1
|
Wang S, Liu X, Lin X, Lv X, Zhang H. Group 2 Innate Lymphoid Cells in Allergic Rhinitis. J Inflamm Res 2024; 17:8599-8610. [PMID: 39539728 PMCID: PMC11559184 DOI: 10.2147/jir.s485128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Allergic rhinitis (AR), which presents symptoms like sneezing and a runny nose, is categorized as an upper respiratory condition of type 2. Recent progress in comprehending AR has revealed the significant role played by type 2 cytokines, specifically interleukin (IL)-13, IL-4, and IL-5. These cytokines are released by helper T cells 2 (Th2) and innate lymphoid cells (ILC2s). ILC2s have the ability to interact with various immune cells and are essential in promoting both type 2 immune response and tissue repair, contributing to normal homeostatic functions within the body. This article presents a summary of the latest advancements in comprehending the activity of ILC2s, with particular emphasis on their potential role involvement in AR. It explores how they collaborate with Th2 cells to exacerbate nasal inflammation and interact with regulatory T cells (Tregs) to counteract the suppressive role mediated by Tregs during allergic inflammation. The significance of ILC2s in allergen-specific therapy is highlighted. A comprehensive understanding of ILC2s biology establishes a robust foundation for unraveling the pathogenesis of AR and devising innovative therapeutic approaches for its management.
Collapse
Affiliation(s)
- Shuang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Xuexia Liu
- Shandong Stem Cell Engineering Technology Research Center, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, People’s Republic of China
| | - Xinhua Lin
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Xiaojing Lv
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| | - Hua Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
| |
Collapse
|
2
|
Okada S, Sakai A, Ohnishi Y, Yasudo H, Motonaga T, Fukano R, Waniishi T, Sugiyama M, Hasegawa S. Necrotic Change of Tunica Media Plays a Key Role in the Development of Coronary Artery Lesions in Kawasaki Disease. Circ J 2024; 88:1709-1714. [PMID: 39111854 DOI: 10.1253/circj.cj-24-0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
BACKGROUND Alarmins resulting from cell death or oxidative stress are involved in the development of Kawasaki disease (KD) vasculitis. In a previous study, we demonstrated the potential role of interleukin (IL)-33 as an alarmin in the development of KD vasculitis. Although edematous dissociation (necrotic change) of the tunica media is thought to be a major source of IL-33 in KD vasculitis, it has not yet been elucidated. METHODS AND RESULTS We investigated the impact of IL-33 released from necrotic human coronary artery smooth muscle cells (HCASMCs) on human coronary artery endothelial cells (HCAECs) using a coculture assay. Subsequently, we evaluated the anti-inflammatory effects of anti-IL-33 and anti-suppression of tumorigenicity 2 (ST2) antibodies compared with conventional therapies of KD, such as high-dose IgG or anti-tumor necrosis factor (TNF)-α antibody. Primary necrosis of HCASMCs induced significant release of IL-33. In cocultures of necrotic HCASMCs with HCAECs, the necrotic HCASMCs significantly induced the production of various proinflammatory cytokines in the HCAECs. Anti-IL-33 and anti-ST2 antibodies exhibited unique inhibitory effects on the production of platelet-derived growth factor-BB or IL-12(p70) in HCAECs. CONCLUSIONS There is potential involvement of edematous dissociation of the tunica media in the development of KD vasculitis. Furthermore, the distinctive anti-inflammatory effects of the anti-IL-33/ST2 axis drugs suggest novel therapeutic options for patients with refractory KD.
Collapse
Affiliation(s)
- Seigo Okada
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine
- Research Institute for Cell Design Medical Science, Yamaguchi University
| | - Aiko Sakai
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine
| | - Yuji Ohnishi
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine
| | - Hiroki Yasudo
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Takahiro Motonaga
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine
| | - Reiji Fukano
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine
- Research Institute for Cell Design Medical Science, Yamaguchi University
| | - Takako Waniishi
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine
| | - Masaya Sugiyama
- Department of Viral Pathogenesis and Controls, National Center for Global Health and Medicine
| | - Shunji Hasegawa
- Department of Pediatrics, Yamaguchi University Graduate School of Medicine
- Research Institute for Cell Design Medical Science, Yamaguchi University
| |
Collapse
|
3
|
Su PA, Ma MC, Wu WB, Wang JJ, Du WY. IL-33 Enhances the Total Production of IgG, IgG1, and IgG3 in Angiostrongylus cantonensis-Infected Mice. Trop Med Infect Dis 2024; 9:111. [PMID: 38787044 PMCID: PMC11125625 DOI: 10.3390/tropicalmed9050111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
The purpose of this study is to clarify the role of IL-33 in the immune response to angiostrongyliasis, especially in terms of antibody production and isotype switching. In our experiment, C57BL/6 mice were each infected with 35 infectious larvae and were divided into groups that received an intraperitoneal injection of IL-33, anti-IL-33 monoclonal antibody (mAb), or anti-ST2 mAb 3 days post-infection (dpi) and were subsequently administered booster shots at 5-day intervals with the same dose. Serum samples from each group were collected weekly for ELISA assays. The levels of total IgG, IgG1, and IgG3 were significantly increased in A. cantonensis-infected mice that were treated with IL-33, and the levels decreased significantly in infected groups treated with anti-IL-33 or anti-ST2 mAb. These results suggest that IL-33 may play a critical role in the pathogenesis of human angiostrongyliasis and could be useful for understanding protective immunity against this parasitic infection.
Collapse
Affiliation(s)
- Po-An Su
- Internal Medicine, Infection Department, Chi Mei Hospital, Tainan 71004, Taiwan;
| | - Ming-Chieh Ma
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (M.-C.M.); (W.-B.W.); (J.-J.W.)
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (M.-C.M.); (W.-B.W.); (J.-J.W.)
| | - Jiun-Jr Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (M.-C.M.); (W.-B.W.); (J.-J.W.)
| | - Wen-Yuan Du
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan; (M.-C.M.); (W.-B.W.); (J.-J.W.)
| |
Collapse
|
4
|
Saikumar Jayalatha AK, Jonker MR, Carpaij OA, van den Berge M, Affleck KX, Koppelman GH, Nawijn MC. Lack of a transcriptional response of primary bronchial epithelial cells from patients with asthma and controls to IL-33. Am J Physiol Lung Cell Mol Physiol 2024; 326:L65-L70. [PMID: 38050688 DOI: 10.1152/ajplung.00298.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
IL-33 and IL-1RL1 are well-replicated asthma genes that act in a single pathway toward type-2 immune responses. IL-33 is expressed by basal epithelial cells, and the release of IL-33 upon epithelial damage can activate innate lymphoid cells, T helper-2 cells, basophilic granulocytes, and mast cells through a receptor complex containing IL-1RL1. However, it is unknown how bronchial epithelial cells respond to IL-33, and whether this response is increased in the disease. We aimed to characterize the IL-33-driven transcriptomic changes in cultured primary bronchial epithelial cells from patients with asthma and healthy controls. Primary bronchial epithelial cells (PBECs) were obtained by bronchial brushing from six healthy control for air-liquid interface (ALI) cultures, whereas we selected eight healthy controls and seven patients with asthma for epithelial organoid cultures. We then stimulated the cultures for 24 h with recombinant IL-33 (rhIL33) at various concentrations with 1, 10, and 50 ng/mL for the ALI cultures and 20 ng/mL and 100 ng/mL for the organoid cultures, followed by RNA-sequencing and differential gene expression analysis. We did not detect any genome-wide significant differentially expressed genes after stimulation of PBECs with IL-33, irrespective of growth in three-dimensional (3-D) epithelial organoids or after differentiation in ALI cultures. These results were identical between PBECs obtained from patients with asthma or from healthy control subjects. We detected very low levels of IL-1RL1 gene expression in these airway epithelial cell cultures. We conclude that bronchial epithelial cells do not have a transcriptional response to IL-33, independent of their differentiation state. Hence, the airway epithelium acts as a source of IL-33 but does not seem to contribute to the response upon release of the alarmin after epithelial damage.NEW & NOTEWORTHY The IL-33/IL-1RL1 pathway stands as a formidable genetic predisposition for asthma, with ongoing clinical developments of various drugs designed to mitigate its influence in patients with asthma. The absence of a transcriptomic reaction to IL-33 within the bronchial epithelium holds significance in the pursuit of identifying biomarkers that can aid in pinpointing those individuals who would derive the greatest benefit from therapies targeting the IL-33 pathway.
Collapse
Affiliation(s)
- Akshaya Keerthi Saikumar Jayalatha
- Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marnix R Jonker
- Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Orestes A Carpaij
- Department of Pulmonary Diseases, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten van den Berge
- Department of Pulmonary Diseases, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karen X Affleck
- Immunology Research Unit, GlaxoSmithkline, Stevenage, United Kingdom
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn C Nawijn
- Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Department of Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Xu H, Wang L, Chen H, Cai H. HDAC4 depletion ameliorates IL-13-triggered inflammatory response and mucus production in nasal epithelial cells via activation of SIRT1/NF-κB signaling. Immun Inflamm Dis 2022; 10:e692. [PMID: 36301023 PMCID: PMC9601864 DOI: 10.1002/iid3.692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Allergic rhinitis (AR) is frequently known as a chronic respiratory disease with a global high prevalence. The pivotal roles of histone deacetylase 4 (HDAC4) in multiple human diseases have been underlined by numerous studies. Nevertheless, whether HDAC4 is implicated in AR remains to be elaborated. The objective of the current study is to clarify the impacts of HDAC4 on AR. METHODS First, human nasal epithelial cells (hNECs) were pretreated by interleukin-13 (IL-13). HDAC4 expression in hNECs with the presence or absence of IL-13 treatment was tested by quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot. Following, after HDAC4 was depleted, levels of histamine, Immunoglobulin E (IgE) and inflammatory factors were analyzed by ELISA assay. Then, Mucin-5AC (MUC5AC) expression was examined through RT-qPCR, western blot, and IF assay. Western blot was to analyze the expression of sirtuin 1 (SIRT1)/nuclear factor-kappaB (NF-κB) signaling-related proteins. After IL-13-induced hNECs were cotransfected with HDAC4 interference plasmids and SIRT1 inhibitor EX527, the functional experiments above were conducted again. RESULTS The experimental data in this study presented that HDAC4 expression was increased in IL-13-induced hNECs. Silencing of HDAC4 cut down the levels of histamine, IgE and inflammatory factors and the expression of MUC5AC. Additionally, knockdown of HDAC4 led to the activation of SIRT1/NF-κB signaling. Further, the downregulated levels of histamine, IgE and inflammatory factors and the expression of MUC5AC imposed by HDAC4 interference were all reversed by EX527. CONCLUSIONS In short, HDAC4 inhibition activated SIRT1/NF-κB signaling to mitigate inflammatory response and mucus production in IL-13-treated nasal epithelial cells in AR.
Collapse
Affiliation(s)
- Hangyu Xu
- Department of Otolaryngology, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| | - Lingjun Wang
- Department of General Practice, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| | - Huaqun Chen
- Department of Geriatrics, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| | - Hefei Cai
- Department of Pediatrics, Taizhou Central HospitalTaizhou University HospitalTaizhouZhejiangChina
| |
Collapse
|
6
|
Xu X, Dai H, Zhang J. The potential role of interleukin (IL)-25/IL-33/thymic stromal lymphopoietin (TSLP) on the pathogenesis of idiopathic pulmonary fibrosis. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:696-707. [PMID: 36082495 PMCID: PMC9629992 DOI: 10.1111/crj.13541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP) are the important drivers for excessive type-2 immunity. It has been well elucidated that IL-25/IL-33/TSLP plays an important role in allergic airway inflammation and remodeling, whereas their roles in idiopathic pulmonary fibrosis (IPF) still remained largely unclear. Herein, the aim of the review is to discuss the potential role and mechanism of IL-25/IL-33/TSLP on IPF by literature analysis and summary. DATA SOURCE We have done a literature search using the following terms: ("idiopathic pulmonary fibrosis" OR "IPF" OR "lung fibrosis") and (TSLP or "thymic stromal lymphopoietin" or IL-25 OR IL-17E OR IL-33) from the database of PubMed published in English up to July 2018. STUDY SELECTION We have totally found 58 articles by using the retrieval terms mentioned above. By careful title and abstract reading, 10 original research articles of high quality were enrolled for the full text reading and analysis. Two additional relevant studies were also included during the course of literature readings. RESULTS IL-25/IL-33/TSLP and their corresponding receptors, that is, IL-17BR/ST2L/TSLPR, are shown to be up-regulated both in IPF patients and bleomycin (BLM)-induced lung fibrosis mice model. IL-25 may promote lung fibrosis by activating IL-17BR+fibroblast and IL-17BR+ILC2 (type 2 innate lymphoid cell). Full length (fl)-IL-33, as a transcription factor mainly in the cell nucleus, mediated non-atopic lung inflammation and fibrosis by modulating expressions of several pro-fibrotic mediators, including transforming growth factor (TGF)-b1. By contrast, mature (m)-IL-33 potentiates lung fibrosis by recruiting ST2L+M2 macrophages and ST2L+ILC2 to enlarge type 2 immunity. TSLP was shown to directly promote CCL2 expression in primary human lung fibroblasts (pHLFs). CONCLUSION IL-25/IL-33/TSLP contributes to non-allergic lung fibrosis by mediating persistent abnormal epithelial-mesenchymal crosstalk. IL-25/IL-33/TSLP may serve the promising novel target for the treatment of IPF.
