1
|
Chalmers JD, Metersky M, Aliberti S, Morgan L, Fucile S, Lauterio M, McDonald PP. Neutrophilic inflammation in bronchiectasis. Eur Respir Rev 2025; 34:240179. [PMID: 40174958 PMCID: PMC11962982 DOI: 10.1183/16000617.0179-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/11/2025] [Indexed: 04/04/2025] Open
Abstract
Noncystic fibrosis bronchiectasis, hereafter referred to as bronchiectasis, is a chronic, progressive lung disease that can affect people of all ages. Patients with clinically significant bronchiectasis have chronic cough and sputum production, as well as recurrent respiratory infections, fatigue and impaired health-related quality of life. The pathophysiology of bronchiectasis has been described as a vicious vortex of chronic inflammation, recurring airway infection, impaired mucociliary clearance and progressive lung damage that promotes the development and progression of the disease. This review describes the pivotal role of neutrophil-driven inflammation in the pathogenesis and progression of bronchiectasis. Delayed neutrophil apoptosis and increased necrosis enhance dysregulated inflammation in bronchiectasis and failure to resolve this contributes to chronic, sustained inflammation. The excessive release of neutrophil serine proteases, such as neutrophil elastase, cathepsin G and proteinase 3, promotes a protease-antiprotease imbalance that correlates with increased inflammation in bronchiectasis and contributes to disease progression. While there are currently no licensed therapies to treat bronchiectasis, this review will explore the evolving evidence for neutrophilic inflammation as a novel treatment target with meaningful clinical benefits.
Collapse
Affiliation(s)
- James D Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Mark Metersky
- University of Connecticut School of Medicine, Farmington, CT, USA
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
| | - Lucy Morgan
- Department of Respiratory Medicine, Concord Clinical School, University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
2
|
Yang L, Zheng SG. Role of regulatory T cells in inflammatory liver diseases. Autoimmun Rev 2025; 24:103806. [PMID: 40139456 DOI: 10.1016/j.autrev.2025.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The liver is the human body's largest digestive gland, which can participate in digestion, metabolism, excretion, detoxification and immunity. Chronic liver diseases such as metabolic dysfunction-associated fatty liver disease (MAFLD) or viral hepatitis involve ongoing inflammation and resulting liver fibrosis may ultimately lead to the development of hepatobiliary cancers (HCC). Inflammation is the coordinated reaction of different liver cell types to cell signals and death of inflammation, which are linked to injury pathways within the liver or external agents from the gut-liver axis and the circulation. Regulatory T (Treg) cells play a crucial role in controlling inflammation and are essential for maintaining immune tolerance and balance. In this review, we highlight the recent discoveries related to the function of immune systems in liver inflammation and discuss the role of Treg cells in the different liver diseases (including MAFLD, autoimmune hepatitis and others).
Collapse
Affiliation(s)
- Linjie Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Song Guo Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 201600, China.
| |
Collapse
|
3
|
Boschiero C, Beshah E, Bakshi M, Miramontes E, Hebert D, Thompson PC, Li CJ, Zhu X, Zarlenga D, Liu GE, Tuo W. Transcriptional Profiling of Abomasal Mucosa from Young Calves Experimentally Infected with Ostertagia ostertagi. Int J Mol Sci 2025; 26:2264. [PMID: 40076885 PMCID: PMC11900041 DOI: 10.3390/ijms26052264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Ostertagia ostertagi, also known as the brown stomach worm, causes significant pathology in the abomasum, resulting in production and nutritional losses in cattle. Alternative control measures, such as vaccination, are urgently needed because of rapidly growing anthelmintic drug resistance. There is a need to understand host responses to the infection, especially immune responses, to advance vaccine discovery and design. Therefore, the present study investigated comprehensive changes in gene transcription in the abomasal mucosa of cattle infected with O. ostertagi at 0, 3-5, 7-9, 10, and 21 days post-infection (dpi) using RNA sequencing (RNA-seq). Compared to uninfected controls, infected animals exhibited significant increases in differentially expressed genes (DEGs) throughout the infection period. Infection induced more upregulated than downregulated genes in the abomasal fundic mucosa (FUN) when compared to the abomasal pyloric mucosa (PYL). The largest transcriptional changes occurred between 7-9 and 10 dpi during the final development of the L4 and their emergence from the gastric glands. Most DEGs are associated with host immunity, cellular reorganization, cell migration, and proliferation. Tuft/epithelial cell response to the infection was atypical, lacking an anticipated increase in key alarmin cytokine genes. Numerous genes associated with T helper (Th) 1, Th2, and Th17 responses and T cell exhaustion were upregulated, suggesting altered immune regulation. The data collectively indicate that O. ostertagi infection elicits massive host responses, particularly immune responses, which are intertwined with the parasite's disruption of abomasal function, which likely impairs the nutrient utilization of the host. The infection is characterized by the absence of a dominant Th response and displaying a mixed activation of Th1, Th2, and Th17 pathways. Elevated expression of T cell exhaustion genes and lack of increase in epithelial alarmin cytokine genes suggest a downregulation of, or a deficiency in initiating, effective host immunity to the infection. Understanding mechanisms of parasite-mediated immune evasion and their nutritional consequences will facilitate the rational design of protective vaccines against infections of complex nematode parasites.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Ethiopia Beshah
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Mariam Bakshi
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Eliseo Miramontes
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Deborah Hebert
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Peter C. Thompson
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Cong-Jun Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Xiaoping Zhu
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | - Dante Zarlenga
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Chiu CC, Hao WR, Lin KJ, Chen CC, Yang TY, Fang YA, Yang TL, Lai YH, Chen MY, Hsu MH, Lin CH, Hsiu H, Chen HY, Cheng TH, Chen NH, Liu JC. Big data analysis of influenza vaccination and liver cancer risk in hypertensive patients: insights from a nationwide population-based cohort study. BMC Gastroenterol 2025; 25:109. [PMID: 39994561 PMCID: PMC11849173 DOI: 10.1186/s12876-025-03665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 02/01/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND previous studies have indicated that influenza vaccination may be associated with reduced risks of certain types of cancer. However, the protective effect of influenza vaccination against primary liver cancer in individuals with hypertension remains unclear. METHODS In this cohort study, 37,022 patients over 55 years of age who received a diagnosis of hypertension at any time between January 1, 2001, and December 31, 2012, were enrolled from the National Health Insurance Research Database. The patients were divided into a vaccinated and an unvaccinated group. Categorical and continuous variables were analyzed using the chi-square test and t test, respectively, and the correlation between influenza vaccination and liver cancer in patients with hypertension was analyzed using time-varying COX model. Propensity score method was performed to reduce selection bias. RESULTS Compared with the unvaccinated group, the vaccinated group had a significantly lower incidence of liver cancer (hazard ratio = 0.56, 95% confidence interval = 0.46-0.64; p < .001). In addition, a protective effect was observed regardless of sex, age, or comorbidities. Besides, the association was dose-dependent which could be noted when patients were stratified based on the total number of vaccinations. The adjusted HRs for patients receiving 1, 2 to 3, and ≥ 4 vaccinations during the follow-up period were 0.60 (0.51-0.78), 0.48 (0.38-0.65), and 0.39(0.30-0.51), respectively. CONCLUSIONS In summary, influenza vaccination is linked to a decreased risk of liver cancer in individuals with hypertension. However, unmeasurable confounders may have been present in the analysis.
Collapse
Affiliation(s)
- Chun-Chih Chiu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Wen-Rui Hao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Kuan-Jie Lin
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chun-Chao Chen
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Tsung-Yeh Yang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ann Fang
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Lin Yang
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Yu-Hsin Lai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei, Taiwan
| | - Min-Huei Hsu
- Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Cheng-Hsin Lin
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsin Hsiu
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, No.43, Section 4, Keelung Road, Taipei, 10607, Taiwan
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11578, Taiwan
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung City, 404333, Taiwan
| | - Nai-Hsuan Chen
- Department of Physical medicine and rehabilitation, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan.
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Chetty K, Peters XQ, Omolo CA, Ismail EA, Gafar MA, Elhassan E, Kassam SZF, Govender J, Dlamini S, Govender T. Multifunctional Dual Enzyme-Responsive Nanostructured Lipid Carriers for Targeting and Enhancing the Treatment of Bacterial Infections. ACS APPLIED BIO MATERIALS 2025; 8:548-569. [PMID: 39714140 DOI: 10.1021/acsabm.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Bacterial infections pose an increasingly worrisome threat to the health of humankind, with antibiotic resistance contributing significantly to this burden. With current conventional antibiotics perpetuating the problem, and a paucity in developing antibiotics, drug delivery systems incorporating nanotechnology appear promising. As such, a dual enzyme-responsive multifunctional nanostructured lipid carrier (NLC) incorporating farnesol (FAN) and triglycerol monostearate (TGMS), was conceptualized for the codelivery of vancomycin (VCM) and antimicrobial peptide (AMP) to enhance the antibacterial activity of VCM. In silico studies and Microscale Thermophoresis demonstrated the strong binding relationships between the NLC constituents and two enzymes that exist in higher concentrations during host infection, namely lipase and a matrix metalloproteinase (MMP). The formulated nanosystem, VCM-AMP-TF-NLCs, had a particle size, polydispersity index, zeta potential, and entrapment efficiency of 149.00 ± 2.97 nm, 0.07 ± 0.01, -5.51 ± 1.21 mV, and 86.20% ± 1.47%, respectively. The NLCs, which showed stability, and biocompatibility, also demonstrated lipase- and MMP-responsiveness. The in vitro antibacterial studies revealed 2-fold and 8-fold reductions in the minimum inhibitory concentration for the NLCs compared to bare VCM, against methicillin-resistant Staphylococcal aureus (MRSA) and Escherichia coli, respectively. Furthermore, in vivo studies revealed that tissues treated with the VCM-AMP-TF-NLCs displayed significantly reduced bacterial burdens (up to 8.73-fold) and less histopathological cellular injury, edema, and necrosis compared to the tissues treated with bare VCM alone. The results support the superiority of the VCM-AMP-TF-NLCs as a multifunctional dual enzyme-responsive NLC compared to bare VCM.
Collapse
Affiliation(s)
- Kerisha Chetty
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
- Department of Pharmaceutics, School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634, Nairobi 00800, Kenya
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Sania Z F Kassam
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Jasoda Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Sbongumusa Dlamini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4300, South Africa
| |
Collapse
|
6
|
Lyu J, Narum DE, Baldwin SL, Larsen SE, Bai X, Griffith DE, Dartois V, Naidoo T, Steyn AJC, Coler RN, Chan ED. Understanding the development of tuberculous granulomas: insights into host protection and pathogenesis, a review in humans and animals. Front Immunol 2024; 15:1427559. [PMID: 39717773 PMCID: PMC11663721 DOI: 10.3389/fimmu.2024.1427559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Granulomas, organized aggregates of immune cells which form in response to Mycobacterium tuberculosis (Mtb), are characteristic but not exclusive of tuberculosis (TB). Despite existing investigations on TB granulomas, the determinants that differentiate host-protective granulomas from granulomas that contribute to TB pathogenesis are often disputed. Thus, the goal of this narrative review is to help clarify the existing literature on such determinants. We adopt the a priori view that TB granulomas are host-protective organelles and discuss the molecular and cellular determinants that induce protective granulomas and those that promote their failure. While reports about protective TB granulomas and their failure may initially seem contradictory, it is increasingly recognized that either deficiencies or excesses of the molecular and cellular components in TB granuloma formation may be detrimental to the host. More specifically, insufficient or excessive expression/representation of the following components have been reported to skew granulomas toward the less protective phenotype: (i) epithelioid macrophages; (ii) type 1 adaptive immune response; (iii) type 2 adaptive immune response; (iv) tumor necrosis factor; (v) interleukin-12; (vi) interleukin-17; (vii) matrix metalloproteinases; (viii) hypoxia in the TB granulomas; (ix) hypoxia inducible factor-1 alpha; (x) aerobic glycolysis; (xi) indoleamine 2,3-dioxygenase activity; (xii) heme oxygenase-1 activity; (xiii) immune checkpoint; (xiv) leukotriene A4 hydrolase activity; (xv) nuclear-factor-kappa B; and (xvi) transforming growth factor-beta. Rather, more precise and timely coordinated immune responses appear essential for eradication or containment of Mtb infection. Since there are several animal models of infection with Mtb, other species within the Mtb complex, and the surrogate Mycobacterium marinum - whether natural (cattle, elephants) or experimental (zebrafish, mouse, guinea pig, rabbit, mini pig, goat, non-human primate) infections - we also compared the TB granulomatous response and other pathologic lung lesions in various animals infected with one of these mycobacteria with that of human pulmonary TB. Identifying components that dictate the formation of host-protective granulomas and the circumstances that result in their failure can enhance our understanding of the macrocosm of human TB and facilitate the development of novel remedies - whether they be direct therapeutics or indirect interventions - to efficiently eliminate Mtb infection and prevent its pathologic sequelae.
