1
|
Peng HT, Singh K, Rhind SG, da Luz L, Beckett A. Dried Plasma for Major Trauma: Past, Present, and Future. Life (Basel) 2024; 14:619. [PMID: 38792640 PMCID: PMC11122082 DOI: 10.3390/life14050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Uncontrollable bleeding is recognized as the leading cause of preventable death among trauma patients. Early transfusion of blood products, especially plasma replacing crystalloid and colloid solutions, has been shown to increase survival of severely injured patients. However, the requirements for cold storage and thawing processes prior to transfusion present significant logistical challenges in prehospital and remote areas, resulting in a considerable delay in receiving thawed or liquid plasma, even in hospitals. In contrast, freeze- or spray-dried plasma, which can be massively produced, stockpiled, and stored at room temperature, is easily carried and can be reconstituted for transfusion in minutes, provides a promising alternative. Drawn from history, this paper provides a review of different forms of dried plasma with a focus on in vitro characterization of hemostatic properties, to assess the effects of the drying process, storage conditions in dry form and after reconstitution, their distinct safety and/or efficacy profiles currently in different phases of development, and to discuss the current expectations of these products in the context of recent preclinical and clinical trials. Future research directions are presented as well.
Collapse
Affiliation(s)
- Henry T. Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (K.S.); (S.G.R.)
| | - Kanwal Singh
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (K.S.); (S.G.R.)
| | - Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, Canada; (K.S.); (S.G.R.)
| | - Luis da Luz
- Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada;
| | - Andrew Beckett
- St. Michael’s Hospital, University of Toronto, Toronto, ON M5B 1W8, Canada;
- Royal Canadian Medical Services, Ottawa, ON K1A 0K2, Canada
| |
Collapse
|
2
|
Sheffield WP, Singh K, Beckett A, Devine DV. Prehospital Freeze-Dried Plasma in Trauma: A Critical Review. Transfus Med Rev 2024; 38:150807. [PMID: 38114340 DOI: 10.1016/j.tmrv.2023.150807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Major traumatic hemorrhage is now frequently treated by early hemostatic resuscitation on hospital arrival. Prehospital hemostatic resuscitation could therefore improve outcomes for bleeding trauma patients, but there are logistical challenges. Freeze-dried plasma (FDP) offers indisputable logistical advantages over conventional blood products, such as long shelf life, stability at ambient temperature, and rapid reconstitution without specialized equipment. We sought high level, randomized, controlled evidence of FDP clinical efficacy in trauma. A structured systematic search of MEDLINE/PubMed was carried out and identified 52 relevant English language publications. Three studies involving 607 patients met our criteria: Resuscitation with Blood Products in Patients with Trauma-related Hemorrhagic Shock receiving Prehospital Care (RePHILL, n = 501); Prehospital Lyophilized Plasma Transfusion for Trauma-Induced Coagulopathy in Patients at Risk for Hemorrhagic Shock (PREHO-PLYO, n = 150); and a pilot Australian trial (n = 25). RePHILL found no effect of FDP plus packed red blood cells (PRBC) concentrate transfusion versus saline on mortality. PREHO-PLYO found no effect of FDP versus saline on International Normalized Ratio (INR) at hospital arrival. The pilot trial found that study of PRBC versus PRBC plus FDP was feasible during long air transport times to an Australian trauma centre. Further research is required to determine under what conditions FDP might provide prehospital benefit to trauma patients.
Collapse
Affiliation(s)
- William P Sheffield
- Medical Affairs and Innovation, Canadian Blood Services, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Kanwal Singh
- Trauma Surgery, Critical Care Medicine and Acute Care Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Beckett
- Trauma Surgery, Critical Care Medicine and Acute Care Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Canadian Forces Health Services, Ottawa, Ontario, Canada
| | - Dana V Devine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Zhang J, Hu X, Wang T, Xiao R, Zhu L, Ruiz M, Dupuis J, Hu Q. Extracellular vesicles in venous thromboembolism and pulmonary hypertension. J Nanobiotechnology 2023; 21:461. [PMID: 38037042 PMCID: PMC10691137 DOI: 10.1186/s12951-023-02216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Venous thromboembolism (VTE) is a multifactorial disease, and pulmonary hypertension (PH) is a serious condition characterized by pulmonary vascular remodeling leading with increased pulmonary vascular resistance, ultimately leading to right heart failure and death. Although VTE and PH have distinct primary etiologies, they share some pathophysiologic similarities such as dysfunctional vasculature and thrombosis. In both conditions there is solid evidence that EVs derived from a variety of cell types including platelets, monocytes, endothelial cells and smooth muscle cells contribute to vascular endothelial dysfunction, inflammation, thrombosis, cellular activation and communications. However, the roles and importance of EVs substantially differ between studies depending on experimental conditions and parent cell origins of EVs that modify the nature of their cargo. Numerous studies have confirmed that EVs contribute to the pathophysiology of VTE and PH and increased levels of various EVs in relation with the severity of VTE and PH, confirming its potential pathophysiological role and its utility as a biomarker of disease severity and as potential therapeutic targets.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Pathology, Union Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Xiaoyi Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
- Department of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Respiratory Medicine, Tongji Hospital, Tongji Medical College, HUST, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Liping Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China
| | - Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Canada
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Jocelyn Dupuis
- Montreal Heart Institute, Montréal, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), 13 Hangkong Road, Wuhan, 430030, China.
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, HUST, Wuhan, China.
| |
Collapse
|
4
|
Castillo-Sanchez R, Churruca-Schuind A, Martinez-Ival M, Salazar EP. Cancer-associated Fibroblasts Communicate with Breast Tumor Cells Through Extracellular Vesicles in Tumor Development. Technol Cancer Res Treat 2022; 21:15330338221131647. [PMID: 36222020 PMCID: PMC9558853 DOI: 10.1177/15330338221131647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Breast cancer is the leading cause of cancer death among women worldwide. In solid tumors, the microenvironment plays a critical role in tumor development, and it has been described a communication between the different cell types that conform the stroma, including fibroblasts, pericytes, adipocytes, immune cells and cancer-associated fibroblasts. Intercellular communication is bidirectional, complex, multifactorial and is mediated by the secretion of molecules and extracellular vesicles. The extracellular vesicles are vesicles limited by two membranes that are secreted by normal and cancer cells into the extracellular space. Extracellular vesicle cargo is complex and includes proteins, miRNAs, DNA and lipids, and their composition is specific to their parent cells. Extracellular vesicles are taken up for neighboring or distant cells. Particularly, extracellular vesicles from breast cancer cells are taken up for fibroblasts and it induces the activation of fibroblasts into cancer-associated fibroblasts. Interestingly, cancer associated fibroblasts release extracellular vesicles that are taken up for breast cancer cells and promote migration, invasion, proliferation, epithelial-mesenchymal transition, changes in metabolism, chemoresistance, evasion of immune system and remodeling of extracellular matrix. In addition, the enrichment of specific cargos in extracellular vesicles of breast cancer patients has been suggested to be used as biomarkers of the disease. Here we review the current literature about the intercommunication between tumor cells and cancer associated fibroblasts through extracellular vesicles in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Eduardo Perez Salazar
- Eduardo Perez Salazar, PhD, Departamento de
Biologia Celular, Cinvestav-IPN, Av. IPN # 2508, Mexico City 07360, Mexico.
| |
Collapse
|
5
|
Sbarigia C, Vardanyan D, Buccini L, Tacconi S, Dini L. SARS-CoV-2 and extracellular vesicles: An intricate interplay in pathogenesis, diagnosis and treatment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.987034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) are widely recognized as intercellular communication mediators. Among the different biological processes, EVs play a role in viral infections, supporting virus entrance and spread into host cells and immune response evasion. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an urgent public health issue with significant morbidity and mortality worldwide, being responsible for the current COVID-19 pandemic. Since EVs are implicated in SARS-CoV-2 infection in a morphological and functional level, they have gained growing interest for a better understanding of SARS-CoV-2 pathogenesis and represent possible diagnostic tools to track the disease progression. Furthermore, thanks to their biocompatibility and efficient immune activation, the use of EVs may also represent a promising strategy for the development of new therapeutic strategies against COVID-19. In this review, we explore the role of EVs in viral infections with a focus on SARS-CoV-2 biology and pathogenesis, considering recent morphometric studies. The common biogenesis aspects and structural similarities between EVs and SARS-CoV-2 will be examined, offering a panoramic of their multifaceted interplay and presenting EVs as a machinery supporting the viral cycle. On the other hand, EVs may be exploited as early diagnostic biomarkers and efficient carriers for drug delivery and vaccination, and ongoing studies will be reviewed to highlight EVs as potential alternative therapeutic strategies against SARS-CoV-2 infection.
Collapse
|
6
|
Keshavarz Alikhani H, Shokoohian B, Rezasoltani S, Hossein-khannazer N, Yadegar A, Hassan M, Vosough M. Application of Stem Cell-Derived Extracellular Vesicles as an Innovative Theranostics in Microbial Diseases. Front Microbiol 2021; 12:785856. [PMID: 34917064 PMCID: PMC8669997 DOI: 10.3389/fmicb.2021.785856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), as nano-/micro-scale vehicles, are membranous particles containing various cargoes including peptides, proteins, different types of RNAs and other nucleic acids, and lipids. These vesicles are produced by all cell types, in which stem cells are a potent source for them. Stem cell-derived EVs could be promising platforms for treatment of infectious diseases and early diagnosis. Infectious diseases are responsible for more than 11 million deaths annually. Highly transmissible nature of some microbes, such as newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), drives researcher's interest to set up different strategies to develop novel therapeutic strategies. Recently, EVs-based diagnostic and therapeutic approaches have been launched and gaining momentum very fast. The efficiency of stem cell-derived EVs on treatment of clinical complications of different viruses and bacteria, such as SARS-CoV-2, hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), Staphylococcus aureus, Escherichia coli has been demonstrated. On the other hand, microbial pathogens are able to incorporate their components into their EVs. The microbe-derived EVs have different physiological and pathological impacts on the other organisms. In this review, we briefly discussed biogenesis and the fate of EVs. Then, EV-based therapy was described and recent developments in understanding the potential application of stem cell-derived EVs on pathogenic microorganisms were recapitulated. Furthermore, the mechanisms by which EVs were exploited to fight against infectious diseases were highlighted. Finally, the deriver challenges in translation of stem cell-derived EVs into the clinical arena were explored.