Collapse
Affiliation(s)
- Xuefeng Xu
- Department of Surgical Intensive Care Unit, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center for Respiratory Diseases, China‐Japan Friendship HospitalNational Clinical Research Center for Respiratory DiseasesBeijingChina
| | - Jinglan Zhang
- Department of Surgical Intensive Care Unit, Beijing An Zhen HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
do Nascimento WRC, Nóbrega CGDO, Fernandes EDS, Santos PDA, Melo FL, Albuquerque MCPDA, de Lorena VMB, Costa VMA, Barbosa CCGS, de Souza VMO. Schistosoma mansoni infection decreases IL-33-mRNA expression and increases CXCL9 and CXCL10 production by peripheral blood cells. Med Microbiol Immunol 2022; 211:211-218. [PMID: 35819523 DOI: 10.1007/s00430-022-00745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Schistosoma mansoni infections, particularly egg antigens, induce Th2-dominant granulomatous responses accompanied by remarkable immunoregulatory mechanisms that avoid intense fibrosis. Interleukin (IL)-33 is a cytokine that stimulates the early activation of Th2 responses, and its soluble ST2 receptor (sST2) avoids granulomatous response, as well as CXCL9 and CXCL10 chemokines that have antifibrotic activity. However, in schistosomiasis, these molecules have not been suitably studied. Therefore, this study aimed to measure IL-33 and sST2 RNA, cytokines, and chemokines in peripheral blood cultures from individuals living in schistosomiasis-endemic areas. Peripheral blood cells from individuals with S. mansoni (n = 34) and non-infected individuals (n = 31) were cultured under mitogen stimulation. Supernatant chemokines and cytokines were evaluated using a cytometric bead array, and IL-33 and sST2 mRNA expression was measured using qPCR. Infected individuals showed higher levels of CXCL8, CXCL9, CXCL10, IFN-γ, TNF-α, IL-6, IL-2, IL-4, and IL-10; there was a lower expression of IL-33 mRNA and similar expression of sST2mRNA in infected than non-infected individuals. In conclusion, for the first time, we demonstrated lower IL-33mRNA expression and high levels of the antifibrotic chemokines CXCL9 and CXCL10 in schistosomiasis mansoni, which could control exacerbations of the disease in individuals from endemic areas.
Collapse
Affiliation(s)
| | - Cassia Giselle de Oliveira Nóbrega
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Erica de Souza Fernandes
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Patrícia d'Emery Alves Santos
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Fábio Lopes Melo
- Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
| | - Mônica Camelo Pessôa de Azevedo Albuquerque
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Brazil.,Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil
| | | | - Vláudia Maria Assis Costa
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco, Recife, Brazil.,Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil
| | | | - Valdênia Maria Oliveira de Souza
- Setor de Imunologia, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil. .,Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n. Cidade Universitária, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
8
|
Bantulà M, Tubita V, Roca-Ferrer J, Mullol J, Valero A, Bobolea I, Pascal M, de Hollanda A, Vidal J, Picado C, Arismendi E. Differences in Inflammatory Cytokine Profile in Obesity-Associated Asthma: Effects of Weight Loss. J Clin Med 2022; 11:jcm11133782. [PMID: 35807067 PMCID: PMC9267201 DOI: 10.3390/jcm11133782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity and asthma are associated with systemic inflammation maintained by mediators released by adipose tissue and lung. This study investigated the inflammatory serum mediator profile in obese subjects (O) (n = 35), non-obese asthma (NOA) patients (n = 14), obese asthmatics (OA) (n = 21) and healthy controls (HC) (n = 33). The effect of weight loss after bariatric surgery (BS) was examined in 10 OA and 31 O subjects. We analyzed serum markers including leptin, adiponectin, TGF-β1, TNFR2, MCP-1, ezrin, YKL-40, ST2, IL-5, IL-9, and IL-18. Compared with HC subjects, the O group showed increased levels of leptin, TGF-β1, TNFR2, MCP-1, ezrin, YKL-40, and ST2; the OA group presented increased levels of MCP-1, ezrin, YKL-40, and IL-18, and the NOA group had increased levels of ezrin, YKL-40, IL-5, and IL-18. The higher adiponectin/leptin ratio in NOA with respect to OA subjects was the only significant difference between the two groups. IL-9 was the only cytokine with significantly higher levels in OA with respect to O subjects. TNFR2, ezrin, MCP-1, and IL-18 concentrations significantly decreased in O subjects after BS. O, OA, and NOA showed distinct patterns of systemic inflammation. Leptin and adiponectin are regulated in asthma by obesity-dependent and -independent mechanisms. Combination of asthma and obesity does not result in significant additive effects on circulating cytokine levels.
Collapse
Affiliation(s)
- Marina Bantulà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Correspondence: ; Tel.: +34-932275400
| | - Valeria Tubita
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
| | - Jordi Roca-Ferrer
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Joaquim Mullol
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Hospital Clinic, 08036 Barcelona, Spain
| | - Antonio Valero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Irina Bobolea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Mariona Pascal
- Immunology Department, CDB, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain;
| | - Ana de Hollanda
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Fisopatología de la Obesidad y Nutrición (CIBEROBN), 28029 Madrid, Spain
| | - Josep Vidal
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic, 08036 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red en Diabetes y Enfermedades Metabólicas (CIBERDEM), 28029 Madrid, Spain
| | - César Picado
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Ebymar Arismendi
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (V.T.); (J.R.-F.); (J.M.); (A.V.); (I.B.); (A.d.H.); (J.V.); (C.P.); (E.A.)
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Pulmonology and Allergy Department, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
9
|
Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. The IL-1 cytokine family as custodians of barrier immunity. Cytokine 2022; 154:155890. [DOI: 10.1016/j.cyto.2022.155890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
|
10
|
Xu C, Du L, Chen F, Tang K, Tang L, Shi J, Xiao L, Zeng Z, Liang Y, Guo Y. Increased expression of IL1-RL1 is associated with type 2 and type 1 immune pathways in asthma. BMC Immunol 2022; 23:23. [PMID: 35578178 PMCID: PMC9112580 DOI: 10.1186/s12865-022-00499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Asthma is a common chronic airway disease in the world. The purpose of this study was to explore the expression of IL1-RL1 in sputum and its correlation with Th1 and Th2 cytokines in asthma. Methods We recruited 132 subjects, detected IL1-RL1 protein level in sputum supernatant by ELISA, and analyzed the correlation between the expression level of IL1-RL1 and fraction of exhaled nitric oxide (FeNO), IgE, peripheral blood eosinophil count (EOS#), and Th2 cytokines (IL-4, IL-5, IL-10, IL-13, IL-33 and TSLP) and Th1 cytokines (IFN-γ, IL-2, IL-8). The diagnostic value of IL1-RL1 was evaluated by ROC curve. The expression of IL1-RL1 was further confirmed by BEAS-2B cell in vitro. Results Compared with the healthy control group, the expression of IL1-RL1 in sputum supernatant, sputum cells and serum of patients with asthma increased. The AUC of ROC curve of IL1-RL1 in sputum supernatant and serum were 0.6840 (p = 0.0034), and 0.7009 (p = 0.0233), respectively. IL1-RL1 was positively correlated with FeNO, IgE, EOS#, Th2 cytokines (IL-4, IL-5, IL-10, IL-13, IL-33 and TSLP) and Th1 cytokines (IFN-γ, IL-2, IL-8) in induced sputum supernatant. Four weeks after inhaled glucocorticoids (ICS) treatment, the expression of IL1-RL1 in sputum supernatant and serum was increased. In vitro, the expression of IL1-RL1 in BEAS-2B was increased after stimulated by IL-4 or IL-13 for 24 h. Conclusion The expression of IL1-RL1 in sputum supernatant, sputum cells and serum of patients with asthma was increased, and was positively correlated with some inflammatory markers in patients with asthma. IL1-RL1 may be used as a potential biomarker for the diagnosis and treatment of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00499-z.
Collapse
Affiliation(s)
- Changyi Xu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Lijuan Du
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Fengjia Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Kun Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Lu Tang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Jia Shi
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Lisha Xiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Zhimin Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China. .,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Yuxia Liang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China. .,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| | - Yubiao Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China. .,Institute of Respiratory Diseases of Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
11
|
Suzuki M, Cooksley C, Suzuki T, Ramezanpour M, Nakazono A, Nakamaru Y, Homma A, Vreugde S. TLR Signals in Epithelial Cells in the Nasal Cavity and Paranasal Sinuses. FRONTIERS IN ALLERGY 2022; 2:780425. [PMID: 35387020 PMCID: PMC8974762 DOI: 10.3389/falgy.2021.780425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
The respiratory tract is constantly at risk of invasion by microorganisms such as bacteria, viruses, and fungi. In particular, the mucosal epithelium of the nasal cavity and paranasal sinuses is at the very forefront of the battles between the host and the invading pathogens. Recent studies have revealed that the epithelium not only constitutes a physical barrier but also takes an essential role in the activation of the immune system. One of the mechanisms equipped in the epithelium to fight against microorganisms is the Toll-like receptor (TLR) response. TLRs recognize common structural components of microorganisms and activate the innate immune system, resulting in the production of a plethora of cytokines and chemokines in the response against microbes. As the epithelia-derived cytokines are deeply involved in the pathogenesis of inflammatory conditions in the nasal cavity and paranasal sinuses, such as chronic rhinosinusitis (CRS) and allergic rhinitis (AR), the molecules involved in the TLR response may be utilized as therapeutic targets for these diseases. There are several differences in the TLR response between nasal and bronchial epithelial cells, and knowledge of the TLR signals in the upper airway is sparse compared to that in the lower airway. In this review, we provide recent evidence on TLR signaling in the upper airway, focusing on the expression, regulation, and responsiveness of TLRs in human nasal epithelial cells (HNECs). We also discuss how TLRs in the epithelium are involved in the pathogenesis of, and possible therapeutic targeting, for CRS and AR.
Collapse
Affiliation(s)
- Masanobu Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Clare Cooksley
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| | - Akira Nakazono
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Nakamaru
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sarah Vreugde
- Department of Surgery-Otorhinolaryngology Head and Neck Surgery, Central Adelaide Local Health Network and the University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Zhong N, Luo Q, Huang X, Yu J, Ye J, Zhang J. High Mobility Group Box-1 Protein and Interleukin 33 Expression in Allergic Rhinitis. ORL J Otorhinolaryngol Relat Spec 2022; 84:315-323. [PMID: 34979505 DOI: 10.1159/000519575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/07/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is characterized by an inflammatory reaction. High mobility group box 1 (HMGB1) protein and interleukin (IL)-33 are damage-associated molecular pattern molecules and have many characteristics similar to pro-inflammatory cytokines. However, the role of IL-33 and HMGB1 in AR remains unclear. The aim of this study is to explore the role of HMGB1 and IL-33 in AR. METHODS Twenty patients with AR (AR group) and 10 normal controls (normal group) were enrolled in this study. HMGB1 and IL-33 expression were analyzed by immunohistochemistry in epithelial cells of the inferior turbinate mucosa samples. Then, the human nasal mucosa epithelial cells (HNECs) were cultured in vitro, and the house dust mite allergen (Derp1) was used to stimulate the cells. Quantitative real-time PCR and ELISA assay were performed to detect HMGB1 and IL-33 expression in HNECs. RESULTS The expression of HMGB1 and IL-33 in the nasal mucosa was higher in the AR group than in the normal group, with a statistically significant difference (p < 0.05). In HNECs of AR, the expression of both HMGB1 and IL-33 in stimulated groups was higher than that in non-stimulated groups. The differences were statistically significant (p < 0.05). In addition, they increased gradually with the prolonging time and the concentration of the added Derp1. CONCLUSIONS The expression of HMGB1 and IL-33 were both increased in AR. HMGB1 and IL-33 may have a close relationship in AR.
Collapse
Affiliation(s)
- Nongping Zhong
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Qing Luo
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyan Huang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jieqing Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Cayrol C. IL-33, an Alarmin of the IL-1 Family Involved in Allergic and Non Allergic Inflammation: Focus on the Mechanisms of Regulation of Its Activity. Cells 2021; 11:cells11010107. [PMID: 35011670 PMCID: PMC8750818 DOI: 10.3390/cells11010107] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 02/04/2023] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) family that is expressed in the nuclei of endothelial and epithelial cells of barrier tissues, among others. It functions as an alarm signal that is released upon tissue or cellular injury. IL-33 plays a central role in the initiation and amplification of type 2 innate immune responses and allergic inflammation by activating various target cells expressing its ST2 receptor, including mast cells and type 2 innate lymphoid cells. Depending on the tissue environment, IL-33 plays a wide variety of roles in parasitic and viral host defense, tissue repair and homeostasis. IL-33 has evolved a variety of sophisticated regulatory mechanisms to control its activity, including nuclear sequestration and proteolytic processing. It is involved in many diseases, including allergic, inflammatory and infectious diseases, and is a promising therapeutic target for the treatment of severe asthma. In this review, I will summarize the literature around this fascinating pleiotropic cytokine. In the first part, I will describe the basics of IL-33, from the discovery of interleukin-33 to its function, including its expression, release and signaling pathway. The second part will be devoted to the regulation of IL-33 protein leading to its activation or inactivation.
