1
|
Jin S, Zhou R, Gao X, Xiong Y, Zhang W, Qiao H, Wu Y, Jiang S, Fu H. Identification of the effects of alkalinity exposure on the gills of oriental river prawns, Macrobrachium nipponense. BMC Genomics 2024; 25:765. [PMID: 39107708 PMCID: PMC11304644 DOI: 10.1186/s12864-024-10659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Macrobrachium nipponense is an important commercial freshwater species in China. However, the ability of alkali tolerance of M. nipponense is insufficient to culture in the major saline-alkali water source in China. Thus, it is urgently needed to perform the genetic improvement of alkali tolerance in this species. In the present study, we aimed to analyse the effects of alkali treatment on gills in this species after 96 h alkalinity exposure under the alkali concentrations of 0 mmol/L, 4 mmol/L, 8 mmol/L, and 12 mmol/L through performing the histological observations, measurement of antioxidant enzymes, metabolic profiling analysis, and transcriptome profiling analysis. The results of the present study revealed that alkali treatment stimulated the contents of malondialdehyde, glutathione, glutathione peroxidase in gills, indicating these antioxidant enzymes plays essential roles in the protection of body from the damage, caused by the alkali treatment. In addition, high concentration of alkali treatment (> 8 mmol/L) resulted in the damage of gill membrane and haemolymph vessel, affecting the normal respiratory function of gill. Metabolic profiling analysis revealed that Metabolic pathways, Biosynthesis of secondary metabolites, Biosynthesis of plant secondary metabolites, Microbial metabolism in diverse environments, Biosynthesis of amino acids were identified as the main enriched metabolic pathways of differentially expressed metabolites, which are consistent with the previous publications, treated by the various environmental factors. Transcriptome profiling analyses revealed that the alkali concentration of 12 mmol/L has more regulatory effects on the changes of gene expression than the other alkali concentrations. KEGG analysis revealed that Phagosome, Lysosome, Glycolysis/Gluconeogenesis, Purine Metabolism, Amino sugar and nucleotide sugar metabolism, and Endocytosis were identified as the main enriched metabolic pathways in the present study, predicting these metabolic pathways may be involved in the adaption of alkali treatment in M. nipponense. Phagosome, Lysosome, Purine Metabolism, and Endocytosis are immune-related metabolic pathways, while Glycolysis/Gluconeogenesis, and Amino sugar and nucleotide sugar metabolism are energy metabolism-related metabolic pathways. Quantitative PCR analyses of differentially expressed genes (DEGs) verified the accuracy of the RNA-Seq. Alkali treatment significantly stimulated the expressions of DEGs from the metabolic pathways of Phagosome and Lysosome, suggesting Phagosome and Lysosome play essential roles in the regulation of alkali tolerance in this species, as well as the genes from these metabolic pathways. The present study identified the effects of alkali treatment on gills, providing valuable evidences for the genetic improvement of alkali tolerance in M. nipponense.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Rong Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Xuanbin Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, People's Republic of China.
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, People's Republic of China.
| |
Collapse
|
2
|
Sharaf MS. Scabies vaccines: where we stand and challenges ahead. Parasitol Res 2024; 123:285. [PMID: 39046602 PMCID: PMC11269436 DOI: 10.1007/s00436-024-08298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Scabies is an itchy skin disease caused by the burrowing mite, Sarcoptes scabiei. During their lifespan, female mites invade the stratum corneum and create tunnels in which they reside, move, feed, deposit fecal pellets, and lay eggs. Globally, more than 200 million people are estimated to be affected by scabies annually. Currently, using scabicidal agents is the only approved method for treating scabies. However, resistance to commonly used agents such as permethrin and ivermectin has been observed in scabies mites. Therefore, the development of vaccines for scabies, either as a preventative measure or for treatment, is crucial to control such neglected diseases. Since the host could evolve a protective immune response that could prevent re-infestation by scabies mites, vaccine development is theoretically possible. This review aims to provide a comprehensive overview of the ongoing challenges regarding the currently available control measures for scabies. It also explores the promising path of scabies vaccine development, highlighting the current state of research and challenges that need to be addressed to develop new and innovative measures for both treating and preventing scabies infections.
Collapse
Affiliation(s)
- Mahmoud S Sharaf
- Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Gharbia, Egypt.
| |
Collapse
|
3
|
Muchowicz A, Bartoszewicz A, Zaslona Z. The Exploitation of the Glycosylation Pattern in Asthma: How We Alter Ancestral Pathways to Develop New Treatments. Biomolecules 2024; 14:513. [PMID: 38785919 PMCID: PMC11117584 DOI: 10.3390/biom14050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Asthma has reached epidemic levels, yet progress in developing specific therapies is slow. One of the main reasons for this is the fact that asthma is an umbrella term for various distinct subsets. Due to its high heterogeneity, it is difficult to establish biomarkers for each subset of asthma and to propose endotype-specific treatments. This review focuses on protein glycosylation as a process activated in asthma and ways to utilize it to develop novel biomarkers and treatments. We discuss known and relevant glycoproteins whose functions control disease development. The key role of glycoproteins in processes integral to asthma, such as inflammation, tissue remodeling, and repair, justifies our interest and research in the field of glycobiology. Altering the glycosylation states of proteins contributing to asthma can change the pathological processes that we previously failed to inhibit. Special emphasis is placed on chitotriosidase 1 (CHIT1), an enzyme capable of modifying LacNAc- and LacdiNAc-containing glycans. The expression and activity of CHIT1 are induced in human diseased lungs, and its pathological role has been demonstrated by both genetic and pharmacological approaches. We propose that studying the glycosylation pattern and enzymes involved in glycosylation in asthma can help in patient stratification and in developing personalized treatment.
Collapse
Affiliation(s)
| | | | - Zbigniew Zaslona
- Molecure S.A., Zwirki i Wigury 101, 02-089 Warszawa, Poland; (A.M.); (A.B.)
| |
Collapse
|
4
|
Han H, Choi YJ, Hong H, Kim CY, Byun MK, Cho JH, Lee JH, Park JW, Doherty TA, Park HJ. Effects of chitinase-1 inhibitor in obesity-induced and -aggravated asthma in a murine model. Life Sci 2023; 334:122163. [PMID: 37890698 DOI: 10.1016/j.lfs.2023.122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
AIMS Despite recent investigations on the role of chitinase in asthma, its role in obesity-induced asthma has not been evaluated. Therefore, we investigated the roles of chitin, chitinase-1, and a chitinase-1 inhibitor (compound X, CPX) in a murine model. MAIN METHODS We assigned C57BL/6 mice to the ovalbumin (OVA) model or obesity model group. In the OVA model, mice received intraperitoneal OVA twice within a 2-week interval and intranasal OVA for 3 consecutive days. Additionally, chitin was intranasally administered for 3 consecutive days, and CPX was intraperitoneally injected three times over 5 days. In the obesity model, a high-fat diet (HFD) was maintained for 13 weeks, and CPX was intraperitoneally injected eight times over 4 weeks. KEY FINDINGS In the OVA model, chitin aggravated OVA-induced airway hyper-responsiveness (AHR), increased bronchoalveolar lavage fluid (BALF) cell proliferation, increased fibrosis, and increased the levels of various inflammatory cytokines (including chitinase-1, TGF-β, TNF-α, IL-1 β, IL-6, IL-4, and IL-13). CPX treatment significantly ameliorated these effects. In the obesity model, HFD significantly increased AHR, BALF cell proliferation, fibrosis, and the levels of various inflammatory cytokines. Particularly, compared to the control group, the mRNA expression of chitinase, chitinase-like molecules, and other molecules associated with inflammation and the immune system was significantly upregulated in the HFD and HFD/OVA groups. Immunofluorescence analysis also showed increased chitinase-1 expression in these groups. CPX significantly ameliorated all these effects in this model. SIGNIFICANCE This study showed that CPX can be an effective therapeutic agent in asthma, especially, obesity-induced and -aggravated asthma to protect against the progression to airway remodeling and fibrosis.
Collapse
Affiliation(s)
- Heejae Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Yong Jun Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Hyerim Hong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Min Kwang Byun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae Hwa Cho
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae-Hyun Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Won Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Allergy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Taylor A Doherty
- Section of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hye Jung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Section of Allergy and Immunology, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Declercq J, Hammad H, Lambrecht BN, Smole U. Chitinases and chitinase-like proteins in asthma. Semin Immunol 2023; 67:101759. [PMID: 37031560 DOI: 10.1016/j.smim.2023.101759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023]
Abstract
Despite the lack of endogenous chitin synthesis, mammalian genomes encode two enzymatically active true chitinases (chitotriosidase and acidic mammalian chitinase) and a variable number of chitinase-like proteins (CLPs) that have no enzyme activity but bind chitin. Chitinases and CLPs are prominent components of type-2 immune response-mediated respiratory diseases. However, despite extensive research into their role in allergic airway disease, there is still no agreement on whether they are mere biomarkers of disease or actual disease drivers. Functions ascribed to chitinases and CLPs include, but are not limited to host defense against chitin-containing pathogens, directly promoting inflammation, and modulating tissue remodeling and fibrosis. Here, we discuss in detail the chitin-dependent and -independent roles of chitinases and CLPs in the context of allergic airway disease, and recent advances and emerging concepts in the field that might identify opportunities for new therapies.
Collapse
Affiliation(s)
- Jozefien Declercq
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands.
| | - Ursula Smole
- Immunoregulation Unit, VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Shen N, Wei W, Chen Y, Liu S, Xiong L, Xiao J, Gu X, Xie Y, Xu J, Jing B, Peng X, Yang G. Vaccination with a cocktail vaccine elicits significant protection against Sarcoptes scabiei in rabbits, whereas the multi-epitope vaccine offers limited protection. Exp Parasitol 2023; 245:108442. [PMID: 36509170 DOI: 10.1016/j.exppara.2022.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Sarcoptes scabiei cause scabies in humans or sarcoptic mange in animals. Currently, information regarding vaccines against S. scabiei is limited and no commercial vaccine is available. In present study, we expressed and mixed recombinant S. scabiei serpin (rSs-serpin), recombinant S. scabiei chitinase-like protein-5 [rSs-CLP5] and -12 [rSs-CLP12] as a cocktail vaccine (three proteins mixed), and also a multi-epitope protein derived from these three S. scabiei genes was expressed as a vaccine candidate to evaluate the effects of two vaccine strategies. Four test groups (n = 12 per group) and a control group (n = 12 per group) were involved in this vaccination trial. The results showed that 91.67% (11/12) and 83.33% (10/12) of rabbits exhibited no detectable skin lesions from S. scabiei infestation in cocktail vaccine groups, whereas two multi-epitope groups produced only a few rabbits (5/12, 6/12) having no detectable skin lesions. Four test groups displayed significant increases in specific IgG antibodies (Abs) and total IgE Abs after immunized with recombinant proteins. Taken together, our data demonstrated a mixture of rSs-serpin, rSs-CLP5 and rSs-CLP12 was a promising vaccine candidate that induced robust immune protection and could significantly decrease mite populations to reduce the direct transmission between rabbits. However, vaccination with the multi-epitope protein showed limited protection in rabbits.