Collapse
Affiliation(s)
- Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Bahare Shokoohian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | - Sama Rezasoltani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikoo Hossein-khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
7
|
Hebbel RP, Vercellotti GM. Multiple inducers of endothelial NOS (eNOS) dysfunction in sickle cell disease. Am J Hematol 2021; 96:1505-1517. [PMID: 34331722 PMCID: PMC9292023 DOI: 10.1002/ajh.26308] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022]
Abstract
A characteristic aspect of the robust, systemic inflammatory state in sickle cell disease is dysfunction of endothelial nitric oxide synthase (eNOS). We identify 10 aberrant endothelial cell inputs, present in the specific sickle context, that are known to have the ability to cause eNOS dysfunction. These are: endothelial arginase depletion, asymmetric dimethylarginine, complement activation, endothelial glycocalyx degradation, free fatty acids, inflammatory mediators, microparticles, oxidized low density lipoproteins, reactive oxygen species, and Toll‐like receptor 4 signaling ligands. The effect of true eNOS dysfunction on clinical testing using flow‐mediated dilation can be simulated by two known examples of endothelial dysfunction mimicry (hemoglobin consumption of NO; and oxidation of smooth muscle cell soluble guanylate cyclase). This lends ambiguity to interpretation of such clinical testing. The presence of these multiple perturbing factors argues that a therapeutic approach targeting only a single injurious endothelial input (or either example of mimicry) would not be sufficiently efficacious. This would seem to argue for identifying therapeutics that directly protect eNOS function or application of multiple therapeutic approaches.
Collapse
Affiliation(s)
- Robert P. Hebbel
- Division of Hematology‐Oncology‐Transplantation, Department of Medicine University of Minnesota Medical School Minneapolis Minnesota USA
| | - Gregory M. Vercellotti
- Division of Hematology‐Oncology‐Transplantation, Department of Medicine University of Minnesota Medical School Minneapolis Minnesota USA
| |
Collapse
|
8
|
Cleveland S, Reed K, Thomas JL, Ajijola OA, Ebrahimi R, Hsiai T, Lazarov A, Montoya AK, Neria Y, Shimbo D, Wolitzky-Taylor K, Sumner JA. Key dimensions of post-traumatic stress disorder and endothelial dysfunction: a protocol for a mechanism-focused cohort study. BMJ Open 2021; 11:e043060. [PMID: 33952541 PMCID: PMC8103395 DOI: 10.1136/bmjopen-2020-043060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Both trauma exposure and post-traumatic stress disorder (PTSD) are associated with increased risk of cardiovascular disease (CVD), the leading cause of death in the USA. Endothelial dysfunction, a modifiable, early marker of CVD risk, may represent a physiological mechanism underlying this association. This mechanism-focused cohort study aims to investigate the relationship between PTSD (both in terms of diagnosis and underlying symptom dimensions) and endothelial dysfunction in a diverse, community-based sample of adult men and women. METHODS AND ANALYSIS Using a cohort design, 160 trauma-exposed participants without a history of CVD are designated to the PTSD group (n=80) or trauma-exposed matched control group (n=80) after a baseline diagnostic interview assessment. Participants in the PTSD group have a current (past month) diagnosis of PTSD, whereas those in the control group have a history of trauma but no current or past psychiatric diagnoses. Endothelial dysfunction is assessed via flow-mediated vasodilation of the brachial artery and circulating levels of endothelial cell-derived microparticles. Two higher order symptom dimensions of PTSD-fear and dysphoria-are measured objectively with a fear conditioning paradigm and attention allocation task, respectively. Autonomic imbalance, inflammation, and oxidative stress are additionally assessed and will be examined as potential pathway variables linking PTSD and its dimensions with endothelial dysfunction. Participants are invited to return for a 2-year follow-up visit to reassess PTSD and its dimensions and endothelial dysfunction in order to investigate longitudinal associations. ETHICS AND DISSEMINATION This study is conducted in compliance with the Helsinki Declaration and University of California, Los Angeles Institutional Review Board. The results of this study will be disseminated via articles in peer-reviewed journals and presentations at academic conferences and to community partners. TRIAL REGISTRATION NUMBER NCT03778307; pre-results.
Collapse
Affiliation(s)
- Shiloh Cleveland
- Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Kristina Reed
- Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Jordan L Thomas
- Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Olujimi A Ajijola
- Neurocardiology Research Center of Excellence, Cardiac Arrhythmia Center, University of California Los Angeles, Los Angeles, California, USA
| | - Ramin Ebrahimi
- Medicine, University of California Los Angeles, Los Angeles, California, USA
- Medicine, Cardiology Section, Veterans Affairs Greater Los Angeles Healthcare System, Los Angleles, California, USA
| | - Tzung Hsiai
- Medicine, University of California Los Angeles, Los Angeles, California, USA
- Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Amit Lazarov
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amanda K Montoya
- Psychology, University of California Los Angeles, Los Angeles, California, USA
| | - Yuval Neria
- Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
- Epidemiology, Columbia University Irving Medical Center, New York, New York, USA
| | - Daichi Shimbo
- Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Kate Wolitzky-Taylor
- Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, California, USA
| | - Jennifer A Sumner
- Psychology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
9
|
Multifaceted Functions of Platelets in Cancer: From Tumorigenesis to Liquid Biopsy Tool and Drug Delivery System. Int J Mol Sci 2020; 21:ijms21249585. [PMID: 33339204 PMCID: PMC7765591 DOI: 10.3390/ijms21249585] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Platelets contribute to several types of cancer through plenty of mechanisms. Upon activation, platelets release many molecules, including growth and angiogenic factors, lipids, and extracellular vesicles, and activate numerous cell types, including vascular and immune cells, fibroblasts, and cancer cells. Hence, platelets are a crucial component of cell-cell communication. In particular, their interaction with cancer cells can enhance their malignancy and facilitate the invasion and colonization of distant organs. These findings suggest the use of antiplatelet agents to restrain cancer development and progression. Another peculiarity of platelets is their capability to uptake proteins and transcripts from the circulation. Thus, cancer-patient platelets show specific proteomic and transcriptomic expression patterns, a phenomenon called tumor-educated platelets (TEP). The transcriptomic/proteomic profile of platelets can provide information for the early detection of cancer and disease monitoring. Platelet ability to interact with tumor cells and transfer their molecular cargo has been exploited to design platelet-mediated drug delivery systems to enhance the efficacy and reduce toxicity often associated with traditional chemotherapy. Platelets are extraordinary cells with many functions whose exploitation will improve cancer diagnosis and treatment.
Collapse
|
10
|
Navas-Acien A, Martinez-Morata I, Hilpert M, Rule A, Shimbo D, LoIacono NJ. Early Cardiovascular Risk in E-cigarette Users: the Potential Role of Metals. Curr Environ Health Rep 2020; 7:353-361. [PMID: 33242201 DOI: 10.1007/s40572-020-00297-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW Electronic cigarettes (e-cigs) are a source of metals. Epidemiologic and experimental evidence support that metals are toxic to the cardiovascular system. Little is known, however, about the role that e-cig metals may play as toxicants for the possible cardiovascular effects of e-cig use. The goal of this narrative review is to summarize the evidence on e-cig use and metal exposure and on e-cig use and cardiovascular toxicity and discuss the research needs. RECENT FINDINGS In vitro studies show cytotoxicity and increased oxidative stress in myocardial cells and vascular endothelial cells exposed to e-liquids and e-cig aerosols, with effects partially reversed with antioxidant treatment. There is some evidence that the heating coil plays a role in cell toxicity. Mice exposed to e-cigs for several weeks showed higher levels of oxidative stress, inflammation, platelet activation, and thrombogenesis. Cross-over clinical experiments show e-cig use alters nitric oxide-mediated flow-mediated dilation, endothelial progenitor cells, and arterial stiffness. Cross-sectional evidence from large nationally representative samples in the USA support that e-cig use is associated with self-reported myocardial infarction. Smaller studies found associations of e-cig use with higher oxidized low-density protein and heart variability compared to healthy controls. Numerous studies have measured elevated levels of toxic metals in e-cig aerosols including lead, nickel, chromium, and manganese. Arsenic has been measured in some e-liquids. Several of these metals are well known to be cardiotoxic. Numerous studies show that e-cigs are a source of cardiotoxic metals. Experimental studies (in vitro, in vivo, and clinical studies) show acute toxicity of e-cigs to the vascular system. Studies of long-term toxicity in animals and humans are missing. Longitudinal studies with repeated measures of metal exposure and subclinical cardiovascular outcomes (e.g., coronary artery calcification) could contribute to determine the long-term cardiovascular effects of e-cigs and the potential role of metals in those effects.
Collapse
Affiliation(s)
- Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Daichi Shimbo
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nancy J LoIacono
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Jadli AS, Ballasy N, Edalat P, Patel VB. Inside(sight) of tiny communicator: exosome biogenesis, secretion, and uptake. Mol Cell Biochem 2020; 467:77-94. [PMID: 32088833 DOI: 10.1007/s11010-020-03703-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/14/2020] [Indexed: 01/07/2023]
Abstract
Discovered in the late 1980s as an extracellular vesicle of endosomal origin secreted from reticulocytes, exosomes recently gained scientific attention due to its role in intercellular communication. Exosomes have now been identified to carry cell-specific cargo of nucleic acids, proteins, lipids, and other biologically active molecules. Exosomes can be selectively taken up by neighboring or distant cells, which has shown to result in structural and functional responses in the recipient cells. Recent advances indicate the regulation of exosomes at various steps, including their biogenesis, selection of their cargo, as well as cell-specific uptake. This review will shed light on the differences between the type of extracellular vesicles. In this review, we discuss the recent progress in our understanding of the regulation of exosome biogenesis, secretion, and uptake.
Collapse
Affiliation(s)
- Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Noura Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Pariya Edalat
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, The University of Calgary, HMRB-53, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada. .,Libin Cardiovascular Institute of Alberta, The University of Calgary, HMRB-71, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
12
|
Su KY, Lee WL. Fourier Transform Infrared Spectroscopy as a Cancer Screening and Diagnostic Tool: A Review and Prospects. Cancers (Basel) 2020; 12:E115. [PMID: 31906324 PMCID: PMC7017192 DOI: 10.3390/cancers12010115] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Infrared spectroscopy has long been used to characterize chemical compounds, but the applicability of this technique to the analysis of biological materials containing highly complex chemical components is arguable. However, recent advances in the development of infrared spectroscopy have significantly enhanced the capacity of this technique in analyzing various types of biological specimens. Consequently, there is an increased number of studies investigating the application of infrared spectroscopy in screening and diagnosis of various diseases. The lack of highly sensitive and specific methods for early detection of cancer has warranted the search for novel approaches. Being more simple, rapid, accurate, inexpensive, non-destructive and suitable for automation compared to existing screening, diagnosis, management and monitoring methods, Fourier transform infrared spectroscopy can potentially improve clinical decision-making and patient outcomes by detecting biochemical changes in cancer patients at the molecular level. Besides the commonly analyzed blood and tissue samples, extracellular vesicle-based method has been gaining popularity as a non-invasive approach. Therefore, infrared spectroscopic analysis of extracellular vesicles could be a useful technique in the future for biomedical applications. In this review, we discuss the potential clinical applications of Fourier transform infrared spectroscopic analysis using various types of biological materials for cancer. Additionally, the rationale and advantages of using extracellular vesicles in the spectroscopic analysis for cancer diagnostics are discussed. Furthermore, we highlight the challenges and future directions of clinical translation of the technique for cancer.
