1
|
Quiros-Fernandez I, Libório-Ramos S, Leifert L, Schönfelder B, Vlodavsky I, Cid-Arregui A. Dual T cell receptor/chimeric antigen receptor engineered NK-92 cells targeting the HPV16 E6 oncoprotein and the tumor-associated antigen L1CAM exhibit enhanced cytotoxicity and specificity against tumor cells. J Med Virol 2024; 96:e29630. [PMID: 38659368 DOI: 10.1002/jmv.29630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
The human papillomavirus type 16 (HPV16) causes a large fraction of genital and oropharyngeal carcinomas. To maintain the transformed state, the tumor cells must continuously synthesize the E6 and E7 viral oncoproteins, which makes them tumor-specific antigens. Indeed, specific T cell responses against them have been well documented and CD8+ T cells engineered to express T cell receptors (TCRs) that recognize epitopes of E6 or E7 have been tested in clinical studies with promising results, yet with limited clinical success. Using CD8+ T cells from peripheral blood of healthy donors, we have identified two novel TCRs reactive to an unexplored E618-26 epitope. These TCRs showed limited standalone cytotoxicity against E618-26-HLA-A*02:01-presenting tumor cells. However, a single-signaling domain chimeric antigen receptor (ssdCAR) targeting L1CAM, a cell adhesion protein frequently overexpressed in HPV16-induced cancer, prompted a synergistic effect that significantly enhanced the cytotoxic capacity of NK-92/CD3/CD8 cells armored with both TCR and ssdCAR when both receptors simultaneously engaged their respective targets, as shown by live microscopy of 2-D and 3-D co-cultures. Thus, virus-specific TCRs from the CD8+ T cell repertoire of healthy donors can be combined with a suitable ssdCAR to enhance the cytotoxic capacity of the effector cells and, indirectly, their specificity.
Collapse
MESH Headings
- Humans
- Oncogene Proteins, Viral/immunology
- Oncogene Proteins, Viral/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Repressor Proteins/immunology
- Repressor Proteins/genetics
- CD8-Positive T-Lymphocytes/immunology
- Killer Cells, Natural/immunology
- Human papillomavirus 16/immunology
- Human papillomavirus 16/genetics
- Cytotoxicity, Immunologic
- Cell Line, Tumor
Collapse
Affiliation(s)
- Isaac Quiros-Fernandez
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Center on Tropical Diseases (CIET)/Research Center on Surgery and Cancer (CICICA), Faculty of Microbiology, Universidad de Costa Rica, San Jose, Costa Rica
| | - Sofia Libório-Ramos
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Leifert
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bruno Schönfelder
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Angel Cid-Arregui
- Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
2
|
Rujirachaivej P, Siriboonpiputtana T, Luangwattananun P, Yuti P, Wutti-In Y, Choomee K, Sujjitjoon J, Chareonsirisuthigul T, Rerkamnuaychoke B, Junking M, Yenchitsomanus PT. Therapeutic potential of third-generation chimeric antigen receptor T cells targeting B cell maturation antigen for treating multiple myeloma. Clin Exp Med 2024; 24:90. [PMID: 38683232 PMCID: PMC11058938 DOI: 10.1007/s10238-024-01347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy characterized by the rapid proliferation of malignant plasma cells within the bone marrow. Standard therapies often fail due to patient resistance. The US FDA has approved second-generation chimeric antigen receptor (CAR) T cells targeting B-cell maturation antigen (anti-BCMA-CAR2 T cells) for MM treatment. However, achieving enduring clinical responses remains a challenge in CAR T cell therapy. This study developed third-generation T cells with an anti-BCMA CAR (anti-BCMA-CAR3). The CAR incorporated a fully human scFv specific to BCMA, linked to the CD8 hinge region. The design included the CD28 transmembrane domain, two co-stimulatory domains (CD28 and 4-1BB), and the CD3ζ signaling domain (28BBζ). Lentiviral technology generated these modified T cells, which were compared against anti-BCMA-CAR2 T cells for efficacy against cancer. Anti-BCMA-CAR3 T cells exhibited significantly higher cytotoxic activity against BCMA-expressing cells (KMS-12-PE and NCI-H929) compared to anti-BCMA-CAR2 T cells. At an effector-to-target ratio of 10:1, anti-BCMA-CAR3 T cells induced lysis in 75.5 ± 3.8% of NCI-H929 cells, whereas anti-BCMA-CAR2 T cells achieved 56.7 ± 3.4% (p = 0.0023). Notably, after twelve days of cultivation, anti-BCMA-CAR3 T cells nearly eradicated BCMA-positive cells (4.1 ± 2.1%), while anti-BCMA-CAR2 T cells allowed 36.8 ± 20.1% to survive. This study highlights the superior efficacy of anti-BCMA-CAR3 T cells against both low and high BCMA-expressing MM cells, surpassing anti-BCMA-CAR2 T cells. These findings suggest potential for advancing anti-BCMA-CAR3 T cells in chimeric antigen receptor T (CAR-T) therapy for relapsed/refractory MM.