Collapse
Affiliation(s)
- Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Wenrui Wei
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yuhang Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China; Mianyang Animal Disease Control Center, Mianyang, 621000, China
| | - Song Liu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|
7
|
Niu S, Zhu Y, Geng R, Luo M, Zuo H, Yang L, Weng S, He J, Xu X. A novel chitinase Chi6 with immunosuppressive activity promotes white spot syndrome virus (WSSV) infection in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108450. [PMID: 36442705 DOI: 10.1016/j.fsi.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Chitinases, a group of glycosylase hydrolases that can hydrolyze chitin, are involved in immune regulation in animals. White spot syndrome virus (WSSV) causes huge losses to crustacean aquaculture every year. We identified a novel chitinase Chi6 from Pacific white shrimp Penaeus vannamei, which contains a catalytic domain but no chitin-binding domain. The Chi6 expression was regulated by multiple immune signaling pathways and increased after immune stimulations. Silencing of Chi6 by RNAi in vivo did not affect Vibrio parahaemolyticus infection, but significantly increased the survival rate of WSSV-infected shrimp. The expression of multiple WSSV immediate early and structural genes was also decreased upon Chi6 silencing. The recombinant Chi6 protein showed no effect on bacterial growth but could attenuate shrimp hemocyte phagocytosis. The mRNA levels of several key elements and downstream genes of the MAPK and Dorsal pathways in Chi6-silenced shrimp were significantly up-regulated, suggesting an inhibitory effect of Chi6 on humoral immune response. Moreover, Chi6 enhanced the regulatory effect of Dorsal on the expression of WSSV ie1 gene. Therefore, Chi6 promotes WSSV infection through immunosuppression and regulation of WSSV gene expression. Targeting Chi6 could be a potential strategy for controlling WSSV disease in shrimp farming.
Collapse
Affiliation(s)
- Shengwen Niu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Yuening Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Mengting Luo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
8
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
9
|
A Helminth-Derived Chitinase Structurally Similar to Mammalian Chitinase Displays Immunomodulatory Properties in Inflammatory Lung Disease. J Immunol Res 2021; 2021:6234836. [PMID: 34869783 PMCID: PMC8639245 DOI: 10.1155/2021/6234836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Immunomodulation of airway hyperreactivity by excretory-secretory (ES) products of the first larval stage (L1) of the gastrointestinal nematode Trichuris suis is reported by us and others. Here, we aimed to identify the proteins accounting for the modulatory effects of the T. suis L1 ES proteins and studied six selected T. suis L1 proteins for their immunomodulatory efficacy in a murine OVA-induced allergic airway disease model. In particular, an enzymatically active T. suis chitinase mediated amelioration of clinical signs of airway hyperreactivity, primarily associated with suppression of eosinophil recruitment into the lung, the associated chemokines, and increased numbers of RELMα+ interstitial lung macrophages. While there is no indication of T. suis chitinase directly interfering with dendritic cell activation or antigen presentation to CD4 T cells, treatment of allergic mice with the worm chitinase influenced the hosts' own chitinase activity in the inflamed lung. The three-dimensional structure of the T. suis chitinase as determined by high-resolution X-ray crystallography revealed high similarities to mouse acidic mammalian chitinase (AMCase) but a unique ability of T. suis chitinase to form dimers. Our data indicate that the structural similarities between the parasite and host chitinase contribute to the disease-ameliorating effect of the helminth-derived chitinase on allergic lung inflammation.
Collapse
|
10
|
Chitinase-Like Protein Ym2 (Chil4) Regulates Regeneration of the Olfactory Epithelium via Interaction with Inflammation. J Neurosci 2021; 41:5620-5637. [PMID: 34016714 DOI: 10.1523/jneurosci.1601-20.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
The adult olfactory epithelium (OE) regenerates sensory neurons and nonsensory supporting cells from resident stem cells after injury. How supporting cells contribute to OE regeneration remains largely unknown. In this study, we elucidated a novel role of Ym2 (also known as Chil4 or Chi3l4), a chitinase-like protein expressed in supporting cells, in regulating regeneration of the injured OE in vivo in both male and female mice and cell proliferation/differentiation in OE colonies in vitro We found that Ym2 expression was enhanced in supporting cells after OE injury. Genetic knockdown of Ym2 in supporting cells attenuated recovery of the injured OE, while Ym2 overexpression by lentiviral infection accelerated OE regeneration. Similarly, Ym2 bidirectionally regulated cell proliferation and differentiation in OE colonies. Furthermore, anti-inflammatory treatment reduced Ym2 expression and delayed OE regeneration in vivo and cell proliferation/differentiation in vitro, which were counteracted by Ym2 overexpression. Collectively, this study revealed a novel role of Ym2 in OE regeneration and cell proliferation/differentiation of OE colonies via interaction with inflammatory responses, providing new clues to the function of supporting cells in these processes.SIGNIFICANCE STATEMENT The mammalian olfactory epithelium (OE) is a unique neural tissue that regenerates sensory neurons and nonsensory supporting cells throughout life and postinjury. How supporting cells contribute to this process is not entirely understood. Here we report that OE injury causes upregulation of a chitinase-like protein, Ym2, in supporting cells, which facilitates OE regeneration. Moreover, anti-inflammatory treatment reduces Ym2 expression and delays OE regeneration, which are counteracted by Ym2 overexpression. This study reveals an important role of supporting cells in OE regeneration and provides a critical link between Ym2 and inflammation in this process.
Collapse
|
11
|
Niu S, Yang L, Geng R, Zuo H, Guo Z, Weng S, He J, Xu X. A double chitin catalytic domain-containing chitinase targeted by c-Jun is involved in immune responses in shrimp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103808. [PMID: 32738335 DOI: 10.1016/j.dci.2020.103808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Chitinases are a group of chitin-degrading enzymes widely distributed in organisms. Chitinases containing two chitin catalytic domains have been widely found in arthropods but their functions remain unclear. In this study, a member of these chitinases from Litopenaeus vannamei (dChi) was identified and functionally studied in the context of immunity. The promoter of dChi contained activator protein 1 (AP-1) binding sites and could be regulated by c-Jun. The recombinant dChi protein showed no bacteriostatic activity in vitro but knockdown of dChi in vivo increased the mortality of shrimp and the bacterial load in tissues after Vibrio parahaemolyticus infection, suggesting that dChi could play a positive role in antibacterial responses. However, silencing of dChi expression significantly decreased the mortality of WSSV-infected shrimp and down-regulated the viral load in tissues, indicating that dChi could facilitate WSSV infection. We further demonstrated that dChi was involved in regulation of the bacterial phagocytosis of hemocytes and expression of a series of immune related transcription factors and antimicrobial peptides. These indicated that the roles of dChi in antibacterial responses and anti-WSSV responses in vivo could result from its regulatory effects on the immune system. Taken together, the current study suggests that double chitin catalytic domain-containing chitinases could be important players in immune regulation in crustaceans.
Collapse
Affiliation(s)
- Shengwen Niu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Linwei Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Ran Geng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Hongliang Zuo
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Xiaopeng Xu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
12
|
Immunoreactive Proteins in the Esophageal Gland Cells of Anisakis Simplex Sensu Stricto Detected by MALDI-TOF/TOF Analysis. Genes (Basel) 2020; 11:genes11060683. [PMID: 32580523 PMCID: PMC7349779 DOI: 10.3390/genes11060683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/15/2023] Open
Abstract
In plant and animal nematode parasites, proteins derived from esophageal gland cells have been shown to be important in the host-nematodes relationship but little is known about the allergenic potential of these proteins in the genus Anisakis. Taking into account the increase of anisakiasis and allergies related to these nematodes, immunoreactive properties of gland cell proteins were investigated. Two hundred ventricles were manually dissected from L3 stage larvae of Aniskakis simplex s.s. to allow direct protein analysis. Denaturing gel electrophoresis followed by monochromatic silver staining which revealed the presence of differential (enriched) proteins when compared to total nematode extracts. Such comparison was performed by means of 1D and 2D electrophoresis. Pooled antisera from Anisakis spp.-allergic patients were used in western blots revealing the presence of 13 immunoreactive bands in the ventricular extracts in 1D, with 82 spots revealed in 2D. The corresponding protein bands and spots were excised from the silver-stained gel and protein assignation was made by MALDI-TOF/TOF. A total of 13 (including proteoforms) were unambiguously identified. The majority of these proteins are known to be secreted by nematodes into the external environment, of which three are described as being major allergens in other organisms with different phylogenetic origin and one is an Anisakis simplex allergen.
