the Kruskal-Wallis test for continuous variables and Pearson χ2 test for categorical variables, with significance defined as P < 0.05. RESULTS In total, 87 children met study criteria: 29 children with MLD and 58 children with ALD or Krabbe disease. Children with MLD were more likely to demonstrate gallbladder abnormalities on imaging, both before HSCT (41.4% versus 5.2%, P < 0.001) and after HSCT (75.9% versus 41.4%, P = 0.002). Consequently, a larger proportion of children with MLD underwent surgical or interventional management of biliary disease (10.3% versus 3.4%, P = 0.03). CONCLUSIONS Children with MLD have a significantly greater incidence of gallbladder abnormalities than children with other lysosomal storage diseases. Biliary disease should be considered in children with MLD who develop abdominal pain, and cholecystectomy should be considered for persistent, symptomatic gallbladder abnormalities.
Collapse
|
44
|
Meneghini V, Lattanzi A, Tiradani L, Bravo G, Morena F, Sanvito F, Calabria A, Bringas J, Fisher-Perkins JM, Dufour JP, Baker KC, Doglioni C, Montini E, Bunnell BA, Bankiewicz K, Martino S, Naldini L, Gritti A. Pervasive supply of therapeutic lysosomal enzymes in the CNS of normal and Krabbe-affected non-human primates by intracerebral lentiviral gene therapy. EMBO Mol Med 2016; 8:489-510. [PMID: 27025653 PMCID: PMC5128736 DOI: 10.15252/emmm.201505850] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) and globoid cell leukodystrophy (GLD or Krabbe disease) are severe neurodegenerative lysosomal storage diseases (LSD) caused by arylsulfatase A (ARSA) and galactosylceramidase (GALC) deficiency, respectively. Our previous studies established lentiviral gene therapy (GT) as a rapid and effective intervention to provide pervasive supply of therapeutic lysosomal enzymes in CNS tissues of MLD and GLD mice. Here, we investigated whether this strategy is similarly effective in juvenile non-human primates (NHP). To provide proof of principle for tolerability and biological efficacy of the strategy, we established a comprehensive study in normal NHP delivering a clinically relevant lentiviral vector encoding for the human ARSA transgene. Then, we injected a lentiviral vector coding for the human GALC transgene in Krabbe-affected rhesus macaques, evaluating for the first time the therapeutic potential of lentiviral GT in this unique LSD model. We showed favorable safety profile and consistent pattern of LV transduction and enzyme biodistribution in the two models, supporting the robustness of the proposed GT platform. We documented moderate inflammation at the injection sites, mild immune response to vector particles in few treated animals, no indication of immune response against transgenic products, and no molecular evidence of insertional genotoxicity. Efficient gene transfer in neurons, astrocytes, and oligodendrocytes close to the injection sites resulted in robust production and extensive spreading of transgenic enzymes in the whole CNS and in CSF, leading to supraphysiological ARSA activity in normal NHP and close to physiological GALC activity in the Krabbe NHP, in which biological efficacy was associated with preliminary indication of therapeutic benefit. These results support the rationale for the clinical translation of intracerebral lentiviral GT to address CNS pathology in MLD, GLD, and other neurodegenerative LSD.
Collapse
Affiliation(s)
- Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annalisa Lattanzi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Tiradani
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gabriele Bravo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, Biochemistry and Molecular Biology Unit, University of Perugia, Perugia, Italy
| | - Francesca Sanvito
- Anatomy and Histopathology Department, San Raffaele Scientific Institute, Milano, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - John Bringas
- University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Jeanne M Fisher-Perkins
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | - Jason P Dufour
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | - Kate C Baker
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | - Claudio Doglioni
- Anatomy and Histopathology Department, San Raffaele Scientific Institute, Milano, Italy Vita-Salute San Raffaele University, Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruce A Bunnell
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | | | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, Biochemistry and Molecular Biology Unit, University of Perugia, Perugia, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy Vita-Salute San Raffaele University, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
45
|
|
46
|
A novel LC-MS/MS assay for heparan sulfate screening in the cerebrospinal fluid of mucopolysaccharidosis IIIA patients. Bioanalysis 2016; 8:285-95. [PMID: 26847798 DOI: 10.4155/bio.15.243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIMS Heparan sulfate (HS) accumulates in the central nervous system in mucopolysaccharidosis III type A (MPS IIIA). A validated LC-MS/MS assay was developed to measure HS in human cerebrospinal fluid (CSF). METHODS & RESULTS HS was extracted and digested and the resultant disaccharides were derivatized with a novel label, 4-butylaniline, enabling isoform separation and isotope-tagged analog introduction as an internal standard for LC-MS/MS. The assay has a LLOQ for disaccharides of 0.1 μM, ±20% accuracy and ≤20% precision. CSF samples from patients with MPS IIIA showed elevated HS levels (mean 4.9 μM) compared with negative controls (0.37 μM). CONCLUSION This assay detected elevated HS levels in the CSF of patients with MPS IIIA and provides a method to assess experimental therapies.
