1
|
Hou YJ, Yang XX, Meng HX. Mitochondrial metabolism in laryngeal cancer: therapeutic mechanisms and prospects. Biochim Biophys Acta Rev Cancer 2025; 1880:189335. [PMID: 40311711 DOI: 10.1016/j.bbcan.2025.189335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
Tumours reprogram pathways that regulate nutrient uptake and metabolism to meet the biosynthetic, bioenergetic, and redox requirements of cancer cells. This phenomenon is known as metabolic reprogramming and is edited by the deletion of oncogenes and the activation of proto-oncogenes. This article highlights the pathological mechanisms associated with metabolic reprogramming in laryngeal cancer (LC), including enhanced glycolysis, tricarboxylic acid cycle, nucleotide synthesis, lipid synthesis and metabolism, and amino acid metabolism, with a special emphasis on glutamine, tryptophan, and arginine metabolism. All these changes are regulated by HPV infection, hypoxia, and metabolic mediators in the tumour microenvironment. We analyzed the function of metabolic reprogramming in the development of drug resistance during standard LC treatment, which is challenging. In addition, we revealed recent advances in targeting metabolic strategies, assessing the strengths and weaknesses of clinical trials and treatment programs to attack resistance. This review summarises some currently important biomarkers and lays the foundation for therapeutic pathways in LC.
Collapse
Affiliation(s)
- Yun-Jing Hou
- Harbin Medical University, Harbin, China; Harbin Medical University Cancer Hospital, Harbin, China; Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin-Xin Yang
- Harbin Medical University, Harbin, China; Harbin Medical University Cancer Hospital, Harbin, China; Department of Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Xue Meng
- Harbin Medical University, Harbin, China; Harbin Medical University Cancer Hospital, Harbin, China; Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
2
|
Poswal J, Mandal CC. Lipid metabolism dysregulation for bone metastasis and its prevention. Expert Rev Anticancer Ther 2025:1-17. [PMID: 40219980 DOI: 10.1080/14737140.2025.2492784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
INTRODUCTION Bone metastasis often develops in advanced malignancies. Lipid metabolic dysregulation might play pivotal role in cancer progression and subsequent deterioration of bone health at metastatic condition. In-depth understanding of lipid reprogramming in metastasized cancer cells and other stromal cells including bone marrow adipocyte (BMA) is an urgent need to develop effective therapy. AREA COVERED This paper emphasizes providing an overview of multifaceted role of dysregulated lipids and BMA in cancer cells in association with bone metastasis by utilizing search terms lipid metabolism, lipid and metastasis in PubMed. This study extends to address mechanism linked with lipid metabolism and various crucial genes (e.g. CSF-1, RANKL, NFkB and NFATc1) involved in bone metastasis. This review examines therapeutic strategies targeting lipid metabolism to offer potential avenues to disrupt lipid-driven metastasis. EXPERT OPINION On metastatic condition, dysregulated lipid molecules especially in BMA and other stromal cells not only favors cancer progression but also potentiate lipid reprogramming within cancer cells. Distinct dysregulated lipid-metabolism associated genes may act as biomarker, and targeting these is challenging task for specific treatment. Curbing function of bone resorption associated genes by lipid controlling drugs (e.g. statins, omega-3 FA and metformin) may provide additional support to curtail lipid-associated bone metastasis.
Collapse
Affiliation(s)
- Jyoti Poswal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
3
|
Sornprasert S, Jaratsittisin J, Chumchanchira C, Smith DR. Effects of the fatty acid synthase inhibitors triclosan and lapatinib on dengue virus and Zika virus infection. Sci Rep 2025; 15:10731. [PMID: 40155685 PMCID: PMC11953471 DOI: 10.1038/s41598-025-95346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Fatty acid synthase (FASN) has been shown to be critical in the replication of several viruses of the genus Orthoflavivirus. In this study the role two inhibitors of FASN that work through different mechanisms were investigated in dengue virus (DENV) and Zika virus (ZIKV) infections. Triclosan is a FASN inhibitor that targets the enol reductase domain of FASN, while lapatinib exerts an effect on FASN through acting on HER2, an upstream regulator of FASN. After determining cytotoxicity, a comprehensive analysis of the effect of these drugs in DENV 2 and ZIKV infection was undertaken. The results showed that triclosan had moderate antiviral activity against both DENV 2 (EC50 = 10.21 µM; Selective index (SI) = 3.99) and ZIKV ( EC50 = 22.84 µM; SI = 5.49). Lapatinib had reasonable activity against DENV 2 (EC50 = 4.9 µM; SI = 26.09), but computer modeling suggested that lapatinib had the potential to be a directly acting antiviral by binding to NS5. The result of that analysis suggested that lapatinib was a better fit with ZIKV NS5 than DENV NS5, and this was confirmed as the EC50 for lapatinib towards ZIKV was was 2 µM and the calculated SI was 37.92. The results of triclosan are consistent with other studies that use inhibitors that target other domains of FASN, suggesting that simply targeting the enzymatic activity of FASN is insufficient for therapeutic drug development, but that lapatinib, or similar molecules may have real therapeutic potential.
Collapse
Affiliation(s)
- Suthatta Sornprasert
- Institute of Molecular Biosciences, Center for Advanced Therapeutics, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Janejira Jaratsittisin
- Institute of Molecular Biosciences, Center for Advanced Therapeutics, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chanida Chumchanchira
- Institute of Molecular Biosciences, Center for Advanced Therapeutics, Mahidol University, Nakhon Pathom, 73170, Thailand
- Phd Degree Program in Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Center for Advanced Therapeutics, Mahidol University, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Chen CI, Kuo DY, Chuang HY. FASN inhibition shows the potential for enhancing radiotherapy outcomes by targeting glycolysis, AKT, and ERK pathways in breast cancer. Int J Radiat Biol 2025; 101:292-303. [PMID: 39792986 DOI: 10.1080/09553002.2024.2446585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/02/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved. MATERIALS AND METHODS We used lentiviruses carrying shFASN to create FASN-knockdown cell lines called MCF-7-shFASN and MDA-MB-231-shFASN. We conducted Western blot analysis to determine the expression levels of FASN and other proteins of interest. Furthermore, we evaluated cellular glucose uptake and migration using the 18F-FDG assay, wound healing, and transwell assays. We also employed the MTT assay to assess the short-term survival of the negative control and FASN-knockdown cells after irradiation. RESULTS FASN knockdown led to a decrease in the expressions of proteins related to fatty acid synthesis and glycolysis in both MCF-7-shFASN and MDA-MB-231-shFASN cells when compared to their counterparts. Moreover, reduced 18F-FDG uptake and lactate production were also detected after FASN knockdown. FASN knockdown inhibited cell proliferation and survival by downregulating the AKT, ERK, and AMPK pathways and promoted apoptosis by increasing the BAX/p-Bcl-2 ratio. In addition, FASN knockdown impaired cell migration while enhancing radiosensitivity. CONCLUSIONS FASN knockdown disrupts fatty acid synthesis and glycolysis, inhibits cell proliferation and induces apoptosis. The increased radiosensitivity after FASN inhibition suggests that it could potentially complement radiotherapy in treating breast cancer.
Collapse
Affiliation(s)
- Ching-I Chen
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan
- Department of Medical Imaging and Intervention, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan
| | - Deng-Yu Kuo
- Department of Radiology, Division of Radiation Oncology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| |
Collapse
|
5
|
Li D, Jin P, Cai Y, Wu S, Guo X, Zhang Z, Liu K, Li P, Hu Y, Zhou Y. Clinical significance of lipid pathway-targeted therapy in breast cancer. Front Pharmacol 2025; 15:1514811. [PMID: 39834807 PMCID: PMC11743736 DOI: 10.3389/fphar.2024.1514811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Globally, breast cancer represents the most common cancer and the primary cause of death by cancer in women. Lipids are crucial in human physiology, serving as vital energy reserves, structural elements of biological membranes, and essential signaling molecules. The metabolic reprogramming of lipid pathways has emerged as a critical factor in breast cancer progression, drug resistance, and patient prognosis. In this study, we delve into the clinical implications of lipid pathway-targeted therapy in breast cancer. We highlight key enzymes and potential therapeutic targets involved in lipid metabolism reprogramming, and their associations with cancer progression and treatment outcomes. Furthermore, we detail the clinical trials exploring the anticancer and cancer chemopreventive activity of therapies targeting these molecules. However, the clinical efficacy of these therapies remains controversial, highlighting the urgent need for predictive biomarkers to identify patient subpopulations likely to benefit from such treatment. We propose the Selective Lipid Metabolism Therapy Benefit Hypothesis, emphasizing the importance of personalized medicine in optimizing lipid pathway-targeted therapy for breast cancer patients.
Collapse
Affiliation(s)
- Dan Li
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengcheng Jin
- Department of Surgical Oncology, Linhai Branch, The Second Affiliated Hospital, Zhejiang University School of Medicine, Taizhou, Zhejiang, China
| | - Yiqi Cai
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Wu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianan Guo
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyun Zhang
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Liu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Panni Li
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Hu
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxiang Zhou
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Dai L, An D, Huang J, Xiao M, Li Z, Zhou B, Liu H, Xu J, Chen X, Ruan Y. Ovarian multi-omics analysis reveals key rate-limiting enzymes FASN, SCD5, FADS1, 3BHSD, and STAR as potential targets for regulating kidding traits in goats. Int J Biol Macromol 2024; 282:136737. [PMID: 39433193 DOI: 10.1016/j.ijbiomac.2024.136737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/29/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The kidding traits of goats are an important index of production. However, the molecular regulatory mechanisms of kidding traits in goats have not been fully elucidated. This study aimed to investigate the molecular regulatory network of kidding traits in goats. Multi-omics revealed the enrichment of 10 signaling pathways, with fatty acid biosynthesis, biosynthesis of unsaturated fatty acids, and steroid hormone biosynthesis pathways being closely related to reproduction. Interestingly, the key rate-limiting enzymes, fatty acid synthase (FASN), stearoyl-CoA desaturase 5 (SCD5), fatty acid desaturase 1 (FADS1), 3β-hydroxysteroid dehydrogenase/isomerase (3BHSD), and steroidogenic acute regulatory protein (STAR) enriched in these pathways regulate changes in reproduction-related metabolites. In interference experiments, it was observed that suppressing these key rate-limiting enzymes inhibited the expression of CYP19A1, ESR2, and FSHR. Furthermore, interference inhibited granulosa cell proliferation, caused cell cycle arrest, and promoted apoptosis. Thus, these results suggest that the specific markers of nanny goats with multiple kids are the key rate-limiting enzymes FASN, SCD5, FADS1, 3BHSD, and STAR. These findings may greatly enhance the understanding of regulatory mechanisms that govern goat parturition.