Collapse
Affiliation(s)
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
13
|
Sierko E, Sobierska M, Zabrocka E, Myśliwiec M, Kruszewska J, Lipska A, Radziwon P, Wojtukiewicz MZ. Endothelial Microparticles and Blood Coagulation Activation in Head and Neck Cancer Patients Undergoing Radiotherapy or Radiochemotherapy. In Vivo 2019; 33:627-632. [PMID: 30804151 DOI: 10.21873/invivo.11520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIM Endothelial microparticles (EMP) are small vesicles which are released from the endothelium and contribute to blood coagulation activation in various clinical settings. The aim of this study was to examine whether EMP influence blood coagulation activation in cancer patients during radiotherapy/radiochemotherapy (RT/RCT). MATERIALS AND METHODS Sixteen head and neck cancer (HNC) patients undergoing RT/RCT and 10 controls were examined. EMP and thrombin-antithrombin complex (TAT) were measured by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Tissue factor-positive EMP (TF+EMP) were defined as CD31+/CD142+/CD42b- Results: TF+EMP were significantly elevated in HNC patients before RT/RCT (T0) (1299±1154/μl), one day after RT/RCT (T1d) (1257±603/μl) and 3 months after RT/RCT (T3m) (1289±372/μl) compared to controls (688±647/μl). TF+EMP levels at T0/T1d and T0, as well as at T1d and T3m were not significantly different. TAT levels at T0 and T1d did not differ significantly but at T3m were significantly lower compared to T0 and T1d TF+EMP and TAT concentrations were not significantly correlated at T0 (r=0.058; p=0.828), T1d (r=0.373, p=0.154) and T3m (r=-0.302, p=0.204). CONCLUSION TF+EMP may not contribute to hemostatic abnormalities in HNC patients.
Collapse
Affiliation(s)
- Ewa Sierko
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland .,Department of Radiotherapy, Comprehensive Cancer Center, Bialystok, Poland
| | - Monika Sobierska
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland.,Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Ewa Zabrocka
- Department of Medicine, Stony Brook University, Stony Brook, NY, U.S.A
| | - Marta Myśliwiec
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kruszewska
- Department of Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Alina Lipska
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | | |
Collapse
|
14
|
Krishnakumar V, Durairajan SSK, Alagarasu K, Li M, Dash AP. Recent Updates on Mouse Models for Human Immunodeficiency, Influenza, and Dengue Viral Infections. Viruses 2019; 11:E252. [PMID: 30871179 PMCID: PMC6466164 DOI: 10.3390/v11030252] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/09/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022] Open
Abstract
Well-developed mouse models are important for understanding the pathogenesis and progression of immunological response to viral infections in humans. Moreover, to test vaccines, anti-viral drugs and therapeutic agents, mouse models are fundamental for preclinical investigations. Human viruses, however, seldom infect mice due to differences in the cellular receptors used by the viruses for entry, as well as in the innate immune responses in mice and humans. In other words, a species barrier exists when using mouse models for investigating human viral infections. Developing transgenic (Tg) mice models expressing the human genes coding for viral entry receptors and knock-out (KO) mice models devoid of components involved in the innate immune response have, to some extent, overcome this barrier. Humanized mouse models are a third approach, developed by engrafting functional human cells and tissues into immunodeficient mice. They are becoming indispensable for analyzing human viral diseases since they nearly recapitulate the human disease. These mouse models also serve to test the efficacy of vaccines and antiviral agents. This review provides an update on the Tg, KO, and humanized mouse models that are used in studies investigating the pathogenesis of three important human-specific viruses, namely human immunodeficiency (HIV) virus 1, influenza, and dengue.
Collapse
Affiliation(s)
- Vinodhini Krishnakumar
- Department of Microbiology, School of Life Sciences, Central University of Tamilnadu, Tiruvarur 610 005, India.
| | | | - Kalichamy Alagarasu
- Dengue/Chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India.
| | - Min Li
- Neuroscience Research Laboratory, Mr. & Mrs. Ko Chi-Ming Centre for Parkinson's Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, HKSAR, China.
| | | |
Collapse
|
15
|
Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 2019; 34:11-30. [PMID: 29181712 PMCID: PMC6244861 DOI: 10.1007/s00467-017-3816-z] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles are cell-derived membrane particles ranging from 30 to 5,000 nm in size, including exosomes, microvesicles, and apoptotic bodies. They are released under physiological conditions, but also upon cellular activation, senescence, and apoptosis. They play an important role in intercellular communication. Their release may also maintain cellular integrity by ridding the cell of damaging substances. This review describes the biogenesis, uptake, and detection of extracellular vesicles in addition to the impact that they have on recipient cells, focusing on mechanisms important in the pathophysiology of kidney diseases, such as thrombosis, angiogenesis, tissue regeneration, immune modulation, and inflammation. In kidney diseases, extracellular vesicles may be utilized as biomarkers, as they are detected in both blood and urine. Furthermore, they may contribute to the pathophysiology of renal disease while also having beneficial effects associated with tissue repair. Because of their role in the promotion of thrombosis, inflammation, and immune-mediated disease, they could be the target of drug therapy, whereas their favorable effects could be utilized therapeutically in acute and chronic kidney injury.
Collapse
|
16
|
Taleb RSZ, Moez P, Younan D, Eisenacher M, Tenbusch M, Sitek B, Bracht T. Protein Biomarker Discovery Using Human Blood Plasma Microparticles. Methods Mol Biol 2019; 1959:51-64. [PMID: 30852815 DOI: 10.1007/978-1-4939-9164-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cells shed into the extracellular space a population of membranous vesicles of plasma membrane origin called microparticles (MP). Given the fact that MP are abundantly present in body fluids including plasma, rich in cell-type or disease-specific proteins and formed in conditions of stress and injury, they have been extensively investigated as biomarkers in various diseases. With the advancement in the mass spectrometry-based proteome analysis, the knowledge of the protein composition of plasma MP (PMP) has been intensively expanded, which aids the discovery of novel diagnostic target proteins. However, the lack of standardized and accurate protocols for PMP isolation limits the implementation of PMP as biomarkers in clinical settings. Here, we describe in detail a robust protocol for PMP isolation from human blood plasma via ultracentrifugation followed by label-free quantitative proteome analysis of PMP.
Collapse
Affiliation(s)
- Raghda Saad Zaghloul Taleb
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Pacint Moez
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doreen Younan
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | - Thilo Bracht
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany.
| |
Collapse
|
17
|
Spicer J, Shimbo D, Johnston N, Harlapur M, Purdie-Vaughns V, Cook J, Fu J, Burg MM, Wager TD. Prevention of Stress-Provoked Endothelial Injury by Values Affirmation: a Proof of Principle Study. Ann Behav Med 2018; 50:471-9. [PMID: 26608279 DOI: 10.1007/s12160-015-9756-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Julie Spicer
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Daichi Shimbo
- Department of Medicine, Columbia University, New York, NY, USA
| | - Natalie Johnston
- Department of Psychology, Columbia University, New York, NY, USA
| | | | | | - Jonathan Cook
- Department of Psychology, Columbia University, New York, NY, USA
| | - Jie Fu
- Department of Medicine, Columbia University, New York, NY, USA
| | - Matthew M Burg
- Department of Medicine, Columbia University, New York, NY, USA
| | - Tor D Wager
- Department of Psychology and Neuroscience, University of Colorado, 345 UCB, Boulder, CO, 80305, USA.
| |
Collapse
|
18
|
Chen Y, Li G, Liu ML. Microvesicles as Emerging Biomarkers and Therapeutic Targets in Cardiometabolic Diseases. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:50-62. [PMID: 29462670 PMCID: PMC6000161 DOI: 10.1016/j.gpb.2017.03.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 12/20/2022]
Abstract
Microvesicles (MVs, also known as microparticles) are small vesicles that originate from plasma membrane of almost all eukaryotic cells during apoptosis or activation. MVs can serve as extracellular vehicles to transport bioactive molecules from their parental cells to recipient target cells, thereby serving as novel mediators for intercellular communication. Importantly, more and more evidence indicates that MVs could play important roles in early pathogenesis and subsequent progression of cardiovascular and metabolic diseases. Elevated plasma concentrations of MVs, originating from red blood cells, leukocytes, platelets, or other organs and tissues, have been reported in various cardiometabolic diseases. Circulating MVs could serve as potential biomarkers for disease diagnosis or therapeutic monitoring. In this review, we summarized recently-published studies in the field and discussed the role of MVs in the pathogenesis of cardiometabolic diseases. The emerging values of MVs that serve as biomarker for non-invasive diagnosis and prognosis, as well as their roles as novel therapeutic targets in cardiometabolic diseases, were also described.