Collapse
Affiliation(s)
- Jiwon Lyu
- Division of Pulmonary and Critical Medicine, Soon Chun Hyang University Cheonan Hospital, Seoul, Republic of Korea
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Drew E. Narum
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
| | - Susan L. Baldwin
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Sasha E. Larsen
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xiyuan Bai
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - David E. Griffith
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Threnesan Naidoo
- Departments of Forensic & Legal Medicine and Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rhea N. Coler
- Center for Global Infectious Diseases, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Edward D. Chan
- Department of Academic Affairs, National Jewish Health, Denver, CO, United States
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
7
|
Wu TK, Fu Q, Liotta JL, Bowman DD. Proteomic analysis of extracellular vesicles and extracellular vesicle-depleted excretory-secretory products of Toxocara canis and Toxocara cati larval cultures. Vet Parasitol 2024; 332:110331. [PMID: 39426022 DOI: 10.1016/j.vetpar.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Toxocara canis and Toxocara cati are parasitic nematodes in the order Ascaridida, which inhabit the small intestines of dogs and cats, respectively, as adults. Although often nonpathogenic as adults, nematodes within this genus are capable of causing widespread disease throughout the host while in a larval stage, during which time larvae migrate throughout the body in a process termed larva migrans. Larvae are also capable of surviving within host tissues in an encysted arrested stage, without immune clearance by the host. The ability of larvae to survive within host tissues during migration and encystment may be attributed to immunomodulatory molecules released by the excretory cells of larvae in excretory-secretory (ES) products. ES products of parasites contain a variety of molecules, including proteins, lipids, and extracellular vesicles (EVs). Toxocara excretory-secretory (TES) products have been studied to some degree, with proteomic analysis of TES proteins described previously; however, investigation of the EVs within TES is lacking, despite the suggested role for these molecules in host interaction and potential immunomodulation. To further characterize the protein cargo within EVs in TES, EVs were isolated from larval cultures of T. canis and T. cati via ultrafiltration, with concurrent collection of EV-depleted TES filtrate for additional study. Isolated EVs and EV-depleted TES from both T. canis and T. cati were submitted for proteomic analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteomic identification results revealed 140 proteins across all samples, with 16 shared by all samples, and 76 total proteins shared between T. canis and T. cati, present within EVs and EV-depleted TES. There were 17 proteins shared exclusively by EV samples, and 15 were shared exclusively between EV-depleted TES samples. Many shared proteins were associated with the host immune response. Several proteins were specific to either T. canis or T. cati, highlighting the potential use of these proteins as diagnostic tools in the differentiation of etiologic agents in cases of toxocariasis. The results of this study build upon previously reported proteomic evaluations of TES, contributing new information in regards to newly identified proteins, EV protein cargo within TES, and potential immunomodulatory functions of these proteins.
Collapse
Affiliation(s)
- Timothy K Wu
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States.
| | - Qin Fu
- Cornell University, Proteomics and Metabolomics Facility, Institute of Biotechnology, Ithaca, NY 14850, United States
| | - Janice L Liotta
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States
| | - Dwight D Bowman
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States
| |
Collapse
|
8
|
Wong K, Tan XH, Li J, Hui JHP, Goh JCH. An In Vitro Macrophage Response Study of Silk Fibroin and Silk Fibroin/Nano-Hydroxyapatite Scaffolds for Tissue Regeneration Application. ACS Biomater Sci Eng 2024; 10:7073-7085. [PMID: 39381957 DOI: 10.1021/acsbiomaterials.4c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
In recent years, silk fibroin (SF) has been incorporated with low crystallinity nanohydroxyapatite (nHA) as a scaffold for various tissue regeneration applications due to the mechanical strength of SF and osteoconductive properties of nHA. However, currently, there is a lack of understanding of the immune response toward the degradation products of SF with nHA composite after implantation. It is known that particulate fragments from the degradation of a biomaterial can trigger an immune response. As the scaffold is made of degradable materials, the degradation products may contribute to the inflammation. Therefore, in this study, the effects of the enzymatic degradation of the SF/nHA scaffold on macrophage response were investigated in comparison to the control SF scaffold. Since the degradation products of a scaffold can influence macrophage polarization, it can be hypothesized that as the SF and SF/nHA scaffolds were degraded in vitro using protease XIV solution, the degradation products can contribute to the polarization of THP-1-derived macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype. The results demonstrated that the initial (day 1) degradation products of the SF/nHA scaffold elicited a pro-inflammatory response, while the latter (day 24) degradation products of the SF/nHA scaffold elicited an anti-inflammatory response. Moreover, the degradation products from the SF scaffold elicited a higher anti-inflammatory response due to the faster degradation of the SF scaffold and a higher amino acid concentration in the degradation solution. Hence, this paper can help elucidate the contributory effects of the degradation products of SF and SF/nHA scaffolds on macrophage response and provide greater insights into designing silk-based biomaterials with tunable degradation rates that can modulate macrophage response for future tissue regeneration applications.
Collapse
Affiliation(s)
- Kallista Wong
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Xuan Hao Tan
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - Jun Li
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Hoi Po Hui
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| | - James Cho Hong Goh
- Department of Biomedical Engineering, Department of Orthopaedic Surgery, National University of Singapore 15 Kent Ridge Crescent, E7-06-03, Singapore 119276, Singapore
| |
Collapse
|
9
|
Gupta S, Qayoom I, Mairal A, Singh S, Kumar A. Local Delivery of Exosomes and Antibiotics in Hydroxyapatite-Based Nanocement for Osteomyelitis Management. ACS Infect Dis 2024; 10:3994-4008. [PMID: 39469832 DOI: 10.1021/acsinfecdis.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The management of bone and joint infections is a formidable challenge in orthopedics and poses a global health concern. While clinical management emphasizes infection prevention and complete eradication, an effective strategy for stabilizing skeletal tissue with adequate soft tissue coverage remains limited. In this study, we have employed a novel approach of using the local delivery of exosomes and antibiotics (rifampicin) using a hydroxyapatite-based nanocement carrier to manage the residual space created during debridement effectively. Additionally, we synthesized a periosteum-guiding antioxidant herbal membrane to leverage the inherent periosteum regeneration capability of the bone, facilitating bone callus repair and natural healing. The synthesized scaffolds were biocompatible and demonstrated potent antibacterial activity in vitro. When evaluated in vivo in the Staphylococcus aureus-induced rat tibial osteomyelitis model, the released drugs successfully cleared the residual bacteria and the released exosome promoted bone healing, resulting in 3-fold increase in bone volume as analyzed via micro-CT analysis. Immunofluorescence staining of periosteum-specific markers also indicated the complete formation of periosteal layers, thus highlighting the complete bone repair.
Collapse
Affiliation(s)
- Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Ayushi Mairal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Centre of Excellence in Orthopaedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| |
Collapse
|
10
|
Bhattacharya M, Spencer BL, Kwiecinski JM, Podkowik M, Putzel G, Pironti A, Shopsin B, Doran KS, Horswill AR. Collagen binding adhesin restricts Staphylococcus aureus skin infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621145. [PMID: 39554114 PMCID: PMC11565922 DOI: 10.1101/2024.11.01.621145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Staphylococcus aureus causes approximately 80% of skin and soft tissue infections (SSTIs). Collagen is the most abundant human extracellular matrix protein with critical roles in wound healing, and S. aureus encodes a collagen binding adhesin (Cna). The role of this protein during skin infections is unknown. Here we report that inability to bind collagen results in worsened pathology of intradermal Δcna S. aureus infection. WT/Cna+ S. aureus showed reduced infection severity, aggregate formation, and significantly improved clearance of bacteria. Cna binds to the collagen-like domain of serum C1q protein to reduce its opsonophagocytic functions. We demonstrate that infection of C1qKO mice with WT bacteria show results similar to the Δcna group. Conversely, inability to bind collagen resulted in an amplified inflammatory response caused in part by macrophage and neutrophil small molecule mediators released at the infection site (MMP-9, MMP-12, LTB4), resulting in increased immune cell infiltration and death.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
| | - Jakub M. Kwiecinski
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, NY, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora CO, USA
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Denver, CO, USA
- Lead author
| |
Collapse
|
11
|
Martins B, Mossemann J, Aguilar F, Zhao S, Bilan PJ, Sayed BA. Liver Transplantation: A Test of Cellular Physiology, Preservation, and Injury. Physiology (Bethesda) 2024; 39:401-411. [PMID: 39078382 DOI: 10.1152/physiol.00020.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
Liver transplantation has evolved into a mature clinical field, but scarcity of usable organs poses a unique challenge. Expanding the donor pool requires novel approaches for protecting hepatic physiology and cellular homeostasis. Here we define hepatocellular injury during transplantation, with an emphasis on modifiable cell death pathways as future therapeutics.
Collapse
Affiliation(s)
- B Martins
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - J Mossemann
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - F Aguilar
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - S Zhao
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - P J Bilan
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - B A Sayed
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of General Surgery, Hospital for Sick Children, Toronto, Ontario, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Baird R, Yusuf A, Forde L, Pohl K, Kavanagh K, Fitzpatrick F, Gogoi D, Reeves EP. The vacuolar anti- Pseudomonal activity of neutrophil primary granule peptidyl-arginine deiminase enzymes. Front Immunol 2024; 15:1452393. [PMID: 39493757 PMCID: PMC11527647 DOI: 10.3389/fimmu.2024.1452393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024] Open
Abstract
The role of neutrophils in host defense involves several cell processes including phagocytosis, degranulation of antimicrobial proteins, and the release of neutrophil extracellular traps (NETs). In turn, dysregulated cell activity is associated with the pathogenesis of airway and rheumatic diseases, in which neutrophil-derived enzymes including peptidyl-arginine deiminases (PADs) play a role. Known physiological functions of PADs in neutrophils are limited to the activity of PAD isotype 4 in histone citrullination in NET formation. The aim of this study was to extend our knowledge on the role of PADs in neutrophils and, specifically, bacterial killing within the confines of the phagocytic vacuole. Human neutrophils were fractionated by sucrose gradient ultracentrifuge and PADs localized in subcellular compartments by Western blot analysis. Direct interaction of PADs with Pseudomonas aeruginosa (P. aeruginosa) was assessed by flow cytometry and Western blot overlay. The participation of neutrophil PAD2 and PAD4 in killing of P. aeruginosa was assessed by inclusion of PAD-specific inhibitors. In vitro, bactericidal activity of recombinant human PAD2 or PAD4 enzymes against P. aeruginosa was determined by enumeration of colony-forming units (CFU). Together with neutrophil elastase (NE), PAD2 and PAD4 were localized to primary granules and, following activation with particulate stimuli, were degranulated in to the phagocytic vacuole. In vitro, PAD2 and PAD4 bound P. aeruginosa (p = 0.04) and significantly reduced bacterial survival to 49.1 ± 17.0 (p < 0.0001) and 48.5 ± 13.9% (p < 0.0001), respectively. Higher antibacterial activity was observed at neutral pH levels with the maximum toxicity at pH 6.5 and pH 7.5, comparable to the effects of neutrophil bactericidal permeability increasing protein. In phagosomal killing assays, inclusion of the PAD2 inhibitor, AFM-30a, or PAD4 inhibitor, GSK484, significantly increased survival of P. aeruginosa (AFM-30a, p = 0.05; and GSK484, p = 0.0079). Results indicate that PAD2 and PAD4 possess antimicrobial activity and are directly involved in the neutrophil antimicrobial processes. This study supports further research into the development of PAD-based antimicrobials.
Collapse
Affiliation(s)
- Rory Baird
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Azeez Yusuf
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Luke Forde
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Kerstin Pohl
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
| | - Fidelma Fitzpatrick
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Debananda Gogoi
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P. Reeves
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
13
|
Cerbulescu T, Anghel A, Brie DA, Petraşcu FM, Salavat MC, Ardelean AI, Barac IR, Borugă O. The impact of matrix metalloproteinases and their tissue inhibitors in patients with chronic glaucoma - a literature review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:557-565. [PMID: 39957016 PMCID: PMC11924901 DOI: 10.47162/rjme.65.4.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play an important role in the pathophysiology of chronic glaucoma, as they are involved in extracellular matrix (ECM) remodeling in the trabecular meshwork (TM), affecting its ability to efficiently regulate intraocular pressure (IOP). Ensuring the balance between MMPs and TIMPs helps to maintain homeostasis in ocular tissues, which is essential to avoid glaucomatous lesions. Elevated levels of MMPs and increased degradation of the ECM, ultimately affecting aqueous humor outflow and increasing IOP, characterize glaucoma. In the current literature review, the impact and interactions of MMPs and TIMPs in chronic glaucoma have been emphasized, with multiple but still unelucidated roles in the mentioned pathology including their clinical implications, future research directions, and therapeutic approaches. Research to date indicates that the expression of TIMPs is altered in patients with chronic glaucoma, suggesting a compensatory response to increased MMPs activity. Certain drugs can influence the expression levels of MMPs and TIMPs, therefore therapeutic strategies can be developed to restore the balance between tissue enzymes and their inhibitors. Therefore, understanding the relationship between MMPs and TIMPs is a key factor in the pathogenesis of chronic glaucoma. Understanding the interplay between the two provides interesting insights into ECM remodeling in ocular tissues, highlighting the potential of targeted therapies to restore the balance between proteolytic enzymes and their inhibitors.