Collapse
Affiliation(s)
- Corinne Cayrol
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| |
Collapse
|
14
|
Werder RB, Ullah MA, Rahman MM, Simpson J, Lynch JP, Collinson N, Rittchen S, Rashid RB, Sikder MAA, Handoko HY, Curren BF, Sebina I, Hartel G, Bissell A, Ngo S, Yarlagadda T, Hasnain SZ, Lu W, Sohal SS, Martin M, Bowler S, Burr LD, Martinez LO, Robaye B, Spann K, Ferreira MAR, Phipps S. Targeting the P2Y13 Receptor Suppresses IL-33 and HMGB1 Release and Ameliorates Experimental Asthma. Am J Respir Crit Care Med 2021; 205:300-312. [PMID: 34860143 DOI: 10.1164/rccm.202009-3686oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The alarmins IL-33 and HMGB1 (high mobility group box 1) contribute to type-2 inflammation and asthma pathogenesis. OBJECTIVES To determine whether P2Y13 receptor (P2Y13-R), a purinergic G protein-coupled receptor (GPCR) and risk allele for asthma, regulates the release of IL-33 and HMGB1. METHODS Bronchial biopsies were obtained from healthy and asthmatic subjects. Primary human airway epithelial cells (AECs), primary mouse (m)AECs, or C57Bl/6 mice were inoculated with various aeroallergens or respiratory viruses, and the nuclear-to-cytoplasmic translocation and release of alarmins measured by immunohistochemistry and ELISA. The role of P2Y13-R in AEC function and in the onset, progression, and an exacerbation of experimental asthma, was assessed using pharmacological antagonists and P2Y13-R gene-deleted mice. MEASUREMENTS AND MAIN RESULTS Aeroallergen-exposure induced the extracellular release of ADP and ATP, nucleotides that activate P2Y13-R. ATP, ADP, aeroallergen (house dust mite, cockroach or Alternaria) or virus exposure induced the nuclear-to-cytoplasmic translocation and subsequent release of IL-33 and HMGB1, and this response was ablated by genetic deletion or pharmacological antagonism of P2Y13. In mice, prophylactic or therapeutic P2Y13-R blockade attenuated asthma onset, and critically, ablated the severity of a rhinovirus-associated exacerbation in a high-fidelity experimental model of chronic asthma. Moreover, P2Y13-R antagonism derepressed antiviral immunity, increasing IFN-λ production and decreasing viral copies in the lung. CONCLUSIONS We identify P2Y13-R as a novel gatekeeper of the nuclear alarmins IL-33 and HMGB1, and demonstrate that the targeting of this GPCR via genetic deletion or treatment with a small-molecule antagonist protects against the onset and exacerbations of experimental asthma.
Collapse
Affiliation(s)
- Rhiannon B Werder
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia.,Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts, United States.,Boston University School of Medicine, 12259, The Pulmonary Center and Department of Medicine, Boston, Massachusetts, United States
| | - Md Ashik Ullah
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Muhammed Mahfuzur Rahman
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Jennifer Simpson
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia.,National Institute of Allergy and Infectious Diseases, 35037, Barrier Immunity Section, Laboratory of Viral Diseases, Bethesda, Maryland, United States
| | - Jason P Lynch
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,Harvard Medical School, 1811, Department of Microbiology, Boston, Massachusetts, United States
| | - Natasha Collinson
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Sonja Rittchen
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,Medical University of Graz, 31475, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Graz, Steiermark, Austria
| | - Ridwan B Rashid
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Md Al Amin Sikder
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Herlina Y Handoko
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Bodie F Curren
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Ismail Sebina
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Gunter Hartel
- QIMR Berghofer, 56362, Brisbane, Queensland, Australia
| | - Alec Bissell
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Sylvia Ngo
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Tejasri Yarlagadda
- Queensland University of Technology Faculty of Health, 110544, Kelvin Grove, Queensland, Australia
| | - Sumaira Z Hasnain
- Mater Medical Research Institute, 200098, Brisbane, Queensland, Australia
| | - Wenying Lu
- University of Tasmania, 3925, Respiratory Translational Research Group, Launceston , Tasmania, Australia
| | - Sukhwinder S Sohal
- University of Tasmania , Respiratory Translational Research Group, Launceston , Tasmania, Australia
| | - Megan Martin
- Mater Health Services, Respiratory Medicine, South Brisbane, Queensland, Australia
| | - Simon Bowler
- Mater Health Services, Respiratory Medicine, South Brisbane, Queensland, Australia
| | - Lucy D Burr
- UQ School of Medicine, Brisbane, Queensland, Australia
| | - Laurent O Martinez
- University of Toulouse, 137668, Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
| | - Bernard Robaye
- Université Libre de Bruxelles, 26659, IRIBHM, Bruxelles, Belgium
| | - Kirsten Spann
- Queensland University of Technology, 1969, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Manuel A R Ferreira
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute, 56362, Respiratory Immunology Laboratory, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Faculty of Medicine, Brisbane, Queensland, Australia.,The University of Queensland, 1974, Australian Infectious Diseases Research Centre, Brisbane, Queensland, Australia;
| |
Collapse
|
15
|
Borovcanin MM, Vesic K. Breast cancer in schizophrenia could be interleukin-33-mediated. World J Psychiatry 2021; 11:1065-1074. [PMID: 34888174 PMCID: PMC8613763 DOI: 10.5498/wjp.v11.i11.1065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/21/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiological and genetic studies have revealed an interconnection between schizophrenia and breast cancer. The mutual underlying pathophysiological mechanisms may be immunologically driven. A new cluster of molecules called alarmins may be involved in sterile brain inflammation, and we have already reported the potential impact of interleukin-33 (IL-33) on positive symptoms onset and the role of its soluble trans-membranes full length receptor (sST2) on amelioration of negative symptoms in schizophrenia genesis. Furthermore, these molecules have already been shown to be involved in breast cancer etiopathogenesis. In this review article, we aim to describe the IL-33/suppressor of tumorigenicity 2 (ST2) axis as a crossroad in schizophrenia-breast cancer comorbidity. Considering that raloxifene could be tissue-specific and improve cognition and that tamoxifen resistance in breast carcinoma could be improved by strategies targeting IL-33, these selective estrogen receptor modulators could be useful in complementary treatment. These observations could guide further somatic, as well as psychiatric therapeutical protocols by incorporating what is known about immunity in schizophrenia.
Collapse
Affiliation(s)
- Milica M Borovcanin
- Department of Psychiatry, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Serbia
| | - Katarina Vesic
- Department of Neurology, University of Kragujevac, Faculty of Medical Sciences, Kragujevac 34000, Serbia
| |
Collapse
|
16
|
Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nat Commun 2021; 12:6115. [PMID: 34675193 PMCID: PMC8531453 DOI: 10.1038/s41467-021-26347-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Genome-wide association studies (GWAS) have implicated the IL33 locus in asthma, but the underlying mechanisms remain unclear. Here, we identify a 5 kb region within the GWAS-defined segment that acts as an enhancer-blocking element in vivo and in vitro. Chromatin conformation capture showed that this 5 kb region loops to the IL33 promoter, potentially regulating its expression. We show that the asthma-associated single nucleotide polymorphism (SNP) rs1888909, located within the 5 kb region, is associated with IL33 gene expression in human airway epithelial cells and IL-33 protein expression in human plasma, potentially through differential binding of OCT-1 (POU2F1) to the asthma-risk allele. Our data demonstrate that asthma-associated variants at the IL33 locus mediate allele-specific regulatory activity and IL33 expression, providing a mechanism through which a regulatory SNP contributes to genetic risk of asthma. Susceptibility to asthma and severity of symptoms are regulated by a number of different genomic regions. Here the authors characterise a 5kb regulatory region and demonstrate genetic and topological regulation of IL33 and association with disease in different human cohorts.
Collapse
|
17
|
Iype J, Odermatt A, Bachmann S, Coeudevez M, Fux M. IL-1β promotes immunoregulatory responses in human blood basophils. Allergy 2021; 76:2017-2029. [PMID: 33544413 DOI: 10.1111/all.14760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Human basophils are essential effector cells of chronic allergic inflammation. IL-1 family cytokines such as interleukin (IL)-33 and IL-1β are elevated in serum and bronchoalveolar lavage fluid of allergic asthmatics. IL-33 is known to be a critical regulator of basophil's T2 immune responses. However, the effect of IL-1β on the function of basophils has not been well investigated. Here, we elucidate whether IL-1β regulates the function of human basophils and compared the effects of IL-1β and IL-33 on basophils of healthy and allergic subjects. We found that IL-1β activates the p38 MAPK signaling pathway and promotes IL-8 release in basophils of healthy donors, while FcεRI-mediated LCT4 and histamine secretion is not affected. Strikingly, in the presence of IL-3, IL-1β shows more potency than IL-33, as evidenced by the enhanced p38 phosphorylation and NF-κB activation, as well as the release of both IL-13 and IL-8. We found that the enhanced basophil responsiveness is achieved through IL-3-induced IL-1RI surface expression. Importantly, basophils of allergic donors release significantly higher amounts of IL-8 compared to those from healthy donors upon IL-33 and IL-1β stimulation. Consistently, we detected increased IL-1RI and decreased IL-3 receptor alpha-chain (CD123) and CCR3 expression on basophils of allergic subjects compared to healthy controls, suggesting an in vivo IL-3 priming in allergic donors. In summary, our results suggest enhanced sensitivity of basophils toward IL-33 and IL-1β in allergic subjects compared to those from healthy controls.
Collapse
Affiliation(s)
- Joseena Iype
- Clinical Cytomics Facility University Institute of Clinical Chemistry University Hospital Bern Inselspital, Bern Switzerland
| | - Andrea Odermatt
- Clinical Cytomics Facility University Institute of Clinical Chemistry University Hospital Bern Inselspital, Bern Switzerland
- University Institute of Immunology University Hospital Bern Inselspital Bern Switzerland
| | - Sofia Bachmann
- Clinical Cytomics Facility University Institute of Clinical Chemistry University Hospital Bern Inselspital, Bern Switzerland
| | - Mazarine Coeudevez
- Clinical Cytomics Facility University Institute of Clinical Chemistry University Hospital Bern Inselspital, Bern Switzerland
| | - Michaela Fux
- Clinical Cytomics Facility University Institute of Clinical Chemistry University Hospital Bern Inselspital, Bern Switzerland
- University Institute of Immunology University Hospital Bern Inselspital Bern Switzerland
| |
Collapse
|
18
|
Ho JSS, Li CH, Wang A, Asai Y. It is no skin off my nose: The relationship between the skin and allergic rhinitis. Ann Allergy Asthma Immunol 2021; 127:176-182. [PMID: 33901674 DOI: 10.1016/j.anai.2021.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Evidence supports the relationship between the skin barrier and allergic conditions. This narrative review evaluates what role the cutaneous barrier may play in the pathogenesis, disease course, and management of allergic rhinitis (AR). DATA SOURCES A literature review of the MEDLINE (PubMed), Embase, Cochrane, and SCOPUS Sciverse databases was conducted to identify available evidence. Reference lists of pertinent papers were searched using a snowball technique. STUDY SELECTIONS Papers published in English from all years until December 2020 were included. Papers that did not address the relationship between AR and the skin and hypothesis papers were excluded. RESULTS The cutaneous barrier shares histologic characteristics with the sinonasal epithelial barrier, which may explain commonalities between AR and atopic dermatitis. A disruption in the epithelial barrier could be a common pathway in the development of multiple allergic conditions. The skin is a common target for the treatment of AR. Available data that look at the relationship between the skin and AR often include other topics such as other atopic disorders and the role of the epithelial barrier. Increased understanding of how the cutaneous barrier affects AR may lead to new innovations in its management. CONCLUSION The connection between the cutaneous barrier and AR holds possibilities for further investigation, and these may lead to a better understanding and future innovations for all atopic diseases.
Collapse
Affiliation(s)
- Jessica S S Ho
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Carmen H Li
- Translational Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Ami Wang
- Department of Pathology and Molecular Medicine, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yuka Asai
- School of Medicine, Queen's University, Kingston, Ontario, Canada; Division of Dermatology, Department of Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
19
|
Dai B, Sun F, Cai X, Li C, Liu H, Shang Y. Significance of RNA N6-Methyladenosine Regulators in the Diagnosis and Subtype Classification of Childhood Asthma Using the Gene Expression Omnibus Database. Front Genet 2021; 12:634162. [PMID: 33763115 PMCID: PMC7982807 DOI: 10.3389/fgene.2021.634162] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/05/2021] [Indexed: 12/22/2022] Open
Abstract
RNA N6-methyladenosine (m6A) regulators play important roles in a variety of biological functions. Nonetheless, the roles of m6A regulators in childhood asthma remain unknown. In this study, 11 significant m6A regulators were selected using difference analysis between non-asthmatic and asthmatic patients from the Gene Expression Omnibus GSE40888 dataset. The random forest model was used to screen five candidate m6A regulators (fragile X mental retardation 1, KIAA1429, Wilm's tumor 1-associated protein, YTH domain-containing 2, and zinc finger CCCH domain-containing protein 13) to predict the risk of childhood asthma. A nomogram model was established based on the five candidate m6A regulators. Decision curve analysis indicated that patients could benefit from the nomogram model. The consensus clustering method was performed to differentiate children with asthma into two m6A patterns (clusterA and clusterB) based on the selected significant m6A regulators. Principal component analysis algorithms were constructed to calculate the m6A score for each sample to quantify the m6A patterns. The patients in clusterB had higher m6A scores than those in clusterA. Furthermore, we found that the patients in clusterA were linked to helper T cell type 1 (Th1)-dominant immunity while those in clusterB were linked to Th2-dominant immunity. In summary, m6A regulators play nonnegligible roles in the occurrence of childhood asthma. Our investigation of m6A patterns may be able to guide future immunotherapy strategies for childhood asthma.