Collapse
|
13
|
Chang D, Sharma L, Dela Cruz CS. Chitotriosidase: a marker and modulator of lung disease. Eur Respir Rev 2020; 29:29/156/190143. [PMID: 32350087 PMCID: PMC9488994 DOI: 10.1183/16000617.0143-2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
Chitotriosidase (CHIT1) is a highly conserved and regulated chitinase secreted by activated macrophages; it is a member of the 18-glycosylase family (GH18). CHIT1 is the most prominent chitinase in humans, can cleave chitin and participates in the body's immune response and is associated with inflammation, infection, tissue damage and remodelling processes. Recently, CHIT1 has been reported to be involved in the molecular pathogenesis of pulmonary fibrosis, bronchial asthma, COPD and pulmonary infections, shedding new light on the role of these proteins in lung pathophysiology. The potential roles of CHIT1 in lung diseases are reviewed in this article. This is the first review of chitotriosidase in lung diseasehttp://bit.ly/2LpZUQI
Collapse
Affiliation(s)
- De Chang
- The 3rd Medical Center of Chinese PLA General Hospital, Beijing, China.,Section of Pulmonary and Critical Care and Sleep Medicine, Dept of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Both authors contributed equally
| | - Lokesh Sharma
- Section of Pulmonary and Critical Care and Sleep Medicine, Dept of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Both authors contributed equally
| | - Charles S Dela Cruz
- Section of Pulmonary and Critical Care and Sleep Medicine, Dept of Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Przysucha N, Górska K, Krenke R. Chitinases and Chitinase-Like Proteins in Obstructive Lung Diseases - Current Concepts and Potential Applications. Int J Chron Obstruct Pulmon Dis 2020; 15:885-899. [PMID: 32368034 PMCID: PMC7185641 DOI: 10.2147/copd.s236640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/10/2020] [Indexed: 01/14/2023] Open
Abstract
Chitinases, enzymes that cleave chitin’s chain to low molecular weight chitooligomers, are widely distributed in nature. Mammalian chitinases belong to the 18-glycosyl-hydrolase family and can be divided into two groups: true chitinases with enzymatic activity (AMCase and chitotriosidase) and chitinase-like proteins (CLPs) molecules which can bind to chitin or chitooligosaccharides but lack enzymatic activity (eg, YKL-40). Chitinases are thought to be part of an innate immunity against chitin-containing parasites and fungal infections. Both groups of these hydrolases are lately evaluated also as chemical mediators or biomarkers involved in airway inflammation and fibrosis. The aim of this article is to present the current knowledge on the potential role of human chitinases and CLPs in the pathogenesis, diagnosis, and course of obstructive lung diseases. We also assessed the potential role of chitinase and CLPs inhibitors as therapeutic targets in chronic obstructive pulmonary disease and asthma.
Collapse
Affiliation(s)
- Natalia Przysucha
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Shen N, Wei W, Chen Y, Ren Y, Xiong L, Tao Y, Gu X, Xie Y, Peng X, Yang G. An Antibody Persistent and Protective Two rSsCLP-Based Subunit Cocktail Vaccine against Sarcoptes scabiei in a Rabbit Model. Vaccines (Basel) 2020; 8:vaccines8010129. [PMID: 32187979 PMCID: PMC7157647 DOI: 10.3390/vaccines8010129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 11/16/2022] Open
Abstract
Scabies is a highly contagious disease caused by Sarcoptes scabiei which burrows into stratum corneum of host's skin. In this study, after optimizing vaccination schedule, a vaccination trial is comprised of three test groups of rabbits (n = 10/group) by immunization with (1) rSsCLP5; (2) rSsCLP12; or (3) a mixture of rSsCLP5 and rSsCLP12, three biological replicates groups (n = 10/group) and three control groups (n = 10/group). Levels of specific IgG, total IgE and cytokines in sera were detected and histopathologically analyzed as indicators of vaccine effects. The results showed that 85% (17/20) of rabbits exhibited no detectable skin lesions of S. scabiei infestation in mixed protein groups compared to single protein groups with 75% (15/20) and 70% (14/20), respectively. Moreover, the deworming rates of mixed groups are increased by 10%-20% compared with that of single groups. Each of six groups immunized with rSsCLP displayed significant increases of specific IgG, total IgE, IL-10, and TNF-α. The degree of skin damage in test groups also significantly lower than that of control groups. Thus, purified rSsCLP5 and rSsCLP12 subunit cocktail vaccine induced robust immune protection and could significantly decrease mite populations to reduce the direct transmission between rabbits.
Collapse
Affiliation(s)
- Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (N.S.); (W.W.); (Y.C.); (L.X.); (Y.T.); (X.G.); (Y.X.)
| | - Wenrui Wei
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (N.S.); (W.W.); (Y.C.); (L.X.); (Y.T.); (X.G.); (Y.X.)
| | - Yuhang Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (N.S.); (W.W.); (Y.C.); (L.X.); (Y.T.); (X.G.); (Y.X.)
| | - Yongjun Ren
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, Sichuan, China;
| | - Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (N.S.); (W.W.); (Y.C.); (L.X.); (Y.T.); (X.G.); (Y.X.)
| | - Yuanyuan Tao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (N.S.); (W.W.); (Y.C.); (L.X.); (Y.T.); (X.G.); (Y.X.)
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (N.S.); (W.W.); (Y.C.); (L.X.); (Y.T.); (X.G.); (Y.X.)
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (N.S.); (W.W.); (Y.C.); (L.X.); (Y.T.); (X.G.); (Y.X.)
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang 611130, China;
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, China; (N.S.); (W.W.); (Y.C.); (L.X.); (Y.T.); (X.G.); (Y.X.)
- Correspondence:
| |
Collapse
|
16
|
Guida G, Riccio AM. Immune induction of airway remodeling. Semin Immunol 2019; 46:101346. [PMID: 31734128 DOI: 10.1016/j.smim.2019.101346] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
Airway remodeling is accepted to be a determining component within the natural history of asthma. It is a phenomenon characterized by changes in the airways structures that marches in parallel with and can be influenced by airway inflammation, floating at the interface between both natural and adaptive immunity and physical and mechanical cells behavior. In this review we aimed to highlight the comprehensive, yet not exhaustive, evidences of how immune cells induce, regulate and adapt to the recognized markers of airway remodeling. Mucous cell hyperplasia, epithelial dysfunction and mesenchymal transition, extracellular matrix protein synthesis and restructuration, fibroblast to myofibroblast transition, airway smooth muscle proliferation, bioactive and contractile properties, and vascular remodeling encompass complex physiopathological mechanisms that can be induced, suppressed or regulated by different cellular and molecular pathways. Growth factors, cytokines, chemokines and adhesion molecules expressed or derived either from the immune network of cells infiltrating the asthmatic airways and involving T helper lymphocytes, immune lymphoid cells, dendritic cells, eosinophils, neutrophils, mast cells or by the structural components such as epithelial cells, fibroblasts, myocytes, airway smooth muscle cells concur with protein cellular matrix component and metalloproteases in modifying the airway structure in a detrimental way. The consequences in lung function decline, fixed airway obstruction and clinical severity of the disease suggest the possibility of identify among the immune molecular pathway of remodeling some biological parameters or signal pathway to be either a good tracer for monitoring the disease evolution or a target for hypothetical phenotypes and endotypes. In the era of personalized medicine, a biomarker of remodeling might predict a response to small-molecule inhibitors or biologicals potentially targeting a fundamental aspect of asthma pathogenesis that impacts on the low responsiveness to airway inflammation directed treatments.
Collapse
Affiliation(s)
- Giuseppe Guida
- Allergology and Lung Pathology, Santa Croce and Carle Hospital, Cuneo - Antonio Carle Hospital, Via Antonio Carle 5, 12100, Confreria (CN), Italy.
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases - Department of Internal Medicine, University of Genoa, Italy.
| |
Collapse
|
17
|
Yeo IJ, Lee CK, Han SB, Yun J, Hong JT. Roles of chitinase 3-like 1 in the development of cancer, neurodegenerative diseases, and inflammatory diseases. Pharmacol Ther 2019; 203:107394. [PMID: 31356910 DOI: 10.1016/j.pharmthera.2019.107394] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Chitinase 3-like 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly increased by various inflammatory and immunological conditions, including rheumatoid arthritis, multiple sclerosis, Alzheimer's disease, and several cancers. However, its physiological and pathophysiological roles in the development of cancer and neurodegenerative and inflammatory diseases remain unclear. Several studies have reported that CHI3L1 promotes cancer proliferation, inflammatory cytokine production, and microglial activation, and that multiple receptors, such as advanced glycation end product, syndecan-1/αVβ3, and IL-13Rα2, are involved. In addition, the pro-inflammatory action of CHI3L1 may be mediated via the protein kinase B and phosphoinositide-3 signaling pathways and responses to various pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 could contribute to a vast array of inflammatory diseases. In this article, we review recent findings regarding the roles of CHI3L1 and suggest therapeutic approaches targeting CHI3L1 in the development of cancers, neurodegenerative diseases, and inflammatory diseases.
Collapse
Affiliation(s)
- In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
18
|
Shen N, Zhang H, Ren Y, He R, Xu J, Li C, Lai W, Gu X, Xie Y, Peng X, Yang G. A chitinase-like protein from Sarcoptes scabiei as a candidate anti-mite vaccine that contributes to immune protection in rabbits. Parasit Vectors 2018; 11:599. [PMID: 30454025 PMCID: PMC6245717 DOI: 10.1186/s13071-018-3184-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Scabies is caused by Sarcoptes scabiei burrowing into the stratum corneum of the host's skin and is detrimental to the health of humans and animals. Vaccines are an attractive alternative to replace the acaricides currently used in their control. METHODS In the present study, the S. scabiei chitinase-like protein 5 (SsCLP5) was characterized and recombinant SsCLP5 (rSsCLP5) was evaluated as a candidate vaccine protein for anti-mite protection in rabbits. The expression, characterization and immunolocalization of SsCLP5 were examined. Vaccination experiments were performed on three test groups (n = 12 per group) immunized with purified rSsCLP5. Control groups (n = 12 per group) were immunized with PBS, QuilA saponin or empty vector protein. After challenge, the inflammatory reaction and skin lesions were graded and rSsCLP5 indirect ELISA was used to detect antibody IgG levels in serum samples at the time of vaccination and post-challenge. RESULTS The results showed that rSsCLP5 had high immunoreactivity and immunogenicity. In S. scabiei, SsCLP5 had a wide distribution in the chewing mouthpart, legs and exoskeleton, especially the outer layer of the exoskeleton. Vaccination with rSsCLP5 resulted in 74.3% (26/35) of rabbits showing no detectable lesions after challenge with S. scabiei. CONCLUSIONS Our data demonstrate that rSsCLP5 is a promising candidate for a recombinant protein-based vaccine against S. scabiei. This study also provides a method for studying scabies vaccine using rabbit as an animal model and a basis for screening more effective candidate proteins.