Collapse
Affiliation(s)
- Lingang Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Dongwei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiajin Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Meimei Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ziyang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bo Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Huan Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Jiali Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
7
|
Sioris P, Mäkelä M, Kontunen A, Karjalainen M, Vehkaoja A, Oksala N, Roine A. Identification of Phospholipids Relevant to Cancer Tissue Using Differential Ion Mobility Spectrometry. Int J Mol Sci 2024; 25:11002. [PMID: 39456784 PMCID: PMC11508011 DOI: 10.3390/ijms252011002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Phospholipids are the main building components of cell membranes and are also used for cell signaling and as energy storages. Cancer cells alter their lipid metabolism, which ultimately leads to an increase in phospholipids in cancer tissue. Surgical energy instruments use electrical or vibrational energy to heat tissues, which causes intra- and extracellular water to expand rapidly and degrade cell structures, bursting the cells, which causes the formation of a tissue aerosol or smoke depending on the amount of energy used. This gas phase analyte can then be analyzed via gas analysis methods. Differential mobility spectrometry (DMS) is a method that can be used to differentiate malignant tissue from benign tissues in real time via the analysis of surgical smoke produced by energy instruments. Previously, the DMS identification of cancer tissue was based on a 'black box method' by differentiating the 2D dispersion plots of samples. This study sets out to find datapoints from the DMS dispersion plots that represent relevant target molecules. We studied the ability of DMS to differentiate three subclasses of phospholipids (phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine) from a control sample using a bovine skeletal muscle matrix with a 5 mg addition of each phospholipid subclass to the sample matrix. We trained binary classifiers using linear discriminant analysis (LDA) and support vector machines (SVM) for sample classification. We were able to identify phosphatidylcholine, -inositol, and -ethanolamine with SVM binary classification accuracies of 91%, 73%, and 66% and with LDA binary classification accuracies of 82%, 74%, and 72%, respectively. Phosphatidylcholine was detected with a reliable classification accuracy, but ion separation setups should be adjusted in future studies to reliably detect other relevant phospholipids such as phosphatidylinositol and phosphatidylethanolamine and improve DMS as a microanalysis method and identify other phospholipids relevant to cancer tissue.
Collapse
Affiliation(s)
- Patrik Sioris
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.V.)
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
| | - Meri Mäkelä
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
- Olfactomics Ltd., 33720 Tampere, Finland
| | - Anton Kontunen
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
- Olfactomics Ltd., 33720 Tampere, Finland
| | - Markus Karjalainen
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
- Olfactomics Ltd., 33720 Tampere, Finland
| | - Antti Vehkaoja
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.V.)
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
| | - Niku Oksala
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.V.)
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
- Olfactomics Ltd., 33720 Tampere, Finland
- Centre for Vascular Surgery and Interventional Radiology, Tampere University Hospital, 33520 Tampere, Finland
| | - Antti Roine
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.V.)
- TAYS Cancer Centre, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33521 Tampere, Finland
- Olfactomics Ltd., 33720 Tampere, Finland
| |
Collapse
|
8
|
Cai C, Huang Y, Zhang L, Zhang L. Structural Basis of the Dehydratase Module (hDH) of Human Fatty Acid Synthase. Chembiochem 2024; 25:e202400466. [PMID: 38955950 DOI: 10.1002/cbic.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
The human fatty acid synthase (hFASN) produces fatty acids for cellar membrane construction, energy storage, biomolecule modifications and signal transduction. Abnormal expression and functions of hFASN highly associate with numerous human diseases such as obesity, diabetes, and cancers, and thereby it has been considered as a valuable potential drug target. So far, the structural and catalytic mechanisms of most of the hFASN enzymatic modules have been extensively studied, except the key dehydratase module (hDH). Here we presented the enzymatic characterization and the high-resolution crystal structure of hDH. We demonstrated that the hDH preferentially catalyzes the acyl substrates with short lengths between 4 to 8-carbons, and exhibits much lower enzymatic activity on longer substrates. Subsequent structural study showed that hDH displays a pseudo-dimeric organization with a single L-shaped composite hydrophobic catalytic tunnel as well as an atypical ACP binding site nearby, indicating that hDH achieves distinct substrate recognition and dehydration mechanisms compared to the conventional bacterial fatty acid dehydratases identified. Our findings laid the foundation for understanding the biological and pathogenic functions of hFASN, and may facilitate therapeutical drug development against diseases with abnormal functionality of hFASN.
Collapse
Affiliation(s)
- Chang Cai
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuzhou Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
- Department of Chemical Biology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Ahmad N, Moton S, Kuttikrishnan S, Prabhu KS, Masoodi T, Ahmad S, Uddin S. Fatty acid synthase: A key driver of ovarian cancer metastasis and a promising therapeutic target. Pathol Res Pract 2024; 260:155465. [PMID: 39018927 DOI: 10.1016/j.prp.2024.155465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Fatty acid synthase (FASN) is a critical enzyme essential for the production of fats in the body. The abnormal expression of FASN is associated with different types of malignancies, including ovarian cancer. FASN plays a crucial role in cell growth and survival as a metabolic oncogene, although the specific processes that cause its dysregulation are still unknown. FASN interacts with signaling pathways linked to the progression of cancer. Pharmacologically inhibiting or inactivating the FASN gene has shown potential in causing the death of cancer cells, offering a possible treatment approach. This review examines the function of FASN in ovarian cancer, namely its level of expression, influence on the advancement of the disease, and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Nuha Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tariq Masoodi
- Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sarfraz Ahmad
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL 32804, USA; Florida State University, College of Medicine, Orlando, FL 32801, USA; University of Central Florida, College of Medicine, Orlando, FL 32827, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory of Animal Research Center, Qatar University, Doha 2713, Qatar; Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India.
| |
Collapse
|
10
|
Cai A, Chen Y, Wang LS, Cusick JK, Shi Y. Depicting Biomarkers for HER2-Inhibitor Resistance: Implication for Therapy in HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:2635. [PMID: 39123362 PMCID: PMC11311605 DOI: 10.3390/cancers16152635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
HER2 (human epidermal growth factor receptor 2) is highly expressed in a variety of cancers, including breast, lung, gastric, and pancreatic cancers. Its amplification is linked to poor clinical outcomes. At the genetic level, HER2 is encoded by the ERBB2 gene (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2), which is frequently mutated or amplified in cancers, thus spurring extensive research into HER2 modulation and inhibition as viable anti-cancer strategies. An impressive body of FDA-approved drugs, including anti-HER2 monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), and HER2-tyrosine kinase inhibitors (TKIs), have demonstrated success in enhancing overall survival (OS) and disease progression-free survival (PFS). Yet, drug resistance remains a persistent challenge and raises the risks of metastatic potential and tumor relapse. Research into alternative therapeutic options for HER2+ breast cancer therefore proves critical for adapting to this ever-evolving landscape. This review highlights current HER2-targeted therapies, discusses predictive biomarkers for drug resistance, and introduces promising emergent therapies-especially combination therapies-that are aimed at overcoming drug resistance in the context of HER2+ breast cancer.
Collapse
Affiliation(s)
- Alvan Cai
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Lily S. Wang
- University of California, Berkeley, CA 94720, USA;
| | - John K. Cusick
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
| | - Yihui Shi
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (A.C.); (J.K.C.)
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA
| |
Collapse
|
11
|
Moyer CL, Lanier A, Qian J, Coleman D, Hill J, Vuligonda V, Sanders ME, Mazumdar A, Brown PH. IRX4204 Induces Senescence and Cell Death in HER2-positive Breast Cancer and Synergizes with Anti-HER2 Therapy. Clin Cancer Res 2024; 30:2558-2570. [PMID: 38578278 PMCID: PMC11145169 DOI: 10.1158/1078-0432.ccr-23-3839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Rexinoids, agonists of nuclear retinoid X receptor (RXR), have been used for the treatment of cancers and are well tolerated in both animals and humans. However, the usefulness of rexinoids in treatment of breast cancer remains unknown. This study examines the efficacy of IRX4204, a highly specific rexinoid, in breast cancer cell lines and preclinical models to identify a biomarker for response and potential mechanism of action. EXPERIMENTAL DESIGN IRX4204 effects on breast cancer cell growth and viability were determined using cell lines, syngeneic mouse models, and primary patient-derived xenograft (PDX) tumors. In vitro assays of cell cycle, apoptosis, senescence, and lipid metabolism were used to uncover a potential mechanism of action. Standard anti-HER2 therapies were screened in combination with IRX4204 on a panel of breast cancer cell lines to determine drug synergy. RESULTS IRX4204 significantly inhibits the growth of HER2-positive breast cancer cell lines, including trastuzumab and lapatinib-resistant JIMT-1 and HCC1954. Treatment with IRX4204 reduced tumor growth rate in the MMTV-ErbB2 mouse and HER2-positive PDX model by 49% and 44%, respectively. Mechanistic studies revealed IRX4204 modulates lipid metabolism and induces senescence of HER2-positive cells. In addition, IRX4204 demonstrates additivity and synergy with HER2-targeted mAbs, tyrosine kinase inhibitors, and antibody-drug conjugates. CONCLUSIONS These findings identify HER2 as a biomarker for IRX4204 treatment response and demonstrate a novel use of RXR agonists to synergize with current anti-HER2 therapies. Furthermore, our results suggest that RXR agonists can be useful for the treatment of anti-HER2 resistant and metastatic HER2-positive breast cancer.
Collapse
Affiliation(s)
- Cassandra L. Moyer
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amanda Lanier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Qian
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Darian Coleman
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jamal Hill
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Abhijit Mazumdar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Powel H. Brown
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
12
|
Cao SQ, Xue ST, Li WJ, Hu GS, Wu ZG, Zheng JC, Zhang SL, Lin X, Chen C, Liu W, Zheng B. CircHIPK3 regulates fatty acid metabolism through miR-637/FASN axis to promote esophageal squamous cell carcinoma. Cell Death Discov 2024; 10:110. [PMID: 38431720 PMCID: PMC10908791 DOI: 10.1038/s41420-024-01881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
The oncogenic role of circRNA in cancers including esophageal cancer (EC) has been well studied. However, whether and how circRNAs are involved in cancer cell metabolic processes remains largely unknown. Here, we reported that circRNA, circHIPK3, is highly expressed in ESCC cell lines and tissues. Knockdown of circHIPK3 significantly restrained cell proliferation, colony formation, migration, and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, circHIPK3 was found to act as a ceRNA by sponging miR-637 to regulate FASN expression and fatty acid metabolism in ESCC cells. Anti-sense oligonucleotide (ASO) targeting circHIPK3 substantially inhibited ESCC both in vitro and in vivo. Therefore, these results uncover a modulatory axis constituting of circHIPK3/miR-637/FASN may be a potential biomarker and therapeutic target for ESCC in the clinic.