Collapse
Affiliation(s)
- Teodor Cerbulescu
- Department of Biochemistry, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania;
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Pant S, Bhati T, Dimri A, Arora R, Siraj F, Rastogi S. Screening of single nucleotide polymorphism in matrix metalloproteinase-2 (MMP2) and tetraspanin CD63 genes in Chlamydia trachomatis-infected tubal ectopic pregnancy patients. Int J Gynaecol Obstet 2024; 166:99-106. [PMID: 38650387 DOI: 10.1002/ijgo.15547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVE Tubal ectopic pregnancy (EP) is a leading cause of maternal morbidity and mortality. Studies have suggested that infection-induced inflammatory responses are major risk factors for EP. The aim of the present study was to find an association between MMP2 and CD63 gene variants and risk of EP during Chlamydia trachomatis infection in an Indian population. METHODS Fallopian tube samples of 120 EP and 120 tubal ligation women were collected. C. trachomatis was detected by PCR. The genotyping of MMP2 (rs17859882 G/T, rs7201A/C) and CD63(rs2231464 C/T, rs376086542 A/G) gene variants was done by qualitative real-time PCR using allelic discrimination method (VIC- and FAM-labeled). RESULTS The frequency of GG or GT genotype of MMP2 G/T polymorphism (rs17859882) was 66.6% in infected EP and 36.7% in uninfected EP and 22% in tubal ligation controls (P < 0.0001), while the frequency of AC or CC genotype of MMP2 A/C polymorphism (rs7201) was 66.6% in infected EP and 20.6% in uninfected EP and 13.5% in tubal ligation controls (P < 0.0001). The frequency of CT or TT genotype of CD63 C/T polymorphism (rs2231464) was 74% in infected EP and 21.8% in uninfected EP and 11.8% tubal ligation controls (P < 0.0001), while the frequency of AG or GG genotype of CD63 A/G polymorphism (rs376086542) was 48.1% in infected EP and 41.3% in uninfected EP and 18.6% tubal ligation controls (P < 0.0001). CONCLUSIONS The present study revealed a strong association between the presence of gene variants MMP2 (rs17859882 G/T, rs7201A/C) and CD63 (rs2231464 C/T, rs376086542 A/G) and risk of tubal EP during C. trachomatis infection.
Collapse
Affiliation(s)
- Shipra Pant
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Tanu Bhati
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Astha Dimri
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Renu Arora
- Department of Obstetrics and Gynecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi, India
| | - Fouzia Siraj
- Pathology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
15
|
Ha WS, Chu MK. Altered immunity in migraine: a comprehensive scoping review. J Headache Pain 2024; 25:95. [PMID: 38844851 PMCID: PMC11157828 DOI: 10.1186/s10194-024-01800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The pathogenesis of migraine remains unclear; however, a large body of evidence supports the hypothesis that immunological mechanisms play a key role. Therefore, we aimed to review current studies on altered immunity in individuals with migraine during and outside attacks. METHODS We searched the PubMed database to investigate immunological changes in patients with migraine. We then added other relevant articles on altered immunity in migraine to our search. RESULTS Database screening identified 1,102 articles, of which 41 were selected. We added another 104 relevant articles. We found studies reporting elevated interictal levels of some proinflammatory cytokines, including IL-6 and TNF-α. Anti-inflammatory cytokines showed various findings, such as increased TGF-β and decreased IL-10. Other changes in humoral immunity included increased levels of chemokines, adhesion molecules, and matrix metalloproteinases; activation of the complement system; and increased IgM and IgA. Changes in cellular immunity included an increase in T helper cells, decreased cytotoxic T cells, decreased regulatory T cells, and an increase in a subset of natural killer cells. A significant comorbidity of autoimmune and allergic diseases with migraine was observed. CONCLUSIONS Our review summarizes the findings regarding altered humoral and cellular immunological findings in human migraine. We highlight the possible involvement of immunological mechanisms in the pathogenesis of migraine. However, further studies are needed to expand our knowledge of the exact role of immunological mechanisms in migraine pathogenesis.
Collapse
Affiliation(s)
- Woo-Seok Ha
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
16
|
Schade R, Butler DSC, McKenna JA, Di Luccia B, Shokoohi V, Hamblin M, Pham THM, Monack DM. Transcriptional profiling links unique human macrophage phenotypes to the growth of intracellular Salmonella enterica serovar Typhi. Sci Rep 2024; 14:12811. [PMID: 38834738 PMCID: PMC11150401 DOI: 10.1038/s41598-024-63588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
Macrophages provide a crucial environment for Salmonella enterica serovar Typhi (S. Typhi) to multiply during typhoid fever, yet our understanding of how human macrophages and S. Typhi interact remains limited. In this study, we delve into the dynamics of S. Typhi replication within human macrophages and the resulting heterogeneous transcriptomic responses of macrophages during infection. Our study reveals key factors that influence macrophage diversity, uncovering distinct immune and metabolic pathways associated with different stages of S. Typhi intracellular replication in macrophages. Of note, we found that macrophages harboring replicating S. Typhi are skewed towards an M1 pro-inflammatory state, whereas macrophages containing non-replicating S. Typhi exhibit neither a distinct M1 pro-inflammatory nor M2 anti-inflammatory state. Additionally, macrophages with replicating S. Typhi were characterized by the increased expression of genes associated with STAT3 phosphorylation and the activation of the STAT3 transcription factor. Our results shed light on transcriptomic pathways involved in the susceptibility of human macrophages to intracellular S. Typhi replication, thereby providing crucial insight into host phenotypes that restrict and support S. Typhi infection.
Collapse
Affiliation(s)
- Ruth Schade
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Daniel S C Butler
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Joy A McKenna
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Blanda Di Luccia
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Vida Shokoohi
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA, USA
| | - Meagan Hamblin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Trung H M Pham
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Wong M, Gain C, Sharma MB, Fotooh Abadi L, Hugo C, Vassilopoulos H, Daskou M, Fishbein GA, Kelesidis T. Severe Acute Respiratory Syndrome Coronavirus 2 Infection Alters Mediators of Lung Tissue Remodeling In Vitro and In Vivo. J Infect Dis 2024; 229:1372-1381. [PMID: 38109685 DOI: 10.1093/infdis/jiad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Altered mediators of airway tissue remodeling such as matrix metalloproteinases (MMPs) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may contribute to morbidity in coronavirus disease 2019 (COVID-19); however, the differential impact of SARS-CoV-2 variants of concern (VOCs) on MMPs is unknown. METHODS Using both in vitro human airway cell culture model and in vivo transgenic mouse model of SARS-CoV-2 infection, we studied the differential effect of SARS-CoV-2 VOCs on expression of key MMPs and inflammatory mediators in airway cells and tissues. RESULTS The most consistent findings with all SARS-CoV-2 variants in infected compared to uninfected human bronchial epithelial cell air-liquid interface cultures were the SARS-CoV-2-induced increases in MMP-12 and tissue inhibitor of MMPs. Infection with both SARS-CoV-2 wild type and SARS-CoV-2 Delta variant over 3 days postinfection (dpi) and with Beta variant over 7 dpi increased lung tissue levels of MMP-9 compared to uninfected mice. Overall, SARS-CoV-2 variants had differential dose-dependent impact on secretion of MMP-1, MMP-2, MMP-9, and MMP-12 that varied at the protein versus the gene level and in the early noninflammatory compared to late inflammatory phase of infection. CONCLUSIONS We provide novel mechanistic insight that the differential impact of SARS-CoV-2 variants on severity of COVID-19 may partially be attributed to unique changes in MMPs.
Collapse
Affiliation(s)
- Michael Wong
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Chandrima Gain
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Madhav B Sharma
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Leila Fotooh Abadi
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Division of Infectious Diseases, Department of Medicine, University of Texas Southwestern, Dallas
| | - Cristelle Hugo
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Hariclea Vassilopoulos
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Maria Daskou
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Gregory A Fishbein
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles
| | - Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Division of Infectious Diseases, Department of Medicine, University of Texas Southwestern, Dallas
| |
Collapse
|
18
|
Kasula V, Padala V, Gupta N, Doyle D, Bagheri K, Anastasio A, Adams SB. The Use of Extracellular Vesicles in Achilles Tendon Repair: A Systematic Review. Biomedicines 2024; 12:942. [PMID: 38790904 PMCID: PMC11117955 DOI: 10.3390/biomedicines12050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Achilles tendon (AT) pathologies are common musculoskeletal conditions that can significantly impair function. Despite various traditional treatments, recovery is often slow and may not restore full functionality. The use of extracellular vesicles (EVs) has emerged as a promising therapeutic option due to their role in cell signaling and tissue regeneration. This systematic review aims to consolidate current in vivo animal study findings on the therapeutic effects of EVs on AT injuries. An extensive literature search was conducted using the PubMed, Scopus, and Embase databases for in vivo animal studies examining the effects of EVs on AT pathologies. The extracted variables included but were not limited to the study design, type of EVs used, administration methods, efficacy of treatment, and proposed therapeutic mechanisms. After screening, 18 studies comprising 800 subjects were included. All but one study reported that EVs augmented wound healing processes in the AT. The most proposed mechanisms through which this occurred were gene regulation of the extracellular matrix (ECM), the enhancement of macrophage polarization, and the delivery of therapeutic microRNAs to the injury site. Further research is warranted to not only explore the therapeutic potential of EVs in the context of AT pathologies, but also to establish protocols for their clinical application.
Collapse
Affiliation(s)
- Varun Kasula
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Vikram Padala
- Department of Orthopedic Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Nithin Gupta
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - David Doyle
- Department of Orthopedic Surgery, Central Michigan University College of Medicine, Saginaw, MI 48602, USA
| | - Kian Bagheri
- Department of Orthopedic Surgery, Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Albert Anastasio
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Samuel Bruce Adams
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
19
|
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci 2024; 25:2763. [PMID: 38474009 DOI: 10.3390/ijms25052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
20
|
Nudelman A, Shenoy A, Allouche-Arnon H, Fisler M, Rosenhek-Goldian I, Dayan L, Abou Karam P, Porat Z, Solomonov I, Regev-Rudzki N, Bar-Shir A, Sagi I. Proteolytic Vesicles Derived from Salmonella enterica Serovar Typhimurium-Infected Macrophages: Enhancing MMP-9-Mediated Invasion and EV Accumulation. Biomedicines 2024; 12:434. [PMID: 38398037 PMCID: PMC10886541 DOI: 10.3390/biomedicines12020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Proteolysis of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) plays a crucial role in the immune response to bacterial infections. Here we report the secretion of MMPs associated with proteolytic extracellular vesicles (EVs) released by macrophages in response to Salmonella enterica serovar Typhimurium infection. Specifically, we used global proteomics, in vitro, and in vivo approaches to investigate the composition and function of these proteolytic EVs. Using a model of S. Typhimurium infection in murine macrophages, we isolated and characterized a population of small EVs. Bulk proteomics analysis revealed significant changes in protein cargo of naïve and S. Typhimurium-infected macrophage-derived EVs, including the upregulation of MMP-9. The increased levels of MMP-9 observed in immune cells exposed to S. Typhimurium were found to be regulated by the toll-like receptor 4 (TLR-4)-mediated response to bacterial lipopolysaccharide. Macrophage-derived EV-associated MMP-9 enhanced the macrophage invasion through Matrigel as selective inhibition of MMP-9 reduced macrophage invasion. Systemic administration of fluorescently labeled EVs into immunocompromised mice demonstrated that EV-associated MMP activity facilitated increased accumulation of EVs in spleen and liver tissues. This study suggests that macrophages secrete proteolytic EVs to enhance invasion and ECM remodeling during bacterial infections, shedding light on an essential aspect of the immune response.