Collapse
Affiliation(s)
- Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Haojie Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yongjun Ren
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chunyan Li
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, 611130 China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
19
|
Sutherland TE, Rückerl D, Logan N, Duncan S, Wynn TA, Allen JE. Ym1 induces RELMα and rescues IL-4Rα deficiency in lung repair during nematode infection. PLoS Pathog 2018; 14:e1007423. [PMID: 30500858 PMCID: PMC6291165 DOI: 10.1371/journal.ppat.1007423] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/12/2018] [Accepted: 10/21/2018] [Indexed: 01/21/2023] Open
Abstract
Ym1 and RELMα are established effector molecules closely synonymous with Th2-type inflammation and associated pathology. Here, we show that whilst largely dependent on IL-4Rα signaling during a type 2 response, Ym1 and RELMα also have IL-4Rα-independent expression patterns in the lung. Notably, we found that Ym1 has opposing effects on type 2 immunity during nematode infection depending on whether it is expressed at the time of innate or adaptive responses. During the lung migratory stage of Nippostrongylus brasiliensis, Ym1 promoted the subsequent reparative type 2 response but once that response was established, IL-4Rα-dependent Ym1 was important for limiting the magnitude of type 2 cytokine production from both CD4+ T cells and innate lymphoid cells in the lung. Importantly, our study demonstrates that delivery of Ym1 to IL-4Rα deficient animals drives RELMα production and overcomes lung repair deficits in mice deficient in type 2 immunity. Together, Ym1 and RELMα, exhibit time and dose-dependent interactions that determines the outcome of lung repair during nematode infection.
Collapse
Affiliation(s)
- Tara E. Sutherland
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dominik Rückerl
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nicola Logan
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sheelagh Duncan
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas A. Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Judith E. Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Regulation of Streptomyces Chitinases by Two-Component Signal Transduction Systems and their Post Translational Modifications: A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.3.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
21
|
Niu S, Yang L, Zuo H, Zheng J, Weng S, He J, Xu X. A chitinase from pacific white shrimp Litopenaeus vannamei involved in immune regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:161-169. [PMID: 29678533 DOI: 10.1016/j.dci.2018.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/15/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
Chitinases are a group of hydrolytic enzymes that hydrolyze chitin and widely exist in organisms. Studies in mammals have demonstrated that chitinases play important roles in regulation of humoral and cellular immune responses. In arthropods, although it is well known that chitinases are involved in growth, molting and development, the current knowledge on the role of chitinases in immunity, especially in immune regulation, remains largely unknown. In this study, a chitinase (LvChi5) from Litopenaeus vannamei was representatively selected for studying its immune function. The start codon of LvChi5 was corrected by 5'RACE analysis and its protein sequence was reanalyzed. LvChi5 contains a catalytic domain and a chitin binding domain and shows no inhibitory effect on growth of bacteria in vitro. However, in vivo experiments demonstrated that silencing of LvChi5 increased the mortality of shrimp infected with white spot syndrome virus (WSSV) and Vibro parahaemolyticus and significantly upregulated the load of pathogens in tissues. The expression of various immune related genes, including transcription factors, antimicrobial peptides and other functional proteins with antibacterial and antiviral activities, was widely changed in LvChi5 silencing shrimp. Moreover, the recombinant LvChi5 protein could enhance the phagocytic activity of hemocytes against bacteria. These suggested that shrimp chitinase could play a role in regulation of both humoral and cellular immune responses in shrimp.
Collapse
Affiliation(s)
- Shengwen Niu
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Linwei Yang
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jiefu Zheng
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety / State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China.
| |
Collapse
|
22
|
Krecak I, Gveric-Krecak V, Roncevic P, Basic-Kinda S, Gulin J, Lapic I, Fumic K, Ilic I, Horvat I, Zadro R, Holik H, Coha B, Peran N, Aurer I, Durakovic N. Serum chitotriosidase: a circulating biomarker in polycythemia vera. ACTA ACUST UNITED AC 2018; 23:793-802. [PMID: 29993340 DOI: 10.1080/10245332.2018.1498157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Serum chitotriosidase activity (CHIT1) is a biomarker of macrophage activation with an important role in inflammation-induced tissue remodeling and fibrosis. Macrophages have been described to play a crucial role in regulating pathological erythropoiesis in polycythemia vera (PV). The aim of this study was to evaluate CHIT1 in patients diagnosed with Philadelphia-negative myeloproliferative neoplasms (MPNs). METHODS Using fluorometric assay, we measured CHIT1 in 28 PV, 27 essential thrombocythemia (ET), 17 primary myelofibrosis (PMF), 19 patients with secondary myelofibrosis and in 25 healthy controls. RESULTS CHIT1 was significantly higher in PV (p < .001) and post-PV myelofibrosis (MF) transformation (post-PV MF) (p = .020), but not in ET (p = .080), post-ET MF transformation (p = .086), and PMF patients (p = .287), when compared to healthy controls. CHIT1 in PV was positively correlated with hemoglobin (p = .026), hematocrit (p = .012), absolute basophil count (p = .030) and the presence of reticulin fibrosis in the bone marrow (p = .023). DISCUSSION A positive correlation between CHIT1 and these distinct laboratory PV features might imply macrophages closely related to clonal erythropoiesis as cells of CHIT1 origin. In addition, a positive association between CHIT1 and reticulin fibrosis might indicate its potential role in PV progression. CONCLUSION CHIT1 might be considered as a circulating biomarker in PV. Additional studies are needed to clarify the role of CHIT1 in promoting disease progression and bone marrow fibrosis in PV.
Collapse
Affiliation(s)
- Ivan Krecak
- a Department of Internal Medicine , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Velka Gveric-Krecak
- a Department of Internal Medicine , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Pavle Roncevic
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia
| | - Sandra Basic-Kinda
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia
| | - Josipa Gulin
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia
| | - Ivana Lapic
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia
| | - Ksenija Fumic
- c Division for Laboratory Diagnostics of Inborn Errors of Metabolism, Department of Laboratory Diagnostics , University Hospital Center Zagreb , Zagreb , Croatia.,d Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia
| | - Ivana Ilic
- e Department of Pathology and Cytology, University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Ivana Horvat
- g Division for Laboratory Hematology and Coagulation, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb , Zagreb , Croatia
| | - Renata Zadro
- d Faculty of Pharmacy and Biochemistry , University of Zagreb , Zagreb , Croatia.,g Division for Laboratory Hematology and Coagulation, Clinical Department of Laboratory Diagnostics, University Hospital Center Zagreb , Zagreb , Croatia
| | - Hrvoje Holik
- h Department of Internal medicine , "Dr. Josip Bencevic" General Hospital , Slavonski Brod , Croatia
| | - Bozena Coha
- h Department of Internal medicine , "Dr. Josip Bencevic" General Hospital , Slavonski Brod , Croatia
| | - Nena Peran
- i Department of Laboratory Diagnostics , General Hospital of Sibenik-Knin County , Sibenik , Croatia
| | - Igor Aurer
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| | - Nadira Durakovic
- b Division of Hematology, Department of Internal Medicine , University Hospital Center Zagreb , Zagreb , Croatia.,f School of Medicine , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
23
|
Chitinase-like proteins as regulators of innate immunity and tissue repair: helpful lessons for asthma? Biochem Soc Trans 2018; 46:141-151. [PMID: 29351964 DOI: 10.1042/bst20170108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/19/2022]
Abstract
Chitinases and chitinase-like proteins (CLPs) belong to the glycoside hydrolase family 18 of proteins. Chitinases are expressed in mammals and lower organisms, facilitate chitin degradation, and hence act as host-defence enzymes. Gene duplication and loss-of-function mutations of enzymatically active chitinases have resulted in the expression of a diverse range of CLPs across different species. CLPs are genes that are increasingly associated with inflammation and tissue remodelling not only in mammals but also across distant species. While the focus has remained on understanding the functions and expression patterns of CLPs during disease in humans, studies in mouse and lower organisms have revealed important and overlapping roles of the CLP family during physiology, host defence and pathology. This review will summarise recent insights into the regulatory functions of CLPs on innate immune pathways and discuss how these effects are not only important for host defence and tissue injury/repair after pathogen invasion, but also how they have extensive implications for pathological processes involved in diseases such as asthma.
Collapse
|
24
|
Danielson B, Chen CH, Kaber G, Mochly-Rosen D, Grimes K, Stern R, Bollyky PL. Human Chitotriosidase Does Not Catabolize Hyaluronan. Int J Biol Macromol 2017; 109:629-633. [PMID: 29247734 DOI: 10.1016/j.ijbiomac.2017.11.181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
Humans express an enzyme that degrades chitin, called chitotriosidase, despite the fact that we do not produce chitin. One possible explanation for this is that chitinase also degrades hyaluronan, a polysaccharide that is abundant in human tissues and shares structural attributes in common with chitinase. The objective of this study was to determine whether human chitotriosidase is capable of hydrolyzing hyaluronan. Hyaluronan of various sizes under a range of pH conditions displayed no degradation when incubated with various chitinases over a period of 5 days, while commercial hyaluronidase readily digested the hyaluronan. Under the same conditions, recombinant chitinase but not our negative control chitinase, was able to digest chitosan. We conclude that human chitinase does not digest hyaluronan. Because chitin is a prominent component of certain fungi and insects, it seems likely that human chitinase evolved for roles in host defense rather than serving to catabolize the endogenous polymer hyaluronan.