Collapse
Affiliation(s)
- Shi-Qiang Cao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Song-Tao Xue
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Wen-Juan Li
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Zhi-Gang Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Jian-Cong Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Shu-Liang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Xiao Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
13
|
Chen Y, Li Y, Wu L. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment. Front Immunol 2024; 15:1337478. [PMID: 38415253 PMCID: PMC10896991 DOI: 10.3389/fimmu.2024.1337478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that involves the addition of a 16-carbon palmitoyl group to a protein cysteine residue via a thioester linkage. This modification plays a crucial role in the regulation protein localization, accumulation, secretion, stability, and function. Dysregulation of protein S-palmitoylation can disrupt cellular pathways and contribute to the development of various diseases, particularly cancers. Aberrant S-palmitoylation has been extensively studied and proven to be involved in tumor initiation and growth, metastasis, and apoptosis. In addition, emerging evidence suggests that protein S-palmitoylation may also have a potential role in immune modulation. Therefore, a comprehensive understanding of the regulatory mechanisms of S-palmitoylation in tumor cells and the tumor immune microenvironment is essential to improve our understanding of this process. In this review, we summarize the recent progress of S-palmitoylation in tumors and the tumor immune microenvironment, focusing on the S-palmitoylation modification of various proteins. Furthermore, we propose new ideas for immunotherapeutic strategies through S-palmitoylation intervention.
Collapse
Affiliation(s)
- Yijiao Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Li X, Li J, Hu Q, Zhang X, Chen F. Association of physical weight statuses defined by body mass index (BMI) with molecular subtypes of premenopausal breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 2024; 203:429-447. [PMID: 37882920 DOI: 10.1007/s10549-023-07139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND PURPOSE The association between overweight/obesity and postmenopausal breast cancer has been proven. However, uncertainty exists regarding the association between physical weight statuses and premenopausal breast cancer subtypes. This study aimed to explore the association of body weight statuses with molecular subtypes of premenopausal breast cancer. METHOD A systematic search of Medline, PubMed, Embase, and Web of Science was performed. The Newcastle-Ottawa Scale (NOS) and the Joanna Briggs Institute (JBI) Critical Appraisal tools were used to evaluate the quality of the literature. STATA and R software were used to analyze the extracted data. RESULT The meta-analysis included 35 observational studies with a total of 41,049 premenopausal breast cancer patients. The study showed that the proportion of underweight patients was 4.8% (95% CI = 3.9-5.8%, P = 0.01), overweight was 29% (95%CI = 27.1-30.9%, P < 0.01), obesity was 17.8% (95% CI = 14.9-21.2%, P < 0.0001), and normal weight was 51.6% (95% CI = 46.7-56.5%, P < 0.0001). The pooled results showed that in comparison to the normal weight group, being physically underweight is related to a 1.44-fold risk (OR = 1.44, 95%CI = 1.28-1.63, P < 0.0001) of HER2 + breast cancer. Overweight is related to a 1.16-fold risk (OR = 1.16, 95%CI = 1.06-1.26, P = 0.002) of TNBC and a 16% lower risk (OR = 0.84, 95%CI = 0.75-0.93, P = 0.001) of ER + breast cancer. When compared to underweight/normal weight populations, both overweight (OR = 0.74, 95%CI = 0.56-0.97, P = 0.032) and obesity (OR = 0.70, 95%CI = 0.50-0.98, P = 0.037) can reduce the risk of ER + PR + breast cancer. CONCLUSION In the premenopausal breast cancer population, the distribution of patients' numbers with different weight statuses was significantly distinct among the various breast cancer subtypes. Additionally, the associations between physical weight statuses and the risk of premenopausal breast cancer subtypes are divergent.
Collapse
Affiliation(s)
- Xuchu Li
- Department of Medical, Queen Mary School, Nanchang University, 461 Bayi Avenue, Donghu District, Nanchang City, 330006, Jiangxi Province, China
| | - Jinping Li
- Department of General Medical, People's Hospital of Fu City, Yan'an, 727505, Shaanxi Province, China
| | - Qirui Hu
- College of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Xu Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Fang Chen
- College of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China.
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
15
|
Pascual G, Majem B, Benitah SA. Targeting lipid metabolism in cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189051. [PMID: 38101461 DOI: 10.1016/j.bbcan.2023.189051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
This review delves into the most recent research on the metabolic adaptability of cancer cells and examines how their metabolic functions can impact their progression into metastatic forms. We emphasize the growing significance of lipid metabolism and dietary lipids within the tumor microenvironment, underscoring their influence on tumor progression. Additionally, we present an outline of the interplay between metabolic processes and the epigenome of cancer cells, underscoring the importance regarding the metastatic process. Lastly, we examine the potential of targeting metabolism as a therapeutic approach in combating cancer progression, shedding light on innovative drugs/targets currently undergoing preclinical evaluation.
Collapse
Affiliation(s)
- Gloria Pascual
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Blanca Majem
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
16
|
Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne) 2023; 14:1292011. [PMID: 38189049 PMCID: PMC10770836 DOI: 10.3389/fendo.2023.1292011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Recent research has emphasized the interaction between the circadian clock and lipid metabolism, particularly in relation to tumors. This review aims to explore how the circadian clock regulates lipid metabolism and its impact on carcinogenesis. Specifically, targeting key enzymes involved in fatty acid synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a potential strategy for cancer therapy. By disrupting these enzymes, it may be possible to inhibit tumor growth by interfering with lipid metabolism. Transcription factors, like SREBP play a significant role in regulating fatty acid synthesis which is influenced by circadian clock genes such as BMAL1, REV-ERB and DEC. This suggests a strong connection between fatty acid synthesis and the circadian clock. Therefore, successful combination therapy should target fatty acid synthesis in addition to considering the timing and duration of drug use. Ultimately, personalized chronotherapy can enhance drug efficacy in cancer treatment and achieve treatment goals.
Collapse
Affiliation(s)
- Mengsi Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yating Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Feng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
17
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
18
|
Thomas G, Fitzgerald ST, Gautam R, Chen F, Haugen E, Rasiah PK, Adams WR, Mahadevan-Jansen A. Enhanced characterization of breast cancer phenotypes using Raman micro-spectroscopy on stainless steel substrate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1188-1205. [PMID: 36799369 DOI: 10.1039/d2ay01764d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biochemical insights into varying breast cancer (BC) phenotypes can provide a fundamental understanding of BC pathogenesis, while identifying novel therapeutic targets. Raman spectroscopy (RS) can gauge these biochemical differences with high specificity. For routine RS, cells are traditionally seeded onto calcium fluoride (CaF2) substrates that are costly and fragile, limiting its widespread adoption. Stainless steel has been interrogated previously as a less expensive alternative to CaF2 substrates, while reporting increased Raman signal intensity than the latter. We sought to further investigate and compare the Raman signal quality measured from stainless steel versus CaF2 substrates by characterizing different BC phenotypes with altered human epidermal growth factor receptor 2 (HER2) expression. Raman spectra were obtained on stainless steel and CaF2 substrates for HER2 negative cells - MDA-MB-231, MDA-MB-468 and HER2 overexpressing cells - AU565, SKBr3. Upon analyzing signal-to-noise ratios (SNR), stainless steel provided a stronger Raman signal, improving SNR by 119% at 1450 cm-1 and 122% at 2925 cm-1 on average compared to the CaF2 substrate. Utilizing only 22% of laser power on sample relative to the CaF2 substrate, stainless steel still yielded improved spectral characterization over CaF2, achieving 96.0% versus 89.8% accuracy in BC phenotype discrimination and equivalent 100.0% accuracy in HER2 status classification. Spectral analysis further highlighted increased lipogenesis and altered metabolism in HER2 overexpressing cells, which was subsequently visualized with coherent anti-Stokes Raman scattering microscopy. Our findings demonstrate that stainless steel substrates deliver improved Raman signal and enhanced spectral characterization, underscoring its potential as a cost-effective alternative to CaF2 for non-invasively monitoring cellular biochemical dynamics in translational cancer research.
Collapse
Affiliation(s)
- Giju Thomas
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville 37235, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| | - Sean T Fitzgerald
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville 37235, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| | - Rekha Gautam
- Tyndall National Institute, Cork, T12 R5CP, Ireland
| | - Fuyao Chen
- Yale School of Medicine, Yale University, New Haven 06510, CT, USA
| | - Ezekiel Haugen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville 37235, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| | - Pratheepa Kumari Rasiah
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville 37235, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| | - Wilson R Adams
- Department of Pharmacology, Vanderbilt University, Nashville 37232, TN, USA
| | - Anita Mahadevan-Jansen
- Vanderbilt Biophotonics Center, Vanderbilt University, Nashville 37235, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville 37235, TN, USA
| |
Collapse
|
19
|
Non-ionic surfactants in drug delivery vehicles: Physicochemical insights with systems of drugs, Igepal CA-630, bovine serum albumin and hen egg-white lysozyme. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Audet-Delage Y, Rouleau M, Villeneuve L, Guillemette C. The Glycosyltransferase Pathway: An Integrated Analysis of the Cell Metabolome. Metabolites 2022; 12:metabo12101006. [PMID: 36295907 PMCID: PMC9609030 DOI: 10.3390/metabo12101006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Nucleotide sugar-dependent glycosyltransferases (UGTs) are critical to the homeostasis of endogenous metabolites and the detoxification of xenobiotics. Their impact on the cell metabolome remains unknown. Cellular metabolic changes resulting from human UGT expression were profiled by untargeted metabolomics. The abundant UGT1A1 and UGT2B7 were studied as UGT prototypes along with their alternative (alt.) splicing-derived isoforms displaying structural differences. Nineteen biochemical routes were modified, beyond known UGT substrates. Significant variations in glycolysis and pyrimidine pathways, and precursors of the co-substrate UDP-glucuronic acid were observed. Bioactive lipids such as arachidonic acid and endocannabinoids were highly enriched by up to 13.3-fold (p < 0.01) in cells expressing the canonical enzymes. Alt. UGT2B7 induced drastic and unique metabolic perturbations, including higher glucose (18-fold) levels and tricarboxylic acid cycle (TCA) cycle metabolites and abrogated the effects of the UGT2B7 canonical enzyme when co-expressed. UGT1A1 proteins promoted the accumulation of branched-chain amino acids (BCAA) and TCA metabolites upstream of the mitochondrial oxoglutarate dehydrogenase complex (OGDC). Alt. UGT1A1 exacerbated these changes, likely through its interaction with the OGDC component oxoglutarate dehydrogenase-like (OGDHL). This study expands the breadth of biochemical pathways associated with UGT expression and establishes extensive connectivity between UGT enzymes, alt. proteins and other metabolic processes.