Collapse
Affiliation(s)
- Alon Nudelman
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Anjana Shenoy
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Hyla Allouche-Arnon
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel; (H.A.-A.); (M.F.); (A.B.-S.)
| | - Michal Fisler
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel; (H.A.-A.); (M.F.); (A.B.-S.)
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Lior Dayan
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Paula Abou Karam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (P.A.K.); (N.R.-R.)
| | - Ziv Porat
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Inna Solomonov
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; (P.A.K.); (N.R.-R.)
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel; (H.A.-A.); (M.F.); (A.B.-S.)
| | - Irit Sagi
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel; (A.N.); (A.S.); (L.D.); (I.S.)
| |
Collapse
|
21
|
Torraca V, White RJ, Sealy IM, Mazon-Moya M, Duggan G, Willis AR, Busch-Nentwich EM, Mostowy S. Transcriptional profiling of zebrafish identifies host factors controlling susceptibility to Shigella flexneri. Dis Model Mech 2024; 17:dmm050431. [PMID: 38131137 PMCID: PMC10846535 DOI: 10.1242/dmm.050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Shigella flexneri is a human-adapted pathovar of Escherichia coli that can invade the intestinal epithelium, causing inflammation and bacillary dysentery. Although an important human pathogen, the host response to S. flexneri has not been fully described. Zebrafish larvae represent a valuable model for studying human infections in vivo. Here, we use a Shigella-zebrafish infection model to generate mRNA expression profiles of host response to Shigella infection at the whole-animal level. Immune response-related processes dominate the signature of early Shigella infection (6 h post-infection). Consistent with its clearance from the host, the signature of late Shigella infection (24 h post-infection) is significantly changed, and only a small set of immune-related genes remain differentially expressed, including acod1 and gpr84. Using mutant lines generated by ENU, CRISPR mutagenesis and F0 crispants, we show that acod1- and gpr84-deficient larvae are more susceptible to Shigella infection. Together, these results highlight the power of zebrafish to model infection by bacterial pathogens and reveal the mRNA expression of the early (acutely infected) and late (clearing) host response to Shigella infection.
Collapse
Affiliation(s)
- Vincenzo Torraca
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
- School of Life Sciences, University of Westminster, London W1W 6UW, UK
| | - Richard J. White
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Ian M. Sealy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Maria Mazon-Moya
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Gina Duggan
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Alexandra R. Willis
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Elisabeth M. Busch-Nentwich
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
22
|
Kulkarni A, Jozefiaková J, Bhide K, Mochnaćová E, Bhide M. Differential transcriptome response of blood brain barrier spheroids to neuroinvasive Neisseria and Borrelia. Front Cell Infect Microbiol 2023; 13:1326578. [PMID: 38179419 PMCID: PMC10766361 DOI: 10.3389/fcimb.2023.1326578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Background The blood-brain barrier (BBB), a highly regulated interface between the blood and the brain, prevents blood-borne substances and pathogens from entering the CNS. Nevertheless, pathogens like Neisseria meningitidis and Borrelia bavariensis can breach the BBB and infect the brain parenchyma. The self-assembling BBB-spheroids can simulate the cross talk occurring between the cells of the barrier and neuroinvasive pathogens. Methods BBB spheroids were generated by co-culturing human brain microvascular endothelial cells (hBMECs), pericytes and astrocytes. The BBB attributes of spheroids were confirmed by mapping the localization of cells, observing permeability of angiopep2 and non-permeability of dextran. Fluorescent Neisseria, Borrelia or E. coli (non-neuroinvasive) were incubated with spheroids to observe the adherence, invasion and spheroid integrity. Transcriptome analysis with NGS was employed to investigate the response of BBB cells to infections. Results hBMECs were localized throughout the spheroids, whereas pericytes and astrocytes were concentrated around the core. Within 1 hr of exposure, Neisseria and Borrelia adhered to spheroids, and their microcolonization increased from 5 to 24 hrs. Integrity of spheroids was compromised by both Neisseria and Borrelia, but not by E. coli infection. Transcriptome analysis revealed a significant change in the expression of 781 genes (467 up and 314 down regulated) in spheroids infected with Neisseria, while Borrelia altered the expression of 621 genes (225 up and 396 down regulated). The differentially expressed genes could be clustered into various biological pathways like cell adhesion, extracellular matrix related, metallothionines, members of TGF beta, WNT signaling, and immune response. Among the differentially expressed genes, 455 (48%) genes were inversely expressed during Neisseria and Borrelia infection. Conclusion The self-assembling spheroids were used to perceive the BBB response to neuroinvasive pathogens - Neisseria and Borrelia. Compromised integrity of spheroids during Neisseria and Borrelia infection as opposed to its intactness and non-adherence of E. coli (non-neuroinvasive) denotes the pathogen dependent fate of BBB. Genes categorized into various biological functions indicated weakened barrier properties of BBB and heightened innate immune response. Inverse expression of 48% genes commonly identified during Neisseria and Borrelia infection exemplifies unique response of BBB to varying neuropathogens.
Collapse
Affiliation(s)
- Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Jozefiaková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Evelína Mochnaćová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
23
|
Konrad ER, Soo J, Conroy AL, Namasopo S, Opoka RO, Hawkes MT. Circulating markers of neutrophil activation and lung injury in pediatric pneumonia in low-resource settings. Pathog Glob Health 2023; 117:708-716. [PMID: 36562081 PMCID: PMC10614712 DOI: 10.1080/20477724.2022.2160885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diagnostic biomarkers for childhood pneumonia could guide management and improve antibiotic stewardship in low-resource settings where chest x-ray (CXR) is not always available. In this cross-sectional study, we measured chitinase 3-like protein 1 (CHI3L1), surfactant protein D (SP-D), lipocalin-2 (LCN2), and tissue inhibitor of metalloproteinases-1 (TIMP-1) in Ugandan children under the age of five hospitalized with acute lower respiratory tract infection. We determined the association between biomarker levels and primary end-point pneumonia, indicated by CXR consolidation. We included 89 children (median age 11 months, 39% female). Primary endpoint pneumonia was present in 22 (25%). Clinical signs were similar in children with and without CXR consolidation. Broad-spectrum antibiotics (ceftriaxone) were administered in 83 (93%). Levels of CHI3L1, SP-D, LCN2 and TIMP-1 were higher in patients with primary end-point pneumonia compared to patients with normal CXR or other infiltrates. All markers were moderately accurate predictors of primary end-point pneumonia, with area under receiver operator characteristic curves of 0.66-0.70 (p<0.05 for all markers). The probability of CXR consolidation increased monotonically with the number of markers above cut-off. Among 28 patients (31%) in whom all four markers were below the cut-off, the likelihood ratio of CXR consolidation was 0.11 (95%CI 0.015 to 0.73). CHI3L1, SP-D, LCN2 and TIMP-1 were associated with CXR consolidation in children with clinical pneumonia in a low-resource setting. Combinations of quantitative biomarkers may be useful to safely withhold antibiotics in children with a low probability of bacterial infection.
Collapse
Affiliation(s)
- Emily R. Konrad
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Jeremy Soo
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Andrea L. Conroy
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, Indianapolis, USA
| | - Sophie Namasopo
- Department of Pediatrics, Kabale District Hospital, Kabale, Uganda
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Mulago Hospital and Makerere University, Kampala, Uganda
| | - Michael T. Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Canada
- School of Public Health, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
- Distinguished Researcher, Stollery Science Lab, Edmonton, Canada
- Member, Women and Children’s Health Research Institute, Edmonton, Canada
| |
Collapse
|
24
|
Chakraborty J, Roy S, Pandey P, Mohanty S, Tandon R, Ghosh S. Macrophage plasticity and differentiation on the decellularized human cornea. JOURNAL OF MATERIALS RESEARCH 2023; 38:4625-4640. [DOI: 10.1557/s43578-023-01182-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/27/2023] [Indexed: 01/04/2025]
|
25
|
Borges BM, Ramos RBC, Preite NW, Kaminski VDL, Alves de Castro P, Camacho M, Maximo MF, Fill TP, Calich VLG, Traynor AM, Sarikaya-Bayram Ö, Doyle S, Bayram Ö, de Campos CBL, Zelanis A, Goldman GH, Loures FV. Transcriptional profiling of a fungal granuloma reveals a low metabolic activity of Paracoccidioides brasiliensis yeasts and an actively regulated host immune response. Front Cell Infect Microbiol 2023; 13:1268959. [PMID: 37868350 PMCID: PMC10585178 DOI: 10.3389/fcimb.2023.1268959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Granulomas are important immunological structures in the host defense against the fungus Paracoccidioides brasiliensis, the main etiologic agent of Paracoccidioidomycosis (PCM), a granulomatous systemic mycosis endemic in Latin America. We have performed transcriptional and proteomic studies of yeasts present in the pulmonary granulomas of PCM aiming to identify relevant genes and proteins that act under stressing conditions. C57BL/6 mice were infected with 1x106 yeasts and after 8- and 12-weeks of infection, granulomatous lesions were obtained for extraction of fungal and murine RNAs and fungal proteins. Dual transcriptional profiling was done comparing lung cells and P. brasiliensis yeasts from granulomas with uninfected lung cells and the original yeast suspension used in the infection, respectively. Mouse transcripts indicated a lung malfunction, with low expression of genes related to muscle contraction and organization. In addition, an increased expression of transcripts related to the activity of neutrophils, eosinophils, macrophages, lymphocytes as well as an elevated expression of IL-1β, TNF-α, IFN-γ, IL-17 transcripts were observed. The increased expression of transcripts for CTLA-4, PD-1 and arginase-1, provided evidence of immune regulatory mechanisms within the granulomatous lesions. Also, our results indicate iron as a key element for the granuloma to function, where a high number of transcripts related to fungal siderophores for iron uptake was observed, a mechanism of fungal virulence not previously described in granulomas. Furthermore, transcriptomics and proteomics analyzes indicated a low fungal activity within the granuloma, as demonstrated by the decreased expression of genes and proteins related to energy metabolism and cell cycle.
Collapse
Affiliation(s)
- Bruno Montanari Borges
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Rafael Berton Correia Ramos
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Nycolas Willian Preite
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Patrícia Alves de Castro
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Maurício Camacho
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | | | - Taicia Pacheco Fill
- Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Aimee M. Traynor
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | - Özgür Bayram
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| | | | - André Zelanis
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Science of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| |
Collapse
|
26
|
Feng E, Monteiro JK, Portillo AL, Balint E, Ashkar AA. Natural Killer Cell-Derived Interferon-γ Regulates Macrophage-Mediated Immunopathology During Viral Infection. J Infect Dis 2023; 228:834-839. [PMID: 36994782 PMCID: PMC10547451 DOI: 10.1093/infdis/jiad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
Regulation of immune responses during viral infection is critical to preventing the development immunopathology that impairs host survival. Natural killer (NK) cells are well known for their antiviral functions that promote viral clearance; however, their roles in limiting immune-mediated pathology are still unclear. Using a mouse model for genital herpes simplex virus type 2 infection, we find that NK cell-derived interferon-γ directly counteracts interleukin-6-mediated matrix metalloproteases (MMPs) activity in macrophages to limit MMP-mediated tissue damage. Our findings uncover a key immunoregulatory function of NK cells during host-pathogen interactions that highlight the potential of NK cell therapy for treatment of severe viral infections.
Collapse
Affiliation(s)
- Emily Feng
- Department of Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada
| | - Ana L Portillo
- Department of Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada
| | - Elizabeth Balint
- Department of Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Ashkar
- Department of Medicine, McMaster Immunology Research Center, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Abstract
Chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) or viral hepatitis are characterized by persistent inflammation and subsequent liver fibrosis. Liver fibrosis critically determines long-term morbidity (for example, cirrhosis or liver cancer) and mortality in NAFLD and nonalcoholic steatohepatitis (NASH). Inflammation represents the concerted response of various hepatic cell types to hepatocellular death and inflammatory signals, which are related to intrahepatic injury pathways or extrahepatic mediators from the gut-liver axis and the circulation. Single-cell technologies have revealed the heterogeneity of immune cell activation concerning disease states and the spatial organization within the liver, including resident and recruited macrophages, neutrophils as mediators of tissue repair, auto-aggressive features of T cells as well as various innate lymphoid cell and unconventional T cell populations. Inflammatory responses drive the activation of hepatic stellate cells (HSCs), and HSC subsets, in turn, modulate immune mechanisms via chemokines and cytokines or transdifferentiate into matrix-producing myofibroblasts. Current advances in understanding the pathogenesis of inflammation and fibrosis in the liver, mainly focused on NAFLD or NASH owing to the high unmet medical need, have led to the identification of several therapeutic targets. In this Review, we summarize the inflammatory mediators and cells in the diseased liver, fibrogenic pathways and their therapeutic implications.