Collapse
Affiliation(s)
- Ben Danielson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Che-Hong Chen
- Department of Chemical and Systems Biology Operations, Stanford University School of Medicine, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology Operations, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin Grimes
- Department of Chemical and Systems Biology Operations, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert Stern
- Department of Basic Biomedical Sciences, Touro-Harlem College of Osteopathic Medicine, New York, NY, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
25
|
Lee Y, Hwang YH, Kim KJ, Park AK, Paik MJ, Kim SH, Lee SU, Yee ST, Son YJ. Proteomic and transcriptomic analysis of lung tissue in OVA-challenged mice. Arch Pharm Res 2017; 41:87-100. [PMID: 29086354 PMCID: PMC5770490 DOI: 10.1007/s12272-017-0972-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Asthma is a long term inflammatory disease of the airway of lungs characterized by variable airflow obstruction and bronchospasm. Asthma is caused by a complex combination of environmental and genetic interactions. In this study, we conducted proteomic analysis of samples derived from control and OVA challenged mice for environmental respiratory disease by using 2-D gel electrophoresis. In addition, we explored the genes associated with the environmental substances that cause respiratory disease and conducted RNA-seq by next-generation sequencing. Proteomic analysis revealed 7 up-regulated (keratin KB40, CRP, HSP27, chaperonin containing TCP-1, TCP-10, keratin, and albumin) and 3 down-regulated proteins (PLC-α, PLA2, and precursor ApoA-1). The expression diversity of many genes was found in the lung tissue of OVA challenged moue by RNA-seq. 146 genes were identified as significantly differentially expressed by OVA treatment, and 118 genes of the 146 differentially expressed genes were up-regulated and 28 genes were downregulated. These genes were related to inflammation, mucin production, and airway remodeling. The results presented herein enable diagnosis and the identification of quantitative markers to monitor the progression of environmental respiratory disease using proteomics and genomic approaches.
Collapse
Affiliation(s)
- Yongjin Lee
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Korea
| | - Yun-Ho Hwang
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Korea
| | - Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Korea
| | - Ae-Kyung Park
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Korea
| | - Man-Jeong Paik
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Division of Drug Discovery Research, Pharmacology Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, 56212, Korea
| | - Sung-Tae Yee
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Korea.
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, 255 Jungangno, Suncheon, Jeonnam, 57922, Korea.
| |
Collapse
|
26
|
He R, Shen N, Zhang H, Ren Y, He M, Xu J, Guo C, Xie Y, Gu X, Lai W, Peng X, Yang G. Molecular characteristics and serodiagnostic potential of chitinase-like protein from Sarcoptes scabiei. Oncotarget 2017; 8:83995-84005. [PMID: 29137399 PMCID: PMC5663571 DOI: 10.18632/oncotarget.21056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
Scabies, caused by the mite Sarcoptes scabiei, is an allergic skin disease that affects millions of people and other mammals worldwide. This highly contagious parasitic disease is among the top 50 epidemic disease and is regarded as a neglected tropical disease. Diagnosis of scabies is difficult in the early stage, and the pathogenesis of scabies is not currently clear. Here, we expressed, identified and located the chitinase-like protein of S. scabiei (SsCLP), and evaluated its potential as an early-stage diagnostic antigen for rabbit scabies. Indirect ELISA using recombinant SsCLP (rSsCLP) exhibited diagnostic sensitivity of 94.4% (17/18) and specificity of 86.7% (26/30). Early diagnostic test after artificial infection of rabbits with S. scabiei for 1 week showed a positive detection rate of 96.7% (29/30). Immunolocalization assays showed that fluorescence signals were localized on the surface of mites and, in infected rabbits, were observed in keratinized skin and embedded mites. Intradermal skin tests of rabbits by injecting rSsCLP showed a wheal, flare and erythema reaction. These results suggest that S. scabiei chitinase-like protein is conducive to host invasion, participates in inducing the allergic response of the host, and is an effective antigen for the diagnosis of S. scabiei.
Collapse
Affiliation(s)
- Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Haojie Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Yongjun Ren
- Sichuan Animal Sciences Academy, Sichuan Chengdu, China
| | - Manli He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Cheng Guo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Weimin Lai
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
27
|
Abstract
Many major tropical diseases are caused by long-lived helminth parasites that are able to survive by modulation of the host immune system, including the innate compartment of myeloid cells. In particular, dendritic cells and macrophages show markedly altered phenotypes during parasite infections. In addition, many specialized subsets such as eosinophils and basophils expand dramatically in response to these pathogens. The changes in phenotype and function, and their effects on both immunity to infection and reactivity to bystander antigens such as allergens, are discussed.
Collapse
|
28
|
Li Z, Gu J, Liu J, Zhu Q, Lu H, Lu Y, Rao J, Lu L, Wang X. Chitinase 3-like-1 deficient donor splenocytes accentuated the pathogenesis of acute graft-versus-host diseases through regulating T cell expansion and type I inflammation. Int Immunopharmacol 2017; 46:201-209. [PMID: 28324830 DOI: 10.1016/j.intimp.2017.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/20/2017] [Accepted: 03/08/2017] [Indexed: 01/05/2023]
Abstract
Acute graft-versus-host disease (aGVHD) is a major complication following transplantation, limiting the success of this therapy. Chitinase 3-like-1 (CHI3L1), a member of the glycosyl hydrolase 18 family, plays a critical role in bacterial infections, allergic disease and a variety of malignancies. Here, we investigated whether CHI3L1 could affect the pathogenesis of aGVHD in a mouse allo-HCT model. In this study, we show that CHI3L1 deficiency in donor T cells increased the severity of aGVHD through enhancing systemic and local inflammation. In addition, we found that aGVHD induced by CHI3L1-knockout (CHI3L1-KO) donors resulted in massive expansion of donor CD3+ T cells, release of Th1-related cytokines and chemokines, and significant inhibition of CD4+CD25+Foxp3+ regulatory T cells (Tregs) without changing the suppressive ability of donor Tregs remarkably. Expression of PERK1/2 and PAkt increased both in the skin and intestine from CHI3L1-KO splenocytes-treated aGVHD mice. Moreover, at mRNA and protein levels, we defined several molecules that may account for the enhanced ability of CHI3L1-KO splenocytes to migrate into target organs and produce Th1-related cytokines and chemokines, such as CXCL9, CXCL11, IFN-γ and TNF-α. Therefore, these results imply that CHI3L1 levels in donor cells may be related to the risk of aGVHD and targeting CHI3L1 may be a promising clinical strategy to control aGVHD.
Collapse
Affiliation(s)
- Zengyao Li
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jian Gu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jing Liu
- Department of Radiotherapy, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Qin Zhu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Hao Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Yunjie Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Jianhua Rao
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Ling Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China
| | - Xuehao Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, No. 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
29
|
Minutti CM, Knipper JA, Allen JE, Zaiss DMW. Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol 2016; 61:3-11. [PMID: 27521521 DOI: 10.1016/j.semcdb.2016.08.006] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/21/2022]
Abstract
Macrophages are present in all tissues, either as resident cells or monocyte-derived cells that infiltrate into tissues. The tissue site largely determines the phenotype of tissue-resident cells, which help to maintain tissue homeostasis and act as sentinels of injury. Both tissue resident and recruited macrophages make a substantial contribution to wound healing following injury. In this review, we evaluate how macrophages in two fundamentally distinct tissues, i.e. the lung and the skin, differentially contribute to the process of wound healing. We highlight the commonalities of macrophage functions during repair and contrast them with distinct, tissue-specific functions that macrophages fulfill during the different stages of wound healing.
Collapse
Affiliation(s)
- Carlos M Minutti
- Centre for Immunity, Infection and Evolution, and the Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Johanna A Knipper
- Centre for Immunity, Infection and Evolution, and the Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Judith E Allen
- School of Biological Sciences, Faculty of Biology, Medicine & Health & Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Dietmar M W Zaiss
- Centre for Immunity, Infection and Evolution, and the Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| |
Collapse
|
30
|
Wu F, Wei J, Liu Z, Zeng X, Yu Z, Lv Z, Sun X, Wu Z. Soluble antigen derived from IV larva of Angiostrongylus cantonensis promotes chitinase-like protein 3 (Chil3) expression induced by interleukin-13. Parasitol Res 2016; 115:3737-46. [PMID: 27256220 DOI: 10.1007/s00436-016-5135-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/13/2016] [Indexed: 01/09/2023]
Abstract
Angiostrongyliasis caused by Angiostrongylus cantonensis (A. cantonensis) is an emerging food-borne parasitic disease, which refers basically to eosinophilic meningitis. Chitinase-like protein 3 (Chil3), a member of chitinase-like protein family which has chemotactic activity for eosinophils, is reported to be highly upregulated in brain of mouse infected with A. cantonensis. The mechanisms of high expression of Chil3 and the association between A. cantonensis and Chil3 are rarely reported. In order to understand the mechanism of high expression of Chil3 in A. cantonensis-infected mouse, we measured the level of Chil3 in RAW 264.7 and BV2 cell lines stimulated with soluble antigen of A. cantonensis by qPCR and ELISA. To explore the role of Chil3 in inflammation caused by A. cantonensis, we extracted and cultured brain mononuclear cells (BMNCs) and detected the eosinophil chemotactic activity of Chil3 using transwell assay and flow cytometer. Furthermore, we treated the infected mice by injection with rmChil3 and then counted the number of larvae in brains of infected mice and treated mice to examine the association between the worm and Chil3. Our results showed the soluble antigen from A. cantonensis could promote the Chil3 expression in macrophage and microglial cell lines induced by interleukin-13. In conclusion, we supposed that high expression of Chil3 enhanced by soluble antigens from A. cantonensis might be the reason of serious eosinophil infiltration in mouse brain after A. cantonensis infection.
Collapse
Affiliation(s)
- Feng Wu
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie Wei
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhen Liu
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Zeng
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zilong Yu
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiyue Lv
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi Sun
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhongdao Wu
- Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
31
|
Olkhovych NV. Chitotriosidase activity as additional biomarker in the diagnosis of lysosomal storage diseases. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 88:69-78. [DOI: 10.15407/ubj88.01.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Immunomodulatory Effects of Chitotriosidase Enzyme. Enzyme Res 2016; 2016:2682680. [PMID: 26881065 PMCID: PMC4735922 DOI: 10.1155/2016/2682680] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/16/2015] [Indexed: 01/14/2023] Open
Abstract
Chitotriosidase enzyme (EC: 3.2.1.14) is the major active chitinase in the human body. It is produced mainly by activated macrophages, in which its expression is regulated by multiple intrinsic and extrinsic signals. Chitotriosidase was confirmed as essential element in the innate immunity against chitin containing organisms such as fungi and protozoa; however, its immunomodulatory effects extend far beyond innate immunity. In the current review, we will try to explore the expanding spectrum of immunological roles played by chitotriosidase enzyme in human health and disease and will discuss its up-to-date clinical value.