Collapse
Affiliation(s)
- Bing Dai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Feifei Sun
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuxu Cai
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunlu Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Henan Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Haccuria A, Van Muylem A, Malinovschi A, Rasschaert J, Virreira M, Bruffaerts N, Hendrickx M, Michils A. Increased expression of IL-33 is found in the lower airways of patients with seasonal allergic rhinitis and is not related to natural allergen exposure. Clin Exp Allergy 2021; 51:845-848. [PMID: 33394501 DOI: 10.1111/cea.13819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/22/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Amaryllis Haccuria
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Van Muylem
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Andreï Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Joanne Rasschaert
- Laboratoire de Biochimie Métabolique et Osseuse, Université Libre de Bruxelles, Brussels, Belgium
| | - Myrna Virreira
- Laboratoire de Biochimie Métabolique et Osseuse, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Alain Michils
- Chest Department, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
21
|
Kaur D, Chachi L, Gomez E, Sylvius N, Singh SR, Ramsheh MY, Saunders R, Brightling CE. ST2 expression and release by the bronchial epithelium is downregulated in asthma. Allergy 2020; 75:3184-3194. [PMID: 32516479 DOI: 10.1111/all.14436] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND The airway epithelium plays an important role in wound repair, host defense and is involved in the immunopathogenesis of asthma. Genome wide association studies have described associations between ST2/Interleukin (IL)-33 genes in asthma, but its role in bronchial epithelium is unclear. METHODS ST2 expression was examined in subjects with asthma and healthy controls in bronchial epithelium from biopsies (n = 27 versus n = 9) and brushings (n = 34 versus n = 20) by immunohistochemistry and RNA-Seq. In human primary bronchial epithelial cells ST2 mRNA and protein expression were assessed by qPCR, flow cytometry, Western blotting, and immunofluorescence. IL-33 function in epithelial cells was examined by intracellular calcium measurements, wound healing assays, and synthetic activation by gene array and ELISA. RESULTS Bronchial epithelial ST2 protein expression was significantly decreased in biopsies in subjects with asthma compared to healthy controls (P = .039). IL1RL1 gene expression in bronchial brushes was not different between health and disease. In vitro primary bronchial epithelial cells expressed ST2 and IL-33 stimulation led to an increase in intracellular calcium, altered gene expression, but had no effect upon wound repair. Epithelial cells released sST2 spontaneously, which was reduced following stimulation with TNFα or poly-IC. Stimulation by TNFα or poly-IC did not affect the total ST2 expression by epithelial cell whereas surface ST2 decreased in response to TNFα, but not poly-IC. CONCLUSION In asthma, bronchial epithelium protein expression of ST2 is decreased. Our in vitro findings suggest that this decrease might be a consequence of the pro-inflammatory environment in asthma or in response to viral infection.
Collapse
Affiliation(s)
- Davinder Kaur
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | - Latifa Chachi
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | - Edith Gomez
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | - Nicolas Sylvius
- Genomic Core Facility Department of Genetics University of Leicester Leicester UK
| | - Shailendra R. Singh
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | - Mohammadali Y. Ramsheh
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | - Ruth Saunders
- Institute for Lung Health Department of Respiratory Sciences University of Leicester Leicester UK
| | | |
Collapse
|
22
|
Ran H, Xiao H, Zhou X, Guo L, Lu S. Single-nucleotide polymorphisms and haplotypes in the interleukin-33 gene are associated with a risk of allergic rhinitis in the Chinese population. Exp Ther Med 2020; 20:102. [PMID: 32973951 DOI: 10.3892/etm.2020.9232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/23/2020] [Indexed: 11/05/2022] Open
Abstract
Allergic rhinitis (AR) is a common upper airway disease attributed to a variety of risk factors, such as environmental exposures and genetic susceptibility. The commonly observed comorbidity of asthma and AR in the clinic suggests the presence of shared genetic risk factors and biological mechanisms between these diseases. Interleukin (IL)-33 has been indicated to be an important factor driving asthma susceptibility and pathogenesis using both genome-wide association studies and functional studies in model animals. Although previous studies have reported the putative association of this gene with AR, evidence for the association of genetic variations of IL-33 with the disease is still missing. To examine whether variations in the IL-33 gene confer a genetic risk of AR, a total of 769 patients with AR and 769 age- and sex-matched healthy controls were recruited among Han Chinese residents in the Hubei province, and 14 single-nucleotide polymorphisms (SNPs) spanning the IL-33 gene were examined for their association with the risk of AR. The results indicated that five SNPs, which were in a moderate linkage disequilibrium and were located in the 5'-flanking region of IL-33, exhibited significant associations with the risk of AR, and these associations were additionally supported by genotypic and haplotypic analyses. Notably, three of the five IL-33 SNPs have been previously reported to exhibit genome-wide associations with asthma, and their alleles were also revealed to confer an increased risk of AR in the present study. In summary, the results of the current study suggested that certain variations in the IL-33 gene represent a potential risk for AR, and indicated a shared genetic basis between AR and asthma.
Collapse
Affiliation(s)
- He Ran
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jingzhou, Jingzhou, Hubei 434000, P.R. China
| | - Hua Xiao
- Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| | - Xing Zhou
- Department of Otolaryngology Head and Neck Surgery, Shishou People's Hospital, Jingzhou, Hubei 434400, P.R. China
| | - Lijun Guo
- Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| | - Shuang Lu
- Hubei College of Chinese Medicine, Jingzhou, Hubei 434020, P.R. China
| |
Collapse
|
23
|
Drake LY, Prakash YS. Contributions of IL-33 in Non-hematopoietic Lung Cells to Obstructive Lung Disease. Front Immunol 2020; 11:1798. [PMID: 32903501 PMCID: PMC7438562 DOI: 10.3389/fimmu.2020.01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-33 plays important roles in pulmonary immune responses and lung diseases including asthma and chronic obstructive pulmonary disease (COPD). There is substantial interest in identifying and characterizing cellular sources vs. targets of IL-33, and downstream signaling pathways involved in disease pathophysiology. While epithelial and immune cells have largely been the focus, in this review, we summarize current knowledge of expression, induction, and function of IL-33 and its receptor ST2 in non-hematopoietic lung cells in the context of health and disease. Under basal conditions, epithelial cells and endothelial cells are thought to be the primary resident cell types that express high levels of IL-33 and serve as ligand sources compared to mesenchymal cells (smooth muscle cells and fibroblasts). Under inflammatory conditions, IL-33 expression is increased in most non-hematopoietic lung cells, including epithelial, endothelial, and mesenchymal cells. In comparison to its ligand, the receptor ST2 shows low expression levels at baseline but similar to IL-33, ST2 expression is upregulated by inflammation in these non-hematopoietic lung cells which may then participate in chronic inflammation both as sources and autocrine/paracrine targets of IL-33. Downstream effects of IL-33 may occur via direct receptor activation or indirect interactions with the immune system, overall contributing to lung inflammation, airway hyper-responsiveness and remodeling (proliferation and fibrosis). Accordingly from a therapeutic perspective, targeting IL-33 and/or its receptor in non-hematopoietic lung cells becomes relevant.
Collapse
Affiliation(s)
- Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
24
|
Falahi S, Mortazavi SHR, Salari F, Koohyanizadeh F, Rezaeimanesh A, Gorgin Karaji A. Association between IL-33 Gene Polymorphism (Rs7044343) and Risk of Allergic Rhinitis. Immunol Invest 2020; 51:29-39. [PMID: 32787469 DOI: 10.1080/08820139.2020.1804399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is a T helper type 2 (Th2)-mediated upper airways disease in which genetics factors including cytokine genes play a prominent role. Interleukin-33 (IL-33) is a major cytokine for naive T cells polarization into Th2 phenotype as well as enhances the secretion of Th2 cytokines. The aim of the present study was to investigate the relationship between IL-33 single nucleotide polymorphisms (SNPs) and IL-33 serum level with Allergic rhinitis. METHODS Blood samples were collected from 130 AR patients and 130 healthy individuals. SNPs (rs7044343 C > T, rs1929992 A > G, rs12551256 A > G) of IL-33 gene were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Serum level of IL-33 was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Statistical analysis showed that the TT genotype (OR = 1.996, CI: 1.168-3.412, P = .01), as well as the T allele (OR = 0.675, CI: 0.476-0.957, P = .02) of rs7044343 C > T were significantly associated with reduced risk of AR. In addition, individuals carrying the TT genotype were associated with lower levels of IL-33 compared to subjects with CC and CT genotypes; however, these differences were not statistically significant. No association was found between rs1929992 and rs12551256 variants and risk of AR, but the GG genotype from rs1929992 A > G was associated with increased serum levels of IL-33 in control group (p = .01). Furthermore, serum IL-33 levels were not significantly different between AR patients and healthy controls (p > .05). CONCLUSION Our results suggest that the TT genotype of rs7044343 C > T may act as a protective agent against allergic rhinitis.
Collapse
Affiliation(s)
- Sara Falahi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamid Reza Mortazavi
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzaneh Koohyanizadeh
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaeimanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
25
|
Wang S, Zhao G, Zhao S, Qiao Y, Yang H. The Effects of Interleukin-33 (IL-33) on Osteosarcoma Cell Viability, Apoptosis, and Epithelial-Mesenchymal Transition are Mediated Through the PI3K/AKT Pathway. Med Sci Monit 2020; 26:e920766. [PMID: 32312946 PMCID: PMC7191962 DOI: 10.12659/msm.920766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Osteosarcoma is the most common primary tumor of bone. Interleukin-33 (IL-33) is a pro-inflammatory cytokine that also participates in tumor progression. This study aimed to investigate the role of IL-33 in human osteosarcoma cell viability, proliferation, apoptosis, and epithelial-mesenchymal transition (EMT) in vitro and the molecular mechanisms involved. Material/Methods The normal osteoblast cell line, hFOB 1.19, and the human osteosarcoma cell lines SOSP-9607, SAOS2, MG63, and U2OS were studied. The expression of IL-33 mRNA and protein in human osteosarcoma cell lines were detected using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. The effects of IL-33 on human osteosarcoma cell viability, apoptosis, EMT, and the signaling pathways were studied using the MTT assay, flow cytometry, qRT-PCR, and Western blot. Results IL-33 was upregulated in human osteosarcoma cell lines, including U2OS cells. The use of an IL-33 gene plasmid promoted osteosarcoma cell viability, inhibited cell apoptosis, increased the expression of Bcl-2, and reduced the expression of Bax. IL-33 reduced the level of E-cadherin and increased the levels of N-cadherin and matrix metalloproteinase-9 (MMP-9) in osteosarcoma cells at the mRNA and protein level. The use of the IL-33 plasmid increased the protein expression levels of p-AKT and the p-AKT/AKT ratio in osteosarcoma cells, and IL-33 siRNA reversed these findings. Conclusions IL-33 was highly expressed in human osteosarcoma cells. Down-regulation of IL-33 reduced cell viability and EMT of osteosarcoma cells, and induced cell apoptosis through activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shenyu Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Gongyin Zhao
- Department of Orthopedics, The Affiliated Hospital of Nanjing Medical University, Changzhou No. 2 People's Hospital, Changzhou, Jiangsu, China (mainland)
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
26
|
Nian JB, Zeng M, Zheng J, Zeng LY, Fu Z, Huang QJ, Wei X. Epithelial cells expressed IL-33 to promote degranulation of mast cells through inhibition on ST2/PI3K/mTOR-mediated autophagy in allergic rhinitis. Cell Cycle 2020; 19:1132-1142. [PMID: 32298206 DOI: 10.1080/15384101.2020.1749402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nasal epithelial cells are the first barrier against allergen infiltration in allergic rhinitis (AR), and the relationship between nasal epithelial cells and mast cell-mediated hypersensitivity remains unclear. This study aimed to investigate the possible association between allergen-challenged nasal epithelial cells (AR-HNEpC) and mast cell degranulation in AR. Our data revealed that calcium influx and degranulation were increased in AR-HNEpC-co-cultured mast cells. Expression of IL-33, a factor that binds to ST2 receptors on mast cells and regulates their degranulation, was elevated in AR-HNEpC. Blocking IL-33/ST2 pathway activated autophagy and inhibited degranulation and inflammatory factor release in mast cells. Furthermore, PI3K/mTOR was increased in IL-33-treated mast cells. Inhibition on PI3K/mTOR pathway enhanced autophagy and inhibited degranulation. Analysis using an in vivo AR model supported the above findings. In conclusion, IL-33 from epithelial cells promotes degranulation of mast cells in AR through inhibition on ST2/PI3K/mTOR-mediated autophagy, which provides a potential therapeutic target for the disease.Abbreviations: AR: allergic rhinitis; IL: interleukin; TNF-α: tumor necrosis factor-alpha; INF-γ: interferon-gamma; HNEpC: human nasal epithelial cell line; ATCC: American Type Culture Collection; C48/80: compound 48/80; 3-MA: 3-methyladenine; qPCR: quantitative PCR; AR-HNEpC: dust mite allergen-treated nasal epithelial cells; IgE: immunoglobulin E; Atg7: autophagy-related gene 7.