Collapse
Affiliation(s)
- Yan Chen
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Ming-Lin Liu
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19140, USA; Philadelphia VA Medical Center, Philadelphia, PA 19140, USA.
| |
Collapse
|
19
|
Fricke A, Ullrich PV, Cimniak AFV, Becherer C, Follo M, Heinz J, Scholber J, Herget GW, Hauschild O, Wittel UA, Stark GB, Bannasch H, Braig D, Eisenhardt SU. Levels of activated platelet-derived microvesicles in patients with soft tissue sarcoma correlate with an increased risk of venous thromboembolism. BMC Cancer 2017; 17:527. [PMID: 28784104 PMCID: PMC5547532 DOI: 10.1186/s12885-017-3515-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/31/2017] [Indexed: 12/21/2022] Open
Abstract
Background Microvesicles are small vesicles expressing specific antigens from their cells of origin. Elevated levels of microvesicles have been shown to be associated with coagulation disorders as well as with different types of malignancies. This study aims to evaluate a possible correlation of different microvesicle subpopulations with a positive history of venous thromboembolism (VTE) in patients with soft tissue sarcoma. Methods Annexin V - positive microvesicles, leukocyte (CD45-positive), platelet (CD61-positive), activated platelet (CD62P-, CD63-positive), endothelium-derived (CD62E-positive) and tissue-factor (CD142-positive) microvesicles were identified in the peripheral blood of patients with soft tissue sarcoma (n = 39) and healthy controls (n = 17) using fluorescence-activated cell sorting (FACS). Results Both the total amount of Annexin V-positive microvesicles and levels of endothelium-derived (CD62E-positive) microvesicles were shown to decrease significantly after tumor resection (n = 18, p = 0.0395 and p = 0.0109, respectively). Furthermore, the total amount of Annexin V – positive microvesicles as well as leukocyte (CD45-positive) and endothelium-derived (CD62E-positive) microvesicles were significantly higher in patients with grade 3 (G3) soft tissue sarcoma (n = 9) compared to healthy controls (n = 17) (p = 0.0304, p = 0.0254 and p = 0.0357, respectively). Moreover, patients with G3 soft tissue sarcoma (n = 9) presented higher levels of Annexin V-positive and endothelium-derived (CD62E-positive) microvesicles compared to patients with grade 2 (G2) soft tissue sarcoma (n = 8) (p = 0.0483 and p = 0.0045). Patients with grade 1 (G1) soft tissue sarcoma (n = 3) presented with significantly lower levels of platelet (CD61-positive) microvesicles than patients with G3 soft tissue sarcoma (n = 9) (p = 0.0150). In patients with a positive history of VTE (n = 11), significantly higher levels of activated platelet (CD62P- and CD63-positive) microvesicles (p = 0.0078 and p = 0.0450, respectively) were found compared to patients without a history of VTE (n = 28). Conclusion We found significantly higher levels of Annexin V-positive and endothelium-derived (CD62E-positive) microvesicles to be circulating in the peripheral blood of patients with G3 soft tissue sarcoma compared to patients with G2 soft tissue sarcoma. Furthermore, we showed that high counts of activated platelet-derived microvesicles correlate with the occurrence of VTE. Thus, the detection of these microvesicles might be an interesting new tool for early diagnosis of soft tissue sarcoma patients with increased risk for VTE, possibly facilitating VTE prevention by earlier use of thromboprophylaxis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3515-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Fricke
- Department of Plastic and Hand Surgery, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - P V Ullrich
- Department of Plastic and Hand Surgery, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - A F V Cimniak
- Department of Plastic and Hand Surgery, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - C Becherer
- Department of Plastic and Hand Surgery, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - M Follo
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - J Heinz
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - J Scholber
- Department of Radiation Oncology, Medical Center - Faculty of Medicine, University of Freiburg, Robert-Koch-Straße 3, 79106, Freiburg, Germany
| | - G W Herget
- Department of Orthopedics and Traumatology, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - O Hauschild
- Department of Orthopedics and Traumatology, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - U A Wittel
- Department of General and Visceral Surgery, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - G B Stark
- Department of Plastic and Hand Surgery, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - H Bannasch
- Department of Plastic and Hand Surgery, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - D Braig
- Department of Plastic and Hand Surgery, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - S U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - Faculty of Medicine, University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany.
| |
Collapse
|
20
|
Lange S, Gallagher M, Kholia S, Kosgodage US, Hristova M, Hardy J, Inal JM. Peptidylarginine Deiminases-Roles in Cancer and Neurodegeneration and Possible Avenues for Therapeutic Intervention via Modulation of Exosome and Microvesicle (EMV) Release? Int J Mol Sci 2017; 18:ijms18061196. [PMID: 28587234 PMCID: PMC5486019 DOI: 10.3390/ijms18061196] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Exosomes and microvesicles (EMVs) are lipid bilayer-enclosed structures released from cells and participate in cell-to-cell communication via transport of biological molecules. EMVs play important roles in various pathologies, including cancer and neurodegeneration. The regulation of EMV biogenesis is thus of great importance and novel ways for manipulating their release from cells have recently been highlighted. One of the pathways involved in EMV shedding is driven by peptidylarginine deiminase (PAD) mediated post-translational protein deimination, which is calcium-dependent and affects cytoskeletal rearrangement amongst other things. Increased PAD expression is observed in various cancers and neurodegeneration and may contribute to increased EMV shedding and disease progression. Here, we review the roles of PADs and EMVs in cancer and neurodegeneration.
Collapse
Affiliation(s)
- Sigrun Lange
- Department of Biomedical Sciences, University of Westminster, 115, New Cavendish Street, London W1W 6UW, UK.
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mark Gallagher
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Sharad Kholia
- Molecular Biotechnology Center, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy.
| | - Uchini S Kosgodage
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| | - Mariya Hristova
- Institute for Women's Health, University College London, 74 Huntley Street, London WC1N 6HX, UK.
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1N 3BG, UK.
| | - Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK.
| |
Collapse
|
21
|
Membrane Ballooning in Aggregated Platelets is Synchronised and Mediates a Surge in Microvesiculation. Sci Rep 2017; 7:2770. [PMID: 28584295 PMCID: PMC5459805 DOI: 10.1038/s41598-017-02933-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Human platelet transformation into balloons is part of the haemostatic response and thrombus architecture. Here we reveal that in aggregates of platelets in plasma, ballooning in multiple platelets occurs in a synchronised manner. This suggests a mechanism of coordination between cells, previously unrecognised. We aimed to understand this mechanism, and how it may contribute to thrombus development. Using spinning-disc confocal microscopy we visualised membrane ballooning in human platelet aggregates adherent to collagen-coated surfaces. Within an aggregate, multiple platelets undergo ballooning in a synchronised fashion, dependent upon extracellular calcium, in a manner that followed peak cytosolic calcium levels in the aggregate. Synchrony was observed in platelets within but not between aggregates, suggesting a level of intra-thrombus communication. Blocking phosphatidylserine, inhibiting thrombin or blocking PAR1 receptor, largely prevented synchrony without blocking ballooning itself. In contrast, inhibition of connexins, P2Y12, P2Y1 or thromboxane formation had no effect on synchrony or ballooning. Importantly, synchronised ballooning was closely followed by a surge in microvesicle formation, which was absent when synchrony was blocked. Our data demonstrate that the mechanism underlying synchronised membrane ballooning requires thrombin generation acting effectively in a positive feedback loop, mediating a subsequent surge in procoagulant activity and microvesicle release.
Collapse
|
22
|
Kahraman T, Gucluler G, Simsek I, Yagci FC, Yildirim M, Ozen C, Dinc A, Gursel M, Ikromzoda L, Sutlu T, Gay S, Gursel I. Circulating LL37 targets plasma extracellular vesicles to immune cells and intensifies Behçet's disease severity. J Extracell Vesicles 2017; 6:1284449. [PMID: 28326169 PMCID: PMC5345581 DOI: 10.1080/20013078.2017.1284449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 01/21/2023] Open
Abstract
Behçet's disease (BD) activity is characterised by sustained, over-exuberant immune activation, yet the underlying mechanisms leading to active BD state are poorly defined. Herein, we show that the human cathelicidin derived antimicrobial peptide LL37 associates with and directs plasma extracellular vesicles (EV) to immune cells, thereby leading to enhanced immune activation aggravating BD pathology. Notably, disease activity was correlated with elevated levels of circulating LL37 and EV plasma concentration. Stimulation of healthy PBMC with active BD patient EVs induced heightened IL1β, IFNα, IL6 and IP10 secretion compared to healthy and inactive BD EVs. Remarkably, when mixed with LL37, healthy plasma-EVs triggered a robust immune activation replicating the pathology inducing properties of BD EVs. The findings of this study could be of clinical interest in the management of BD, implicating LL37/EV association as one of the major contributors of BD pathogenesis. Abbreviations: BD: Behçet's disease; EV: extracellular vesicle; BB: binding buffer; AnV: annexin V; autologEV: autologous extracellular vesicles; alloEV: allogeneic extracellular vesicles.
Collapse
Affiliation(s)
- Tamer Kahraman
- Science Faculty, Department of Molecular Biology and Genetics, Bilkent University , Ankara , Turkey
| | - Gozde Gucluler
- Science Faculty, Department of Molecular Biology and Genetics, Bilkent University , Ankara , Turkey
| | - Ismail Simsek
- Division of Rheumatology, Gulhane School of Medicine , Ankara , Turkey
| | - Fuat Cem Yagci
- Science Faculty, Department of Molecular Biology and Genetics, Bilkent University , Ankara , Turkey
| | - Muzaffer Yildirim
- Science Faculty, Department of Molecular Biology and Genetics, Bilkent University , Ankara , Turkey
| | - Can Ozen
- Department of Biotechnology, Middle East Technical University , Ankara , Turkey
| | - Ayhan Dinc
- Division of Rheumatology, Gulhane School of Medicine , Ankara , Turkey
| | - Mayda Gursel
- Department of Biological Sciences, Middle East Technical University , Ankara , Turkey
| | - Lolai Ikromzoda
- Nanotechnology Research and Application Center, Sabanci University , Istanbul , Turkey
| | - Tolga Sutlu
- Nanotechnology Research and Application Center, Sabanci University , Istanbul , Turkey
| | - Stephen Gay
- Department of Rheumatology, University Hospital Zurich , Zurich , Switzerland
| | - Ihsan Gursel
- Science Faculty, Department of Molecular Biology and Genetics, Bilkent University , Ankara , Turkey
| |
Collapse
|
23
|
Alkhatatbeh MJ, Lincz LF, Thorne RF. Bio-maleimide-stained plasma microparticles can be purified in a native state and target human proximal tubular HK 2 cells. Biomed Rep 2017; 6:63-68. [PMID: 28123709 DOI: 10.3892/br.2016.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/20/2016] [Indexed: 11/06/2022] Open
Abstract
Plasma microparticles (MPs) are heterogeneously sized submicron extracellular vesicles that originate from the cell membrane as a result of cell activation or apoptosis. Circulating MPs express cell-specific molecules that reflect their cell of origin and they are increasingly investigated for their potential role in intercellular communication. The aim of the current study was to determine if size exclusion chromatography could be used to purify fluorescent-labeled MPs in sufficient concentrations to be used experimentally in cell binding assays. Bio-maleimide was used to stain plasma MPs in platelet free plasma before applying to size exclusion chromatography. Collected fractions were analyzed for protein content and MPs were enumerated by flow cytometry. Fractions were ultracentrifuged and MPs further confirmed by western blotting for the putative diabetic marker, cluster of differentiation (CD)36 and platelet-specific CD41 proteins. Fractions that contained MPs were incubated with HK2 cells to determine MP-cell binding. Bio-maleimide-stained MPs were detected across various fractions of size exclusion, and pellets of these fractions confirmed positivity for the MP markers, CD41 and CD36. The addition of the isolated MPs to HK2 renal tubular cells and analysis by epi-fluorescent imaging demonstrated that, in principle, the labeled MPs are able to bind to cells in vitro. Notably, only the first eluted MP fraction bound HK2 cells indicating a possible association between MP size and cell-targeting properties.