Collapse
|
33
|
Rückerl D, Allen JE. Macrophage proliferation, provenance, and plasticity in macroparasite infection. Immunol Rev 2015; 262:113-33. [PMID: 25319331 PMCID: PMC4324133 DOI: 10.1111/imr.12221] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages have long been center stage in the host response to microbial infection, but only in the past 10–15 years has there been a growing appreciation for their role in helminth infection and the associated type 2 response. Through the actions of the IL-4 receptor α (IL-4Rα), type 2 cytokines result in the accumulation of macrophages with a distinctive activation phenotype. Although our knowledge of IL-4Rα-induced genes is growing rapidly, the specific functions of these macrophages have yet to be established in most disease settings. Understanding the interplay between IL-4Rα-activated macrophages and the other cellular players is confounded by the enormous transcriptional heterogeneity within the macrophage population and by their highly plastic nature. Another level of complexity is added by the new knowledge that tissue macrophages can be derived either from a resident prenatal population or from blood monocyte recruitment and that IL-4 can increase macrophage numbers through proliferative expansion. Here, we review current knowledge on the contribution of macrophages to helminth killing and wound repair, with specific attention paid to distinct cellular origins and plasticity potential.
Collapse
Affiliation(s)
- Dominik Rückerl
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
34
|
Sugawara A, Maita N, Gouda H, Yamamoto T, Hirose T, Kimura S, Saito Y, Nakano H, Kasai T, Nakano H, Shiomi K, Hirono S, Watanabe T, Taniguchi H, O̅mura S, Sunazuka T. Creation of Customized Bioactivity within a 14-Membered Macrolide Scaffold: Design, Synthesis, and Biological Evaluation Using a Family-18 Chitinase. J Med Chem 2015; 58:4984-97. [DOI: 10.1021/acs.jmedchem.5b00175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Akihiro Sugawara
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nobuo Maita
- Institute
for Enzyme Research, University of Tokushima, 3-18-15 Kuramotocho, Tokushima City, Tokushima, 770-8503, Japan
| | - Hiroaki Gouda
- School
of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsuyoshi Yamamoto
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Saori Kimura
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshifumi Saito
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hayato Nakano
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takako Kasai
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirofumi Nakano
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuro Shiomi
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shuichi Hirono
- School
of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takeshi Watanabe
- Department
of Applied Biological Chemistry, Faculty of Agriculture, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan
| | - Hisaaki Taniguchi
- Institute
for Enzyme Research, University of Tokushima, 3-18-15 Kuramotocho, Tokushima City, Tokushima, 770-8503, Japan
| | - Satoshi O̅mura
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- The
Kitasato Institute, Kitasato Institute for Life Sciences and Graduate
School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
35
|
Allen JE, Sutherland TE, Rückerl D. IL-17 and neutrophils: unexpected players in the type 2 immune response. Curr Opin Immunol 2015; 34:99-106. [PMID: 25794823 DOI: 10.1016/j.coi.2015.03.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 02/08/2023]
Abstract
The study of immunity to helminth infection has been central to understanding the function of type 2 cytokines and their targets. Although type 2 cytokines are considered anti-inflammatory and promote tissue repair, they also contribute to allergy and fibrosis. Here, we utilise data from helminth infection models, to illustrate that IL-17 and neutrophils, typically associated with pro-inflammatory responses, are intimately linked with type 2 immunity. Neutrophils work with IL-4Rα-activated macrophages to control incoming larvae but this comes at a cost of enhanced tissue damage. Chitinase like proteins (CLPs) bridge these diverse outcomes, inducing both protective IL-17 and reparative Th2 responses. Dysregulation of CLPs, IL-17 and neutrophils likely contribute to disease severity and pathology associated with type 2 immunity.
Collapse
Affiliation(s)
- Judith E Allen
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Tara E Sutherland
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom
| | - Dominik Rückerl
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
36
|
Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog 2015; 11:e1004701. [PMID: 25764512 PMCID: PMC4357429 DOI: 10.1371/journal.ppat.1004701] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/23/2015] [Indexed: 12/13/2022] Open
Abstract
Pulmonary mycoses are often associated with type-2 helper T (Th2) cell responses. However, mechanisms of Th2 cell accumulation are multifactorial and incompletely known. To investigate Th2 cell responses to pulmonary fungal infection, we developed a peptide-MHCII tetramer to track antigen-specific CD4+ T cells produced in response to infection with the fungal pathogen Cryptococcus neoformans. We noted massive accruement of pathologic cryptococcal antigen-specific Th2 cells in the lungs following infection that was coordinated by lung-resident CD11b+ IRF4-dependent conventional dendritic cells. Other researchers have demonstrated that this dendritic cell subset is also capable of priming protective Th17 cell responses to another pulmonary fungal infection, Aspergillus fumigatus. Thus, higher order detection of specific features of fungal infection by these dendritic cells must direct Th2 cell lineage commitment. Since chitin-containing parasites commonly elicit Th2 responses, we hypothesized that recognition of fungal chitin is an important determinant of Th2 cell-mediated mycosis. Using C. neoformans mutants or purified chitin, we found that chitin abundance impacted Th2 cell accumulation and disease. Importantly, we determined Th2 cell induction depended on cleavage of chitin via the mammalian chitinase, chitotriosidase, an enzyme that was also prevalent in humans experiencing overt cryptococcosis. The data presented herein offers a new perspective on fungal disease susceptibility, whereby chitin recognition via chitotriosidase leads to the initiation of harmful Th2 cell differentiation by CD11b+ conventional dendritic cells in response to pulmonary fungal infection. Humans often inhale potentially pathogenic fungi in the environment. While CD4+ helper T (Th) cells are required for protection against invasive disease, a subset of Th cells, called Th2 cells, are associated with increased mortality and allergy/asthma morbidity. Our study aimed to unravel the cellular and molecular basis of pulmonary Th2 cell induction in response to lethal infection with Cryptococcus neoformans. Antigen-presenting cells coordinate naïve Th cell priming and differentiation, but the precise leukocyte responsible for Th2 cell expansion to pulmonary cryptococcal infection has not been determined. Using an experimental mouse model of pulmonary cryptococcosis, we show that a subset of lung-resident dendritic cells is uniquely required for Th2 cell induction. We additionally sought to identify the molecular signal received by the host that allows dendritic cells to selectively induce Th2 cells. Since parasites and fungi elicit Th2 cell responses and both produce chitin, a molecule not found in vertebrates, we hypothesized that recognition of fungal chitin is a determinant of fungal disease. Here, we demonstrate that C. neoformans chitin and the host-derived chitinase, chitotriosidase, promote Th2 cell accumulation and disease. These findings highlight a promising target of next generation therapies aimed at limiting immunopathology caused by pulmonary fungal infection.
Collapse
|
37
|
Sutherland TE, Logan N, Rückerl D, Humbles AA, Allan SM, Papayannopoulos V, Stockinger B, Maizels RM, Allen JE. Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nat Immunol 2014; 15:1116-25. [PMID: 25326751 PMCID: PMC4338525 DOI: 10.1038/ni.3023] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022]
Abstract
Enzymatically inactive chitinase-like proteins (CLPs) such as BRP-39, Ym1 and Ym2 are established markers of immune activation and pathology, yet their functions are essentially unknown. We found that Ym1 and Ym2 induced the accumulation of neutrophils through the expansion of γδ T cell populations that produced interleukin 17 (IL-17). While BRP-39 did not influence neutrophilia, it was required for IL-17 production in γδ T cells, which suggested that regulation of IL-17 is an inherent feature of mouse CLPs. Analysis of a nematode infection model, in which the parasite migrates through the lungs, revealed that the IL-17 and neutrophilic inflammation induced by Ym1 limited parasite survival but at the cost of enhanced lung injury. Our studies describe effector functions of CLPs consistent with innate host defense traits of the chitinase family.
Collapse
Affiliation(s)
- Tara E Sutherland
- Institute of Immunology and Infection Research, Centre for Immunity Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Nicola Logan
- Institute of Immunology and Infection Research, Centre for Immunity Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Dominik Rückerl
- Institute of Immunology and Infection Research, Centre for Immunity Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Alison A Humbles
- Department of Respiratory, Inflammation &Autoimmunity, MedImmune, Gaithersburg, Maryland, USA
| | - Stuart M Allan
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Venizelos Papayannopoulos
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, London, UK
| | - Brigitta Stockinger
- Division of Molecular Immunology, Medical Research Council National Institute for Medical Research, London, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, Centre for Immunity Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Judith E Allen
- Institute of Immunology and Infection Research, Centre for Immunity Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
38
|
Mutations in the filaggrin gene and food allergy. GASTROENTEROLOGY REVIEW 2014; 9:200-7. [PMID: 25276250 PMCID: PMC4178045 DOI: 10.5114/pg.2014.45100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 07/10/2012] [Accepted: 12/05/2012] [Indexed: 01/25/2023]
Abstract
The results of long-term epidemiological studies show that the number of people suffering from allergic diseases, especially from food allergies and atopic dermatitis (AD), is still increasing. Although the research thus far has been conducted mainly in Europe, North America, and Asia, there are also data appearing from the first studies in that field among the African population. This may indicate the importance of the problem of allergic diseases. The discovery that loss-of-function mutations in the gene coding filaggrin (FLG) are the cause of ichthyosis vulgaris marked a significant breakthrough in understanding the pathogenesis of allergic diseases. The presence of mutations in the filaggrin gene is also an important factor that predisposes to such allergic diseases as: allergic rhinitis, atopic dermatitis, atopic asthma, and food allergy. So far, over 40 loss-of-function mutations and numerous silent mutations in filaggrin have been discovered.
Collapse
|
39
|
Blockade of IL-33 release and suppression of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy. Mucosal Immunol 2014; 7:1068-78. [PMID: 24496315 PMCID: PMC4016792 DOI: 10.1038/mi.2013.123] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 11/30/2013] [Indexed: 02/04/2023]
Abstract
Helminth parasites such as the nematode Heligmosomoides polygyrus strongly inhibit T helper type 2 (Th2) allergy, as well as colitis and autoimmunity. Here, we show that the soluble excretory/secretory products of H. polygyrus (HES) potently suppress inflammation induced by allergens from the common fungus Alternaria alternata. Alternaria extract, when administered to mice intranasally with ovalbumin (OVA) protein, induces a rapid (1-48 h) innate response while also priming an OVA-specific Th2 response that can be evoked 14 days later by intranasal administration of OVA alone. In this model, HES coadministration with Alternaria/OVA suppressed early IL-33 release, innate lymphoid cell (ILC) production of IL-4, IL-5, and IL-13, and localized eosinophilia. Upon OVA challenge, type 2 ILC (ILC2)/Th2 cytokine production and eosinophilia were diminished in HES-treated mice. HES administration 6 h before Alternaria blocked the allergic response, and its suppressive activity was abolished by heat treatment. Administration of recombinant IL-33 at sensitization with Alternaria/OVA/HES abrogated HES suppression of OVA-specific responses at challenge, indicating that suppression of early Alternaria-induced IL-33 release could be central to the anti-allergic effects of HES. Thus, this helminth parasite targets IL-33 production as part of its armory of suppressive effects, forestalling the development of the type 2 immune response to infection and allergic sensitization.