Collapse
Affiliation(s)
- Punchita Rujirachaivej
- Graduate Program in Clinical Pathology, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT) and Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT) and Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yupanun Wutti-In
- Division of Transfusion Science, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kornkan Choomee
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT) and Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT) and Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Takol Chareonsirisuthigul
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Budsaba Rerkamnuaychoke
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT) and Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT) and Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Somboonpatarakun C, Phanthaphol N, Suwanchiwasiri K, Ramwarungkura B, Yuti P, Poungvarin N, Thuwajit P, Junking M, Yenchitsomanus PT. Cytotoxicity of fourth-generation anti-Trop2 CAR-T cells against breast cancer. Int Immunopharmacol 2024; 129:111631. [PMID: 38359664 DOI: 10.1016/j.intimp.2024.111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
The treatment of breast cancer (BC) remains a formidable challenge due to the emergence of drug resistance, necessitating the exploration of innovative strategies. Chimeric antigen receptor (CAR)-T cell therapy, a groundbreaking approach in hematologic malignancies, is actively under investigation for its potential application in solid tumors, including BC. Trophoblast cell surface antigen 2 (Trop2) has emerged as a promising immunotherapeutic target in various cancers and is notably overexpressed in BC. To enhance therapeutic efficacy in BC, a fourth-generation CAR (CAR4) construct was developed. This CAR4 design incorporates an anti-Trop2 single-chain variable fragment (scFv) fused with three costimulatory domains -CD28/4-1BB/CD27, and CD3ζ. Comparative analysis with the conventional second-generation CAR (CAR2; 28ζ) revealed that anti-Trop2 CAR4 T cells exhibited heightened cytotoxicity and interferon-gamma (IFN-γ) production against Trop2-expressing MCF-7 cells. Notably, anti-Trop2 CAR4-T cells demonstrated superior long-term cytotoxic functionality and proliferative capacity. Crucially, anti-Trop2 CAR4-T cells displayed specific cytotoxicity against Trop2-positive BC cells (MDA-MB-231, HCC70, and MCF-7) in both two-dimensional (2D) and three-dimensional (3D) culture systems. Following antigen-specific killing, these cells markedly secreted interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α), IFN-γ, and Granzyme B compared to non-transduced T cells. This study highlights the therapeutic potential of anti-Trop2 CAR4-T cells in adoptive T cell therapy for BC, offering significant promise for the advancement of BC treatment strategies.
Collapse
Affiliation(s)
- Chalermchai Somboonpatarakun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nattaporn Phanthaphol
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Kwanpirom Suwanchiwasiri
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Graduate Program in Molecular Medicine, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok 10700, Thailand
| | - Boonyanuch Ramwarungkura
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Graduate Program in Biomedical Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Naravat Poungvarin
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
4
|
Conarty JP, Wieland A. The Tumor-Specific Immune Landscape in HPV+ Head and Neck Cancer. Viruses 2023; 15:1296. [PMID: 37376596 DOI: 10.3390/v15061296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Human papillomaviruses (HPVs) are the causative agent of several anogenital cancers as well as head and neck cancers, with HPV+ head and neck squamous cell carcinoma (HNSCC) becoming a rapidly growing public health issue in the Western world. Due its viral etiology and potentially its subanatomical location, HPV+ HNSCC exhibits an immune microenvironment which is more inflamed and thus distinct from HPV-negative HNSCC. Notably, the antigenic landscape in most HPV+ HNSCC tumors extends beyond the classical HPV oncoproteins E6/7 and is extensively targeted by both the humoral and cellular arms of the adaptive immune system. Here, we provide a comprehensive overview of HPV-specific immune responses in patients with HPV+ HNSCC. We highlight the localization, antigen specificity, and differentiation states of humoral and cellular immune responses, and discuss their similarities and differences. Finally, we review currently pursued immunotherapeutic treatment modalities that attempt to harness HPV-specific immune responses for improving clinical outcomes in patients with HPV+ HNSCC.