Collapse
Affiliation(s)
- Yannick Audet-Delage
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Michèle Rouleau
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Lyne Villeneuve
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
| | - Chantal Guillemette
- Centre Hospitalier Universitaire de Québec Research Center—Université Laval, Faculty of Pharmacy, and Université Laval Cancer Research Center (CRC), R4720, 2705 Blvd Laurier, Québec, QC G1V 4G2, Canada
- Canada Research Chair in Pharmacogenomics, Université Laval, Québec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-(418)-654-2296
| |
Collapse
|
21
|
Sun Y, Xue Z, Huang T, Che X, Wu G. Lipid metabolism in ferroptosis and ferroptosis-based cancer therapy. Front Oncol 2022; 12:941618. [PMID: 35978815 PMCID: PMC9376317 DOI: 10.3389/fonc.2022.941618] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Ferroptosis refers to iron-dependent, specialized, and regulated-necrosis mediated by lipid peroxidation, which is closely related to a variety of diseases, including cancer. Tumor cells undergo extensive changes in lipid metabolism, including lipid peroxidation and ferroptosis. Changes in lipid metabolism are critical for the regulation of ferroptosis and thus have important roles in cancer therapy. In this review, we introduce the characteristics of ferroptosis and briefly analyze the links between several metabolic mechanisms and ferroptosis. The effects of lipid peroxides, several signaling pathways, and the molecules and pathways involved in lipid metabolism on ferroptosis were extensively analyzed. Finally, our review highlights some ferroptosis-based treatments and presents some methods and examples of how these treatments can be combined with other treatments.
Collapse
Affiliation(s)
- Yonghao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zuoxing Xue
- Department of Urology, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Tao Huang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Zheng Z, Shang Y, Xu R, Yan X, Wang X, Cai J, Bai Z, Liu X, Yin J, Zhang J, Zhang Z. Ubiquitin specific peptidase 38 promotes the progression of gastric cancer through upregulation of fatty acid synthase. Am J Cancer Res 2022; 12:2686-2696. [PMID: 35812059 PMCID: PMC9251701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor with an adverse health effect worldwide, whereas the underlying mechanism of GC development remains controversial. Identification of biomarkers is critical for the treatment of GC. Increasing evidence demonstrates that protein modification plays a pivotal role in carcinogenesis. USP38 is a member of the ubiquitin-specific protease (USP) family, which promotes protein stability by deubiquitinating the target proteins. In this study, we focused on the effect of USP38 on the GC and explored its underlying mechanism. The Cancer Genome Atlas (TCGA) database was used to evaluate the expression of USP38. AGS and HGC27 cells were treated with siRNA targeting USP38 or plasmids overexpressing USP38 to disturb levels of USP38. Immumohistochemical staining was performed to detect the level of USP38 and FASN. RT-qPCR and Western blotting (WB) were used to analyze the expression of mRNA and protein respectively. CCK8 assay, colony formation, cell migration assay, and cell apoptosis and cell cycle were performed to assess cell proliferation and migration ability. A subcutaneous tumor mice model was carried to verify the effect of USP38 on the GC in vivo. In this research, we found that USP38 was overexpressed in GC tissues, and USP38 contributed to GC cell proliferation, migration and tumorigenesis. Cell cycle and apoptosis were also regulated by USP38. Mechanistically, USP38 interacted with FASN, which resulted in enhanced protein stability of FASN and increased triglyceride production. Furthermore, FASN was critical for GC cell growth, migration and tumor development triggered by USP38 overexpression because its inhibitor orilistat reversed phenotypes in USP38 overexpressed GC cells. Collectively, USP38 overexpression is critical for GC cell growth, migration and tumorigenesis. Targeting FASN with inhibitors could be used as a potential treatment for GC patients with highly expressed USP38.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Yuxi Shang
- Department of Hematology, Fuxing Hospital, Eighth Clinical Medical College, Capital Medical UniversityBeijing, China
| | - Rui Xu
- Department of Pathology, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
| | - Xiaosheng Yan
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Xi Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Jun Cai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Xiaoye Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Jie Yin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical UniversityBeijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchBeijing, China
- National Clinical Research Center for Digestive DiseasesBeijing, China
- Beijing Institute of Clinical MedicineBeijing, China
| |
Collapse
|
23
|
Menendez JA, Lupu R. Fatty acid synthase: A druggable driver of breast cancer brain metastasis. Expert Opin Ther Targets 2022; 26:427-444. [PMID: 35545806 DOI: 10.1080/14728222.2022.2077189] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Brain metastasis (BrM) is a key contributor to morbidity and mortality in breast cancer patients, especially among high-risk epidermal growth factor receptor 2-positive (HER2+) and triple-negative/basal-like molecular subtypes. Optimal management of BrM is focused on characterizing a "BrM dependency map" to prioritize targetable therapeutic vulnerabilities. AREAS COVERED We review recent studies addressing the targeting of BrM in the lipid-deprived brain environment, which selects for brain-tropic breast cancer cells capable of cell-autonomously generating fatty acids by upregulating de novo lipogenesis via fatty acid synthase (FASN). Disruption of FASN activity impairs breast cancer growth in the brain, but not extracranially, and mapping of the molecular causes of organ-specific patterns of metastasis has uncovered an enrichment of lipid metabolism signatures in brain metastasizing cells. Targeting SREBP1-the master regulator of lipogenic gene transcription-curtails the ability of breast cancer cells to survive in the brain microenvironment. EXPERT OPINION Targeting FASN represents a new therapeutic opportunity for patients with breast cancer and BrM. Delivery of brain-permeable FASN inhibitors and identifying strategies to target metabolic plasticity that might compensate for impaired brain FASN activity are two potential roadblocks that may hinder FASN-centered strategies against BrM.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism and Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007 Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), 17190 Girona, Spain
| | - Ruth Lupu
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Minnesota, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
24
|
Mozihim AK, Chung I, Said NABM, Jamil AHA. Reprogramming of Fatty Acid Metabolism in Gynaecological Cancers: Is There a Role for Oestradiol? Metabolites 2022; 12:metabo12040350. [PMID: 35448537 PMCID: PMC9031151 DOI: 10.3390/metabo12040350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Gynaecological cancers are among the leading causes of cancer-related death among women worldwide. Cancer cells undergo metabolic reprogramming to sustain the production of energy and macromolecules required for cell growth, division and survival. Emerging evidence has provided significant insights into the integral role of fatty acids on tumourigenesis, but the metabolic role of high endogenous oestrogen levels and increased gynaecological cancer risks, notably in obesity, is less understood. This is becoming a renewed research interest, given the recently established association between obesity and incidence of many gynaecological cancers, including breast, ovarian, cervical and endometrial cancers. This review article, hence, comprehensively discusses how FA metabolism is altered in these gynaecological cancers, highlighting the emerging role of oestradiol on the actions of key regulatory enzymes of lipid metabolism, either directly through its classical ER pathways, or indirectly via the IGIFR pathway. Given the dramatic rise in obesity and parallel increase in the prevalence of gynaecological cancers among premenopausal women, further clarifications of the complex mechanisms underpinning gynaecological cancers are needed to inform future prevention efforts. Hence, in our review, we also highlight opportunities where metabolic dependencies can be exploited as viable therapeutic targets for these hormone-responsive cancers.
Collapse
Affiliation(s)
- Azilleo Kristo Mozihim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
| | - Ivy Chung
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Nur Akmarina B. M. Said
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
| | - Amira Hajirah Abd Jamil
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur 50603, Malaysia; (A.K.M.); (N.A.B.M.S.)
- Correspondence: ; Tel.: +60-3-7967-4909
| |
Collapse
|
25
|
Ligorio F, Zambelli L, Fucà G, Lobefaro R, Santamaria M, Zattarin E, de Braud F, Vernieri C. Prognostic impact of body mass index (BMI) in HER2+ breast cancer treated with anti-HER2 therapies: from preclinical rationale to clinical implications. Ther Adv Med Oncol 2022; 14:17588359221079123. [PMID: 35281350 PMCID: PMC8908398 DOI: 10.1177/17588359221079123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 12/03/2022] Open
Abstract
Human Epidermal growth factor Receptor 2 (HER2) overexpression or HER2 gene amplification defines a subset of breast cancers (BCs) characterized by higher biological and clinical aggressiveness. The introduction of anti-HER2 drugs has remarkably improved clinical outcomes in patients with both early-stage and advanced HER2+ BC. However, some HER2+ BC patients still have unfavorable outcomes despite optimal anti-HER2 therapies. Retrospective clinical analyses indicate that overweight and obesity can negatively affect the prognosis of patients with early-stage HER2+ BC. This association could be mediated by the interplay between overweight/obesity, alterations in systemic glucose and lipid metabolism, increased systemic inflammatory status, and the stimulation of proliferation pathways resulting in the stimulation of HER2+ BC cell growth and resistance to anti-HER2 therapies. By contrast, in the context of advanced disease, a few high-quality studies, which were included in a meta-analysis, showed an association between high body mass index (BMI) and better clinical outcomes, possibly reflecting the negative prognostic role of malnourishment and cachexia in this setting. Of note, overweight and obesity are modifiable factors. Therefore, uncovering their prognostic role in patients with early-stage or advanced HER2+ BC could have clinical relevance in terms of defining subsets of patients requiring more or less aggressive pharmacological treatments, as well as of designing clinical trials to investigate the therapeutic impact of lifestyle interventions aimed at modifying body weight and composition. In this review, we summarize and discuss the available preclinical evidence supporting the role of adiposity in modulating HER2+ BC aggressiveness and resistance to therapies, as well as clinical studies reporting on the prognostic role of BMI in patients with early-stage or advanced HER2+ BC.
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luca Zambelli
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marzia Santamaria
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Emma Zattarin
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudio Vernieri
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| |
Collapse
|
26
|
The Complex Biology of the Obesity-Induced, Metastasis-Promoting Tumor Microenvironment in Breast Cancer. Int J Mol Sci 2022; 23:ijms23052480. [PMID: 35269622 PMCID: PMC8910079 DOI: 10.3390/ijms23052480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is one of the most prevalent cancers in women contributing to cancer-related death in the advanced world. Apart from the menopausal status, the trigger for developing breast cancer may vary widely from race to lifestyle factors. Epidemiological studies refer to obesity-associated metabolic changes as a critical risk factor behind the progression of breast cancer. The plethora of signals arising due to obesity-induced changes in adipocytes present in breast tumor microenvironment, significantly affect the behavior of adjacent breast cells. Adipocytes from white adipose tissue are currently recognized as an active endocrine organ secreting different bioactive compounds. However, due to excess energy intake and increased fat accumulation, there are morphological followed by secretory changes in adipocytes, which make the breast microenvironment proinflammatory. This proinflammatory milieu not only increases the risk of breast cancer development through hormone conversion, but it also plays a role in breast cancer progression through the activation of effector proteins responsible for the biological phenomenon of metastasis. The aim of this review is to present a comprehensive picture of the complex biology of obesity-induced changes in white adipocytes and demonstrate the relationship between obesity and breast cancer progression to metastasis.