Collapse
|
40
|
Osborne LC, Monticelli LA, Nice TJ, Sutherland TE, Siracusa MC, Hepworth MR, Tomov VT, Kobuley D, Tran SV, Bittinger K, Bailey AG, Laughlin AL, Boucher JL, Wherry EJ, Bushman FD, Allen JE, Virgin HW, Artis D. Coinfection. Virus-helminth coinfection reveals a microbiota-independent mechanism of immunomodulation. Science 2014; 345:578-82. [PMID: 25082704 DOI: 10.1126/science.1256942] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian intestine is colonized by beneficial commensal bacteria and is a site of infection by pathogens, including helminth parasites. Helminths induce potent immunomodulatory effects, but whether these effects are mediated by direct regulation of host immunity or indirectly through eliciting changes in the microbiota is unknown. We tested this in the context of virus-helminth coinfection. Helminth coinfection resulted in impaired antiviral immunity and was associated with changes in the microbiota and STAT6-dependent helminth-induced alternative activation of macrophages. Notably, helminth-induced impairment of antiviral immunity was evident in germ-free mice, but neutralization of Ym1, a chitinase-like molecule that is associated with alternatively activated macrophages, could partially restore antiviral immunity. These data indicate that helminth-induced immunomodulation occurs independently of changes in the microbiota but is dependent on Ym1.
Collapse
Affiliation(s)
- Lisa C Osborne
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laurel A Monticelli
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy J Nice
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tara E Sutherland
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Mark C Siracusa
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Hepworth
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vesselin T Tomov
- Department of Medicine, Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dmytro Kobuley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara V Tran
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyle Bittinger
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aubrey G Bailey
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alice L Laughlin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Luc Boucher
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes, Paris, France
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Judith E Allen
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Artis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
41
|
Sinha S, Singh J, Jindal SK, Birbian N, Singla N. Association of 24 bp duplication of human CHIT1 gene with asthma in a heterozygous population of north India: a case-control study. Lung 2014; 192:685-91. [PMID: 24928104 DOI: 10.1007/s00408-014-9605-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE CHIT1 is expressed by pulmonary macrophages, which is typically the site of entry for many environmental fungi that may increase the risk of pulmonary fungal infection and lead to hypersensitivity. The conserved expression of this gene in humans suggests its physiological importance in the mammalian lung. METHODS The present study was conducted with a total of 964 subjects, including 483 healthy controls and 481 asthma patients. DNA samples were extracted from blood, and the genotyping was done using polymerase chain reaction method. RESULTS Statistical analysis revealed that the 24 bp duplication in CHIT1 gene polymorphism shows highly significant association in heterozygous (wild/dup) genotype with OR 1.74, 95 % CI (1.29-2.36), and p = 0.000. However, the homozygous mutant genotype (dup/dup) was found to be non-significant with OR 1.06, 95% CI (0.69-1.63), and p = 0.786. The combination of both wild/dup and dup/dup was also found to be highly significant with OR 1.57, 95% CI (1.18-2.11), and p = 0.002. CONCLUSIONS This is the first study conducted in India which reports a significant association between 24 bp duplication in CHIT1 gene polymorphism and asthma in the studied North Indian population.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | | | | | |
Collapse
|
42
|
Lee IA, Kamba A, Low D, Mizoguchi E. Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease. World J Gastroenterol 2014; 20:1127-38. [PMID: 24574789 PMCID: PMC3921497 DOI: 10.3748/wjg.v20.i5.1127] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/26/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023] Open
Abstract
Family 18 chitinases have a binding capacity with chitin, a polymer of N-acetylglucosamine. Recent studies strongly suggested that chitinase 3-like 1 (CHI3L1, also known as YKL-40) and acidic mammalian chitinase, the two major members of family 18 chitinases, play a pivotal role in the pathogenesis of inflammatory bowel disease (IBD), bronchial asthma and several other inflammatory disorders. Based on the data from high-throughput screening, it has been found that three methylxanthine derivatives, caffeine, theophylline, and pentoxifylline, have competitive inhibitory effects against a fungal family 18 chitinase by specifically interacting with conserved tryptophans in the active site of this protein. Methylxanthine derivatives are also known as adenosine receptor antagonists, phosphodiesterase inhibitors and histone deacetylase inducers. Anti-inflammatory effects of methylxanthine derivatives have been well-documented in the literature. For example, a beneficial link between coffee or caffeine consumption and type 2 diabetes as well as liver cirrhosis has been reported. Furthermore, theophylline has a long history of being used as a bronchodilator in asthma therapy, and pentoxifylline has an immuno-modulating effect for peripheral vascular disease. However, it is still largely unknown whether these methylxanthine derivative-mediated anti-inflammatory effects are associated with the inhibition of CHI3L1-induced cytoplasmic signaling cascades in epithelial cells. In this review article we will examine the above possibility and summarize the biological significance of methylxanthine derivatives in intestinal epithelial cells. We hope that this study will provide a rationale for the development of methylxanthine derivatives, in particular caffeine, -based anti-inflammatory therapeutics in the field of IBD and IBD-associated carcinogenesis.
Collapse
|
43
|
Song SY, Seo YJ, Kim YW, Park SY, Bae CH, Kim YD. Effect of Onchocerca volvulus chitinase on MUC5B expression in human airway epithelial cells. Am J Rhinol Allergy 2013; 27:3-7. [PMID: 23406586 DOI: 10.2500/ajra.2013.27.3830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Chitin is an essential structural component of the wall of fungal cells and is present in the exoskeleton of arthropods. It has been generally assumed that mammals lack the ability to produce chitinase proteins, the enzymes responsible for chitin degradation. However, recent studies have indicated that mammals produce chitinases and chitinase-like proteins, and chitinase plays a potential role in human asthma and allergic inflammation. In this study, the effect and brief signaling pathway of chitinase on MUC5B expression were investigated in human airway epithelial cells. METHODS In the mucin-producing human NCI-H292 airway epithelial cells and the primary cultures of normal nasal epithelial cells, the effect and signaling pathway of chitinase on MUC5B expression were investigated using the reverse transcriptase-polymerase chain reaction (RT-PCR), real-time PCR, enzyme immunoassay, and immunoblot analysis with several specific inhibitors and small interfering RNA (siRNA). RESULTS In the mucin-producing human NCI-H292 airway epithelial cells, chitinase increased MUC5B expression. Chitinase significantly activated the phosphorylation of p38 mitogen-activated protein kinase (MAPK) but not the phosphorylation of extracellular signa-l-related kinase (ERK) 1/2. The SB203580 (p38 MAPK inhibitor) significantly attenuated chitinase-induced MUC5B mRNA expression, but U0126 (ERK1/2 inhibitor) did not. Knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked chitinase-induced MUC5B expression. In the primary cultures of normal nasal epithelial cells, chitinase significantly increased MUC5B gene expression and this was significantly attenuated after pretreatment with SB203580. CONCLUSION These results suggest that chitinase induces MUC5B expression by activation of the p38 MAPK signaling pathway in human airway epithelial cells.
Collapse
Affiliation(s)
- Si-Youn Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Yeungnam University Medical Center, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
44
|
Sakuda S, Inoue H, Nagasawa H. Novel biological activities of allosamidins. Molecules 2013; 18:6952-68. [PMID: 23765233 PMCID: PMC6269690 DOI: 10.3390/molecules18066952] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/27/2013] [Accepted: 06/07/2013] [Indexed: 11/23/2022] Open
Abstract
Allosamidins, which are secondary metabolites of the Streptomyces species, have chitin-mimic pseudotrisaccharide structures. They bind to catalytic centers of all family 18 chitinases and inhibit their enzymatic activity. Allosamidins have been used as chitinase inhibitors to investigate the physiological roles of chitinases in a variety of organisms. Two prominent biological activities of allosamidins were discovered, where one has anti-asthmatic activity in mammals, while the other has the chitinase-production- promoting activity in allosamidin-producing Streptomyces. In this article, recent studies on the novel biological activities of allosamidins are reviewed.
Collapse
Affiliation(s)
- Shohei Sakuda
- Department of Applied Biological Chemistry, the University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | |
Collapse
|
45
|
McSorley HJ, Hewitson JP, Maizels RM. Immunomodulation by helminth parasites: defining mechanisms and mediators. Int J Parasitol 2013; 43:301-10. [PMID: 23291463 DOI: 10.1016/j.ijpara.2012.11.011] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/26/2022]
Abstract
Epidemiological and interventional human studies, as well as experiments in animal models, strongly indicate that helminth parasitic infections can confer protection from immune dysregulatory diseases such as allergy, autoimmunity and colitis. Here, we review the immunological pathways that helminths exploit to downregulate immune responses, both against bystander specificities such as allergens and against antigens from the parasites themselves. In particular, we focus on a highly informative laboratory system, the mouse intestinal nematode, Heligmosomoides polygyrus, as a tractable model of host-parasite interaction at the cellular and molecular levels. Analysis of the molecules released in vitro (as excretory-secretory products) and their cellular targets is identifying individual parasite molecules and gene families implicated in immunomodulation, and which hold potential for future human therapy of immunopathological conditions.