Collapse
Affiliation(s)
- Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
28
|
Hu Y, Li S, Dong H, Weng L, Yuwen L, Xie Y, Yang J, Shao J, Song X, Yang D, Wang L. Environment-Responsive Therapeutic Platforms for the Treatment of Implant Infection. Adv Healthc Mater 2023; 12:e2300985. [PMID: 37186891 DOI: 10.1002/adhm.202300985] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Indexed: 05/17/2023]
Abstract
The application of medical implants has greatly improved the survival rate and life quality of patients. Nevertheless, in recent years, there are increasing cases of implant dysfunction or failure because of bacterial infections. Despite significant improvements in biomedicine, there are still serious challenges in the treatment of implant-related infections. With the formation of bacterial biofilms and the development of bacterial resistance, these limitations lead to a low efficacy of conventional antibiotics. To address these challenges, it is urgent to exploit innovative treatment strategies for implant-related infections. Based on these ideas, environment-responsive therapeutic platforms with high selectivity, low drug resistance, and minor dose-limiting toxicity have attracted widespread attention. By using exogenous/endogenous stimuli, the antibacterial activity of therapeutics can be activated on demand and exhibit remarkable therapeutic effects. Exogenous stimuli include photo, magnetism, microwave, and ultrasound. Endogenous stimuli mainly include the pathological characteristics of bacterial infections such as acidic pH, anomalous temperature, and abnormal enzymatic activities. In this review, the recent progress of environment-responsive therapeutic platforms with spatiotemporally controlled drug release/activation is systematically summarized. Afterward, the limitations and opportunities of these emerging platforms are highlighted. Finally, it is hoped that this review will offer novel ideas and techniques to combat implant-related infections.
Collapse
Affiliation(s)
- Yanling Hu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Nanjing Polytechnic Institute, Nanjing, 210048, P. R. China
| | - Shengke Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, P. R. China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jun Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
29
|
Marcelino M, Cai CL, Wadowski S, Aranda JV, Beharry KD. Biomarkers of lung alveolarization and microvascular maturation in response to intermittent hypoxia and/or early antioxidant/fish oil supplementation in neonatal rats. Pediatr Pulmonol 2023; 58:2352-2363. [PMID: 37265429 PMCID: PMC10463793 DOI: 10.1002/ppul.26495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/11/2023] [Accepted: 05/14/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Extremely preterm infants experience frequent intermittent hypoxia (IH) episodes during oxygen therapy which causes significant damage to the lungs and curtails important signaling pathways that regulate normal lung alveolarization and microvascular maturation. We tested the hypothesis that early supplementation with fish oil and/or antioxidants in rats exposed to neonatal IH improves expression of lung biomarkers of alveolarization and microvascular maturation, and reduces IH-induced lung injury. STUDY DESIGN/METHODS From birth (P0) to P14, rat pups were exposed to room air (RA) or neonatal IH during which they received daily oral supplementation with either: (1) olive oil (OO) (control); (2) Coenzyme Q10 (CoQ10) in OO; (3) fish oil; (4) glutathione nanoparticles (nGSH); or (5) fish oil +CoQ10. At P14 pups were placed in RA until P21 with no further treatment. RA controls were similarly treated. Lung growth and alveolarization, histopathology, apoptosis, oxidative stress and biomarkers of alveolarization and microvascular maturation were determined. RESULTS Neonatal IH was associated with reduced lung weights and severe histopathological outcomes. These effects were curtailed with fish oil and nGSH. nGSH was also protective against apoptosis, while CoQ10 prevented IH-induced ROS production. Of all treatments, nGSH and CoQ10 + fish oil-induced vascular endothelial growth factor165 and CD31 (Platelet endothelial cell adhesion molecule-1), which are associated with angiogenesis. CoQ10 + fish oil improved alveolarization in RA and IH despite evidence of hemorrhage. CONCLUSIONS The benefits of nGSH and CoQ10 + fish oil suggest an antioxidant effect which may be required to curtail IH-induced lung injury. Further clinical assessment of the effectiveness of nGSH is warranted.
Collapse
Affiliation(s)
- Matthew Marcelino
- State University of New York Downstate Health Sciences University, College of Medicine, Brooklyn, NY 11203
| | - Charles L. Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Stephen Wadowski
- Department of Pediatrics, Division of Pediatric Pulmonology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Jacob V. Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| | - Kay D. Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Health Sciences University, Brooklyn, NY, 11203
| |
Collapse
|
30
|
Rocha Da Silva R, de Santana Fontes Vasconcelos F, Nunes de Santana Campos R, Dos Santos Tavares D, Lima Dos Santos P. Matrix metalloproteinases -2 and -9 expression in dogs with visceral leishmaniasis: A systematic review. Cytokine 2023; 168:156236. [PMID: 37257306 DOI: 10.1016/j.cyto.2023.156236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
The matrix metalloproteinases (MMPs) are engaged in the degradation and remodeling of the extracellular matrix and vessels, allowing the progression of pathological processes. Recent studies pointed that MMP -2 and -9 are promising visceral leishmaniasis biomarkers. Thus, the present studystudy aimed to review published scientific literature related to MMP-2 and -9 activity on canine visceral leishmaniasis (CVL). The review followed the PRISMA method, searching for articles in ScienceDirect, PubMed, Scopus, Lilacs, Medline and Google Scholar from inception until 20 March 2022 by employing the following terms: "dog", "matrix metalloproteinases" and "Visceral Leishmaniasis" or "Kala Azar". The selected articles were read in full and only those consistent with the eligibility criteria were included in the review. Of 238 articles from the initial search, only five were deemed eligible, which were conducted between 2010 and 2018. All studies were performed in Brazil. It was observed that there was a higher expression of proMMP-2 in cerebrospinal (CS) fluid and serum and active MMP-2 in different skin areas, mainly in high parasite load areas. As for MMP-9, the pro and active forms were both expressed in CS fluid, serum and different skin areas. The MMP-2 can be considered a biomarker of bad prognostic as it plays an inflammatory role with a greater release in the initial phase of the disease, where MMP-9 is perceived in the chronic phase of CVL. Future research on the subject with greater methodological rigor and bigger sample sizes are mandatory to clarify the role of MMPs on disease progression.
Collapse
Affiliation(s)
- Renata Rocha Da Silva
- Universidade Federal de Sergipe, Programa de Pós-graduação Stricto Sensu em Ciências da Saúde, Aracaju, Sergipe, Brasil.
| | | | - Roseane Nunes de Santana Campos
- Universidade Federal de Sergipe, Programa de Pós-graduação Stricto Sensu em Ciências Aplicadas a Saúde,Lagarto, Sergipe, Brasil; Universidade Federal de Sergipe, Núcleo de Medicina Veterinária, Nossa Senhora da Glória, Sergipe, Brasil.
| | | | - Priscila Lima Dos Santos
- Universidade Federal de Sergipe, Programa de Pós-graduação Stricto Sensu em Ciências da Saúde, Aracaju, Sergipe, Brasil; Universidade Federal de Sergipe, Programa de Pós-graduação Stricto Sensu em Ciências Aplicadas a Saúde,Lagarto, Sergipe, Brasil; Universidade Federal de Sergipe Departamento de Educação em Saúde, Lagarto, Sergipe, Brasil.
| |
Collapse
|
31
|
Osman IO, Caputo A, Pinault L, Mege JL, Levasseur A, Devaux CA. Identification and Characterization of an HtrA Sheddase Produced by Coxiella burnetii. Int J Mol Sci 2023; 24:10904. [PMID: 37446087 PMCID: PMC10342153 DOI: 10.3390/ijms241310904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Having previously shown that soluble E-cadherin (sE-cad) is found in sera of Q fever patients and that infection of BeWo cells by C. burnetii leads to modulation of the E-cad/β-cat pathway, our purpose was to identify which sheddase(s) might catalyze the cleavage of E-cad. Here, we searched for a direct mechanism of cleavage initiated by the bacterium itself, assuming the possible synthesis of a sheddase encoded in the genome of C. burnetii or an indirect mechanism based on the activation of a human sheddase. Using a straightforward bioinformatics approach to scan the complete genomes of four laboratory strains of C. burnetii, we demonstrate that C. burnetii encodes a 451 amino acid sheddase (CbHtrA) belonging to the HtrA family that is differently expressed according to the bacterial virulence. An artificial CbHtrA gene (CoxbHtrA) was expressed, and the CoxbHtrA recombinant protein was found to have sheddase activity. We also found evidence that the C. burnetii infection triggers an over-induction of the human HuHtrA gene expression. Finally, we demonstrate that cleavage of E-cad by CoxbHtrA on macrophages-THP-1 cells leads to an M2 polarization of the target cells and the induction of their secretion of IL-10, which "disarms" the target cells and improves C. burnetii replication. Taken together, these results demonstrate that the genome of C. burnetii encodes a functional HtrA sheddase and establishes a link between the HtrA sheddase-induced cleavage of E-cad, the M2 polarization of the target cells and their secretion of IL-10, and the intracellular replication of C. burnetii.
Collapse
Affiliation(s)
- Ikram Omar Osman
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Aurelia Caputo
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Lucile Pinault
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Jean-Louis Mege
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
- Laboratory of Immunology, Assitance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Anthony Levasseur
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
| | - Christian A. Devaux
- Microbes Evolution Phylogeny and Infection (MEPHI) Laboratory, Aix-Marseille University, Institut de Recherche Pour le Développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), Institut Hospitalo-Universitaire (IHU)–Méditerranée Infection, 13005 Marseille, France; (I.O.O.)
- Centre National de la Recherche Scientifique (CNRS), 13009 Marseille, France
| |
Collapse
|
32
|
Gupta S, Qayoom I, Gupta P, Gupta A, Singh P, Singh S, Kumar A. Exosome-Functionalized, Drug-Laden Bone Substitute along with an Antioxidant Herbal Membrane for Bone and Periosteum Regeneration in Bone Sarcoma. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8824-8839. [PMID: 36749176 DOI: 10.1021/acsami.2c18308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing advanced methods for effective bone reconstructive strategies in case of critical bone defects caused by tumor resection, trauma, and other implant-related complications remains a challenging problem in orthopedics. In the clinical management of bone diseases, there is a paradigm shift in using local drugs at the injury site; however, the dead space created during the surgical debridement of necrotic bone and soft tissues (periosteum and underlying muscle) leads to ineffective bone formation, thereby leading to secondary complications, and thus calls for better regenerative approaches. In this study, we have utilized an exosome-functionalized doxorubicin-loaded biodegradable nanocement (NC)-based carrier along with a Cissus quadrangularis (CQ) extract-laden antioxidant herbal membrane for simultaneously managing the periosteum as well as bone formation in the tumor resection model of osteosarcoma. We initially evaluated the efficacy of scaffolds for in vitro mineralization and bone formation. To examine the in vivo effectiveness, we developed a human osteosarcoma cell line (Saos-2)-induced tumor xenograft model with a critical-sized bone defect. The findings revealed that doxorubicin released from NC was successful in killing the tumor cells and was present even after 30 days of implantation. Additionally, the incorporation of exosomes aided the bone formation, resulting in around a 2.6-fold increase in the bone volume compared to the empty group as evaluated by micro-CT. The herbal membrane assisted in the development of periosteum and mineralizing bone callous as validated through histological and immunofluorescence analysis. Thus, our findings describe a one-step biomaterial-based cell-free approach to regenerate bone in osteosarcoma and prevent further fracture due to the complete development of periosteum and lost bone.
Collapse
Affiliation(s)
- Sneha Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Irfan Qayoom
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Purva Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Archita Gupta
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Prerna Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sneha Singh
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
33
|
Wang Y, Schughart K, Pelaia TM, Chew T, Kim K, Karvunidis T, Knippenberg B, Teoh S, Phu AL, Short KR, Iredell J, Thevarajan I, Audsley J, Macdonald S, Burcham J, Tang B, McLean A, Shojaei M. Pathway and Network Analyses Identify Growth Factor Signaling and MMP9 as Potential Mediators of Mitochondrial Dysfunction in Severe COVID-19. Int J Mol Sci 2023; 24:ijms24032524. [PMID: 36768847 PMCID: PMC9917147 DOI: 10.3390/ijms24032524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Patients with preexisting metabolic disorders such as diabetes are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Mitochondrion, the very organelle that controls cellular metabolism, holds the key to understanding disease progression at the cellular level. Our current study aimed to understand how cellular metabolism contributes to COVID-19 outcomes. Metacore pathway enrichment analyses on differentially expressed genes (encoded by both mitochondrial and nuclear deoxyribonucleic acid (DNA)) involved in cellular metabolism, regulation of mitochondrial respiration and organization, and apoptosis, was performed on RNA sequencing (RNASeq) data from blood samples collected from healthy controls and patients with mild/moderate or severe COVID-19. Genes from the enriched pathways were analyzed by network analysis to uncover interactions among them and up- or downstream genes within each pathway. Compared to the mild/moderate COVID-19, the upregulation of a myriad of growth factor and cell cycle signaling pathways, with concomitant downregulation of interferon signaling pathways, were observed in the severe group. Matrix metallopeptidase 9 (MMP9) was found in five of the top 10 upregulated pathways, indicating its potential as therapeutic target against COVID-19. In summary, our data demonstrates aberrant activation of endocrine signaling in severe COVID-19, and its implication in immune and metabolic dysfunction.