Collapse
|
27
|
Khan A, Aljarbou AN, Khan S, Khan MA. Her-2 directed systemic delivery of fatty acid synthase (FASN) siRNA with novel liposomal carrier systems in the breast cancer mouse model. J Drug Target 2022; 30:634-645. [PMID: 35112640 DOI: 10.1080/1061186x.2022.2038613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the current advancements in the gene silencing therapy in vitro, the systemic delivery of siRNA still remains a challenging task for its transition into clinics. We have previously developed the Her2-targeted fatty acid synthase (FASN) siRNA-encapsulating immunoliposomes (ILs) with a great stability in the presence of serum. We report here the therapeutic potential of the lipid-based novel formulations in the breast cancer mouse model. The growth inhibitory and gene silencing effects of various formulations were determined by measuring the size of the tumor, cell proliferation, apoptotic index and immunoassays against Her2-over expressed tumor xenografts in nude mice. The pegylated DSPC/Chol and DOPE/CHEMS immunoliposomes containing FASN-siRNA significantly decreased the tumor growth relative to non-targeted liposomes. They induced the 1.5-fold increase in cellular apoptosis and several fold decrease in proliferation as compared to non-targeted liposomal formulations of FASN-siRNA. Moreover, FASN-siRNA-ILs produced several fold increase in the ratios of p53/p21 and Bax/Bcl-2. The gene silencing effects of targeted FASN-liposomes were found significantly superior, resulting in 30%-40% downregulation in FASN as compared to non-targeted similar formulations. Both types of FASN immunoliposomes provided a highly efficient approach for targeted delivery in Her-2-expressed breast cancer and thus offered a promising anticancer strategy in the clinical therapy.
Collapse
Affiliation(s)
- Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Buraydah, Qassim University, Saudi Arabia
| | - Ahmed N Aljarbou
- Department of Pharmaceutics, College of Pharmacy, Buraydah, Qassim University, Saudi Arabia
| | - Shamshir Khan
- Dentistry and Pharmacy College, Buraydah Private Colleges, Al-Qassim, Buraydah, Saudi Arabia
| | - Masood A Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Buraydah, Qassim University, Saudi Arabia
| |
Collapse
|
28
|
Pang B, Zhu Z, Xiao C, Luo Y, Fang H, Bai Y, Sun Z, Ma J, Dang E, Wang G. Keratin 17 Is Required for Lipid Metabolism in Keratinocytes and Benefits Epidermal Permeability Barrier Homeostasis. Front Cell Dev Biol 2022; 9:779257. [PMID: 35096815 PMCID: PMC8790522 DOI: 10.3389/fcell.2021.779257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022] Open
Abstract
The epidermal barrier refers to the stratum corneum, the uppermost layer of the skin, and constitutes the first line of defense against invasion by potentially harmful pathogens, diminishes trans-epidermal water loss, and plays a crucial role in the maintenance of skin homeostasis. Keratin 17 (K17) is a type I epithelial keratin with multiple functions, including in skin inflammation, epithelial cell growth, protein synthesis, and tumorigenesis. However, the relationship between K17 and the skin barrier has yet to be systematically investigated. In this study, we found that acute disruption of the epidermal permeability barrier led to a rapid increase in epidermal K17 expression in vivo. Krt17 gene deficiency in mice resulted in decreased expression of lipid metabolism-related enzymes and antimicrobial peptides, while also delaying epidermal permeability barrier recovery after acute disruption. Adenovirus-mediated overexpression of K17 enhanced, whereas siRNA-mediated knockdown of Krt17 inhibited, the expression of fatty acid synthase (FASN) and that of the transcription factors SREBP-1 and PPARγ in vitro. We further confirmed that K17 can facilitate the nuclear transportation of SREBP-1 and PPARγ and promote lipid synthesis in keratinocytes. This study demonstrated that K17 contributes to the restoration of the epidermal permeability barrier via stabilizing lipid metabolism in keratinocytes.
Collapse
Affiliation(s)
- Bingyu Pang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenlai Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Xiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yixin Luo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yaxing Bai
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhongbin Sun
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingyi Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
29
|
FASN Knockdown Inhibited Anoikis Resistance of Gastric Cancer Cells via P-ERK1/2/Bcl-xL Pathway. Gastroenterol Res Pract 2021; 2021:6674204. [PMID: 34456997 PMCID: PMC8390150 DOI: 10.1155/2021/6674204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Anoikis resistance (AR) is a crucial step in tumor metastasis. The overexpression of fatty acid synthase (FASN) is not only related to the AR of osteosarcoma cells, but also evidenced on gastric cancer (GC). This study investigated the role of FASN in the AR of GC cells. Plates coated with poly-HEMA were used for the culture of cells with AR. Small interfering RNA targeting FASN (siFASN) was transfected into MNK-45 and AGS cells. The number and apoptosis of cells were assessed by a hemacytometer and Annexin-V-FITC/PI assay, respectively. Aggregated cells and colony numbers were manually counted under a microscope. The migration and invasion rates were measured via wound healing and Transwell invasion assays, respectively. The levels of FASN, phosphorylated (p)-ERK1/2, ERK1/2 and Bcl-xL were detected through western blot or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The results showed that the cell numbers of MNK-45 and AGS were increased while that of GES-1 cell was decreased during the culture in suspension. A higher apoptosis rate and a smaller number of aggregated cells were observed in GES-1 cells in comparison with MNK-45 and AGS cells. A larger colony number, greater migration and invasion rates, and higher mRNA and protein expressions of FASN were presented in the AR group compared with the control group. Cells transfected with siFASN possessed lower migration and invasion rates, reduced expressions of FASN mRNA and protein, p-ERK1/2 and Bcl-xL, and induced a significantly declined ratio of p-ERK1/2 to ERK1/2. These findings suggest that down-regulation of FASN suppresses the AR of GC cells, which may be related to the inhibition of p-ERK1/2/Bcl-xL pathway.
Collapse
|
30
|
Das A, Baidya R, Chakraborty T, Samanta AK, Roy S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed Pharmacother 2021; 142:112004. [PMID: 34388527 DOI: 10.1016/j.biopha.2021.112004] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
The pharmacological characteristics of phytochemicals have prompted a lot of interest in their application in disease management. Due to the high incidence of cancer related mortality and morbidity throughout the world; experiments have concentrated on identifying the anticancer potential of natural substances. Many phytochemicals such as flavonoids and their derivatives produced from food offer a variety of new anti-cancer agents which prevent the cancer progression. Taxifolin, a unique bioactive flavonoid, is a dietary component that has grabbed the interest of dietitians and medicinal chemists due to its wide range of health benefits. It is a powerful antioxidant with a well-documented effect in the prevention of several malignancies in humans. Taxifolin has shown promising inhibitory activity against inflammation, malignancies, microbial infection, oxidative stress, cardiovascular disease, and liver disease. Anti-cancer activity has been shown to be relatively significant than other activities investigated in vitro and in vivo with a little or no side effects to the normal healthy cells. In summary this review offers the synopsis of recent breakthroughs in the use of taxifolin as a cancer treatment, as well as mechanisms of action. However, to develop a medicine for human usage, more study on pharmacokinetic profile, profound molecular mechanisms, and drug safety criteria should be conducted utilizing well-designed randomized clinical trials.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, 124 B.L. Saha Road, Kolkata 700053, West Bengal, India
| | - Ratna Baidya
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, 124 B.L. Saha Road, Kolkata 700053, West Bengal, India
| | - Tania Chakraborty
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, 124 B.L. Saha Road, Kolkata 700053, West Bengal, India
| | - Akash Kumar Samanta
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, 124 B.L. Saha Road, Kolkata 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmacy, NSHM Knowledge Campus-Kolkata, 124 B.L. Saha Road, Kolkata 700053, West Bengal, India.
| |
Collapse
|
31
|
Preparation, Characterization, and Anti-Cancer Activity of Nanostructured Lipid Carriers Containing Imatinib. Pharmaceutics 2021; 13:pharmaceutics13071086. [PMID: 34371776 PMCID: PMC8309103 DOI: 10.3390/pharmaceutics13071086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/29/2022] Open
Abstract
Breast cancer is the most widespread malignancy in women worldwide. Nanostructured lipid carriers (NLCs) have proven effective in the treatment of cancer. NLCs loaded with imatinib (IMA) (NANIMA) were prepared and evaluated for their in vitro efficacy in MCF-7 breast cancer cells. The hot homogenization method was used for the preparation of NANIMAs. An aqueous solution of surfactants (hot) was mixed with a molten mixture of stearic acid and sesame oil (hot) under homogenization. The prepared NANIMAs were characterized and evaluated for size, polydispersity index, zeta potential, encapsulation efficiency, release studies, stability studies, and MTT assay (cytotoxicity studies). The optimized NANIMAs revealed a particle size of 104.63 ± 9.55 d.nm, PdI of 0.227 ± 0.06, and EE of 99.79 ± 0.03. All of the NANIMAs revealed slow and sustained release behavior. The surfactants used in the preparation of the NANIMAs exhibited their effects on particle size, zeta potential, encapsulation efficiency, stability studies, and release studies. The cytotoxicity studies unveiled an 8.75 times increase in cytotoxicity for the optimized NANIMAs (IC50 = 6 µM) when compared to IMA alone (IC50 = 52.5 µM) on MCF-7 breast cancer cells. In the future, NLCs containing IMA will possibly be employed to cure breast cancer. A small amount of IMA loaded into the NLCs will be better than IMA alone for the treatment of breast cancer. Moreover, patients will likely exhibit less adverse effects than in the case of IMA alone. Consequently, NANIMAs could prove to be useful for effective breast cancer treatment.