Collapse
Affiliation(s)
- Henry J McSorley
- Institute of Immunology and Infection Research, University of Edinburgh, UK.
| | | | | |
Collapse
|
46
|
Appleby LJ, Nausch N, Bourke CD, Rujeni N, Midzi N, Mduluza T, Allen JE, Mutapi F. Chitinase 3-like 1 protein levels are elevated in Schistosoma haematobium infected children. PLoS Negl Trop Dis 2012; 6:e1898. [PMID: 23145202 PMCID: PMC3493395 DOI: 10.1371/journal.pntd.0001898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 09/25/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Currently there are few studies characterising the nature and aetiology of human schistosome-related inflammatory processes. The aim of this study was to determine the relationship between Chitinase 3-like 1 (CHI3L1), also known as YKL-40, a molecule associated with inflammatory processes, and schistosome infection, morbidity and systemic cytokine levels. METHODS Serological levels of CHI3L1 and a panel of cytokines (IFN-y, IL-4/5/6/9/10/13 and 17) were measured in two Zimbabwean populations resident in a high and low schistosome infection area. CHI3L1 levels were related to schistosome infection, haematuria status and cytokine levels after allowing for confounding variables. The effect of antihelminthic treatment with praziquantel on CHI3L1 levels was determined in 246 participants 6 weeks post-treatment. RESULTS CHI3L1 levels increased with age in both areas but were significantly higher in the high infection areas compared to the low infection area. CHI3L1 levels were also higher in infected compared to uninfected individuals with this difference being significant in the youngest age group. Curative antihelminthic treatment resulted in a significant decrease in CHI3L1 levels. Of the cytokines, only IL-10 and IL-17 had a significant association with CHI3L1 levels, and this association was negative. CONCLUSIONS Serum CHI3L1 levels differ between infected and uninfected people before and after antihelminthic treatment. The greatest difference occurs in the youngest age group, in keeping with the period when schistosome-related pathological processes are initiated. Following from previous studies in non-infectious diseases showing that CHI3L1 is a biomarker for the inflammatory process, this study suggests that the potential for CHI3L1 as a biomarker for schistosome-related pathology should be explored further.
Collapse
Affiliation(s)
- Laura J Appleby
- Institute for Immunology & Infection Research, Centre for Immunity, Infection & Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nat Chem Biol 2012; 8:683-94. [PMID: 22810773 DOI: 10.1038/nchembio.1029] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glycoconjugates are ubiquitous biomolecules found in all kingdoms of life. These diverse structures are metabolically responsive and occur in a cell line- and protein-specific manner, conferring tissue type-specific properties. Glycans have essential roles in diverse processes, including, for example, intercellular signaling, inflammation, protein quality control, glucohomeostasis and cellular adhesion as well as cell differentiation and proliferation. Many mysteries remain in the field, however, and uncovering the physiological roles of various glycans remains a key pursuit. Realizing this aim necessitates the ability to subtly and selectively manipulate the series of different glycoconjugates both in cells and in vivo. Selective small-molecule inhibitors of glycan processing enzymes hold great potential for such manipulation as well as for determining the function of 'orphan' carbohydrate-processing enzymes. In this review, we discuss recent advances and existing inhibitors, the prospects for small-molecule inhibitors and the challenges associated with generating high-quality chemical probes for these families of enzymes. The coordinated efforts of chemists, biochemists and biologists will be crucial for creating and characterizing inhibitors that are useful tools both for advancing a basic understanding of glycobiology in mammals as well as for validating new potential therapeutic targets within this burgeoning field.
Collapse
|
48
|
Zhang Y, Feng S, Chen J, Qin C, Lin H, Li W. Stimulatory effects of chitinase on growth and immune defense of orange-spotted grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2012; 32:844-854. [PMID: 22365990 DOI: 10.1016/j.fsi.2012.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Chitinase, belonging to either family 18 or family 19 of the glycosylhydrolases, hydrolyze chitin into oligosaccharides. In the present study, the cDNA fragment encoding orange-spotted grouper (Epinephelus coioides) chitinase1 was subcloned into pPIC3.5K vector and expressed in Pichia pastoris GS115. The results showed that a band with the size of about 53 kDa could be detected by SDS-PAGE and Western blot. The recombinant protein of grouper chitinase1 (rgChi1) was added into the fish diet containing shrimp shell chitin for feeding experiment lasting 8 weeks. The weight of orange-spotted grouper, fed with diets containing rgChi1 at 0, 5, 10 and 20 μg/g was calculated on the 2nd, 4th, 6th and 8th weeks, and difference in growth rates was first observed in the 6th week of the feeding period and it kept until the end of the feeding experiment. At the end of 8 weeks feeding trial, the percent weight gain (PWG), growth rate (GR) and specific growth rate (SGR) of fish fed with 10 and 20 μg rgChi1/g feed were significantly higher compared to the control group. The neuropeptide Y (NPY), growth-hormone-releasing hormone (GHRH), growth-hormone (GH), interleukin-1beta (IL-1β), cyclooxygenase-2 (COX-2), superoxide dismutase (SOD) (Cu/Zn) and SOD (Mn) mRNA expression of fish fed with diet containing 10 μg/g or/and 20 μg/g rgChi1 were obviously higher than the control group. The lysozyme (LZM) and total SOD activity of fish fed with diet containing rgChi1 at 10 and 20 μg/g were significantly higher than that of the control. The aspartate aminotransferase (AST)/glutamic oxalacetic transaminases (GOT) activity in 20 μg/g group decreased compared to the control group. These results indicated that the grouper chitinase1 was successfully produced using the P. pastoris expression system and the recombinant protein had obvious effects on growth and immune defense. The mRNA expression and protein secretion of grouper chitinase1 and chitinase2 were significantly stimulated in spleen in response to bacterial lipopolysaccharide (LPS) challenge, strongly suggesting the existence of an innate pathway for local defense against chitin-containing organisms. Moreover, the pathogen such as Escherichia coli and Staphylococcus aureus could be inhibited by the recombinant protein of grouper chitinase1 to a certain extent.
Collapse
Affiliation(s)
- Yanhong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, School of Life Science, Sun Yat-Sen University, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
49
|
Ford AQ, Dasgupta P, Mikhailenko I, Smith EMP, Noben-Trauth N, Keegan AD. Adoptive transfer of IL-4Rα+ macrophages is sufficient to enhance eosinophilic inflammation in a mouse model of allergic lung inflammation. BMC Immunol 2012; 13:6. [PMID: 22292924 PMCID: PMC3283450 DOI: 10.1186/1471-2172-13-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/31/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The IL-4 receptor α (IL-4Rα) chain has a broad expression pattern and participates in IL-4 and IL-13 signaling, allowing it to influence several pathological components of allergic lung inflammation. We previously reported that IL-4Rα expression on both bone marrow-derived and non-bone marrow-derived cells contributed to the severity of allergic lung inflammation. There was a correlation between the number of macrophages expressing the IL-4Rα, CD11b, and IA(d), and the degree of eosinophilia in ovalbumin challenged mice. The engagement of the IL-4Rα by IL-4 or IL-13 is able to stimulate the alternative activation of macrophages (AAM). The presence of AAM has been correlated with inflammatory responses to parasites and allergens. Therefore, we hypothesized that IL-4Rα⁺ AAM play an active role in allergic lung inflammation. To directly determine the role of AAM in allergic lung inflammation, M-CSF-dependent macrophages (BMM) were prepared from the bone-marrow of IL-4Rα positive and negative mice and transferred to IL-4RαxRAG2(-/-) mice. Wild type TH2 cells were provided exogenously. RESULTS Mice receiving IL-4Rα(+/+) BMM showed a marked increase in the recruitment of eosinophils to the lung after challenge with ovalbumin as compared to mice receiving IL-4Rα(-/-) BMM. As expected, the eosinophilic inflammation was dependent on the presence of TH2 cells. Furthermore, we observed an increase in cells expressing F4/80 and Mac3, and the AAM marker YM1/2 in the lungs of mice receiving IL-4Rα(+/+) BMM. The BAL fluid from these mice contained elevated levels of eotaxin-1, RANTES, and CCL2. CONCLUSIONS These results demonstrate that transfer of IL-4Rα + macrophages is sufficient to enhance TH2-driven, allergic inflammation. They further show that stimulation of macrophages through IL-4Rα leads to their alternative activation and positive contribution to the TH2-driven allergic inflammatory response in the lung. Since an increase in AAM and their products has been observed in patients with asthma exacerbations, these results suggest that AAM may be targeted to alleviate exacerbations.
Collapse
Affiliation(s)
- Andrew Q Ford
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, 800 W. Baltimore St., Baltimore MD 21201, USA
| | - Preeta Dasgupta
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, 800 W. Baltimore St., Baltimore MD 21201, USA
| | - Irina Mikhailenko
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, 800 W. Baltimore St., Baltimore MD 21201, USA
| | - Elizabeth MP Smith
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, 800 W. Baltimore St., Baltimore MD 21201, USA
| | - Nancy Noben-Trauth
- Department of Biological Sciences, University of Maryland College Park, Rockville MD 20892, USA
| | - Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, University of Maryland, Baltimore, 800 W. Baltimore St., Baltimore MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center and Dept of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore MD 21201, USA
| |
Collapse
|
50
|
Kanneganti M, Kamba A, Mizoguchi E. Role of chitotriosidase (chitinase 1) under normal and disease conditions. ACTA ACUST UNITED AC 2012; 5:1-9. [PMID: 23439988 DOI: 10.2174/1875044301205010001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian chitinases belong to the glycosyl hydrolase 18 family based on structural homology and the family includes a large number of bacterial and eukaryotic chitinases. Among the mammalian chitinases, chitotriosidase (CHIT1) and acidic mammalian chitinase (AMCase) are capable of hydrolyzing the β-(1, 4)-linkage between the adjacent N-acetyl glucosamine residues of chitin. CHIT1 is one of the most abundantly secreted proteins, being mainly produced by activated macrophages and epithelial cells. CHIT1 plays a pivotal role in the context of infectious disease including malaria and fungi infections as a host defense towards chitin in pathogen's cell structure and as a diagnostic marker of disease. In contrast, CHI1 released by activated Kupffer cells in liver could induce hepatic fibrosis and cirrhosis. Increased serum levels of CHIT1 were observed in patients with many disorders, including Gaucher's disease, bronchial asthma, and atherosclerosis. Therefore, CHIT1 seems to have dual (regulatory and pathogenic) roles depending on the disease and producing cell types during the inflammatory conditions.
Collapse
Affiliation(s)
- Manasa Kanneganti
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|