Collapse
Affiliation(s)
- Ya Wang
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Kingswood, NSW 2747, Australia
| | - Klaus Schughart
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Institute of Virology Münster, University of Münster, 48149 Münster, Germany
| | - Tiana Maria Pelaia
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Tracy Chew
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney NSW 2006, Australia
| | - Karan Kim
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Thomas Karvunidis
- Medical ICU, 1st Department of Internal Medicine, Charles University and Teaching Hospital Pilsen, 323 00 Plzeň, Czech Republic
| | - Ben Knippenberg
- Department of Microbiology, St. George Hospital, Sydney, NSW 2217, Australia
| | - Sally Teoh
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
| | - Amy L. Phu
- Research and Education Network, Western Sydney Local Health District, Westmead Hospital, CNR Darcy and Hawkesbury Roads, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Sydney Medical School Westmead, Westmead Hospital, The University of Sydney, Sydney, NSW 2145, Australia
| | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2145, Australia
- Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
- Sydney Institute for Infectious Disease, The University of Sydney, Sydney, NSW 2145, Australia
| | - Irani Thevarajan
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3050, Australia
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jennifer Audsley
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Stephen Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Royal Perth Hospital, Perth, WA 6000, Australia
- Medical School, University of Western Australia, Perth, WA 6009, Australia
- Emergency Department, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Jonathon Burcham
- Centre for Clinical Research in Emergency Medicine, Royal Perth Bentley Group, Perth, WA 6000, Australia
| | | | - Benjamin Tang
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Anthony McLean
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Kingswood, NSW 2747, Australia
- Correspondence: (A.M.); (M.S.)
| | - Maryam Shojaei
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, NSW 2747, Australia
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Sydney Medical School Nepean, Nepean Hospital, The University of Sydney, Kingswood, NSW 2747, Australia
- Correspondence: (A.M.); (M.S.)
| |
Collapse
|
34
|
Wound Infection Detection Using a Rapid Biomarker. Adv Skin Wound Care 2023; 36:35-40. [DOI: 10.1097/01.asw.0000897448.59904.b0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Ito H, Ishikawa M, Matsumoto H, Sugihara F, Okuzaki D, Hirata H, Ogura H. Transcriptional differences between coronavirus disease 2019 and bacterial sepsis. Virol J 2022; 19:198. [PMID: 36443881 PMCID: PMC9702864 DOI: 10.1186/s12985-022-01930-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has led to major public health crises worldwide. Several studies have reported the comprehensive mRNA expression analysis of immune-related genes in patients with COVID-19, using blood samples, to understand its pathogenesis; however, the characteristics of RNA expression in COVID-19 and bacterial sepsis have not been compared. The current study aimed to address this gap. METHODS RNA-sequencing and bioinformatics analyses were used to compare the transcriptome expression of whole blood samples from patients with COVID-19 and patients with sepsis who were admitted to the intensive care unit of Osaka University Graduate School of Medicine. RESULTS The COVID-19 and sepsis cohorts showed upregulation of mitochondrial- and neutrophil-related transcripts, respectively. Compared with that in the control cohort, neutrophil-related transcripts were upregulated in both the COVID-19 and sepsis cohorts. In contrast, mitochondrial-related transcripts were upregulated in the COVID-19 cohort and downregulated in the sepsis cohort, compared to those in the control cohort. Moreover, transcript levels of the pro-apoptotic genes BAK1, CYCS, BBC3, CASP7, and CASP8 were upregulated in the COVID-19 cohort, whereas those of anti-apoptotic genes, such as BCL2L11 and BCL2L1, were upregulated in the sepsis cohort. CONCLUSIONS This study clarified the differential expression of transcripts related to neutrophils and mitochondria in sepsis and COVID-19 conditions. Mitochondrial-related transcripts were downregulated in sepsis than in COVID-19 conditions, and our results indicated suboptimal intrinsic apoptotic features in sepsis samples compared with that in COVID-19 samples. This study is expected to contribute to the development of specific treatments for COVID-19.
Collapse
Affiliation(s)
- Hiroshi Ito
- grid.136593.b0000 0004 0373 3971Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka University, 2-15 Yamada-Oka, Suita-Shi, Suita-City, Osaka, 565-0871 Japan
| | - Masakazu Ishikawa
- grid.136593.b0000 0004 0373 3971Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita-City, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- grid.136593.b0000 0004 0373 3971Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka University, 2-15 Yamada-Oka, Suita-Shi, Suita-City, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Fuminori Sugihara
- grid.136593.b0000 0004 0373 3971Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Disease, Osaka University, Suita-City, Osaka, Japan
| | - Daisuke Okuzaki
- grid.136593.b0000 0004 0373 3971Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Suita-City, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita-City, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Haruhiko Hirata
- grid.136593.b0000 0004 0373 3971Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan
| | - Hiroshi Ogura
- grid.136593.b0000 0004 0373 3971Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka University, 2-15 Yamada-Oka, Suita-Shi, Suita-City, Osaka, 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
36
|
Pho T, Champion JA. Surface Engineering of Protein Nanoparticles Modulates Transport, Adsorption, and Uptake in Mucus. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51697-51710. [PMID: 36354361 DOI: 10.1021/acsami.2c14670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein nanoparticles have been demonstrated as effective carriers for protein antigens and therapeutics due to properties endowed by their protein composition. They exhibit high protein to carrier yields, biocompatibility, and heterogeneous surface properties. While protein nanoparticles have been delivered via multiple routes, including intranasal, their interactions with mucosal barriers have not been well studied or modified. Biological barriers associated with intranasal delivery consist of viscoelastic mucus that hinders material transport through surface interactions and the underlying epithelium. Herein, we altered protein nanoparticle surface properties and characterized interactions with nasal mucus and the subsequent effects on diffusion, cellular uptake, and immune cell maturation. Ovalbumin protein nanoparticles were used, serving as a model vaccine nanoparticle. Unmodified ovalbumin protein nanoparticles were compared to cationic ovalbumin particles functionalized with amine groups, neutral particles functionalized with polyethylene glycol, and zwitterionic particles coated layer-by-layer (LBL) with chitosan and oligonucleotides. Transport analysis indicated rapid diffusion of polyethylene glycol and LBL-modified ovalbumin nanoparticles in porcine nasal mucus, while cationic particles were mucoadhesive. Cellular uptake in the presence of mucus by epithelial and dendritic cells was highest for particles containing positive charges, both LBL and amine-functionalized. These particles also exhibited the most diverse adsorbed protein corona from nasal fluids. The corona impacted both dendritic cell uptake and maturation, with polyethylene glycol and LBL modifications improving CD86 expression. Altogether, surface modifications on protein-based nanocarriers are shown to facilitate distinctive physical and cellular behavior associated with mucosal delivery.
Collapse
Affiliation(s)
- Thomas Pho
- School of Chemical and Biomolecular Engineering, BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia30332-2000, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia30332-2000, United States
| |
Collapse
|
37
|
Ulahannan N, Cutler R, Doña-Termine R, Simões-Pires CA, Wijetunga NA, Croken MM, Johnston AD, Kong Y, Maqbool SB, Suzuki M, Greally JM. Genomic insights into host and parasite interactions during intracellular infection by Toxoplasma gondii. PLoS One 2022; 17:e0275226. [PMID: 36178892 PMCID: PMC9524707 DOI: 10.1371/journal.pone.0275226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
To gain insights into the molecular interactions of an intracellular pathogen and its host cell, we studied the gene expression and chromatin states of human fibroblasts infected with the Apicomplexan parasite Toxoplasma gondii. We show a striking activation of host cell genes that regulate a number of cellular processes, some of which are protective of the host cell, others likely to be advantageous to the pathogen. The simultaneous capture of host and parasite genomic information allowed us to gain insights into the regulation of the T. gondii genome. We show how chromatin accessibility and transcriptional profiling together permit novel annotation of the parasite's genome, including more accurate mapping of known genes and the identification of new genes and cis-regulatory elements. Motif analysis reveals not only the known T. gondii AP2 transcription factor-binding site but also a previously-undiscovered candidate TATA box-containing motif at one-quarter of promoters. By inferring the transcription factor and upstream cell signaling responses involved in the host cell, we can use genomic information to gain insights into T. gondii's perturbation of host cell physiology. Our resulting model builds on previously-described human host cell signalling responses to T. gondii infection, linked to induction of specific transcription factors, some of which appear to be solely protective of the host cell, others of which appear to be co-opted by the pathogen to enhance its own survival.
Collapse
Affiliation(s)
- Netha Ulahannan
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Ronald Cutler
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Reanna Doña-Termine
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Claudia A. Simões-Pires
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - N. Ari Wijetunga
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Matthew McKnight Croken
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Andrew D. Johnston
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Yu Kong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Shahina B. Maqbool
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Masako Suzuki
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - John M. Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States of America
| |
Collapse
|
38
|
Dar MA, Ahmad SM, Bhat BA, Dar TA, Haq ZU, Wani BA, Shabir N, Kashoo ZA, Shah RA, Ganai NA, Heidari M. Comparative RNA-Seq analysis reveals insights in Salmonella disease resistance of chicken; and database development as resource for gene expression in poultry. Genomics 2022; 114:110475. [PMID: 36064074 DOI: 10.1016/j.ygeno.2022.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 07/07/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Salmonella, one of the major infectious diseases in poultry, causes considerable economic losses in terms of mortality and morbidity, especially in countries that lack effective vaccination programs. Besides being resistant to diseases, indigenous chicken breeds are also a potential source of animal protein in developing countries. For understanding the disease resistance, an indigenous chicken line Kashmir faverolla, and commercial broiler were selected. RNA-seq was performed after challenging the chicken with Salmonella Typhimurium. Comparative differential expression results showed that following infection, a total of 3153 genes and 1787 genes were differentially expressed in the liver and spleen, respectively. The genes that were differentially expressed included interleukins, cytokines, NOS2, Avβ-defensins, toll-like receptors, and other immune-related gene families. Most of the genes and signaling pathways involved in the innate and adaptive immune responses against bacterial infection were significantly enriched in the Kashmir faverolla. Pathway analysis revealed that most of the enriched pathways were MAPK signaling pathway, NOD-like receptor signaling pathway, TLR signaling pathway, PPAR signaling pathway, endocytosis, etc. Surprisingly some immune-related genes like TLRs were upregulated in the susceptible chicken breed. On postmortem examination, the resistant birds showed small lesions in the liver compared to large necrotic lesions in susceptible birds. The pathological manifestations and RNA sequencing results suggest a balancing link between resistance and infection tolerance in Kashmir faverolla. Here we also developed an online Poultry Infection Database (https://skuastk.org/pif/index.html), the first publicly available gene expression resource for disease resistance in chickens. The available database not only shows the data for gene expression in chicken tissues but also provides quick search, visualization and download capacity.