Collapse
|
32
|
Wangpaichitr M, Theodoropoulos G, Nguyen DJM, Wu C, Spector SA, Feun LG, Savaraj N. Cisplatin Resistance and Redox-Metabolic Vulnerability: A Second Alteration. Int J Mol Sci 2021; 22:7379. [PMID: 34298999 PMCID: PMC8304747 DOI: 10.3390/ijms22147379] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 01/17/2023] Open
Abstract
The development of drug resistance in tumors is a major obstacle to effective cancer chemotherapy and represents one of the most significant complications to improving long-term patient outcomes. Despite early positive responsiveness to platinum-based chemotherapy, the majority of lung cancer patients develop resistance. The development of a new combination therapy targeting cisplatin-resistant (CR) tumors may mark a major improvement as salvage therapy in these patients. The recent resurgence in research into cellular metabolism has again confirmed that cancer cells utilize aerobic glycolysis ("the Warburg effect") to produce energy. Hence, this observation still remains a characteristic hallmark of altered metabolism in certain cancer cells. However, recent evidence promotes another concept wherein some tumors that acquire resistance to cisplatin undergo further metabolic alterations that increase tumor reliance on oxidative metabolism (OXMET) instead of glycolysis. Our review focuses on molecular changes that occur in tumors due to the relationship between metabolic demands and the importance of NAD+ in redox (ROS) metabolism and the crosstalk between PARP-1 (Poly (ADP ribose) polymerase-1) and SIRTs (sirtuins) in CR tumors. Finally, we discuss a role for the tumor metabolites of the kynurenine pathway (tryptophan catabolism) as effectors of immune cells in the tumor microenvironment during acquisition of resistance in CR cells. Understanding these concepts will form the basis for future targeting of CR cells by exploiting redox-metabolic changes and their consequences on immune cells in the tumor microenvironment as a new approach to improve overall therapeutic outcomes and survival in patients who fail cisplatin.
Collapse
Affiliation(s)
- Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
- Department of Surgery, Cardiothoracic Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - George Theodoropoulos
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Dan J. M. Nguyen
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Sydney A. Spector
- Department of Veterans Affairs, Miami VA Healthcare System, Research Service (151), Miami, FL 33125, USA; (G.T.); (D.J.M.N.); (C.W.); (S.A.S.)
| | - Lynn G. Feun
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.G.F.); (N.S.)
| | - Niramol Savaraj
- Department of Medicine, Hematology/Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.G.F.); (N.S.)
- Department of Veterans Affairs, Miami VA Healthcare System, Hematology/Oncology, 1201 NW 16 Street, Room D1010, Miami, FL 33125, USA
| |
Collapse
|
33
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
34
|
Effects of orlistat combined with enzalutamide and castration through inhibition of fatty acid synthase in a PC3 tumor-bearing mouse model. Biosci Rep 2021; 41:228631. [PMID: 33974005 PMCID: PMC8164108 DOI: 10.1042/bsr20204203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/01/2021] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
Androgen deprivation therapy (ADT) is one of the typical treatments used for patients with prostate cancer (PCa). ADT, however, may fail when PCa develops castration-resistance. Fatty acid synthase (FASN), a critical enzyme involved in fatty acid synthesis, is found to be up-regulated in PCa. Since enzalutamide and ADT are frequently used for the treatment of PCa, the present study aimed to unravel the underlying mechanism of combination of orlistat, an FASN inhibitor, and enzalutamide using PC3 cell line; and orlistat and castration in PC3 tumor-bearing animal model. Cytotoxicity was determined by AlamarBlue assay. Drug effects on the cell cycle and protein expressions were assayed by the flow cytometry and Western blot. Electromobility shift assay was used to evaluate the NF-κB activity. The tumor growth delay, expressions of the signaling-related proteins, and histopathology post treatments of orlistat and castration were evaluated in PC3 tumor-bearing mouse model. The results showed that orlistat arrested the PC3 cells at the G1 phase of the cell cycle and enhanced the cytotoxic effects of enzalutamide synergistically. Pretreatment with orlistat combined with castration inhibited the tumor growth significantly compared with those of castration and orlistat treatments alone in PC3 tumor-bearing mice. Combination treatment reduced both FASN and NF-κB activities and their downstream effector proteins. The present study demonstrated the synergistic effects of orlistat combined with enzalutamide in vitro and castration in vivo on human PCa.
Collapse
|
35
|
Ligorio F, Pellegrini I, Castagnoli L, Vingiani A, Lobefaro R, Zattarin E, Santamaria M, Pupa SM, Pruneri G, de Braud F, Vernieri C. Targeting lipid metabolism is an emerging strategy to enhance the efficacy of anti-HER2 therapies in HER2-positive breast cancer. Cancer Lett 2021; 511:77-87. [PMID: 33961924 DOI: 10.1016/j.canlet.2021.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
De novo or acquired resistance of cancer cells to currently available Human Epidermal Growth Factor Receptor 2 (HER2) inhibitors represents a clinical challenge. Several resistance mechanisms have been identified in recent years, with lipid metabolism reprogramming, a well-established hallmark of cancer, representing the last frontier of preclinical and clinical research in this field. Fatty Acid Synthase (FASN), the key enzyme required for fatty acids (FAs) biosynthesis, is frequently overexpressed/activated in HER2-positive (HER2+) breast cancer (BC), and it crucially sustains HER2+ BC cell growth, proliferation and survival. After the synthesis of new, selective and well tolerated FASN inhibitors, clinical trials have been initiated to test if these compounds are able to re-sensitize cancer cells with acquired resistance to HER2 inhibition. More recently, the upregulation of FA uptake by cancer cells has emerged as a potentially new and targetable mechanism of resistance to anti-HER2 therapies in HER2+ BC, thus opening a new era in the field of targeting metabolic reprogramming in clinical setting. Here, we review the available preclinical and clinical evidence supporting the inhibition of FA biosynthesis and uptake in combination with anti-HER2 therapies in patients with HER2+ BC, and we discuss ongoing clinical trials that are investigating these combination approaches.
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Ilaria Pellegrini
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Lorenzo Castagnoli
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Andrea Vingiani
- Pathology Department, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133, Milan, Italy; Department of Oncology and Haematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Emma Zattarin
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Marzia Santamaria
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, Italy
| | - Serenella M Pupa
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Giancarlo Pruneri
- Pathology Department, Fondazione IRCCS Istituto Nazionale Tumori, Via Venezian 1, 20133, Milan, Italy; Department of Oncology and Haematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy; Department of Oncology and Haematology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | - Claudio Vernieri
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy; IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, Milan, Italy.
| |
Collapse
|
36
|
Wang CJ, Li D, Danielson JA, Zhang EH, Dong Z, Miller KD, Li L, Zhang JT, Liu JY. Proton pump inhibitors suppress DNA damage repair and sensitize treatment resistance in breast cancer by targeting fatty acid synthase. Cancer Lett 2021; 509:1-12. [PMID: 33813001 DOI: 10.1016/j.canlet.2021.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
Human fatty acid synthase (FASN) is the sole cytosolic enzyme responsible for de novo lipid synthesis. FASN is essential for cancer cell survival and contributes to drug and radiation resistance by up-regulating DNA damage repair but not required for most non-lipogenic tissues. Thus, FASN is an attractive target for drug discovery. However, despite decades of effort in targeting FASN, no FASN inhibitors have been approved due to poor pharmacokinetics or toxicities. Here, we show that the FDA-approved proton pump inhibitors (PPIs) effectively inhibit FASN and suppress breast cancer cell survival. PPI inhibition of FASN leads to suppression of non-homologous end joining repair of DNA damages by reducing FASN-mediated PARP1 expression, resulting in apoptosis from oxidative DNA damages and sensitization of cellular resistance to doxorubicin and ionizing radiation. Mining electronic medical records of 6754 breast cancer patients showed that PPI usage significantly increased overall survival and reduced disease recurrence of these patients. Hence, PPIs may be repurposed as anticancer drugs for breast cancer treatments by targeting FASN to overcome drug and radiation resistance.
Collapse
Affiliation(s)
- Chao J Wang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Deren Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Evan H Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zizheng Dong
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Kathy D Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lang Li
- Department of Biomedical Informatics, Ohio State University College of Medicine, Columbus, OH, USA
| | - Jian-Ting Zhang
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
37
|
Pizato N, Hoffmann MS, Irala CH, Muniz-Junqueira MI, Silva Paixao EMD, Ito MK. Serum fatty acid synthase levels and n-3 fatty acid intake in patients with breast cancer. Clin Nutr ESPEN 2021; 42:142-147. [PMID: 33745568 DOI: 10.1016/j.clnesp.2020.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Fatty acid synthase (FASN) is a key enzyme in fatty acid biosynthesis that is usually over-expressed in patients with breast cancer, but its relationship with the patient's dietary habit is not clear. A higher intake of n-3 polyunsaturated fatty acids is related to reduced breast carcinogenesis in vitro and in vivo. The aim of this study was to clinically investigate the association between serum FASN levels and fatty acid intake in women newly diagnosed with breast cancer. METHODS In a case-control cross-sectional study, with 18 breast cancer patients and 29 controls, we evaluated nutritional status, dietary intake, and serum FASN levels. Statistical analyses were carried out with parametric and non-parametric tests, according to the sample's normality distribution. RESULTS The mean age of breast cancer group (n = 18) and control group (n = 29) was 46.8 ± 9.7 y and 44.4. ± 8.6 y, respectively. Mean serum concentration of FASN in breast cancer group was significantly higher (132.51 ± 95.05 ng/mL) than in control group (36.88 ± 20.87 ng/mL) (p < 0.0001). Among breast cancer group, serum FASN levels of premenopausal women were significantly higher than those of postmenopausal women (p = 0.026). There was no significant difference between the early and late disease stages in regard to serum FASN levels in breast cancer group. Mean nutrient intake was similar and n-3 docosahexaenoic acid intake was low in both groups. We observed no association regarding fatty acid intake and serum FASN levels. CONCLUSION These data suggest that dietary n-3 fatty acid has no association with serum FASN levels among newly diagnosed breast cancer patients.
Collapse
Affiliation(s)
- Nathalia Pizato
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| | - Meg Schwarcz Hoffmann
- University Hospital of Brasilia, University of Brasília, UnB, Brasilia 70910-900, Brazil.
| | - Clarissa Hoffman Irala
- University Hospital of Brasilia, University of Brasília, UnB, Brasilia 70910-900, Brazil.
| | | | | | - Marina Kiyomi Ito
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| |
Collapse
|
38
|
Kirsch BJ, Chang SJ, Betenbaugh MJ, Le A. Non-Hodgkin Lymphoma Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:103-116. [PMID: 34014537 DOI: 10.1007/978-3-030-65768-0_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-Hodgkin lymphomas (NHLs) are a heterogeneous group of lymphoid neoplasms with different biological characteristics. About 90% of all lymphomas in the United States originate from B lymphocytes, while the remaining originate from T cells [1]. The treatment of NHLs depends on the neoplastic histology and stage of the tumor, which will indicate whether radiotherapy, chemotherapy, or a combination is the best suitable treatment [2]. The American Cancer Society describes the staging of lymphoma as follows: Stage I is lymphoma in a single node or area. Stage II is when that lymphoma has spread to another node or organ tissue. Stage III is when it has spread to lymph nodes on two sides of the diaphragm. Stage IV is when cancer has significantly spread to organs outside the lymph system. Radiation therapy is the traditional therapeutic route for localized follicular and mucosa-associated lymphomas. Chemotherapy is utilized for the treatment of large-cell lymphomas and high-grade lymphomas [2]. However, the treatment of indolent lymphomas remains problematic as the patients often have metastasis, for which no standard approach exists [2].