Collapse
Affiliation(s)
- Mohammad J Alkhatatbeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Lisa F Lincz
- Hunter Haematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| | - Rick F Thorne
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia
| |
Collapse
|
24
|
Extracellular vesicles and blood diseases. Int J Hematol 2017; 105:392-405. [PMID: 28130731 DOI: 10.1007/s12185-017-2180-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 01/19/2023]
Abstract
Extracellular vesicles (EVs) are small membrane vesicles released from many different cell types by the exocytic budding of the plasma membrane in response to cellular activation or apoptosis. EVs disseminate various bioactive effectors originating from the parent cells and transfer functional RNA and protein between cells, enabling them to alter vascular function and induce biological responses involved in vascular homeostasis. Although most EVs in human blood originate from platelets, EVs are also released from leukocytes, erythrocytes, endothelial cells, smooth muscle cells, and cancer cells. EVs were initially thought to be small particles with procoagulant activity; however, they can also evoke cellular responses in the immediate microenvironments and transport microRNAs (miRNA) into target cells. In this review, we summarize the recent literature relevant to EVs, including a growing list of clinical disorders that are associated with elevated EV levels. These studies suggest that EVs play roles in various blood diseases.
Collapse
|
25
|
Platelet-, leucocyte- and red cell-derived microparticles in stored whole blood, with and without leucofiltration, with and without ionising radiation. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 16:145-153. [PMID: 27893349 DOI: 10.2450/2016.0108-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/18/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Storage lesion, including microparticle formation, has been partially characterised in whole blood, but not in all combinations of pre-storage leucofiltration and/or irradiation. MATERIALS AND METHODS Single-donor whole blood products were processed into four subunits: with and without leucofiltration, with and without X-irradiation (25 Gy). Platelet-, leucocyte-, and erythrocyte-derived microparticles and free haemoglobin were measured periodically throughout 42 days of storage. RESULTS Pre-storage leucofiltration substantially reduced platelet- and leucocyte-derived microparticle counts throughout storage. Irradiation, in contrast, had no significant effect on microparticle counts. A gate for all microparticles showed a substantial time-dependent increase in unfiltered whole blood. A time-dependent increase in free haemoglobin was greatest in unfiltered, irradiated whole blood. DISCUSSION This study indicates that leucofiltration can prevent the formation of leucocyte- and platelet-derived microparticles, and might reduce haemolysis in irradiated whole blood, either by removing factors that provoke haemolysis, or by selective retention of senescent or effete red cells most prone to haemolysis.
Collapse
|
26
|
Extracellular Vesicles: A New Frontier in Biomarker Discovery for Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2016; 17:376. [PMID: 26985892 PMCID: PMC4813235 DOI: 10.3390/ijms17030376] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 12/14/2022] Open
Abstract
In recent years, the global burden of obesity and diabetes has seen a parallel rise in other metabolic complications, such as non-alcoholic fatty liver disease (NAFLD). This condition, once thought to be a benign accumulation of hepatic fat, is now recognized as a serious and prevalent disorder that is conducive to inflammation and fibrosis. Despite the rising incidence of NAFLD, there is currently no reliable method for its diagnosis or staging besides the highly invasive tissue biopsy. This limitation has resulted in the study of novel circulating markers as potential candidates, one of the most popular being extracellular vesicles (EVs). These submicron membrane-bound structures are secreted from stressed and activated cells, or are formed during apoptosis, and are known to be involved in intercellular communication. The cargo of EVs depends upon the parent cell and has been shown to be changed in disease, as is their abundance in the circulation. The role of EVs in immunity and epigenetic regulation is widely attested, and studies showing a correlation with disease severity have made these structures a favorable target for diagnostic as well as therapeutic purposes. This review will highlight the research that is available on EVs in the context of NAFLD, the current limitations, and projections for their future utility in a clinical setting.
Collapse
|
27
|
Antibody-Based Assays for Phenotyping of Extracellular Vesicles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:524817. [PMID: 26770974 PMCID: PMC4681819 DOI: 10.1155/2015/524817] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of membrane-enclosed vesicles. EVs are recognized as important players in cell-to-cell communication and are described to be involved in numerous biological and pathological processes. The fact that EVs are involved in the development and progression of several diseases has formed the basis for the use of EV analysis in a clinical setting. As the interest in EVs has increased immensely, multiple techniques have been developed aiming at characterizing these vesicles. These techniques characterize different features of EVs, like the size distribution, enumeration, protein composition, and the intravesicular cargo (e.g., RNA). This review focuses on techniques that exploit the specificity and sensitivity associated with antibody-based assays to characterize the protein phenotype of EVs. The protein phenotype of EVs can provide information on the functionality of the vesicles and may be used for identification of disease-related biomarkers. Thus, protein profiling of EVs holds great diagnostic and prognostic potential.
Collapse
|
28
|
Nomura S, Niki M, Nisizawa T, Tamaki T, Shimizu M. Microparticles as Biomarkers of Blood Coagulation in Cancer. BIOMARKERS IN CANCER 2015; 7:51-6. [PMID: 26462252 PMCID: PMC4592056 DOI: 10.4137/bic.s30347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 12/20/2022]
Abstract
Cancer is associated with hypercoagulopathy and increased risk of thrombosis. This negatively influences patient morbidity and mortality. Cancer is also frequently complicated by the development of venous thromboembolism (VTE). Tumor-derived tissue factor (TF)-bearing microparticles (MPs) are associated with VTE events in malignancy. MPs are small membrane vesicles released from many different cell types by exocytic budding of the plasma membrane in response to cellular activation or apoptosis. MPs may also be involved in clinical diseases through expression of procoagulative phospholipids. The detection of TF-expressing MPs in cancer patients may be clinically useful. In lung and breast cancer patients, MPs induce metastasis and angiogenesis and may be indicators of vascular complications. Additionally, MPs in patients with various types of cancer possess adhesion proteins and bind target cells to promoting cancer progression or metastasis. Overexpression of TF by cancer cells is closely associated with tumor progression, and shedding of TF-expressing MPs by cancer cells correlates with the genetic status of cancer. Consequently, TF-expressing MPs represent important markers to consider in the prevention of and therapy for VTE complications in cancer patients.
Collapse
Affiliation(s)
- Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Maiko Niki
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tohru Nisizawa
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Takeshi Tamaki
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Michiomi Shimizu
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
29
|
Kholia S, Jorfi S, Thompson PR, Causey CP, Nicholas AP, Inal JM, Lange S. A novel role for peptidylarginine deiminases in microvesicle release reveals therapeutic potential of PAD inhibition in sensitizing prostate cancer cells to chemotherapy. J Extracell Vesicles 2015; 4:26192. [PMID: 26095379 PMCID: PMC4475687 DOI: 10.3402/jev.v4.26192] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Protein deimination, defined as the post-translational conversion of protein-bound arginine to citrulline, is carried out by a family of 5 calcium-dependent enzymes, the peptidylarginine deiminases (PADs) and has been linked to various cancers. Cellular microvesicle (MV) release, which is involved in cancer progression, and deimination have not been associated before. We hypothesize that elevated PAD expression, observed in cancers, causes increased MV release in cancer cells and contributes to cancer progression. BACKGROUND We have previously reported that inhibition of MV release sensitizes cancer cells to chemotherapeutic drugs. PAD2 and PAD4, the isozymes expressed in patients with malignant tumours, can be inhibited with the pan-PAD-inhibitor chloramidine (Cl-am). We sought to investigate whether Cl-am can inhibit MV release and whether this pathway could be utilized to further increase the sensitivity of cancer cells to drug-directed treatment. METHODS Prostate cancer cells (PC3) were induced to release high levels of MVs upon BzATP stimulation of P2X7 receptors. Western blotting with the pan-protein deimination antibody F95 was used to detect a range of deiminated proteins in cells stimulated to microvesiculate. Changes in deiminated proteins during microvesiculation were revealed by immunoprecipitation and immunoblotting, and mass spectrometry identified deiminated target proteins with putative roles in microvesiculation. CONCLUSION We report for the first time a novel function of PADs in the biogenesis of MVs in cancer cells. Our results reveal that during the stimulation of prostate cancer cells (PC3) to microvesiculate, PAD2 and PAD4 expression levels and the deimination of cytoskeletal actin are increased. Pharmacological inhibition of PAD enzyme activity using Cl-am significantly reduced MV release and abrogated the deimination of cytoskeletal actin. We demonstrated that combined Cl-am and methotrexate (MTX) treatment of prostate cancer cells increased the cytotoxic effect of MTX synergistically. Refined PAD inhibitors may form part of a novel combination therapy in cancer treatment.
Collapse
Affiliation(s)
- Sharad Kholia
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, UK
| | - Samireh Jorfi
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, UK
| | - Paul R Thompson
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Corey P Causey
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, VA, USA
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Jameel M Inal
- Cellular and Molecular Immunology Research Centre, School of Human Sciences, London Metropolitan University, London, UK;
| | - Sigrun Lange
- School of Pharmacy, University College London, London, UK;
| |
Collapse
|
30
|
Abstract
Platelets are generated from nucleated precursors referred to as megakaryocytes. The formation of platelets is one of the most elegant and unique developmental processes in eukaryotes. Because they enter the circulation without nuclei, platelets are often considered simple, non-complex cells that have limited functions beyond halting blood flow. However, emerging evidence over the past decade demonstrates that platelets are more sophisticated than previously considered. Platelets carry a rich repertoire of messenger RNAs (mRNAs), microRNAs (miRNAs), and proteins that contribute to primary (adhesion, aggregation, secretion) and alternative (immune regulation, RNA transfer, translation) functions. It is also becoming increasingly clear that the 'genetic code' of platelets changes with race, genetic disorders, or disease. Changes in the 'genetic code' can occur at multiple points including megakaryocyte development, platelet formation, or in circulating platelets. This review focuses on regulation of the 'genetic code' in megakaryocytes and platelets and its potential contribution to health and disease.