Collapse
Affiliation(s)
- Mashooq Ahmad Dar
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India; Department of Clinical Biochemistry/Biochemistry, University of Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India.
| | - Basharat A Bhat
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry/Biochemistry, University of Kashmir, India
| | - Zulfqar Ul Haq
- Division of Livestock Poultry and Management, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Basharat A Wani
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Nadeem Shabir
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Zahid Amin Kashoo
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | - Riaz Ahmad Shah
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-K, India
| | | | - Mohammad Heidari
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, 4279 E. Mount Hope Rd., East Lansing, MI 48823, USA
| |
Collapse
|
39
|
Singh H, Dhotre K. Role of MMP-13-77A/G polymorphism in HIV-associated neurocognitive disorders patients. Microb Pathog 2022; 172:105740. [PMID: 36055571 DOI: 10.1016/j.micpath.2022.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 12/01/2022]
Abstract
Many diseases including HIV-Associated Neurocognitive Disorder (HAND) are impacted by matrix metalloproteinases (MMPs). MMP-13 play a role to cleave the collagen. MMP-13 contributes to peripheral neuropathy and induces unmyelinated axon degeneration. MMP-13-77A/G polymorphism has been associated to a lower level of MMP-13. MMP-13 have been linked to increased expression in a number of diseases including neurological disease. Hence we analyzed the effect of MMP-13-77A/G polymorphism in pateints with and without HAND. The PCR-Restriction fragment length polymorphism approach was used to genotype MMP-13-77A/G polymorphism. The MMP-13-77AG genotype was shown to be more prevalent in HAND patients than in controls and showed a risk for severe HAND (44.4% vs. 34.8%, P = 0.16, OR = 1.79). When compared to healthy controls, the MMP-13-77AG genotype was found to be prevalent in HAND patients (44.4 %vs. 38.2%, P = 0.66, OR = 1.26). MMP-13-77AG genotype was overrepresented (51.5% vs. 38.2%, OR = 1.70, P = 0.29) in HAND patients who had advanced HIV disease. In without HAND patients, the MMP-13-77AG genotype was found be lessor in advanced stage of HIV disease when compared with healthy controls and it was associated with a reduced risk for advancement in disease (38.2% vs. 11.82%, P = 0.03, OR = 0.18). Smokers were more likely to have the MMP-13-77AG genotype than non-smokers, indicating an elevated risk of HAND severity (60.0% vs. 40.0%, P = 0.50, OR = 2.29, 95%). In patients with and without HAND, alcohol intake enhanced the risk for developing HAND and its severity when the MMP-13-77GG genotype was present (P = 0.78, OR = 2.10, P = 0.78, OR = 2.10). In conclusion, Individuals with alcohol usage and the MMP-13-77GG genotype may have additive effect on HAND development and its severity. Individuals of without HAND and MMP-13-77AG genotype showed reduced risk for advancement of HIV disease.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute Pune, 411026, India.
| | - Kishore Dhotre
- Department of Molecular Biology, National AIDS Research Institute Pune, 411026, India
| |
Collapse
|
40
|
Gutman H, Aftalion M, Melamed S, Politi B, Nevo R, Havusha-Laufer S, Achdout H, Gur D, Israely T, Dachir S, Mamroud E, Sagi I, Vagima Y. Matrix Metalloproteinases Expression Is Associated with SARS-CoV-2-Induced Lung Pathology and Extracellular-Matrix Remodeling in K18-hACE2 Mice. Viruses 2022; 14:1627. [PMID: 35893698 PMCID: PMC9332556 DOI: 10.3390/v14081627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 infection induced lung inflammation characterized by cytokine storm and fulminant immune response of both resident and migrated immune cells, accelerating alveolar damage. In this work we identified members of the matrix metalloprotease (MMPs) family associated with lung extra-cellular matrix (ECM) destruction using K18-hACE2-transgenic mice (K18-hACE2) infected intranasally with SARS-CoV-2. Five days post infection, the lungs exhibited overall alveolar damage of epithelial cells and massive leukocytes infiltration. A substantial pulmonary increase in MMP8, MMP9, and MMP14 in the lungs post SARS-CoV-2 infection was associated with degradation of ECM components including collagen, laminin, and proteoglycans. The process of tissue damage and ECM degradation during SARS-CoV-2 lung infection is suggested to be associated with activity of members of the MMPs family, which in turn may be used as a therapeutic intervention.
Collapse
Affiliation(s)
- Hila Gutman
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
- Department of Biological Regulation, Weizmann Institute of Science, Herzel 234, Rehovot P.O. Box 26, Israel;
- Department of Biomolecular Sciences, Weizmann Institute of Science, Herzel 234, Rehovot P.O. Box 26, Israel;
| | - Moshe Aftalion
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Sharon Melamed
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Boaz Politi
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Herzel 234, Rehovot P.O. Box 26, Israel;
| | - Sapir Havusha-Laufer
- Department of Biological Regulation, Weizmann Institute of Science, Herzel 234, Rehovot P.O. Box 26, Israel;
| | - Hagit Achdout
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - David Gur
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Tomer Israely
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Shlomit Dachir
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Emanuelle Mamroud
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Herzel 234, Rehovot P.O. Box 26, Israel;
| | - Yaron Vagima
- Israel Institute for Biological Research, Ness Ziona P.O. Box 19, Israel; (H.G.); (M.A.); (S.M.); (B.P.); (H.A.); (D.G.); (T.I.); (S.D.); (E.M.)
| |
Collapse
|
41
|
Jo WS, Kang S, Jeong SK, Bae MJ, Lee CG, Son Y, Lee HJ, Jeong MH, Kim SH, Moon C, Shin IS, Kim JS. Low Dose Rate Radiation Regulates M2-like Macrophages in an Allergic Airway Inflammation Mouse Model. Dose Response 2022; 20:15593258221117349. [PMID: 36003321 PMCID: PMC9393681 DOI: 10.1177/15593258221117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
We investigated the effects of low dose rate radiation (LDR) on M1 and M2
macrophages in an ovalbumin-induced mouse model of allergic airway inflammation
and asthma. After exposure to LDR (1 Gy, 1.818 mGy/h) for 24 days, mice were
euthanized and the changes in the number of M1 and M2 macrophages in the
bronchoalveolar lavage fluid and lung, and M2-associated cytokine levels, were
assessed. LDR treatment not only restored the M2-rich microenvironment but also
ameliorated asthma-related progression in a macrophage-dependent manner. In an
ovalbumin-induced mouse model, LDR treatment significantly inhibited M2, but not
M1, macrophage infiltration. M2-specific changes in macrophage polarization
during chronic lung disease reversed the positive effects of LDR. Moreover, the
levels of cytokines, including chemokine (C-C motif) ligand (CCL) 24, CCL17,
transforming growth factor beta 1, and matrix metalloproteinase-9, decreased in
ovalbumin-sensitized/challenged mice upon exposure to LDR. Collectively, our
results indicate that LDR exposure suppressed asthmatic progression, including
mucin accumulation, inflammation, and Type 2 T helper (Th2) cytokine
(interleukin (IL)-4 and IL-13) production. In conclusion, LDR exposure decreased
Th2 cytokine secretion in M2 macrophages, resulting in a reduction in
eosinophilic inflammation in ovalbumin-sensitized/challenged mice.
Collapse
Affiliation(s)
- Wol Soon Jo
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Sohi Kang
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
| | - Soo Kyung Jeong
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Min Ji Bae
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Chang Geun Lee
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
| | - Yeonghoon Son
- Korea Institute of Radiological &
Medical Sciences, Seoul, Republic of Korea
| | - Hae-June Lee
- Korea Institute of Radiological &
Medical Sciences, Seoul, Republic of Korea
| | - Min Ho Jeong
- Department of Microbiology, Dong-A University College of
Medicine, Busan, Republic of Korea
| | - Sung Ho Kim
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
| | - Chongjong Moon
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
| | - In Sik Shin
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
- In Sik Shin, College of Veterinary Medicine
and BK21 Plus Project Team, Chonnam National University, Gwangju 61186, Republic
of Korea.
| | - Joong Sun Kim
- Dongnam Institute of Radiological
& Medical Sciences, Busan, Republic of Korea
- College of Veterinary Medicine and
BK21 Plus Project Team, Chonnam National
University, Gwangju, Republic of Korea
- Joong Sun Kim, College of Veterinary
Medicine and BK21 Plus Project Team, Chonnam National University, 77
Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
42
|
Lee AJ, Feng E, Chew MV, Balint E, Poznanski SM, Giles E, Zhang A, Marzok A, Revill SD, Vahedi F, Dubey A, Ayaub E, Jimenez-Saiz R, McGrath JJC, Ritchie TM, Jordana M, Jonigk DD, Ackermann M, Ask K, Miller M, Richards CD, Ashkar AA. Type I interferon regulates proteolysis by macrophages to prevent immunopathology following viral infection. PLoS Pathog 2022; 18:e1010471. [PMID: 35512020 PMCID: PMC9113601 DOI: 10.1371/journal.ppat.1010471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/17/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
The ability to treat severe viral infections is limited by our understanding of the mechanisms behind virus-induced immunopathology. While the role of type I interferons (IFNs) in early control of viral replication is clear, less is known about how IFNs can regulate the development of immunopathology and affect disease outcomes. Here, we report that absence of type I IFN receptor (IFNAR) is associated with extensive immunopathology following mucosal viral infection. This pathology occurred independent of viral load or type II immunity but required the presence of macrophages and IL-6. The depletion of macrophages and inhibition of IL-6 signaling significantly abrogated immunopathology. Tissue destruction was mediated by macrophage-derived matrix metalloproteinases (MMPs), as MMP inhibition by doxycycline and Ro 28–2653 reduced the severity of tissue pathology. Analysis of post-mortem COVID-19 patient lungs also displayed significant upregulation of the expression of MMPs and accumulation of macrophages. Overall, we demonstrate that IFNs inhibit macrophage-mediated MMP production to prevent virus-induced immunopathology and uncover MMPs as a therapeutic target towards viral infections.
Collapse
Affiliation(s)
- Amanda J. Lee
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Emily Feng
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Marianne V. Chew
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Elizabeth Balint
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Sophie M. Poznanski
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Elizabeth Giles
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ali Zhang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Art Marzok
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Spencer D. Revill
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Firestone Institute of Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Fatemeh Vahedi
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Anisha Dubey
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Firestone Institute of Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Ehab Ayaub
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Firestone Institute of Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jimenez-Saiz
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Joshua J. C. McGrath
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Tyrah M. Ritchie
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Danny D. Jonigk
- Institute of Pathology, Hannover Medical School, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Maximilian Ackermann
- Institute of Pathology and Molecular Pathology, Helios University Clinic Wuppertal, University of Witten/Herdecke, Wuppertal, Germany
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kjetil Ask
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, Firestone Institute of Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - Matthew Miller
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Carl D. Richards
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ali A. Ashkar
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
43
|
Carvalho AM, Viana SM, Andrade BB, Oliveira F, Valenzuela JG, Carvalho EM, de Oliveira CI. Immune response to LinB13, a Lutzomyia intermedia salivary protein correlates with disease severity in tegumentary leishmaniasis. Clin Infect Dis 2022; 75:1754-1762. [PMID: 35385578 DOI: 10.1093/cid/ciac258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We have previously shown that seropositivity to rLinB-13, a salivary protein from Lutzomyia intermedia, predicted sand fly exposure and was associated with increased risk of developing cutaneous leishmaniasis (CL). METHODS Herein, we investigated the cellular immune response to saliva from Lu. intermedia, using rLinB-13 as a surrogate antigen in naturally exposed individuals presenting positive serology to LinB-13. We also investigated the response to rLinB-13 in leishmaniasis patients, displaying active ulcers and positive PCR for L. braziliensis. RESULTS Peripheral blood mononuclear cells (PBMCs) stimulated in vitro with rLinB-13 secreted elevated levels of IL-10, IL-4, IL-1β, IL-1α, IL-6 and chemokines (CCL3, CCL4, CCL5 and CXCL5). CL, and disseminated leishmaniasis (DL) patients displayed a significantly higher IgG response to rLinB-13, compared to healthy subjects and anti-rLinB-13 IgG was positively correlated with the number of lesions in DL patients. Positive serology to rLinB-13 was also associated with chemotherapy failure. PBMCs from DL patients stimulated with rLINB-13 secreted significantly higher levels IL-10 and IL-1β compared to CL individuals. CONCLUSIONS In this study, we observed an association between humoral and cellular immune response to the sand fly salivary protein rLinB-13 and disease severity in tegumentary leishmaniasis. This study brings evidence that immunity to rLinB-13 influences disease outcome in L. braziliensis infection and results indicate that positive serology to rLinB-13 IgG can be employed as marker of DL, an emerging and severe form of disease caused by L. braziliensis.
Collapse
Affiliation(s)
- Augusto M Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | | | | | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Edgar M Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil.,Immunology Service of the University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| |
Collapse
|
44
|
Irqsusi M, Mansouri AL, Ramaswamy A, Rexin P, Salman M, Mahmood S, Mirow N, Ghazi T, Ramzan R, Rastan AJ, Vogt S. Role of matrix metalloproteinases in mitral valve regurgitation: Association between the of MMP-1, MMP-9, TIMP-1, and TIMP-2 expression, degree of mitral valve insufficiency, and pathologic etiology. J Card Surg 2022; 37:1613-1622. [PMID: 35343608 DOI: 10.1111/jocs.16449] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The pathogenesis of mitral valve insufficiency is not yet fully understood. Several studies stressed the role of matrix metalloproteinases (MMPs) in the emergence of valvular pathologies. The primary objective of the present study is to analyze the role of selected MMPs and their inhibitors in mitral valve insufficiency. PATIENTS AND METHODS Eighty patients (33 female/47 male, mean age 67 years) underwent cardiopulmonary bypass surgery for mitral valve reconstruction between 2007 and 2015. All patients suffered from mitral insufficiency (MI) Stages iii and iv. When tissue resection was acquired specimens were taken immediately frozen and used for histological examination. Expression of MMP-1, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 was examined immunohistochemically and distribution was analyzed in regard to preoperative clinical, echocardiographic, and histopathological findings. RESULTS A clear correlation between the MMP expression and the MI degree of severity could be shown. The expression of MMPs proved to be high in relation to mild insufficiencies and relatively weak in the case of severe ones. Additionally, the etiology of the MI was considered in the analysis and a significant difference in the expression of MMPs between the mitral valves with endocarditis and the ones featuring a degenerative disease could be shown. Within the group of valves with degenerative diseases, no significant difference could be established between the subgroups (myxoid and sclerosed valves). CONCLUSION The increased expression of MMPs and their inhibitors in mild insufficiencies could prove that the molecular changes in the valve precede the macroscopical and thus the echocardiographically diagnosable changes. Hence, new options for early diagnosis and therapy of MIs should be examined in further studies, respectively. Herein, the correlation of the MMP blood levels with MMP tissue expression should be addressed for surgical therapeutical decisions.