Collapse
Affiliation(s)
- Brian James Kirsch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Michael James Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
| | - Anne Le
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA. .,Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Pan M, Qin C, Han X. Lipid Metabolism and Lipidomics Applications in Cancer Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:1-24. [PMID: 33740240 PMCID: PMC8287890 DOI: 10.1007/978-981-33-6785-2_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Lipids are the critical components of cellular and plasma membrane, which constitute an impermeable barrier of cellular compartments, and play important roles on numerous cellular processes including cell growth, proliferation, differentiation, and signaling. Alterations in lipid metabolism have been implicated in the development and progression of cancers. However, unlike other biomolecules, the diversity in the structures and characteristics of lipid species results in the limited understanding of their metabolic alterations in cancers. Lipidomics is an emerging discipline that studies lipids in a large scale based on analytical chemistry principles and technological tools. Multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) uses direct infusion to avoid difficulties from alterations in concentration, chromatographic anomalies, and ion-pairing alterations to improve resolution and achieve rapid and accurate qualitative and quantitative analysis. In this chapter, lipids and lipid metabolism relevant to cancer research are introduced, followed by a brief description of MDMS-SL and other shotgun lipidomics techniques and some applications for cancer research.
Collapse
Affiliation(s)
- Meixia Pan
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA.
- Department of Medicine - Diabetes, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
40
|
Menendez JA, Peirce SK, Papadimitropoulou A, Cuyàs E, Steen TV, Verdura S, Vellon L, Chen WY, Lupu R. Progesterone receptor isoform-dependent cross-talk between prolactin and fatty acid synthase in breast cancer. Aging (Albany NY) 2020; 12:24671-24692. [PMID: 33335078 PMCID: PMC7803566 DOI: 10.18632/aging.202289] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/27/2020] [Indexed: 04/13/2023]
Abstract
Progesterone receptor (PR) isoforms can drive unique phenotypes in luminal breast cancer (BC). Here, we hypothesized that PR-B and PR-A isoforms differentially modify the cross-talk between prolactin and fatty acid synthase (FASN) in BC. We profiled the responsiveness of the FASN gene promoter to prolactin in T47Dco BC cells constitutively expressing PR-A and PR-B, in the PR-null variant T47D-Y cell line, and in PR-null T47D-Y cells engineered to stably re-express PR-A (T47D-YA) or PR-B (T47D-YB). The capacity of prolactin to up-regulate FASN gene promoter activity in T47Dco cells was lost in T47D-Y and TD47-YA cells. Constitutively up-regulated FASN gene expression in T47-YB cells and its further stimulation by prolactin were both suppressed by the prolactin receptor antagonist hPRL-G129R. The ability of the FASN inhibitor C75 to decrease prolactin secretion was more conspicuous in T47-YB cells. In T47D-Y cells, which secreted notably less prolactin and downregulated prolactin receptor expression relative to T47Dco cells, FASN blockade resulted in an augmented secretion of prolactin and up-regulation of prolactin receptor expression. Our data reveal unforeseen PR-B isoform-specific regulatory actions in the cross-talk between prolactin and FASN signaling in BC. These findings might provide new PR-B/FASN-centered predictive and therapeutic modalities in luminal intrinsic BC subtypes.
Collapse
MESH Headings
- 4-Butyrolactone/analogs & derivatives
- 4-Butyrolactone/pharmacology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Cell Line, Tumor
- Databases, Genetic
- Fatty Acid Synthase, Type I/antagonists & inhibitors
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Humans
- Interleukin-6/metabolism
- Prolactin/metabolism
- Prolactin/pharmacology
- Promoter Regions, Genetic
- Protein Isoforms
- RNA, Messenger/metabolism
- Receptor Cross-Talk
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Prolactin/antagonists & inhibitors
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | | | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Travis Vander Steen
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Luciano Vellon
- Stem Cells Laboratory, Institute of Biology and Experimental Medicine (IBYME-CONICET), Buenos Aires, Argentina
| | - Wen Y. Chen
- Department of Biological Sciences, Clemson University, Greenville, SC 29634, USA
| | - Ruth Lupu
- Mayo Clinic, Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Rochester, MN 55905, USA
- Mayo Clinic Minnesota, Department of Biochemistry and Molecular Biology Laboratory, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA
| |
Collapse
|
41
|
Renin angiotensin system inhibition attenuates adipocyte-breast cancer cell interactions. Exp Cell Res 2020; 394:112114. [DOI: 10.1016/j.yexcr.2020.112114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022]
|
42
|
Fatty Acid Synthase: An Emerging Target in Cancer. Molecules 2020; 25:molecules25173935. [PMID: 32872164 PMCID: PMC7504791 DOI: 10.3390/molecules25173935] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
In recent years, lipid metabolism has garnered significant attention as it provides the necessary building blocks required to sustain tumor growth and serves as an alternative fuel source for ATP generation. Fatty acid synthase (FASN) functions as a central regulator of lipid metabolism and plays a critical role in the growth and survival of tumors with lipogenic phenotypes. Accumulating evidence has shown that it is capable of rewiring tumor cells for greater energy flexibility to attain their high energy requirements. This multi-enzyme protein is capable of modulating the function of subcellular organelles for optimal function under different conditions. Apart from lipid metabolism, FASN has functional roles in other cellular processes such as glycolysis and amino acid metabolism. These pivotal roles of FASN in lipid metabolism make it an attractive target in the clinic with several new inhibitors currently being tested in early clinical trials. This article aims to present the current evidence on the emergence of FASN as a target in human malignancies.
Collapse
|
43
|
Polonio-Alcalá E, Palomeras S, Torres-Oteros D, Relat J, Planas M, Feliu L, Ciurana J, Ruiz-Martínez S, Puig T. Fatty Acid Synthase Inhibitor G28 Shows Anticancer Activity in EGFR Tyrosine Kinase Inhibitor Resistant Lung Adenocarcinoma Models. Cancers (Basel) 2020; 12:cancers12051283. [PMID: 32438613 PMCID: PMC7281741 DOI: 10.3390/cancers12051283] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/16/2020] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinases inhibitors (TKIs) are effective therapies for non-small cell lung cancer (NSCLC) patients whose tumors harbor an EGFR activating mutation. However, this treatment is not curative due to primary and secondary resistance such as T790M mutation in exon 20. Recently, activation of transducer and activator of transcription 3 (STAT3) in NSCLC appeared as an alternative resistance mechanism allowing cancer cells to elude the EGFR signaling. Overexpression of fatty acid synthase (FASN), a multifunctional enzyme essential for endogenous lipogenesis, has been related to resistance and the regulation of the EGFR/Jak2/STAT signaling pathways. Using EGFR mutated (EGFRm) NSCLC sensitive and EGFR TKIs’ resistant models (Gefitinib Resistant, GR) we studied the role of the natural polyphenolic anti-FASN compound (−)-epigallocatechin-3-gallate (EGCG), and its derivative G28 to overcome EGFR TKIs’ resistance. We show that G28’s cytotoxicity is independent of TKIs’ resistance mechanisms displaying synergistic effects in combination with gefitinib and osimertinib in the resistant T790M negative (T790M−) model and showing a reduction of activated EGFR and STAT3 in T790M positive (T790M+) models. Our results provide the bases for further investigation of G28 in combination with TKIs to overcome the EGFR TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Emma Polonio-Alcalá
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (E.P.-A.); (S.P.)
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain;
| | - Sònia Palomeras
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (E.P.-A.); (S.P.)
| | - Daniel Torres-Oteros
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramanet, Spain; (D.T.-O.); (J.R.)
| | - Joana Relat
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, Food Torribera Campus, University of Barcelona, E-08921 Santa Coloma de Gramanet, Spain; (D.T.-O.); (J.R.)
- Institute of Nutrition and Food Safety of the University of Barcelona (INSA-UB), E-08921 Santa Coloma de Gramenet, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBER-OBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Marta Planas
- LIPPSO, Department of Chemistry, University of Girona, 17003 Girona, Spain; (M.P.); (L.F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, University of Girona, 17003 Girona, Spain; (M.P.); (L.F.)
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain;
| | - Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (E.P.-A.); (S.P.)
- Correspondence: (S.R.-M.); (T.P.); Tel.: +34-972-419-548 (S.R.-M.); +34-972-419-628 (T.P.)
| | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (E.P.-A.); (S.P.)
- Correspondence: (S.R.-M.); (T.P.); Tel.: +34-972-419-548 (S.R.-M.); +34-972-419-628 (T.P.)