Collapse
Affiliation(s)
- Jia-Bin Nian
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Min Zeng
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Lian-Ya Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Zhi Fu
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Qiu-Ju Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| |
Collapse
|
27
|
Bergougnan C, Dittlein DC, Hümmer E, Riepl R, Eisenbart S, Böck D, Griesbaum L, Weigl A, Damialis A, Hartwig A, Neumann AU, Zenk J, Traidl-Hoffmann C, Gilles S. Physical and immunological barrier of human primary nasal epithelial cells from non-allergic and allergic donors. World Allergy Organ J 2020; 13:100109. [PMID: 32180893 PMCID: PMC7063333 DOI: 10.1016/j.waojou.2020.100109] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
The epithelial cell-derived cytokine milieu has been discussed as a “master switch” in the development of allergic disease. To understand the role of innate immune response in nasal epithelial cells during allergic inflammation, we created and established a fast and minimally invasive method to isolate and culture human nasal epithelial cells from clinically and immunologically well characterized patients. Human nasal epithelial cells from non-atopic volunteers and from allergic rhinitis patients were compared in respect to their growth, barrier integrity, pattern recognition, receptor expression, and immune responses to allergens and an array of pathogen-associated molecular patterns and inflammasome activators. Cells from nasal scrapings were clearly identified as nasal epithelial cells by staining of pan-Cytokeratin, Cytokeratin-14 and Tubulin. Additionally, Mucin 5AC staining revealed the presence of goblet cells, while staining of tight-junction protein Claudin-1, Occludin and ZO-1 showed the ability of the cells to form a tight barrier. Cells of atopic donors grew slower than cells of non-atopic donors. All nasal epithelial cells expressed TLR1-6 and 9, yet the expression of TLR-9 was lower in cells from allergic rhinitis (AR) donors. Additionally, epithelial cells from AR donors responded with a different TLR expression pattern to stimulation with TLR ligands. TLR-3 was the most potent modulator of cytokine and chemokine secretion in all human nasal epithelial cells (HNECs). The secretion of IL-1β, CCL-5, IL-8, IL-18 and IL-33 was elevated in HNECs of AR donors as compared to cells of non-atopic donors. This was observed in the steady-state (IL-18, IL-33) as well as under stimulation with TLR ligands (IL-18, IL-33, CCL-5, IL-8), aqueous pollen extracts (IL-18, IL-33), or the inflammasome activator Nigericin (IL-1β). In conclusion, nasal epithelial cells of AR donors show altered physical barrier responses in steady-state and in response to allergen stimulation. Cells of AR donors show increased expression of pro-inflammatory and IL-1 family cytokines at baseline and under stimulation, which could contribute to a micromilieu which is favorable for Th2.
Collapse
Key Words
- ALI, Air liquid interphase
- APE, Aqueous pollen extract
- AR, Allergic rhinitis
- Allergic rhinitis
- HDM, House dust mite
- HNEC, Human nasal epithelial cell
- Inflammation
- LPS, Lipopolysaccharide from E. Coli K12 (TLR-4 ligand)
- MyD88, Myeloid differentiation primary response 88
- Nasal epithelium
- PAMP, Pathogen-associated molecular pattern
- PRR, Pattern recognition receptor
- Pattern recognition receptor
- Pollen
- PolyIC, Polyinosinic–polycytidylic acid (TLR-3 ligand)
- SAR, Seasonal allergic rhinitis
- SEM, Scanning electron microscopy
- TER, Transepithelial electrical resistance
- TLR, Toll-like receptor
- TRIF, TIR-domain-containing adapter-inducing interferon-β
Collapse
Affiliation(s)
- Carolin Bergougnan
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany.,Christine-Kühne-Center for Allergy Research and Education (CK-Care), Davos, Switzerland
| | - Daniela C Dittlein
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany
| | - Elke Hümmer
- Department of Otolaryngology, Augsburg University Medical School, Augsburg, Germany
| | - Rosalie Riepl
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany
| | - Selina Eisenbart
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany
| | - Dominik Böck
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany
| | - Lena Griesbaum
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany
| | - Anna Weigl
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany
| | - Athanasios Damialis
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany
| | | | - Avidan U Neumann
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany
| | - Johannes Zenk
- Department of Otolaryngology, Augsburg University Medical School, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany.,Christine-Kühne-Center for Allergy Research and Education (CK-Care), Davos, Switzerland
| | - Stefanie Gilles
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and HelmholtzZentrum München, Augsburg, Germany
| |
Collapse
|
28
|
Huang R, Mao W, Wang G, Ding J, Sun Y, Gao G, Dong P, Sun Z. Synergistic relationship between TSLP and IL-33/ST2 signaling pathways in allergic rhinitis and the effects of hypoxia. Int Forum Allergy Rhinol 2020; 10:511-520. [PMID: 31922361 DOI: 10.1002/alr.22504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The World Health Organization (WHO) has noted that allergic diseases are a major health problem of the 21st century. Allergic rhinitis (AR) is a type I allergic disease characterized by nasal mucosa and immune system abnormalities. AR is mediated by various inflammatory cells and is mainly characterized by altered secretion of cytokines. Thymic stromal lymphopoietin (TSLP) and the interleukin-33/stimulation-expressed gene 2 (IL-33/ST2) signaling pathway are cytokines that play pivotal roles in many inflammatory responses and allergic reactions. There have been reports of interactions between the 2 pathways in many diseases. Hypoxia is a common pathologic manifestation of AR. The aim of this study was to explore the relationship and expressions and biologic functions of TSLP and IL-33/ST2 in AR, and also to determine the effects of hypoxia on these cytokines. METHODS The rat nasal mucosal epithelium was obtained from Wistar rats. Cells were cultured in groups under hypoxia and normoxia conditions. Identification of rat nasal epithelial cell (RNEpC) and protein expressions was done by immunohistochemistry and immunofluorescence methods. Cell proliferation and migration were examined using the cell counting kit-8 (CCK-8) and Transwell kit. Detection of apoptosis was tested using a fluorescence apoptosis kit. Enzyme-linked immunoassay (ELISA) and Western blot analysis ELISA were used to measure cell secretion and protein expressions. For these experiments, TSLP was knocked down by lentivirus transfection and IL-33 blocked with its antagonist. RESULTS TSLP, IL-33, and ST2 expressions were significantly higher in nasal mucosa epithelial cells from AR rats than in those from control rats. Hypoxia further promoted their expression. Increased TSLP and IL-33/ST2 promoted cell proliferation, inhibited cell apoptosis, and enhanced cell migration. In addition, the downregulation of TSLP expression effectively attenuated expression of the IL-33/ST2 axis and, through use of IL-33 antagonists, could also reduce TSLP expression, a synergistic effect more obvious under hypoxia. CONCLUSION Our data indicate that TSLP and IL-33/ST2 signaling pathways interact with each other in the pathogenesis and pathologic development of AR. TSLP inhibition is a key factor in AR treatment. Inhibiting hypoxia-induced pathologic processes could represent a therapeutic effect by inhibiting IL-33/ST2 expression via downregulating TSLP.
Collapse
Affiliation(s)
- Ruofei Huang
- Division of ENT, Key Laboratory of Head and Neck, Shanghai General Hospital of Nanjing Medical University, Shanghai, PR China
| | - Wei Mao
- Division of ENT, Key Laboratory of Head and Neck, Shanghai General Hospital of Nanjing Medical University, Shanghai, PR China
| | - Guoliang Wang
- Division of ENT, Key Laboratory of Head and Neck, Shanghai General Hospital of Nanjing Medical University, Shanghai, PR China
| | - Jian Ding
- Division of ENT, Key Laboratory of Head and Neck, Shanghai General Hospital of Nanjing Medical University, Shanghai, PR China
| | - Ying Sun
- Division of ENT, Key Laboratory of Head and Neck, Shanghai General Hospital of Nanjing Medical University, Shanghai, PR China
| | - Gang Gao
- Division of ENT, Key Laboratory of Head and Neck, Shanghai General Hospital of Nanjing Medical University, Shanghai, PR China
| | - Ping Dong
- Division of ENT, Key Laboratory of Head and Neck, Shanghai General Hospital of Nanjing Medical University, Shanghai, PR China
| | - Zhenfeng Sun
- Division of ENT, Key Laboratory of Head and Neck, Shanghai General Hospital of Nanjing Medical University, Shanghai, PR China
| |
Collapse
|
29
|
Xu Y, Zheng Y, Cao M, Yang W, Ren J, Song Y, Cheng D, Wang J, Huang L, Xu W, Zhao Y, Liu G. Association of Single-Nucleotide Polymorphisms With Chronic Rhinosinusitis in a Southwestern Han Chinese Population: A Replication Study. Am J Rhinol Allergy 2019; 34:352-360. [PMID: 31870168 DOI: 10.1177/1945892419896540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yang Xu
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yongbo Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Min Cao
- General Affairs Office of Logistic Department, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Yang
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jianjun Ren
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Yao Song
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Danni Cheng
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Ligao Huang
- Department of Otorhinolaryngology, Chengdu Renpin Otorhinolaryngology Hospital, Chengdu, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Yu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Geoffrey Liu
- Medical Oncology and Medical Biophysics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario, Canada.,Medicine and Epidemiology Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Lee S, Yamamoto S, Hamana M, Okamoto H, Hatayama T, Danbara F, Fujii Y, Murakami Y, Otsuki T. Effects of a Cloth Panel Containing a Specific Ore Powder on Patients with Japanese Cedar Pollen Allergy During the Pollen Dispersal Season. J Clin Med 2019; 8:jcm8122164. [PMID: 31817806 PMCID: PMC6947445 DOI: 10.3390/jcm8122164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
Pollen allergy remains a big problem in contemporary societies. We have shown in previous studies that a cloth containing a special natural ore powder (CCSNOP) is effective in relieving symptoms in patients with pollen allergies. However, in that study, subjects were exposed to CCSNOP for only one hour. In the present study, CCSNOP or control (non-woven cloth; NWC) panels were placed in the bedrooms of pollen allergy patients for two weeks during the pollen dispersal season in 2018, and the effects were investigated. Twenty-one subjects were exposed to CCSNOP panels and 10 subjects were exposed to NWC panels. Our investigations showed that use of CCSNOP resulted in relief of symptoms and reduced use of therapeutics. Moreover, the ratio of eosinophil count decrease during exposure was higher in the CCSNOP group. Furthermore, a formula for measuring various cytokines and other parameters was established and clearly showed a distinction between the CCSNOP and NWC groups. In this formula, Granulocyte Macrophage colony-stimulating Factor (GM-SCF), Interleukin (IL)-12p40, Immunoglobulin (Ig) G4 and eosinophil count were extracted. These results indicated that CCNSNOP has a beneficial effect on pollen allergy patients. Future studies shall engage in long-term monitoring of pollen allergy patients who will utilize this mineral powder for at least one year.
Collapse
Affiliation(s)
- Suni Lee
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan; (S.L.); (S.Y.); (T.H.)
| | - Shoko Yamamoto
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan; (S.L.); (S.Y.); (T.H.)
| | - Maiko Hamana
- Wadakohsan Corporation, 4-2-13, Sakaemachidori, Chuo-ku, Kobe City, Hyogo 650-0023, Japan; (M.H.); (F.D.); (Y.M.)
| | - Hiroshi Okamoto
- Cosmic Garden Co., Ltd., 1-2-25 Ima, Kita-ku, Okayama City, Okayama 700-0975, Japan; (H.O.); (Y.F.)
| | - Tamayo Hatayama
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan; (S.L.); (S.Y.); (T.H.)
| | - Fukusou Danbara
- Wadakohsan Corporation, 4-2-13, Sakaemachidori, Chuo-ku, Kobe City, Hyogo 650-0023, Japan; (M.H.); (F.D.); (Y.M.)
| | - Yoshio Fujii
- Cosmic Garden Co., Ltd., 1-2-25 Ima, Kita-ku, Okayama City, Okayama 700-0975, Japan; (H.O.); (Y.F.)
| | - Youichi Murakami
- Wadakohsan Corporation, 4-2-13, Sakaemachidori, Chuo-ku, Kobe City, Hyogo 650-0023, Japan; (M.H.); (F.D.); (Y.M.)
| | - Takemi Otsuki
- Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan; (S.L.); (S.Y.); (T.H.)