Collapse
Affiliation(s)
- Marc Irqsusi
- Department of Cardiovascular Surgery, University Hospital Gießen and Marburg, Marburg, Germany
| | - Azza Labene Mansouri
- Department of Cardiovascular Surgery, University Hospital Gießen and Marburg, Marburg, Germany
| | - Anette Ramaswamy
- Institute for Pathology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Peter Rexin
- Institute for Pathology, University Hospital Gießen and Marburg, Marburg, Germany
| | - Midhat Salman
- Department of Forensic Sciences, University of Health Sciences, Lahore, Pakistan
| | - Saqib Mahmood
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Nikolas Mirow
- Department of Cardiovascular Surgery, University Hospital Gießen and Marburg, Marburg, Germany
| | - Tamer Ghazi
- Department of Cardiovascular Surgery, University Hospital Gießen and Marburg, Marburg, Germany
| | - Rabia Ramzan
- Department of Cardiovascular Surgery, University Hospital Gießen and Marburg, Marburg, Germany
| | - Ardawan J Rastan
- Department of Cardiovascular Surgery, University Hospital Gießen and Marburg, Marburg, Germany
| | - Sebastian Vogt
- Department of Cardiovascular Surgery, University Hospital Gießen and Marburg, Marburg, Germany
| |
Collapse
|
45
|
Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022; 11:cells11040741. [PMID: 35203390 PMCID: PMC8870387 DOI: 10.3390/cells11040741] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
With 296 million cases estimated worldwide, chronic hepatitis B virus (HBV) infection is the most common risk factor for hepatocellular carcinoma (HCC). HBV-encoded oncogene X protein (HBx), a key multifunctional regulatory protein, drives viral replication and interferes with several cellular signalling pathways that drive virus-associated hepatocarcinogenesis. This review article provides a comprehensive overview of the role of HBx in modulating the various hallmarks of HCC by supporting tumour initiation, progression, invasion and metastasis. Understanding HBx-mediated dimensions of complexity in driving liver malignancies could provide the key to unlocking novel and repurposed combinatorial therapies to combat HCC.
Collapse
|
46
|
Genetic Variants of Matrix Metalloproteinase and Sepsis: The Need Speed Study. Biomolecules 2022; 12:biom12020279. [PMID: 35204780 PMCID: PMC8961575 DOI: 10.3390/biom12020279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Many causal mechanisms in sepsis susceptibility are largely unknown and the functional genetic polymorphisms (GP) of matrix metalloproteinases (MMPs) and their natural tissue inhibitor of MMPs (TIMP1) could play a role in its development. GPs of MMPs and TIMP (namely MMP-1 rs1799750, MMP-3 rs3025058, MMP-8 rs11225395, MMP-9 rs2234681, and TIMP-1 rs4898) have been compared in 1058 patients with suspected sepsis to assess the association with susceptibility and etiology of sepsis. Prevalence of MMP8 rs11225395 G/G genotype was higher in sepsis patients than in those with non-infective Systemic Inflammatory Reaction Syndrome (35.6 vs. 26%, hazard ratio, HR 1.56, 95% C.I. 1.04–2.42, p = 0.032). G/G patients developed less hyperthermia (p = 0.041), even after stratification for disease severity (p = 0.003). Patients carrying the 6A allele in MMP3 rs3025058 had a higher probability of microbiologically-proven sepsis (HR 1.4. 95%C.I. 1.01–1.94, p = 0.044), particularly when due to virus (H.R. 2.14, 95% C.I. 1.06–4.31, p = 0.046), while MMP-1 G/G genotype patients carried a higher risk for intracellular bacteria (Chlamydia, Mycoplasma, and Legionella, H.R. 6.46, 95% C.I. 1.58–26.41, p = 0.003). Neither severity of sepsis at presentation, nor 30-day mortality were influenced by the investigated variants or their haplotype. MMP8 rs11225395 G/G carriers have lower temperature at presentation and a more than 50% increased susceptibility to sepsis. Among patients with sepsis, carriers of MMP1 rs1799750 G/G have an increased susceptibility for intracellular pathogen infections, while virus serology is more often positive in those with the MMP3 rs3025058 A/A genotype.
Collapse
|
47
|
Hu X, Li H, Lin Y, Wang Z, Feng H, Zhou M, Shi L, Cao H, Ren Y. Genomic deciphering of sex determination and unique immune system of a potential model species rare minnow ( Gobiocypris rarus). SCIENCE ADVANCES 2022; 8:eabl7253. [PMID: 35108042 PMCID: PMC8809535 DOI: 10.1126/sciadv.abl7253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gobiocypris rarus is sensitive to environmental pollution, especially to heavy metal and grass carp reovirus (GCRV). Hence, it has potential utility as a biological monitor. Genetic deciphering of its unique immune system will advance our understanding of its unique adaptive strategies, which provide cues for its better application. A de novo genome of rare minnow was obtained, and its sex determination mechanism is ZZ/ZW. We identified several specific mutation genes and specific lost genes of rare minnow, and these might be related to the sensitivity of rare minnow to environmental stimuli. We also analyzed the gene expression level of different organs/tissues and found that several IFIT genes may play key roles in GCRV resistance. In addition, knockout of the gene PCDH10L indicates that PCDH10L affects Pb2+-induced mortality in rare minnow. Rare minnow is ready for genetic manipulation and shows potential as an emerging experimental model.
Collapse
Affiliation(s)
- Xudong Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yusheng Lin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Haohao Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author. (Y.R.); (H.C.)
| | - Yandong Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
- Corresponding author. (Y.R.); (H.C.)
| |
Collapse
|
48
|
Qu HQ, Snyder J, Connolly J, Glessner J, Kao C, Sleiman P, Hakonarson H. Circulating LIGHT (TNFSF14) and Interleukin-18 Levels in Sepsis-Induced Multi-Organ Injuries. Biomedicines 2022; 10:biomedicines10020264. [PMID: 35203474 PMCID: PMC8869623 DOI: 10.3390/biomedicines10020264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
The novel therapeutic target cytokine LIGHT (TNFSF14) was recently shown to play a major role in COVID-19-induced acute respiratory distress syndrome (ARDS). This study aims to investigate the associations of plasma LIGHT and another potentially targetable cytokine, interleukin-18 (IL-18), with ARDS, acute hypoxic respiratory failure (AHRF), or acute kidney injury (AKI), caused by non-COVID-19 viral or bacterial sepsis. A total of 280 subjects diagnosed with sepsis, including 91 cases with sepsis triggered by viral infections, were investigated in this cohort study. Day 0 plasma LIGHT and IL-18, as well as 59 other biomarkers (cytokines, chemokines, and acute-phase reactants) were measured by sensitive bead immunoassay and associated with symptom severity. We observed significantly increased LIGHT level in both bacterial sepsis patients (p = 1.80 × 10−5) and patients with sepsis from viral infections (p = 1.78 × 10−3). In bacterial sepsis, increased LIGHT level was associated with ARDS, AKI, and higher Apache III scores, findings also supported by correlations of LIGHT with other biomarkers of organ failure. IL-18 levels were highly variable across individuals and consistently correlated with Apache III scores, mortality, and AKI in both bacterial and viral sepsis. There was no correlation between LIGHT and IL-18. For the first time, we demonstrate independent effects of LIGHT and IL-18 in septic organ failure. The association of plasma LIGHT with AHRF suggests that targeting the pathway warrants exploration, and ongoing trials may soon elucidate whether this is beneficial. Given the large variance of plasma IL-18 among septic subjects, targeting this pathway requires precise application.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - James Snyder
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - John Connolly
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - Joseph Glessner
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
| | - Patrick Sleiman
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (H.-Q.Q.); (J.S.); (J.C.); (J.G.); (C.K.); (P.S.)
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +267-426-0088
| |
Collapse
|
49
|
Xue X, Caballero-Solares A, Hall JR, Umasuthan N, Kumar S, Jakob E, Skugor S, Hawes C, Santander J, Taylor RG, Rise ML. Transcriptome Profiling of Atlantic Salmon ( Salmo salar) Parr With Higher and Lower Pathogen Loads Following Piscirickettsia salmonis Infection. Front Immunol 2022; 12:789465. [PMID: 35035387 PMCID: PMC8758579 DOI: 10.3389/fimmu.2021.789465] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Salmonid rickettsial septicemia (SRS), caused by Piscirickettsia salmonis, is one of the most devastating diseases of salmonids. However, the transcriptomic responses of Atlantic salmon (Salmon salar) in freshwater to an EM-90-like isolate have not been explored. Here, we infected Atlantic salmon parr with an EM-90-like isolate and conducted time-course qPCR analyses of pathogen load and four biomarkers (campb, hampa, il8a, tlr5a) of innate immunity on the head kidney samples. Transcript expression of three of these genes (except hampa), as well as pathogen level, peaked at 21 days post-injection (DPI). Multivariate analyses of infected individuals at 21 DPI revealed two infection phenotypes [lower (L-SRS) and higher (H-SRS) infection level]. Five fish from each group (Control, L-SRS, and H-SRS) were selected for transcriptome profiling using a 44K salmonid microarray platform. We identified 1,636 and 3,076 differentially expressed probes (DEPs) in the L-SRS and H-SRS groups compared with the control group, respectively (FDR = 1%). Gene ontology term enrichment analyses of SRS-responsive genes revealed the activation of a large number of innate (e.g. “phagocytosis”, “defense response to bacterium”, “inflammatory response”) and adaptive (e.g. “regulation of T cell activation”, “antigen processing and presentation of exogenous antigen”) immune processes, while a small number of general physiological processes (e.g. “apoptotic process”, development and metabolism relevant) was enriched. Transcriptome results were confirmed by qPCR analyses of 42 microarray-identified transcripts. Furthermore, the comparison of individuals with differing levels of infection (H-SRS vs. L-SRS) generated insights into the biological processes possibly involved in disease resistance or susceptibility. This study demonstrated a low mortality (~30%) EM-90-like infection model and broadened the current understanding of molecular pathways underlying P. salmonis-triggered responses of Atlantic salmon, identifying biomarkers that may assist to diagnose and combat this pathogen.
Collapse
Affiliation(s)
- Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Jennifer R Hall
- Aquatic Research Cluster, CREAIT Network, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Eva Jakob
- Cargill Innovation Centre - Colaco, Colaco, Chile
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Sandnes, Norway
| | | | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Richard G Taylor
- Cargill Animal Nutrition and Health, Elk River, MN, United States
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
50
|
Liu TH, Wei Y, Dong XL, Chen P, Wang L, Yang X, Lu C, Pan MH. The dual roles of three MMPs and TIMP in innate immunity and metamorphosis in the silkworm, Bombyx mori. FEBS J 2021; 289:2828-2846. [PMID: 34862848 DOI: 10.1111/febs.16313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
The matrix metalloproteinases (MMPs) and their endogenous inhibitory factors, tissue inhibitors of metalloproteinases (TIMPs), are implicated in many diseases. However, the mammalian MMPs (> 20) and TIMPs (> 3) are larger in number, and so little is known about their individual roles in organisms. Hence, we have systematically studied the roles of all three MMPs and one TIMP in silkworm innate immunity and metamorphosis. We observed that MMPs and TIMP are highly expressed during the pupation stage of the silkworms, and TIMP could interact with each MMPs. High-activity MMPs and low-activity TIMP may enhance the infection of B. mori nucleopolyhedrovirus in both in vitro and in vivo. MMPs' knockout and TIMP overexpression delayed silkworm development and even caused death. Interestingly, different MMPs' knockout led to different tubular tissue dysplasia. These findings provide insights into the conserved functions of MMPs and TIMP in human organogenesis and immunoregulation.
Collapse
Affiliation(s)
- Tai-Hang Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Department of Bioinformatics, Chongqing Medical University, China
| | - Yi Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiao-Long Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Ling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xi Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| |
Collapse
|