Collapse
Affiliation(s)
- M T Rondina
- The Molecular Medicine Program and Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - A S Weyrich
- The Molecular Medicine Program and Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
31
|
Gustafson CM, Shepherd AJ, Miller VM, Jayachandran M. Age- and sex-specific differences in blood-borne microvesicles from apparently healthy humans. Biol Sex Differ 2015; 6:10. [PMID: 25964851 PMCID: PMC4426551 DOI: 10.1186/s13293-015-0028-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 04/19/2015] [Indexed: 01/04/2023] Open
Abstract
Background Sex differences in incidence of cardiovascular disease may reflect age-associated intravascular cellular activation resulting in shedding of cell membrane-derived bioactive microvesicles (MV or microparticles) into the blood. Concentrations of cell-specific MV in blood have the potential to be a diagnostic/prognostic marker of pathology, but ranges of MV must first be established in healthy individuals. This study identified cellular origin of blood-borne MV >0.2 μm in blood of apparently healthy women and men aged from 20–70 years. Methods Venous blood from apparently healthy participants in the Mayo Clinic Biobank was collected into tubes containing protease inhibitors as the anticoagulant. MV were isolated by standardized differential centrifugation and characterized by digital flow cytometer. Each cellular origin of MV was verified by two different antibodies with strong correlation between the two distinct antibodies (e.g., for platelet-derived MV, r2 = 0.97). Results MV derived from platelets were the most abundant type of MV in blood from women and men in all age groups. Total numbers of phosphatidylserine, P-selectin, and platelet- and endothelium-derived MV were significantly (P < 0.05) greater in women than men. Numbers of MV from erythrocytes and stem/progenitor cells were significantly lower in premenopausal women than age-matched men. Number of tissue factor pathway inhibitor positive MV were significantly (P < 0.05) lower whereas erythrocyte-derived MV were significantly higher in postmenopausal women compared to premenopausal women. In women, there was a positive relationship between age and erythrocyte-derived MV (ρ = 0.28; P = 0.009), while in men adipocyte-derived MV increased with age (ρ = 0.33; P = 0.01). Conclusions This study provides ranges for cellular origin of blood-borne MV in age-matched, apparently healthy women and men from which to compare diagnostic and prognostic uses of blood-borne MV in larger studies and patient population. In addition, sex- and age-specific differences in phosphatidylserine, platelet-, endothelium-, erythrocyte-, and adipocyte-derived blood-borne MV may contribute to differential progression of cardiovascular disease in women compared to men.
Collapse
Affiliation(s)
- Callie M Gustafson
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| | - Alex J Shepherd
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| | - Virginia M Miller
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA ; Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| | - Muthuvel Jayachandran
- Department of Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA ; Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN 55905 USA
| |
Collapse
|
32
|
Szatanek R, Baran J, Siedlar M, Baj-Krzyworzeka M. Isolation of extracellular vesicles: Determining the correct approach (Review). Int J Mol Med 2015; 36:11-7. [PMID: 25902369 PMCID: PMC4494580 DOI: 10.3892/ijmm.2015.2194] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022] Open
Abstract
The discovery of extracellular vesicles (EVs) has revised the interpretation of intercellular communication. It is now well established that EVs play a significant role in coagulation, inflammation, cancer and stem cell renewal and expansion. Their release presents an intriguing, transporting/trafficking network of biologically active molecules, which are able to reach and modulate the function/behavior of the target cells in a variety of ways. Moreover, the presence of EVs in various body fluids points to their potential for use as biomarkers and prognostic indicators in the surveillance/monitoring of a variety of diseases. Although vast knowledge on the subject of EVs has accumulated over the years, there are still fundamental issues associated with the correct approach for their isolation. This review comprises the knowledge on EV isolation techniques that are currently available. The aim of this reveiw was to make both experienced researchers and newcomers to the field aware that different types of EVs require unique isolation approaches. The realization of this 'uniqueness' is the first step in the right direction for the complete assessment of EVs.
Collapse
Affiliation(s)
- Rafal Szatanek
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Jarek Baran
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology and Transplantology, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
33
|
Mooberry MJ, Key NS. Microparticle analysis in disorders of hemostasis and thrombosis. Cytometry A 2015; 89:111-22. [PMID: 25704723 DOI: 10.1002/cyto.a.22647] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 01/18/2023]
Abstract
Microparticles (MPs) are submicron vesicles released from the plasma membrane of eukaryotic cells in response to activation or apoptosis. MPs are known to be involved in numerous biologic processes, including inflammation, the immune response, cancer metastasis, and angiogenesis. Their earliest recognized and most widely accepted role, however, is the ability to promote and support the process of blood coagulation. Consequently, there is ongoing interest in studying MPs in disorders of hemostasis and thrombosis. Both phosphatidylserine (PS) exposure and the presence of tissue factor (TF) in the MP membrane may account for their procoagulant properties, and elevated numbers of MPs in plasma have been reported in numerous prothrombotic conditions. To date, however, there are few data on true causality linking MPs to the genesis of thrombosis. A variety of methodologies have been employed to characterize and quantify MPs, although detection is challenging due to their submicron size. Flow cytometry (FCM) remains the most frequently utilized strategy for MP detection; however, it is associated with significant technological limitations. Additionally, preanalytical and analytical variables can influence the detection of MPs by FCM, rendering data interpretation difficult. Lack of methodologic standardization in MP analysis by FCM confounds the issue further, although efforts are currently underway to address this limitation. Moving forward, it will be important to address these technical challenges as a scientific community if we are to better understand the role that MPs play in disorders of hemostasis and thrombosis.
Collapse
Affiliation(s)
- Micah J Mooberry
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, North Carolina
| | - Nigel S Key
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, North Carolina
| |
Collapse
|
34
|
Nomura S, Shimizu M. Clinical significance of procoagulant microparticles. J Intensive Care 2015; 3:2. [PMID: 25705427 PMCID: PMC4336124 DOI: 10.1186/s40560-014-0066-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/03/2014] [Indexed: 01/05/2023] Open
Abstract
Microparticles (MPs) are small membrane vesicles that are released from many different cell types by exocytic budding of the plasma membrane in response to cellular activation or apoptosis. MPs may also be involved in clinical diseases because they express phospholipids, which function as procoagulants. Although flow cytometry is the most widely used method for studying MPs, some novel assays, such as tissue factor-dependent procoagulant assay or the ELISA method, have been reported. However, the use of quantification of MP as a clinical tool is still controversial. Elevated platelet-derived MP, endothelial cell-derived MP, and monocyte-derived MP concentrations are documented in almost all thrombotic diseases occurring in venous and arterial beds. However, the significance of MPs in various clinical conditions remains controversial. An example of this controversy is that it is unknown if MPs found in peripheral blood vessels cause thrombosis or whether they are the result of thrombosis. Numerous studies have shown that not only the quantity, but also the cellular origin and composition of circulating MPs, are dependent on the type of disease, the disease state, and medical treatment. Additionally, many different functions have been attributed to MPs. Therefore, the number and type of clinical disorders associated with elevated MPs are currently increasing. However, MPs were initially thought to be small particles with procoagulant activity. Taken together, our review suggests that MPs may be a useful biomarker to identify thrombosis.
Collapse
Affiliation(s)
- Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191 Japan
| | - Michiomi Shimizu
- First Department of Internal Medicine, Kansai Medical University, 2-3-1 Shin-machi, Hirakata, Osaka 573-1191 Japan
| |
Collapse
|
35
|
Curry N, Raja A, Beavis J, Stanworth S, Harrison P. Levels of procoagulant microvesicles are elevated after traumatic injury and platelet microvesicles are negatively correlated with mortality. J Extracell Vesicles 2014; 3:25625. [PMID: 26077419 PMCID: PMC4216813 DOI: 10.3402/jev.v3.25625] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microvesicles (MV) have been implicated in the development of thrombotic disease, such as acute respiratory distress syndrome (ARDS) and multiple organ failure (MOF). Trauma patients are at increased risk of late thrombotic events, particularly those who receive a major transfusion. The aims of this study were: (a) to determine whether there were increased numbers of pro-coagulant MV following injury; (b) to determine their cellular origin; and (c) to explore the effects of MV with clinical outcomes; in particular red cell transfusion requirements and death. METHODS Trauma patients were recruited at a Level 1 trauma centre. The presence of MV procoagulant phospholipid (PPL) was assessed using 2 activity assays (PPL and thrombin generation). Enumeration and MV cellular origin was assessed using 2 colour flow cytometry. RESULTS Fifty consecutive patients were recruited; median age 38 (IQR: 24-55), median ISS 18 (IQR: 9-27). Circulating procoagulant MV, rich in phospholipid, were significantly elevated following traumatic injury relative to controls and remained elevated at 72 h post-injury. Red cell/AnnV+ and platelet/AnnV+ MV numbers were 6-fold and 2-fold higher than controls, respectively. Patients who died (n=9, 18%) had significantly fewer CD41/AnnV+ MV and lower endogenous thrombin potential relative to patients who survived. CONCLUSIONS MV are elevated following traumatic injury and may be implicated in the increased risk of trauma patients to pro-thrombotic states such as MOF and ARDS. Lower levels of procoagulant MV are associated with mortality and further investigation of this association is warranted.
Collapse
Affiliation(s)
- Nicola Curry
- Oxford Haemophilia & Thrombosis Centre, Oxford University Hospitals Trust, Churchill Hospital, Oxford, UK
| | - Amber Raja
- National Blood & Transplant, John Radcliffe Hospital, Oxford, UK
| | - James Beavis
- Oxford Haemophilia & Thrombosis Centre, Oxford University Hospitals Trust, Churchill Hospital, Oxford, UK
| | - Simon Stanworth
- National Blood & Transplant, John Radcliffe Hospital, Oxford, UK
| | - Paul Harrison
- School of Immunity and Infection, University of Birmingham Medical School, Birmingham, UK;
| |
Collapse
|
36
|
Abstract
Extracellular vesicles (EVs), comprised of exosomes, microparticles, apoptotic bodies, and other microvesicles, are shed from a variety of cells upon cell activation or apoptosis. EVs promote clot formation, mediate pro-inflammatory processes, transfer proteins and miRNA to cells, and induce cell signaling that regulates cell differentiation, proliferation, migration, invasion, and apoptosis. This paper will review the contribution of EVs in hematological disorders, including hemoglobinopathies (sickle cell disease, thalassemia), paroxysmal nocturnal hemoglobinuria, and hematological malignancies (lymphomas, myelomas, and acute and chronic leukemias).