- Correspondence: ; Tel.: +81-86-462-1111
| |
Collapse
|
31
|
Chinthrajah S, Cao S, Liu C, Lyu SC, Sindher SB, Long A, Sampath V, Petroni D, Londei M, Nadeau KC. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. JCI Insight 2019; 4:131347. [PMID: 31723064 PMCID: PMC6948865 DOI: 10.1172/jci.insight.131347] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/02/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUNDIL-33, found in high levels in participants with allergic disorders, is thought to mediate allergic reactions. Etokimab, an anti-IL-33 biologic, has previously demonstrated a good safety profile and favorable pharmacodynamic properties in many clinical studies.METHODSIn this 6-week placebo-controlled phase 2a study, we evaluated the safety and the ability of a single dose of etokimab to desensitize peanut-allergic adults. Participants received either etokimab (n = 15) or blinded placebo (n = 5). Clinical tests included oral food challenges and skin prick tests at days 15 and 45. Blood samples were collected for IgE levels and measurement of ex vivo peanut-stimulated T cell cytokine production.RESULTSEfficacy measurements for active vs. placebo participants at the day 15 and 45 food challenge (tolerating a cumulative 275 mg of peanut protein, which was the food challenge outcome defined in this paper) demonstrated, respectively, 73% vs. 0% (P = 0.008) to 57% vs. 0% (ns). The etokimab group had fewer adverse events compared with placebo. IL-4, IL-5, IL-9, IL-13, and ST2 levels in CD4+ T cells were reduced in the active vs. placebo arm upon peanut-induced T cell activation (P = 0.036 for IL-13 and IL-9 at day 15), and peanut-specific IgE was reduced in active vs. placebo (P = 0.014 at day 15).CONCLUSIONThe phase 2a results suggest etokimab is safe and well tolerated and that a single dose of etokimab could have the potential to desensitize peanut-allergic participants and possibly reduce atopy-related adverse events.TRIAL REGISTRATIONClinicalTrials.gov NCT02920021.FUNDINGThis work was supported by NIH grant R01AI140134, AnaptysBio, the Hartman Vaccine Fund, and the Sean N. Parker Center for Allergy and Asthma Research at Stanford University.
Collapse
Affiliation(s)
- Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University
- Division of Pulmonary, Allergy and Critical Care Medicine, and
- Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | - Shu Cao
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University
- Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Cherie Liu
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University
- Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Shu-Chen Lyu
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University
- Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Sayantani B Sindher
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University
- Division of Pulmonary, Allergy and Critical Care Medicine, and
- Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, California, USA
| | - Andrew Long
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University
- Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University
- Division of Pulmonary, Allergy and Critical Care Medicine, and
| | - Daniel Petroni
- ASTHMA Inc., Clinical Research Center, Northwest Asthma and Allergy Center, University of Washington, Seattle, Washington, USA
| | | | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research at Stanford University
- Division of Pulmonary, Allergy and Critical Care Medicine, and
- Division of Allergy, Immunology and Rheumatology, Stanford University, Stanford, California, USA
| |
Collapse
|
32
|
Drake LY, Squillace D, Iijima K, Kobayashi T, Uchida M, Kephart GM, Britt R, O'Brien DR, Kita H. Early Life Represents a Vulnerable Time Window for IL-33-Induced Peripheral Lung Pathology. THE JOURNAL OF IMMUNOLOGY 2019; 203:1952-1960. [PMID: 31471525 DOI: 10.4049/jimmunol.1900454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023]
Abstract
IL-33, an IL-1 family cytokine, is constitutively expressed in mucosal tissues and other organs in healthy humans and animals, and expression levels increase in inflammatory conditions. Although IL-33-mediated promotion of type 2 immune responses has been well established, a gap in our knowledge regarding the functional diversity of this pleiotropic cytokine remains. To address this gap, we developed a new IL-33 transgenic mouse model in which overexpression of full-length IL-33 is induced in lung epithelial cells under conditional control. In adult mice, an ∼3-fold increase in the steady-state IL-33 levels produced no pathologic effects in the lungs. When exposed to airborne allergens, adult transgenic mice released more IL-33 extracellularly and exhibited robust type 2 immune responses. In neonatal transgenic mice, up to postnatal day 14, a similar increase in steady-state IL-33 levels resulted in increased mortality, enlarged alveolar spaces resembling bronchopulmonary dysplasia, and altered expression of genes associated with tissue morphogenesis. Processed 25-kDa IL-33 protein was detected in bronchoalveolar lavage fluids without any exogenous stimuli, and pathologic changes were abolished in mice deficient in the IL-33 receptor ST2. These findings suggest that adult lungs are relatively resistant to IL-33 overexpression unless they encounter environmental insults, whereas developing lungs are highly susceptible, with IL-33 overexpression resulting in detrimental and pathologic outcomes.
Collapse
Affiliation(s)
- Li Y Drake
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Diane Squillace
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Koji Iijima
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Takao Kobayashi
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Masaru Uchida
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Gail M Kephart
- Division of Allergic Diseases, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Rodney Britt
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Hirohito Kita
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
33
|
The interleukin-33-mediated inhibition of expression of two key genes implicated in atherosclerosis in human macrophages requires MAP kinase, phosphoinositide 3-kinase and nuclear factor-κB signaling pathways. Sci Rep 2019; 9:11317. [PMID: 31383884 PMCID: PMC6683160 DOI: 10.1038/s41598-019-47620-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disorder of the walls of arteries, causes more deaths worldwide than any other disease. Cytokines, which are present at high levels in atherosclerotic plaques, play important roles in regulating the initiation and the progression of the disease. Previous studies using animal and cell culture model systems revealed protective, anti-atherogenic effects of the cytokine interleukin-33 (IL-33). The action of this cytokine involves both the induction and suppression of expression of many genes. Unfortunately, the signaling pathways that are responsible for the inhibition of gene expression by this cytokine are poorly understood. Further studies are required given the important roles of genes whose expression is inhibited by IL-33 in key cellular processes associated with atherosclerosis such as monocyte recruitment, foam cell formation and lipoprotein metabolism. We have investigated here the roles of various known IL-33 activated signaling pathways in such inhibitory actions using RNA interference-mediated knockdown assays and monocyte chemotactic protein-1 and intercellular adhesion molecule-1 as model genes. Key roles were identified for extracellular signal-regulated kinase-1/2, p38α kinase, c-Jun N-terminal kinase-1/2, phosphoinositide 3-kinase-γ, and p50 and p65 nuclear factor-κB in such inhibitory action of IL-33. These studies provide new insights on the signaling pathways through which IL-33 inhibits the macrophage expression of key atherosclerosis-associated genes.
Collapse
|
34
|
MicroRNA-21 abrogates palmitate-induced cardiomyocyte apoptosis through caspase-3/NF-κB signal pathways. Anatol J Cardiol 2019; 20:336-346. [PMID: 30504734 PMCID: PMC6287441 DOI: 10.14744/anatoljcardiol.2018.03604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objective: The aim of the study was to investigate the role of microRNA-21 (miR-21) in cardiomyocyte apoptosis and to determine a possible mechanism. Methods: H9c2 embryonic rat heart-derived cells were used in the study. Cell viability was determined using the 3-(4.5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and flow cytometry was used to evaluate cell apoptosis. Reverse transcription-polymerase chain reaction and western blot assays were used to detect mRNA and protein expression of the apoptosis-related proteins and miR-21. ELISA was used to detect reactive oxygen species (ROS). Results: Palmitate exposure greatly reduced miR-21 expression in cardiomyocytes. Apoptosis increased when miR-21 was inhibited with or without palmitate exposure. Consistently, reduced apoptosis was observed when miR-21 was overexpressed in cardiomyocytes. Caspase-3 activity was reduced after palmitate exposure. Bcl-2 protein expression was increased in H9c2 cells when transfected with the miR-21 mimic. MiR-21 overexpression alone did not induce ROS or DNA fragmentation; however, in conjunction with palmitate exposure, miR-21 mimic reduced ROS and DNA fragmentation. Moreover, palmitate administration overcame the antioxidant effect of 3 mM N-acetylcysteine to significantly inhibit apoptosis, DNA fragmentation, and caspase-3 activity. The exposure to palmitate greatly reduced p65 and p-p38 expression in the nucleus. A p38 inhibitor had no effect on the expression of Bcl-2 and cleaved caspase-3 in H9c2 cells alone; however, when combined with exposure to palmitate the p38 inhibitor induced Bcl-2 expression and inhibited caspase-3 activity. The p38 inhibitor by itself did not induce apoptosis, ROS production, or DNA fragmentation in H9c2 cells, but when palmitate was included with the p38 inhibitor, apoptosis, ROS production, and DNA fragmentation were reduced. Conclusion: miR-21 protects cardiomyocytes from apoptosis that is induced by palmitate through the caspase-3/NF-κB signal pathways.
Collapse
|
35
|
Pusceddu I, Dieplinger B, Mueller T. ST2 and the ST2/IL-33 signalling pathway-biochemistry and pathophysiology in animal models and humans. Clin Chim Acta 2019; 495:493-500. [PMID: 31136737 DOI: 10.1016/j.cca.2019.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/26/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Abstract
ST2 is an interleukin (IL)-1 receptor family member with transmembrane (ST2L) and soluble (sST2) isoforms. Structurally, the ST2 gene products are very similar in mice and humans. In humans and in mice, alternative promoter activation and splicing produce ST2L and sST2. ST2L represents the longest transcript, whereas sST2 is the truncated, soluble isoform. ST2L is the biological receptor for IL-33, a member of the IL-1 family. IL-33 is the functional ligand of ST2L and signals the presence of tissue damage to local immune cells. IL-33/ST2L signalling leads to the production of inflammatory cytokines/chemokines and to the induction of the immune response. Conversely, sST2 functions as a decoy receptor for IL-33, inhibiting the effects of IL-33/ST2L signalling. Animal studies have allowed the investigation of ST2 and the IL-33/ST2L signalling pathway at multiple levels. However, clinical studies have mainly focused on the determination of sST2 in the circulation. In humans, plasma concentrations of sST2 increase in several diseases, such as heart disease, pulmonary disease, burn injury and graft-versus-host disease. Consequently, increased plasma concentrations of sST2 are not specific for a single disorder in humans and are thus of limited value for diagnostic purposes. However, increased plasma concentrations of sST2 have been linked to a worse prognosis in numerous diseases. Nevertheless, the major source of circulating sST2 in healthy and diseased humans is currently not fully established. In addition, whether the downregulation of sST2 can improve the outcome of patients in the clinical setting has not been elucidated. The aim of the present review was to provide an update on the findings regarding the biochemistry and pathophysiology of ST2 and the sST2 signalling pathway in humans and experimental models.
Collapse
Affiliation(s)
- Irene Pusceddu
- Department of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy
| | - Benjamin Dieplinger
- Department of Laboratory Medicine, Konventhospital Barmherzige Brueder Linz, Linz, Austria
| | - Thomas Mueller
- Department of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy.
| |
Collapse
|
36
|
Pasha MA, Patel G, Hopp R, Yang Q. Role of innate lymphoid cells in allergic diseases. Allergy Asthma Proc 2019; 40:138-145. [PMID: 31018888 DOI: 10.2500/aap.2019.40.4217] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Over the past decade, there has been increasing interest and research into understanding the type 2 immune responses by the epithelium-derived cytokines interleukin (IL) 33, IL-25, and thymic stromal lymphopoietin. Innate lymphoid cells (ILC) are a unique family of effector immune cells that functionally resemble T cells but lack clonal distributed antigen receptors. Group 2 ILCs, ILC2s, are known for their capability to secrete proallergic cytokines, including IL-5 and IL-13. ILC2s are enriched at mucosal barriers in lung, gut, and skin, and their activation has been associated with a variety of allergic disorders. Objective: To study the role of ILC2 in different allergic disorders, including allergic rhinitis, asthma, atopic dermatitis, and food allergies. Methods: A MEDLINE search was performed for articles that reported on ILC2 in allergic disorders, including allergic rhinitis, asthma, atopic dermatitis, and food allergies. Results: A review of the literature revealed an important role of ILC2 in various allergic disorders. Conclusion: Identification of ILC2s in patients with allergic rhinitis, asthma, and atopic dermatitis indicates that these cells may represent a new therapeutic target. In this review, we discussed the current understanding of ILC2 biology and its function and regulation in various allergic diseases.
Collapse
Affiliation(s)
- M. Asghar Pasha
- From the Division of Allergy and Immunology, Albany Medical College, Albany, New York
| | - Gargi Patel
- From the Division of Allergy and Immunology, Albany Medical College, Albany, New York
| | - Russell Hopp
- Division of Allergy and Immunology, Creighton University, Omaha, Nebraska
| | - Qi Yang
- Department of Immunology and Microbial Diseases, Albany Medical College, Albany, New York
| |
Collapse
|
37
|
Wang M, Gu Z, Yang J, Zhao H, Cao Z. Changes among TGF-β1+ Breg cells and helper T cell subsets in a murine model of allergic rhinitis with prolonged OVA challenge. Int Immunopharmacol 2019; 69:347-357. [DOI: 10.1016/j.intimp.2019.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 01/08/2023]
|
38
|
Liu X, Ren Y, Sun X, Huang H, Liu X. Bioinformatics-Based Approaches Predict That MIR-17-5P Functions in the Pathogenesis of Seasonal Allergic Rhinitis Through Regulating ABCA1 and CD69. Am J Rhinol Allergy 2019; 33:269-276. [PMID: 30616374 DOI: 10.1177/1945892418823388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE As the most prevalent type of rhinitis, allergic rhinitis is consisted of seasonal allergic rhinitis (SAR) and perennial allergic rhinitis. This study is carried out for revealing the mechanisms of SAR. METHODS Microarray data set GSE43523 (including 7 SAR nasal epithelial cells and 5 nonallergic control nasal epithelial cells) was extracted from Gene Expression Omnibus database. Based on limma package, differential expression analysis for the 2 groups was performed to obtain differentially expressed genes (DEGs). Using Multifaceted Analysis Tool for Human Transcriptome online tool, the functions involving the DEGs were predicted by enrichment analysis. Combined with Cytoscape software, protein-protein interaction (PPI) network was built and a significant network module was acquired. In addition, transcription factor (TF)-target and miRNA-target pairs were predicted using WebGestalt tool, and then TF-miRNA-target regulatory network was built by Cytoscape software. RESULTS There were 274 DEGs between rhinitis and control samples, including 144 upregulated genes and 130 downregulated genes. After PPI for the DEGs was built, a significant network module was identified. In the TF-miRNA-target regulatory network, ABCA1, CPEB4, CD69, MIR-17-5P, and CREB had higher degrees. Furthermore, both ABCA1 and CD69 were targeted by MIR-17-5P in the regulatory network. CONCLUSION CPEB4 and CREB might be implicated in the pathogenesis of SAR. Besides, MIR-17-5P might also act in SAR via targeting ABCA1 and CD69.