Collapse
|
47
|
Coutinho MF, Alves S. From rare to common and back again: 60years of lysosomal dysfunction. Mol Genet Metab 2016; 117:53-65. [PMID: 26422115 DOI: 10.1016/j.ymgme.2015.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 01/12/2023]
Abstract
Sixty years after its discovery, the lysosome is no longer considered as cell's waste bin but as an organelle playing a central role in cell metabolism. Besides its well known association with lysosomal storage disorders (mostly rare and life-threatening diseases), recent data have shown that the lysosome is also a player in some of the most common conditions of our time; and, perhaps even most important, it is not only a target for orphan drugs (rare disease therapeutic approaches) but also a putative target to treat patients suffering from common complex diseases worldwide. Here we review the striking associations linking rare lysosomal storage disorders such as the well-known Gaucher disease, or even the recently discovered, extremely rare Neuronal Ceroid Lipofuscinosis-11 and some of the most frequent, multifaceted and complex disorders of modern society such as cancer, Parkinson's disease and frontotemporal lobar degeneration.
Collapse
Affiliation(s)
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, INSA, Portugal
| |
Collapse
|
48
|
Sheth J, Mistri M, Bhavsar R, Sheth F, Kamate M, Shah H, Datar C. Lysosomal storage disorders in Indian children with neuroregression attending a genetic center. Indian Pediatr 2015; 52:1029-33. [DOI: 10.1007/s13312-015-0768-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015; 115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 5139] [Impact Index Per Article: 513.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ju Mei
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nelson L. C. Leung
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
50
|
Wong CO, Palmieri M, Li J, Akhmedov D, Chao Y, Broadhead GT, Zhu MX, Berdeaux R, Collins CA, Sardiello M, Venkatachalam K. Diminished MTORC1-Dependent JNK Activation Underlies the Neurodevelopmental Defects Associated with Lysosomal Dysfunction. Cell Rep 2015; 12:2009-20. [PMID: 26387958 DOI: 10.1016/j.celrep.2015.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/20/2015] [Accepted: 08/14/2015] [Indexed: 12/12/2022] Open
Abstract
Here, we evaluate the mechanisms underlying the neurodevelopmental deficits in Drosophila and mouse models of lysosomal storage diseases (LSDs). We find that lysosomes promote the growth of neuromuscular junctions (NMJs) via Rag GTPases and mechanistic target of rapamycin complex 1 (MTORC1). However, rather than employing S6K/4E-BP1, MTORC1 stimulates NMJ growth via JNK, a determinant of axonal growth in Drosophila and mammals. This role of lysosomal function in regulating JNK phosphorylation is conserved in mammals. Despite requiring the amino-acid-responsive kinase MTORC1, NMJ development is insensitive to dietary protein. We attribute this paradox to anaplastic lymphoma kinase (ALK), which restricts neuronal amino acid uptake, and the administration of an ALK inhibitor couples NMJ development to dietary protein. Our findings provide an explanation for the neurodevelopmental deficits in LSDs and suggest an actionable target for treatment.
Collapse
Affiliation(s)
- Ching-On Wong
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Michela Palmieri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, TX 77030, USA
| | - Jiaxing Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dmitry Akhmedov
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Yufang Chao
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Geoffrey T Broadhead
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA
| | - Catherine A Collins
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, TX 77030, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Cell and Regulatory Biology (CRB), Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, University of Texas School of Medicine, Houston, TX 77030, USA.
| |
Collapse
|