| |
Collapse
|
44
|
Wang X, Tian J, Zhao Q, Yang N, Ying P, Peng X, Zou D, Zhu Y, Zhong R, Gao Y, Chang J, Miao X. Functional characterization of a low-frequency V1937I variant in FASN associated with susceptibility to esophageal squamous cell carcinoma. Arch Toxicol 2020; 94:2039-2046. [PMID: 32388819 DOI: 10.1007/s00204-020-02738-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/06/2020] [Indexed: 12/31/2022]
Abstract
Metabolic reprogramming has been regarded as one of the core hallmarks of cancer and increased de novo fatty acid synthesis has been documented in multiple tumors including esophageal squamous cell carcinoma (ESCC). Our previous exome-wide analyses found a Val1937Ile variant (rs17848945) in the 34th exon of fatty acid synthase (FASN) that showed a strong association with the risk of ESCC. In this study, we performed a series of functional assays to investigate the biological functions underlying this variant in the development of ESCC. We demonstrated that FASN was upregulated in ESCC and both knockdown and knockout of FASN significantly inhibited ESCC cell proliferation, suggesting a tumor promoter role for this gene in ESCC. Furthermore, the results showed that overexpression of FASN[I] in the ESCC cells substantially enhanced cell proliferation, compared with overexpression of FASN[V], or the control vector. Intriguingly, we found that the FASN[I] variant can enhance the enzyme activity of FASN, and, thus, increase the amount of the FASN end-product, palmitate in the ESCC cells. We also observed elevated palmitate levels in the plasma of the FASN[I] genotype carriers among a total of 632 healthy Chinese adults. In conclusion, our results suggested that the FASN V1937I variant influenced ESCC cell proliferation and susceptibility by altering the catabolic activity of FASN on palmitate. These findings may highlight an important role of palmitate metabolism in the development of ESCC and may contribute to the personalized medicine of this disease.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianyu Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Gao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
45
|
Rasha F, Kahathuduwa C, Ramalingam L, Hernandez A, Moussa H, Moustaid-Moussa N. Combined Effects of Eicosapentaenoic Acid and Adipocyte Renin-Angiotensin System Inhibition on Breast Cancer Cell Inflammation and Migration. Cancers (Basel) 2020; 12:cancers12010220. [PMID: 31963198 PMCID: PMC7016836 DOI: 10.3390/cancers12010220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a major risk factor for breast cancer (BC). Obesity-related metabolic alterations such as inflammation and overactivation of the adipose renin–angiotensin system (RAS) may contribute to the progression of BC. Clinically used antihypertensive drugs such as angiotensin-converting enzyme inhibitors (ACE-I) and dietary bioactive components such as eicosapentaenoic acid (EPA) are known for their anti-inflammatory and adipose RAS blocking properties. However, whether EPA enhances the protective effects of ACE-I in lessening adipocyte inflammation on BC cells has not been studied. We hypothesized that combined EPA and ACE-I would attenuate BC cell inflammation and migration possibly via adipose RAS inhibition. To test our hypothesis, we examined the (i) direct effects of an ACE-I (captopril (CAP)) or EPA, individually and combined, on MCF-7 and MDA-MB-231 human BC cells, and the (ii) effects of conditioned medium (CM) from human adipocytes pretreated with the abovementioned agents on BC cells. We demonstrated that CM from adipocytes pretreated with EPA with or without captopril (but not direct treatments of BC cells) significantly reduced proinflammatory cytokines expression in both BC cell lines. Additionally, cell migration was reduced in MDA-MB-231 cells in response to both direct and CM-mediated CAP and/or EPA treatments. In summary, our study provides a significant insight into added benefits of combining anti-inflammatory EPA and antihypertensive ACE-I to attenuate the effects of adipocytes on breast cancer cell migration and inflammation.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Chanaka Kahathuduwa
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Department of Psychiatry, School of Medicine, Texas Tech University Health Science Center, Lubbock, TX 79430, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Arelys Hernandez
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Correspondence: ; Tel.: +1-806-834-7946
| |
Collapse
|
46
|
Che L, Paliogiannis P, Cigliano A, Pilo MG, Chen X, Calvisi DF. Pathogenetic, Prognostic, and Therapeutic Role of Fatty Acid Synthase in Human Hepatocellular Carcinoma. Front Oncol 2019; 9:1412. [PMID: 31921669 PMCID: PMC6927283 DOI: 10.3389/fonc.2019.01412] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common solid tumors worldwide, characterized by clinical aggressiveness, resistance to conventional chemotherapy, and high lethality. Consequently, there is an urgent need to better delineate the molecular pathogenesis of HCC to develop new preventive and therapeutic strategies against this deadly disease. Noticeably, emerging evidence indicates that proteins involved in lipid biosynthesis are important mediators along the development and progression of HCC in humans and rodents. Here, we provide a comprehensive overview of: (a) The pathogenetic relevance of lipogenic proteins involved in liver carcinogenesis, with a special emphasis on the master fatty acid regulator, fatty acid synthase (FASN); (b) The molecular mechanisms responsible for unrestrained activation of FASN and related fatty acid biosynthesis in HCC; (c) The findings in experimental mouse models of liver cancer and their possible clinical implications; (d) The existing potential therapies targeting FASN. A consistent body of data indicates that elevated levels of lipogenic proteins, including FASN, characterize human hepatocarcinogenesis and are predictive of poor prognosis of HCC patients. Pharmacological or genetic blockade of FASN is highly detrimental for the growth of HCC cells in both in vitro and in vivo models. In conclusion, FASN is involved in the molecular pathogenesis of HCC, where it plays a pivotal role both in tumor onset and progression. Thus, targeted inhibition of FASN and related lipogenesis could be a potentially relevant treatment for human HCC.
Collapse
Affiliation(s)
- Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Antonio Cigliano
- Institut für Pathologie, Universität Regensburg, Regensburg, Germany
| | - Maria G Pilo
- Department of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Diego F Calvisi
- Department of Medical, Surgical and Experimental Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
47
|
Amiri A, Hastert F, Stühn L, Dietz C. Structural analysis of healthy and cancerous epithelial-type breast cells by nanomechanical spectroscopy allows us to obtain peculiarities of the skeleton and junctions. NANOSCALE ADVANCES 2019; 1:4853-4862. [PMID: 36133137 PMCID: PMC9418382 DOI: 10.1039/c9na00021f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 10/24/2019] [Indexed: 06/16/2023]
Abstract
The transition of healthy epithelial cells to carcinoma is associated with an alteration in the structure and organization of the cytoskeleton of the cells. A comparison of the mechanical properties of cancerous and healthy cells indicated a higher deformability of the cancer cells based on averaging the mechanical properties of single cells. However, the exact reason for softening of the cancerous cells compared to their counterparts remains unclear. Here, we focused on nanomechanical spectroscopy of healthy and cancerous ductal epithelial-type breast cells by means of atomic force microscopy with high lateral and depth precision. As a result, based on atomic force microscopy measurements formation of significantly fewer microtubules in cancerous cells which was observed in our study is most likely one of the main causes for the overall change in mechanical properties without any phenotypic shift. Strikingly, in a confluent layer of invasive ductal carcinoma cells, we observed the formation of cell-cell junctions that have the potential for signal transduction among neighboring cells such as desmosomes and adherens junctions. This increases the possibility of cancerous cell collaboration in malignancy, infiltration or metastasis phenomena.
Collapse
Affiliation(s)
- Anahid Amiri
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt Alarich-Weiss-Str. 2 64287 Darmstadt Germany
| | - Florian Hastert
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Lukas Stühn
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt Alarich-Weiss-Str. 2 64287 Darmstadt Germany
| | - Christian Dietz
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt Alarich-Weiss-Str. 2 64287 Darmstadt Germany
| |
Collapse
|
48
|
Tan YJ, Ali A, Tee SY, Teo JT, Xi Y, Go ML, Lam Y. Galloyl esters of trans-stilbenes are inhibitors of FASN with anticancer activity on non-small cell lung cancer cells. Eur J Med Chem 2019; 182:111597. [DOI: 10.1016/j.ejmech.2019.111597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022]
|
49
|
Visweswaran M, Arfuso F, Warrier S, Dharmarajan A. Aberrant lipid metabolism as an emerging therapeutic strategy to target cancer stem cells. Stem Cells 2019; 38:6-14. [PMID: 31648395 DOI: 10.1002/stem.3101] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/25/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Emerging evidence in cancer metabolomics has identified reprogrammed metabolic pathways to be a major hallmark of cancer, among which deregulated lipid metabolism is a prominent field receiving increasing attention. Cancer stem cells (CSCs) comprise <0.1% of the tumor bulk and possess high self-renewal, tumor-initiating properties, and are responsible for therapeutic resistance, disease recurrence, and tumor metastasis. Hence, it is imperative to understand the metabolic rewiring occurring in CSCs, especially their lipid metabolism, on which there have been recent reports. CSCs rely highly upon lipid metabolism for maintaining their stemness properties and fulfilling their biomass and energy demands, ultimately leading to cancer growth and invasion. Hence, in this review we will shed light on the aberrant lipid metabolism that CSCs exploit to boost their survival, which comprises upregulation in de novo lipogenesis, lipid droplet synthesis, lipid desaturation, and β-oxidation. Furthermore, the metabolic regulators involved in the process, such as key lipogenic enzymes, are also highlighted. Finally, we also summarize the therapeutic strategies targeting the key regulators involved in CSCs' lipid metabolism, which thereby demonstrates the potential to develop powerful and novel therapeutics against the CSC lipid metabolome.
Collapse
Affiliation(s)
- Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Western Australia, Australia.,Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| |
Collapse
|
50
|
Al-Jawadi A, Rasha F, Ramalingam L, Alhaj S, Moussa H, Gollahon L, Dharmawardhane S, Moustaid-Moussa N. Protective effects of eicosapentaenoic acid in adipocyte-breast cancer cell cross talk. J Nutr Biochem 2019; 75:108244. [PMID: 31704550 DOI: 10.1016/j.jnutbio.2019.108244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
Breast cancer is the leading cause of death in women among all cancer types. Obesity is one of the factors that promote progression of breast cancer, especially in post-menopausal women. Increasingly, adipose tissue is recognized for its active role in the tumor microenvironment. We hypothesized that adipocytes conditioned medium can impact breast cancer progression by increasing inflammatory cytokines production by cancer cells, and subsequently increasing their motility. By contrast, eicosapentaenoic acid (EPA), an anti-inflammatory n-3 polyunsaturated fatty acid, reduces adipocyte-secreted inflammatory factors, leading to reduced cancer cell motility. To test these hypotheses, we investigated the direct effects of EPA on MCF-7 and MDA-MB-231 breast cancer cells and the effects of conditioned medium from 3 T3-L1 or human mesenchymal stem cells (HMSC)-derived adipocytes treated with or without EPA supplementation on breast cancer cells. We observed that conditioned medium from HMSC-derived adipocytes significantly increased mRNA transcription levels of cancer-associated genes such as FASN, STAT3 and cIAP2, while EPA-treated HMSC-derived adipocytes significantly reduced mRNA levels of these genes. However, direct EPA treatment significantly reduced mRNA content of these tumor-associated markers (FASN, STAT3, cIAP-2) only in MDA-MB-231 cells not in MCF-7 cells. Conditioned medium from EPA-treated 3 T3-L1 adipocytes further decreased inflammation, cell motility and glycolysis in cancer cells. Our data confirms that adipocytes play a significant role in promoting breast cancer progression and demonstrates that EPA-treated adipocytes reduced the negative impact of adipocyte-secreted factors on breast cancer cell inflammation and migration.
Collapse
Affiliation(s)
- Arwa Al-Jawadi
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA
| | - Fahmida Rasha
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX 794909, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX 794909, USA
| | - Sara Alhaj
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX 794909, USA; Department of Mechanical Engineering; Texas Tech University, Lubbock, TX 79409, USA
| | - Lauren Gollahon
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA; Department of Biological Sciences, Texas Tech University, 2901 Main st, Lubbock, TX 79409, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX 794909, USA
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX 794909, USA.
| |
Collapse
|