Collapse
Affiliation(s)
- Xiaoling Liu
- 1 ENT Department, Inner Mongolia People's Hospital, Hohhot, China
| | - Yu Ren
- 2 Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, China
| | - Xiaolei Sun
- 1 ENT Department, Inner Mongolia People's Hospital, Hohhot, China
| | - Haiyun Huang
- 1 ENT Department, Inner Mongolia People's Hospital, Hohhot, China
| | - Xiaojia Liu
- 1 ENT Department, Inner Mongolia People's Hospital, Hohhot, China
| |
Collapse
|
39
|
Di Salvo E, Casciaro M, Quartuccio S, Genovese L, Gangemi S. Do Alarmins Have a Potential Role in Autism Spectrum Disorders Pathogenesis and Progression? Biomolecules 2018; 9:E2. [PMID: 30577568 PMCID: PMC6358895 DOI: 10.3390/biom9010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/09/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorders (ASDs) represent a disabling condition in early childhood. A number of risk factors were proposed in order to explain their pathogenesis. A multifactorial model was proposed, and data supported the implication of genetic and environmental factors. One of the most accepted speculations is the existence of an imbalance of the immune system. Altered levels of cytokines, chemokines and immunoglobulins were demonstrated in patients with ASDs; in particular, proinflammatory mediators were significantly increased. Alarmins are a multifunctional heterogeneous group of proteins, structurally belonging to specific cells or incorporated by them. They are released in the surrounding tissues as a consequence of cell damage or inflammation. Their functions are multiple as they could activate innate immunity or recruit and activate antigen-presenting cells stimulating an adaptive response. Alarmins are interesting both for understanding the inflammatory process and for diagnostic purposes as biomarkers. Moreover, recent studies, separately, showed that alarmins like interleukin (IL)-33, high-mobility group box 1 (HMGB1), heat-shock protein (HSP) and S100 protein (S100) could play a relevant role in the pathogenesis of ASDs. According to the literature, some of these alarmins could be suitable as biomarkers of inflammation in ASD. Other alarmins, by interfering with the immune system blocking pro-inflammatory mediators, could be the key for ameliorating symptoms and behaviours in autistic disorders.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- National Research Council of Italy (CNR), Institute of Biological Resources and Marine Biotechnologies (IRBIM), Messina 98122, Italy.
- National Research Council of Italy (CNR), Institute of Applied Science and Intelligent System (ISASI), Messina 98164, Italy.
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy.
| | | | - Lucrezia Genovese
- National Research Council of Italy (CNR), Institute of Biological Resources and Marine Biotechnologies (IRBIM), Messina 98122, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina 98125, Italy.
| |
Collapse
|
40
|
Yao XJ, Liu XF, Wang XD. Potential Role of Interleukin-25/Interleukin-33/Thymic Stromal Lymphopoietin-Fibrocyte Axis in the Pathogenesis of Allergic Airway Diseases. Chin Med J (Engl) 2018; 131:1983-1989. [PMID: 30082531 PMCID: PMC6085861 DOI: 10.4103/0366-6999.238150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: Allergic airway diseases (AADs) are a group of heterogeneous disease mediated by T-helper type 2 (Th2) immune response and characterized with airway inflammation and remodeling, including allergic asthma, allergic rhinitis, and chronic rhinosinusitis with allergic background. This review aimed to discuss the abnormal epithelial-mesenchymal crosstalk in the pathogenesis of AADs. Data Sources: Articles referred in this review were collected from the database of PubMed published in English up to January 2018. Study Selection: We had done a literature search using the following terms “allergic airway disease OR asthma OR allergic rhinitis OR chronic sinusitis AND IL-25 OR IL-33 OR thymic stromal lymphopoietin OR fibrocyte”. Related original or review articles were included and carefully analyzed. Results: It is now believed that abnormal epithelial-mesenchymal crosstalk underlies the pathogenesis of AADs. However, the key regulatory factors and molecular events involved in this process still remain unclear. Epithelium-derived triple cytokines, including interleukin (IL)-25, IL-33, and thymic stromal lymphopoietin (TSLP), are shown to act on various target cells and promote the Th2 immune response. Circulating fibrocyte is an important mesenchymal cell that can mediate tissue remodeling. We previously found that IL-25-circulating fibrocyte axis was significantly upregulated in patients with asthma, which may greatly contribute to asthmatic airway inflammation and remodeling. Conclusions: In view of the redundancy of cytokines and “united airway” theory, we propose a new concept that IL-25/IL-33/TSLP-fibrocyte axis may play a vital role in the abnormal epithelial-mesenchymal crosstalk in some endotypes of AADs. This novel idea will guide potential new intervention schema for the common treatment of AADs sharing common pathogenesis in the future.
Collapse
Affiliation(s)
- Xiu-Juan Yao
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiao-Fang Liu
- Department of Respiratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xiang-Dong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
41
|
Li L, Wang Y, Wang X, Tao Y, Bao K, Hua Y, Jiang G, Hong M. Formononetin attenuated allergic diseases through inhibition of epithelial-derived cytokines by regulating E-cadherin. Clin Immunol 2018; 195:67-76. [DOI: 10.1016/j.clim.2018.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/08/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
|
42
|
Ihara F, Sakurai D, Yonekura S, Iinuma T, Yagi R, Sakurai T, Ito T, Matsuura A, Morimoto Y, Arai T, Suzuki S, Katayama K, Nakayama T, Okamoto Y. Identification of specifically reduced Th2 cell subsets in allergic rhinitis patients after sublingual immunotherapy. Allergy 2018. [PMID: 29517806 DOI: 10.1111/all.13436] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although Th2 cells are well known to play important roles in allergic diseases including allergic rhinitis (AR), the factors that induce and sustain the pathogenesis of AR remain unclear. The recent development of sublingual immunotherapy (SLIT) is expected to allow changes to the underlying pathogenesis of AR. However, which Th2 cell subsets are important in house dust mite-induced AR (HDM-AR), the influence of SLIT on the pathogenic Th2 cells, and the association of Th2 cell subsets with SLIT efficacy have not been clarified. METHODS The cytokine production and frequency of HDM-reactive T-cell subsets in peripheral blood mononuclear cells (PBMCs) were evaluated using flow cytometry in 89 HDM-AR patients (placebo [n = 43] and HDM 300 IR [n = 46]) who participated in a placebo-controlled study of SLIT with HDM tablets. All patients provided samples both before treatment as a baseline and at the end of the 52-week study. The PBMCs were stained with CellTrace™ Violet (CTV) before culture with HDM extract, and HDM-reactive T cells were detected as the proliferated cells with diminished CTV. RESULTS HDM-reactive IL-5+ IL-13+ CD27- CD161+ CD4+ cells and ST2+ CD45RO+ CD4+ cells were observed in the peripheral blood from each patient with HDM-AR; these cells significantly decreased after SLIT in the group treated with active tablets. HDM-reactive ST2+ CD45RO+ CD4+ cells were significantly lower in active-responders. CONCLUSION Allergen-reactive ST2+ CD45RO+ CD4+ cells or those combined with IL-5+ IL-13+ CD27- CD161+ CD4+ cells may be useful as markers indicating the successful treatment of SLIT. These cells may play a crucial role in the pathogenesis of AR as pathogenic memory Th2 cells.
Collapse
Affiliation(s)
- F. Ihara
- Department of Otorhinolaryngology, Head and Neck Surgery; Graduate School of Medicine; Chiba University; Chiba Japan
- Department of Medical Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - D. Sakurai
- Department of Otorhinolaryngology, Head and Neck Surgery; Graduate School of Medicine; Chiba University; Chiba Japan
| | - S. Yonekura
- Department of Otorhinolaryngology, Head and Neck Surgery; Graduate School of Medicine; Chiba University; Chiba Japan
| | - T. Iinuma
- Department of Otorhinolaryngology, Head and Neck Surgery; Graduate School of Medicine; Chiba University; Chiba Japan
| | - R. Yagi
- Department of Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - T. Sakurai
- Department of Otorhinolaryngology, Head and Neck Surgery; Graduate School of Medicine; Chiba University; Chiba Japan
| | - T. Ito
- Department of Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - A. Matsuura
- Department of Otorhinolaryngology, Head and Neck Surgery; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Y. Morimoto
- Department of Otorhinolaryngology, Head and Neck Surgery; Graduate School of Medicine; Chiba University; Chiba Japan
| | - T. Arai
- Department of Otorhinolaryngology, Head and Neck Surgery; Graduate School of Medicine; Chiba University; Chiba Japan
| | - S. Suzuki
- Department of Otorhinolaryngology, Head and Neck Surgery; Graduate School of Medicine; Chiba University; Chiba Japan
| | - K. Katayama
- Drug Discovery & Disease Research Laboratory; Shionogi & Co., Ltd.; Osaka Japan
| | - T. Nakayama
- Department of Immunology; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Y. Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery; Graduate School of Medicine; Chiba University; Chiba Japan
| |
Collapse
|
43
|
Matsumoto K, Kouzaki H, Kikuoka H, Kato T, Tojima I, Shimizu S, Shimizu T. Soluble ST2 suppresses IL-5 production by human basophilic KU812 cells, induced by epithelial cell-derived IL-33. Allergol Int 2018; 67S:S32-S37. [PMID: 29941231 DOI: 10.1016/j.alit.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Epithelial cell-derived IL-33 has an important role in the initiation and activation of innate allergic inflammation. IL-33 acts as a cytokine through the ST2 receptor (ST2L) and it stimulates the production of Th2 cytokines. Soluble ST2 (sST2) may regulate Th2 responses by neutralizing the activity of IL-33. Basophils express ST2L and produce IL-5 in response to IL-33. However, the role of the epithelial cell-basophil interaction and sST2 in IL-5 production remains unclear. METHODS Cultured human bronchial epithelial (hBE33) cells, that contained the human IL-33 gene (i.e., hBE33 cells) and a human basophilic cell line, KU812 cells, were used to study the epithelial cell-basophil interaction in the production of IL-5 induced by HDM. RESULTS At 15 min after incubation, HDM stimulated the rapid release of IL-33 from cultured hBE33 cells. IL-33 and the supernatant of HDM-treated hBE33 cells stimulated IL-5 production from KU812 cells. Anti-IL-33 antibody and anti-ST2 antibody treatment of KU812 cells suppressed IL-5 production, which had been induced by the supernatant of HDM-treated hBE33 cells. The hBE33 cells secreted sST2 in a time-dependent manner. The production of sST2 by KU812 cells co-cultured with hBE33 cells was significantly increased, compared with KU812 cells cultured with the supernatant of hBE33 cells. Soluble ST2 suppressed IL-5 production by KU812 cells, which was induced by the supernatant of HDM-treated hBE33 cells. CONCLUSIONS Epithelial cell-derived IL-33 promoted IL-5 production by KU812 cells. The subsequently produced sST2 has important roles in regulating Th2 responses.
Collapse
|
44
|
Ding W, Zou GL, Zhang W, Lai XN, Chen HW, Xiong LX. Interleukin-33: Its Emerging Role in Allergic Diseases. Molecules 2018; 23:E1665. [PMID: 29987222 PMCID: PMC6099536 DOI: 10.3390/molecules23071665] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022] Open
Abstract
Allergic diseases, which include asthma, allergic rhinitis (AR), chronic rhinosinusitis (CRS), atopic dermatitis (AD), food allergy (FA), allergic keratoconjunctivitis, seriously affect the quality of life of people all over the world. Recently, interleukin-33 (IL-33) has been found to play an important role in these refractory disorders, mainly by inducing T helper (Th) 2 immune responses. This article reviews the mobilization and biological function of IL-33 in allergic disorders, providing novel insights for addressing these hypersensitive conditions.
Collapse
Affiliation(s)
- Wen Ding
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Gui-Lin Zou
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Wei Zhang
- Gannan Medical University, Rongjiang New Area, Ganzhou 341000, China.
| | - Xing-Ning Lai
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Hou-Wen Chen
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China.
| |
Collapse
|
45
|
Uasuf CG, Sano CD, Gangemi S, Albeggiani G, Cigna D, Dino P, Brusca I, Gjomarkaj M, Pace E. IL-33/s-ST2 ratio, systemic symptoms, and basophil activation in Pru p 3-sensitized allergic patients. Inflamm Res 2018; 67:671-679. [PMID: 29774370 DOI: 10.1007/s00011-018-1157-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although IL-33/ST2 axis is involved in the development of allergic diseases, its contribution in food allergy is still unknown. METHODS In this study, we assessed the serum levels of IL-33 and its s-ST2 receptor in 53 control patients (without allergic diseases), 47 peach (Pru p 3)-sensitized allergic patients (SAP), and in 68 non-Pru p 3-SAP. Basophil activation test (BAT) was used to assess the basophil activation due to allergen exposure before and after the addition of s-ST2 to the blood samples from 5 Pru p 3-SAP. RESULTS IL-33 levels in Pru p 3-SAP were higher than in non-Pru p 3-SAP and in normal controls. Lower s-ST2 levels were found in Pru p 3-SAP than in non-Pru p 3-SAP. IL-33/s-ST2 ratio was higher in Pru p 3-SAP than in both non-Pru p 3-SAP and controls. Higher IL-33/s-ST2 ratio was observed in Pru p 3-SAP with severe than in those with mild systemic symptoms. BAT analysis in Pru p 3-SAP showed a decrease in basophil activation due to Pru p 3 exposure after the addition of s-ST2 to the blood samples. CONCLUSIONS An imbalance in the baseline levels of IL-33/ST2 pathway is present in Pru p 3-SAP. The measurement of this pathway might be helpful to detect patients at a higher risk of developing severe systemic symptoms.