Collapse
Affiliation(s)
- Anat Aharon
- Microvesicles Research Laboratory, Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus; ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Annie Rebibo-Sabbah
- Microvesicles Research Laboratory, Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus; ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Inna Tzoran
- Microvesicles Research Laboratory, Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus; ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel; ; Department of Internal Medicine C, Rambam Health Care Campus, Haifa, Israel
| | - Carina Levin
- Microvesicles Research Laboratory, Thrombosis and Hemostasis Unit, Department of Hematology, Rambam Health Care Campus; ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel; ; Pediatric Hematology Unit and Pediatric Department B, Emek Medical Center, Afula, Israel
| |
Collapse
|
37
|
Microparticles: new light shed on the understanding of venous thromboembolism. Acta Pharmacol Sin 2014; 35:1103-10. [PMID: 25152025 DOI: 10.1038/aps.2014.73] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/05/2014] [Indexed: 02/07/2023] Open
Abstract
Microparticles are small membrane fragments shed primarily from blood and endothelial cells during either activation or apoptosis. There is mounting evidence suggesting that microparticles perform a large array of biological functions and contribute to various diseases. Of these disease processes, a significant link has been established between microparticles and venous thromboembolism. Advances in research on the role of microparticles in thrombosis have yielded crucial insights into possible mechanisms, diagnoses and therapeutic targets of venous thromboembolism. In this review, we discuss the definition and properties of microparticles and venous thromboembolism, provide a synopsis of the evidence detailing the contributions of microparticles to venous thromboembolism, and propose potential mechanisms, by which venous thromboembolism occurs. Moreover, we illustrate a possible role of microparticles in cancer-related venous thromboembolism.
Collapse
|
38
|
Brodde M, Müller A, Kehrel B. Cellular Stress Induced by Plasma-Derived Factor VIII Products. Transfus Med Hemother 2014; 41:140-4. [PMID: 24847190 DOI: 10.1159/000357992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We previously identified protein impurities in plasma-derived factor VIII (pdFVIII) products. The goal of the current experiments was to determine whether these impurities might have clinical relevance, by comparing the effects of pdFVIII and recombinant FVIII (rFVIII) products on cellular stress induction. METHODS The in vitro outcomes on cell stress sensors of 2 pdFVIII products and 1 rFVIII product were evaluated. Microparticle formation was assessed in cells treated with the 3 products. Effects on the mitochondrial membrane potential were measured in cells treated with clinically relevant concentrations of each product. RESULTS Microparticle formation was induced in platelets by 1 pdFVIII product and in monocytes and granulocytes by both pdFVIII products; the rFVIII product did not affect microparticle formation. Both pdFVIII products, but not the rFVIII product, significantly depolarized the mitochondrial membrane potential. CONCLUSION The 2 pdFVIII products tested induced cellular stress in in vitro experiments. No such results were seen with the rFVIII product. Chronic activation of the cell stress defense system and chronic cell irritation may have clinical consequences for patients with hemophilia A.
Collapse
Affiliation(s)
- Martin Brodde
- Experimental and Clinical Hemostasis, Department of Anesthesiology, Intensive Care and Pain Therapy, University Hospital Münster, Germany ; OxProtect GmbH, Münster, Germany
| | - Anja Müller
- Experimental and Clinical Hemostasis, Department of Anesthesiology, Intensive Care and Pain Therapy, University Hospital Münster, Germany ; OxProtect GmbH, Münster, Germany
| | - Beate Kehrel
- Experimental and Clinical Hemostasis, Department of Anesthesiology, Intensive Care and Pain Therapy, University Hospital Münster, Germany
| |
Collapse
|
39
|
Atughonu TC, Arja SB, Shiekh FA. Are calcifying microvesicles another analogous substructure of calcifying nanoparticles? Int J Nanomedicine 2013; 8:4673-4. [PMID: 24353416 PMCID: PMC3862393 DOI: 10.2147/ijn.s53712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
| | - Sateesh B Arja
- Avalon University School of Medicine, Willemstad, Curacao
| | | |
Collapse
|
40
|
Clark KB, Onlamoon N, Hsiao HM, Perng GC, Villinger F. Can non-human primates serve as models for investigating dengue disease pathogenesis? Front Microbiol 2013; 4:305. [PMID: 24130557 PMCID: PMC3795305 DOI: 10.3389/fmicb.2013.00305] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/24/2013] [Indexed: 11/28/2022] Open
Abstract
Dengue Virus (DV) infects between 50 and 100 million people globally, with public health costs totaling in the billions. It is the causative agent of dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), vector-borne diseases that initially predominated in the tropics. Due to the expansion of its mosquito vector, Aedes spp., DV is increasingly becoming a global problem. Infected individuals may present with a wide spectrum of symptoms, spanning from a mild febrile to a life-threatening illness, which may include thrombocytopenia, leucopenia, hepatomegaly, hemorrhaging, plasma leakage and shock. Deciphering the underlining mechanisms responsible for these symptoms has been hindered by the limited availability of animal models that can induce classic human pathology. Currently, several permissive non-human primate (NHP) species and mouse breeds susceptible to adapted DV strains are available. Though virus replication occurs in these animals, none of them recapitulate the cardinal features of human symptomatology, with disease only occasionally observed in NHPs. Recently our group established a DV serotype 2 intravenous infection model with the Indian rhesus macaque, which reliably produced cutaneous hemorrhages after primary virus exposure. Further manipulation of experimental parameters (virus strain, immune cell expansion, depletion, etc.) can refine this model and expand its relevance to human DF. Future goals include applying this model to elucidate the role of pre-existing immunity upon secondary infection and immunopathogenesis. Of note, virus titers in primates in vivo and in vitro, even with our model, have been consistently 1000-fold lower than those found in humans. We submit that an improved model, capable of demonstrating severe pathogenesis may only be achieved with higher virus loads. Nonetheless, our DV coagulopathy disease model is valuable for the study of select pathomechanisms and testing DV drug and vaccine candidates.
Collapse
Affiliation(s)
- Kristina B Clark
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
41
|
Dalli J, Montero-Melendez T, Norling LV, Yin X, Hinds C, Haskard D, Mayr M, Perretti M. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. Mol Cell Proteomics 2013; 12:2205-19. [PMID: 23660474 PMCID: PMC3734580 DOI: 10.1074/mcp.m113.028589] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions.
Collapse
Affiliation(s)
- Jesmond Dalli
- The William Harvey Research Institute, Barts and The London School of Medical, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F. Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J Thromb Haemost 2013; 11:S1538-7836(22)17681-6. [PMID: 23551930 PMCID: PMC4395506 DOI: 10.1111/jth.12207] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microparticles (MP) are sub-micron sized vesicles released by activated or apoptotic cells. They are generally defined as 0.1 to 1 μm membrane particles that expose the anionic phospholipid phosphatidylserine (PS) and membrane antigens representative of their cellular origin [1]. It is now well recognized that MP behave as vectors of bioactive molecules, playing a role in blood coagulation, inflammation, cell activation and cancer metastasis. In clinical practice, circulating MP originating from blood and vascular cells are elevated in a variety of prothrombotic and inflammatory disorders, cardiovascular diseases, autoimmune conditions, infectious diseases and cancer [1-3]. © 2013 International Society on Thrombosis and Haemostasis.
Collapse
Affiliation(s)
- R Lacroix
- INSERM-Aix Marseille Université, UMR-1076, UFR de Pharmacie, Marseille, France; Hematology and Vascular Biology Department, CHU La Conception, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | | | | | | | | | | |
Collapse
|
43
|
Diehl P, Fricke A, Sander L, Stamm J, Bassler N, Htun N, Ziemann M, Helbing T, El-Osta A, Jowett JBM, Peter K. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovasc Res 2012; 93:633-44. [PMID: 22258631 PMCID: PMC3291092 DOI: 10.1093/cvr/cvs007] [Citation(s) in RCA: 383] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims Circulating microRNAs (miRNAs) have attracted major interest as biomarkers for cardiovascular diseases. Since RNases are abundant in circulating blood, there needs to be a mechanism protecting miRNAs from degradation. We hypothesized that microparticles (MP) represent protective transport vehicles for miRNAs and that these are specifically packaged by their maternal cells. Methods and results Conventional plasma preparations, such as the ones used for biomarker detection, are shown to contain substantial numbers of platelet-, leucocyte-, and endothelial cell-derived MP. To analyse the widest spectrum of miRNAs, Next Generation Sequencing was used to assess miRNA profiles of MP and their corresponding stimulated and non-stimulated cells of origin. THP-1 (monocytic origin) and human umbilical vein endothelial cell (HUVEC) MP were used for representing circulating MP at a high purity. miRNA profiles of MP differed significantly from those of stimulated and non-stimulated maternal THP-1 cells and HUVECs, respectively. Quantitative reverse transcription–polymerase chain reaction of miRNAs which have been associated with cardiovascular diseases also demonstrated significant differences in miRNA profiles between platelets and their MP. Notably, the main fraction of miRNA in plasma was localized in MP. Furthermore, miRNA profiles of MP differed significantly between patients with stable and unstable coronary artery disease. Conclusion Circulating MP represent transport vehicles for large numbers of specific miRNAs, which have been associated with cardiovascular diseases. miRNA profiles of MP are significantly different from their maternal cells, indicating an active mechanism of selective ‘packaging’ from cells into MP. These findings describe an interesting mechanism for transferring gene-regulatory function from MP-releasing cells to target cells via MP circulating in blood.
Collapse
Affiliation(s)
- Philipp Diehl
- Atherothrombosis and Vascular Biology, BakerIDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Russo I. The prothrombotic tendency in metabolic syndrome: focus on the potential mechanisms involved in impaired haemostasis and fibrinolytic balance. SCIENTIFICA 2012; 2012:525374. [PMID: 24278711 PMCID: PMC3820496 DOI: 10.6064/2012/525374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 08/27/2012] [Indexed: 05/09/2023]
Abstract
The metabolic syndrome is a clinical disorder characterized by impairment of glucose metabolism, increased arterial blood pressure, and abdominal obesity. The presence of these clinical features exposes patients to a high risk of atherothrombotic cardiovascular events. The pathogenesis of atherothrombosis in the metabolic syndrome is multifactorial, requiring a close relationship among the main components of the metabolic syndrome, including insulin resistance, alterations of glycaemic and lipid pattern, haemodynamic impairment, and early appearance of endothelial dysfunction. Furthermore, haemostatic alterations involving coagulation balance, fibrinolysis, and platelet function play a relevant role both in the progression of the arterial wall damage and in acute vascular events. The mechanisms linking abdominal obesity with prothrombotic changes in the metabolic syndrome have been identified and partially elucidated on the basis of alterations of each haemostatic variable and defined through the evidence of peculiar dysfunctions in the endocrine activity of adipose tissue responsible of vascular impairment, prothrombotic tendency, and low-grade chronic inflammation. This paper will focus on the direct role of adipose tissue on prothrombotic tendency in patients affected by metabolic syndrome, with adipocytes being able to produce and/or release cytokines and adipokines which deeply influence haemostatic/fibrinolytic balance, platelet function, and proinflammatory state.
Collapse
Affiliation(s)
- Isabella Russo
- Internal Medicine and Metabolic Disease Unit, Department of Clinical and Biological Sciences of the Turin University, San Luigi Gonzaga Hospital, 10043 Orbassano, Italy
- *Isabella Russo:
| |
Collapse
|
45
|
Moon PG, You S, Lee JE, Hwang D, Baek MC. Urinary exosomes and proteomics. MASS SPECTROMETRY REVIEWS 2011; 30:1185-1202. [PMID: 21544848 DOI: 10.1002/mas.20319] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 05/30/2023]
Abstract
A number of highly abundant proteins in urine have been identified through proteomics approaches, and some have been considered as disease-biomarker candidates. These molecules might be clinically useful in diagnosis of various diseases. However, none has proven to be specifically indicative of perturbations of cellular processes in cells associated with urogenital diseases. Exosomes could be released into urine which flows through the kidney, ureter, bladder and urethra, with a process of filtration and reabsorption. Urinary exosomes have been recently suggested as alternative materials that offer new opportunities to identify useful biomarkers, because these exosomes secreted from epithelial cells lining the urinary track might reflect the cellular processes associated with the pathogenesis of diseases in their donor cells. Proteomic analysis of such urinary exosomes assists the search of urinary biomarkers reflecting pathogenesis of various diseases and also helps understanding the function of urinary exosomes in urinary systems. Thus, it has been recently suggested that urinary exosomes are one of the most valuable targets for biomarker development and to understand pathophysiology of relevant diseases.
Collapse
Affiliation(s)
- Pyong-Gon Moon
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | | | | | | | | |
Collapse
|
46
|
Jayachandran M, Miller VM, Heit JA, Owen WG. Methodology for isolation, identification and characterization of microvesicles in peripheral blood. J Immunol Methods 2011; 375:207-14. [PMID: 22075275 DOI: 10.1016/j.jim.2011.10.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/03/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
Abstract
RATIONALE Analyses of circulating cell membrane-derived microvesicles (MV) have come under scrutiny as potential diagnostic and prognostic biomarkers of disease. However, methods to isolate, label and quantify MV have been neither systematized nor validated. OBJECTIVE To determine how pre-analytical, analytical and post-analytical factors affect plasma MV counts, markers for cell of origin and expression of procoagulant surface phosphatidylserine. METHODS AND RESULTS Peripheral venous blood samples were collected from healthy volunteers and patients with cardiovascular disease and/or diabetes. Effects of blood sample collection, anticoagulant and sample processing to platelet free plasma (PFP), and MV isolation, staining and storage (freeze-thaw) and cytometer design were evaluated with replicate samples from these populations. The key finding is that use of citrate or EDTA anticoagulants decreases or eliminates microvesicles from plasma by inducing adhesion of the microvesicles to platelets or other formed elements. Protease inhibitor anticoagulants, including heparin, preserve MV counts. A centrifugation protocol was developed in which recovery of isolated MV was high with resolution down to the equivalent light scatter of 0.2 μm latex beads. Each procedure was systematically evaluated for its impact on the MV counts and characteristics. CONCLUSION This study provides a systematic methodology for MV isolation, identification and quantification, essential for development of MV as diagnostic and prognostic biomarkers of disease.
Collapse
Affiliation(s)
- Muthuvel Jayachandran
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States.
| | | | | | | |
Collapse
|
47
|
Pérez-Casal M, Thompson V, Downey C, Welters I, Wyncoll D, Thachil J, Toh CH. The clinical and functional relevance of microparticles induced by activated protein C treatment in sepsis. Crit Care 2011; 15:R195. [PMID: 21834973 PMCID: PMC3387637 DOI: 10.1186/cc10356] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 07/07/2011] [Accepted: 08/11/2011] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Activated protein C (APC) induces release of microparticles (MP) from primary physiological cells, which are found in patients undergoing treatment with recombinant human APC (rhAPC) for severe sepsis. We hypothesised that APC on these circulating MPs activate endothelial protease-activated receptor 1 (PAR1) to induce anti-apoptotic and anti-inflammatory properties that can improve patient outcome. METHODS This was an experimental study on clinical samples in an intensive care setting, and included patients with severe sepsis who fulfilled criteria for treatment with rhAPC. The number of CD13+ MPs from the patients were analysed to determine their origin. They were also quantified for endothelial protein C receptor (EPCR) and APC expression. Clinical relevance of these MPs were ascertained by comparing survival between the group receiving rhAPC (n = 25) and a control group of untreated patients (n = 25). MPs were also incubated with endothelial cells to analyse apoptotic gene expression, cytoprotection and anti-inflammatory effects. RESULTS rhAPC treatment induced a significant increase in circulating MP-associated EPCR by flow cytometry (P < 0.05) and by quantitative ELISA (P < 0.005). APC expression also showed significant increases (P < 0.05). Numerically, CD13+ MPs were higher in rhAPC-treated survivors versus non-survivors. However, the number of non-survivors was low and this was not significantly different. APC on MPs was demonstrated to induce anti-apoptotic and endothelial barrier effects through the activation of endothelial PAR1. CONCLUSIONS rhAPC treatment in patients with sepsis significantly increases circulating EPCR + MPs. These MPs were noted to express APC, which has specific anti-apoptotic and anti-inflammatory effects, with a non-significant correlative trend towards survival. This suggests that MPs could disseminate APC function and activate endothelial PAR1 at distal vascular sites.
Collapse
Affiliation(s)
- Margarita Pérez-Casal
- Roald Dahl Haemostasis and Thrombosis Centre, Royal Liverpool University Hospital, Prescot Street, Liverpool L7 8XP, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Previtali E, Bucciarelli P, Passamonti SM, Martinelli I. Risk factors for venous and arterial thrombosis. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2011; 9:120-38. [PMID: 21084000 PMCID: PMC3096855 DOI: 10.2450/2010.0066-10] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 08/31/2010] [Indexed: 01/04/2023]
Affiliation(s)
- Emanuele Previtali
- A. Bianchi Bonomi Haemophilia and Thrombosis Centre, Department of Internal Medicine and Medical Specialties, IRCSS General Hospital, Policlinico, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Paolo Bucciarelli
- A. Bianchi Bonomi Haemophilia and Thrombosis Centre, Department of Internal Medicine and Medical Specialties, IRCSS General Hospital, Policlinico, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Serena M. Passamonti
- A. Bianchi Bonomi Haemophilia and Thrombosis Centre, Department of Internal Medicine and Medical Specialties, IRCSS General Hospital, Policlinico, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Ida Martinelli
- A. Bianchi Bonomi Haemophilia and Thrombosis Centre, Department of Internal Medicine and Medical Specialties, IRCSS General Hospital, Policlinico, Mangiagalli and Regina Elena Foundation, Milan, Italy
| |
Collapse
|
49
|
Hebbel RP. Reconstructing sickle cell disease: a data-based analysis of the "hyperhemolysis paradigm" for pulmonary hypertension from the perspective of evidence-based medicine. Am J Hematol 2011; 86:123-54. [PMID: 21264896 DOI: 10.1002/ajh.21952] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The "hyperhemolytic paradigm" (HHP) posits that hemolysis in sickle disease sequentially and causally establishes increased cell-free plasma Hb, consumption of NO, a state of NO biodeficiency, endothelial dysfunction, and a high prevalence of pulmonary hypertension. The basic science underpinning this concept has added an important facet to the complexity of vascular pathobiology in sickle disease, and clinical research has identified worrisome clinical issues. However, this critique identifies and explains a number of significant concerns about the various HHP component tenets. In addressing these issues, this report presents: a very brief history of the HHP, an integrated synthesis of mechanisms underlying sickle hemolysis, a review of the evidentiary value of hemolysis biomarkers, an examination of evidence bearing on existence of a hyperhemolytic subgroup, and a series of questions that should naturally be applied to the HHP if it is examined using critical thinking skills, the fundamental basis of evidence-based medicine. The veracity of different HHP tenets is found to vary from true, to weakly supported, to demonstrably false. The thesis is developed that the HHP has misidentified the mechanism and clinical significance of its findings. The extant research questions identified by these analyses are delineated, and a conservative, evidence-based approach is suggested for application in clinical medicine.
Collapse
Affiliation(s)
- Robert P. Hebbel
- Department of Medicine, Division of Hematology‐Oncology‐Transplantation, Vascular Biology Center, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
50
|
Dey-Hazra E, Hertel B, Kirsch T, Woywodt A, Lovric S, Haller H, Haubitz M, Erdbruegger U. Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing. Vasc Health Risk Manag 2010; 6:1125-33. [PMID: 21191433 PMCID: PMC3004516 DOI: 10.2147/vhrm.s13236] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Indexed: 11/23/2022] Open
Abstract
The clinical importance of microparticles resulting from vesiculation of platelets and other blood cells is increasingly recognized, although no standardized method exists for their measurement. Only a few studies have examined the analytical and preanalytical steps and variables affecting microparticle detection. We focused our analysis on microparticle detection by flow cytometry. The goal of our study was to analyze the effects of different centrifugation protocols looking at different durations of high and low centrifugation speeds. We also analyzed the effect of filtration of buffer and long-term freezing on microparticle quantification, as well as the role of Annexin V in the detection of microparticles. Absolute and platelet-derived microparticles were 10- to 15-fold higher using initial lower centrifugation speeds at 1500 × g compared with protocols using centrifugation speeds at 5000 × g (P < 0.01). A clear separation between true events and background noise was only achieved using higher centrifugation speeds. Filtration of buffer with a 0.2 μm filter reduced a significant amount of background noise. Storing samples for microparticle detection at -80°C decreased microparticle levels at days 28, 42, and 56 (P < 0.05 for all comparisons with fresh samples). We believe that staining with Annexin V is necessary to distinguish true events from cell debris or precipitates. Buffers should be filtered and fresh samples should be analyzed, or storage periods will have to be standardized. Higher centrifugation speeds should be used to minimize contamination by smaller size platelets.
Collapse
Affiliation(s)
- Emily Dey-Hazra
- Division of Nephrology, Department of Medicine, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|