Collapse
Affiliation(s)
- Carina G Uasuf
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Caterina Di Sano
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Division of Allergy and Clinical Immunology, University of Messina, Messina, Italy
| | - Giuseppe Albeggiani
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Diego Cigna
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Paola Dino
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Ignazio Brusca
- Clinical Pathology, Allergy Unit, Buccheri La Ferla Hospital, Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Mark Gjomarkaj
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy
| | - Elisabetta Pace
- Allergy Diseases Center "Prof G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM), National Research Council (CNR), Palermo, Italy.
| |
Collapse
|
46
|
Mitchell PD, Salter BM, Oliveria JP, El-Gammal A, Tworek D, Smith SG, Sehmi R, Gauvreau GM, O Apos Byrne PM. IL-33 and Its Receptor ST2 after Inhaled Allergen Challenge in Allergic Asthmatics. Int Arch Allergy Immunol 2018; 176:133-142. [PMID: 29694974 DOI: 10.1159/000488015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Previous murine models have demonstrated interleukin (IL)-33 to be an important mediator of type-2 inflammation and to promote airway hyperresponsiveness in allergic asthma. A number of inflammatory cells produce IL-33 and eosinophils express ST2 mRNA. The relationship between IL-33 and eosinophils in allergic asthma, however, remains unclear. OBJECTIVE The aim of this work was to evaluate in vitro the effect of allergen inhalation on IL-33 levels and expression of its receptor (ST2L) on eosinophils in allergic asthmatics, and the effect of IL-33 stimulation on eosinophil activity. METHODS Plasma and sputum IL-33, soluble ST2 (sST2) levels, and ST2L expression on eosinophils were measured in 10 healthy controls and 10 allergic asthmatics. Asthmatics underwent allergen and diluent inhalation challenges. Blood and sputum samples were collected to measure IL-33, sST2, and ST2L eosinophil expression before and 24 h after allergen inhalation. Purified blood eosinophils from allergic asthmatics were incubated overnight with IL-33 to assess ST2 and intracellular IL-5 expression. RESULTS Baseline levels of IL-33 in sputum and sST2 in plasma and sputum were similar in allergic asthmatics compared to healthy controls. In addition, there was no difference in blood or sputum eosinophil ST2L expression in healthy controls versus allergic asthmatics. Eosinophil ST2L expression was significantly increased 24 h postallergen inhalation in allergic asthmatics. In vitro stimulation of human eosinophils with IL-33 and LPS significantly increased eosinophil ST2L expression and IL-33 stimulation increased intracellular IL-5 expression, which was attenuated by treatment with sST2 and ST2 blockade. CONCLUSION AND CLINICAL RELEVANCE In mild asthmatics, there was a significant upregulation of ST2 surface expression on eosinophils from blood and sputum following allergen inhalation challenge. In vitro, IL-33 stimulation of eosinophils increases both ST2 membrane expression and IL-5 production. These results support a role for IL-33 in causing allergen-induced eosinophilia. Blockade of IL-33 and ST2 signaling may present a novel therapeutic avenue for asthma treatment.
Collapse
|
47
|
Neighbour H, Soliman M, Steacy LM, Hickey P, Forbes B, Larché M, Ellis AK. The Allergic Rhinitis Clinical Investigator Collaborative (AR-CIC): verification of nasal allergen challenge procedures in a study utilizing an investigational immunotherapy for cat allergy. Clin Transl Allergy 2018; 8:15. [PMID: 29682277 PMCID: PMC5896125 DOI: 10.1186/s13601-018-0198-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
Background The Allergic Rhinitis Clinical Investigator Collaborative (AR-CIC) is a network of experienced Allergic Rhinitis (AR) researchers developing better research tools based on the nasal allergen challenge (NAC). A key objective of such is the ability to detect efficacy in a small population. AR-CIC sought to test its NAC protocol as a secondary objective in two small mechanistic research trials of a novel form of immunotherapy [Cat Peptide Antigen Desensitisation (Cat-PAD)] for which efficacy had previously been demonstrated. The primary objective (not presented here) was to identify potential biomarkers of efficacy for peptide immunotherapy, and this provided an ideal opportunity to corroborate the NAC protocol. We aim to clinically validate the AR-CIC NAC methodology in a pooled analysis of secondary endpoints measured in two open label mechanistic studies of cat allergic participants treated with Cat-PAD. Methods Cat allergic AR sufferers with ongoing cat exposure were included. Participants had to demonstrate a total nasal symptom score (TNSS) of at least 8 (max 12) and/or achieve a reduction in peak nasal inspiratory flow (PNIF) of ≥ 50% during a screening titrated NAC. Eligible participants then underwent a baseline NAC visit with the allergen dose that produced a positive challenge at screening, followed by four monthly injections of 6 nmol Cat-PAD. A follow up NAC visit documented changes in nasal response 1 month following the completion of treatment. Results Nineteen subjects completed the study protocol in the two studies combined. Four injections of Cat-PAD resulted in a significant reduction in TNSS responses generated via NAC following allergen challenge (15 min p < 0.05, 30 min p < 0.05, 1 h p < 0.01, 2 h p < 0.05). There was modest correlation between symptom scores and PNIF measurements. Conclusions This study supports the validity of the AR-CIC’s optimised NAC protocol for conducting research of the potential efficacy of novel therapeutics in multi-centre studies. Trial registration Both studies reported herein were registered clinicaltrials.gov (NCT01383590 and NCT01383603)
Collapse
Affiliation(s)
- Helen Neighbour
- 1Divisions of Clinical Immunology & Allergy and Respirology, Department of Medicine, Firestone Institute of Respiratory Health, The Research Institute, St. Joe's Hamilton and McMaster University, Hamilton, ON Canada
| | - Mena Soliman
- 2Allergy Research Unit, Kingston General Hospital, Kingston, ON Canada
| | - Lisa M Steacy
- 2Allergy Research Unit, Kingston General Hospital, Kingston, ON Canada
| | - Pascal Hickey
- Adiga Life Sciences, Inc, McMaster Innovation Park, Hamilton, ON Canada
| | - Beth Forbes
- Adiga Life Sciences, Inc, McMaster Innovation Park, Hamilton, ON Canada
| | - Mark Larché
- 1Divisions of Clinical Immunology & Allergy and Respirology, Department of Medicine, Firestone Institute of Respiratory Health, The Research Institute, St. Joe's Hamilton and McMaster University, Hamilton, ON Canada
| | - Anne K Ellis
- 2Allergy Research Unit, Kingston General Hospital, Kingston, ON Canada.,4Division of Allergy and Immunology, Department of Medicine, Kingston General Hospital, Queen's University, 76 Stuart Street, Watkins D1, Kingston, ON K7L 2V7 Canada
| |
Collapse
|
48
|
Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev 2018; 278:173-184. [PMID: 28658560 DOI: 10.1111/imr.12552] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-33 is a key cytokine involved in type 2 immunity and allergic airway diseases. Abundantly expressed in lung epithelial cells, IL-33 plays critical roles in both innate and adaptive immune responses in mucosal organs. In innate immunity, IL-33 and group 2 innate lymphoid cells (ILC2s) provide an essential axis for rapid immune responses and tissue homeostasis. In adaptive immunity, IL-33 interacts with dendritic cells, Th2 cells, follicular T cells, and regulatory T cells, where IL-33 influences the development of chronic airway inflammation and tissue remodeling. The clinical findings that both the IL-33 and ILC2 levels are elevated in patients with allergic airway diseases suggest that IL-33 plays an important role in the pathogenesis of these diseases. IL-33 and ILC2 may also serve as biomarkers for disease classification and to monitor the progression of diseases. In this article, we reviewed the current knowledge of the biology of IL-33 and discussed the roles of the IL-33 in regulating airway immune responses and allergic airway diseases.
Collapse
Affiliation(s)
- Li Yin Drake
- Division of Allergic Diseases and Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hirohito Kita
- Division of Allergic Diseases and Department of Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
49
|
Andersson C, Bonvini SJ, Horvath P, Marquez E, Satia I, Kirkham P, Schleich F, Idzko M, Gosens R, Lopez-Campos JL, Bossios A, Usmani O, Spanevello A, Adcock IM, Mathioudakis AG. Research highlights from the 2017 ERS International Congress: airway diseases in focus. ERJ Open Res 2018; 4:00163-2017. [PMID: 29546046 PMCID: PMC5847812 DOI: 10.1183/23120541.00163-2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/11/2018] [Indexed: 11/24/2022] Open
Abstract
For another year, high-quality research studies from around the world transformed the annual ERS International Congress into a vivid platform to discuss trending research topics, to produce new research questions and to further push the boundaries of respiratory medicine and science. This article reviews only some of the high-quality research studies on asthma, chronic obstructive pulmonary disease (COPD), bronchiectasis and chronic cough that were presented during the congress through the Airway Diseases Assembly (ERS Assembly 5) and places them into the context of current knowledge and research challenges. Members of the @ERStalk Airway Diseases Assembly discuss clinical highlights from #ERSCongress 2017http://ow.ly/G51Y30i7fMR
Collapse
Affiliation(s)
| | - Sara J Bonvini
- National Heart and Lung Institute, Imperial College, London, UK
| | - Peter Horvath
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Eduardo Marquez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Instituto de Biomedicina de Sevilla (IBiS), Campus Hospital Universitario Virgen del Rocío and Universidad de Sevilla, Seville, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES) and Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Imran Satia
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Paul Kirkham
- Dept of Biomedical Sciences, University of Wolverhampton, Wolverhampton, UK
| | - Florence Schleich
- Dept of Respiratory Medicine, Centre Hospitalier Universitaire (CHU) de Liège and Research Group GIGA I3, University of Liège, Liège, Belgium
| | - Marco Idzko
- Dept of Pneumology, Medical University of Vienna, Vienna, Austria
| | - Reinoud Gosens
- Dept of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Jose Luis Lopez-Campos
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES) and Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Apostolos Bossios
- Dept of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden.,Dept of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Omar Usmani
- National Heart and Lung Institute, Imperial College, London, UK
| | - Antonio Spanevello
- Università degli Studi dell'Insubria and Fondazione S. Maugeri, Varese, Italy
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College, London, UK
| | - Alexander G Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| |
Collapse
|
50
|
Umebashi K, Tokito A, Yamamoto M, Jougasaki M. Interleukin-33 induces interleukin-8 expression via JNK/c-Jun/AP-1 pathway in human umbilical vein endothelial cells. PLoS One 2018; 13:e0191659. [PMID: 29373608 PMCID: PMC5786299 DOI: 10.1371/journal.pone.0191659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/09/2018] [Indexed: 11/19/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 cytokine family with dual functions as a traditional cytokine and as a transcriptional regulator. We recently reported that IL-33 up-regulated growth regulated oncogene (GRO)-α/CXCL1 expression in human vascular endothelial cells. The aim of this study was to investigate the effect of IL-33 on the expression of IL-8/CXCL8, another member of the CXC-chemokine family, and to elucidate its signaling pathways in human umbilical vein endothelial cells (HUVECs). Immunocytochemical staining and Western immunoblot analysis revealed that IL-33 augmented IL-8 protein expression in HUVECs. Real time reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) showed that IL-33 significantly increased IL-8 mRNA and secretion in a dose- and time-dependent manner. IL-33 preferentially stimulated proliferating subconfluent cells, and increased IL-8 secretion to a higher level compared with confluent cells. IL-33 also stimulated phosphorylations of c-Jun N-terminal kinase (JNK) and c-Jun, and enhanced activator protein (AP)-1 DNA-binding activity, all of which were suppressed by SP600125, a JNK inhibitor. Moreover, IL-33-induced IL-8 mRNA and secretion were also suppressed by SP600125. Transfection of c-Jun small interfering RNA into cultured HUVECs significantly reduced the IL-33-induced increase in IL-8 secretion from HUVECs. The present study demonstrates that IL-33 induces IL-8 expression via JNK/c-Jun/AP-1 pathway in human vascular endothelial cells, and provides a new insight into the role of IL-33-induced IL-8 in the pathophysiology of atherosclerosis and vascular inflammation.
Collapse
Affiliation(s)
- Katsuyuki Umebashi
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
- Neurohumoral Biology, Cooperative Department of Innovative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akinori Tokito
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Masayoshi Yamamoto
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
- Neurohumoral Biology, Cooperative Department of Innovative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michihisa Jougasaki
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
- Neurohumoral Biology, Cooperative Department of Innovative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| |
Collapse
|