Collapse
Affiliation(s)
- Jacob P Conarty
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Dross S, Venkataraman R, Patel S, Huang ML, Bollard CM, Rosati M, Pavlakis GN, Felber BK, Bar KJ, Shaw GM, Jerome KR, Mullins JI, Kiem HP, Fuller DH, Peterson CW. Efficient ex vivo expansion of conserved element vaccine-specific CD8+ T-cells from SHIV-infected, ART-suppressed nonhuman primates. Front Immunol 2023; 14:1188018. [PMID: 37207227 PMCID: PMC10189133 DOI: 10.3389/fimmu.2023.1188018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. This is due in part to these cells' recognition of immunodominant but variable regions of the virus, which facilitates viral escape via mutations that do not incur viral fitness costs. HIV-specific T cells targeting conserved viral elements are associated with viral control but are relatively infrequent in people living with HIV (PLWH). The goal of this study was to increase the number of these cells via an ex vivo cell manufacturing approach derived from our clinically-validated HIV-specific expanded T-cell (HXTC) process. Using a nonhuman primate (NHP) model of HIV infection, we sought to determine i) the feasibility of manufacturing ex vivo-expanded virus-specific T cells targeting viral conserved elements (CE, CE-XTCs), ii) the in vivo safety of these products, and iii) the impact of simian/human immunodeficiency virus (SHIV) challenge on their expansion, activity, and function. NHP CE-XTCs expanded up to 10-fold following co-culture with the combination of primary dendritic cells (DCs), PHA blasts pulsed with CE peptides, irradiated GM-K562 feeder cells, and autologous T cells from CE-vaccinated NHP. The resulting CE-XTC products contained high frequencies of CE-specific, polyfunctional T cells. However, consistent with prior studies with human HXTC and these cells' predominant CD8+ effector phenotype, we did not observe significant differences in CE-XTC persistence or SHIV acquisition in two CE-XTC-infused NHP compared to two control NHP. These data support the safety and feasibility of our approach and underscore the need for continued development of CE-XTC and similar cell-based strategies to redirect and increase the potency of cellular virus-specific adaptive immune responses.
Collapse
Affiliation(s)
- Sandra Dross
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Rasika Venkataraman
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Shabnum Patel
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Catherine M. Bollard
- Center for Cancer and Immunology Research, Children’s National Hospital and Department of Pediatrics, The George Washington University, Washington, DC, United States
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - George M. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keith R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Division of Vaccine and Infectious Diseases, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Hans-Peter Kiem
- Washington National Primate Research Center, Seattle, WA, United States
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Christopher W. Peterson
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Supimon K, Sangsuwannukul T, Sujjitjoon J, Chieochansin T, Junking M, Yenchitsomanus PT. Cytotoxic activity of anti-mucin 1 chimeric antigen receptor T cells expressing PD-1-CD28 switch receptor against cholangiocarcinoma cells. Cytotherapy 2023; 25:148-161. [PMID: 36396553 DOI: 10.1016/j.jcyt.2022.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND AIMS Cholangiocarcinoma (CCA) is a lethal bile-duct cancer that is difficult to treat by current standard procedures. This drawback has prompted us to develop adoptive T-cell therapy for CCA, which requires an appropriate target antigen for binding of chimeric antigen receptor (CAR) T cells. Mucin 1 (MUC1), an overexpressed protein in CCA cells, is a potential target antigen for the CAR T-cell development. However, MUC1 overexpression also is associated with the upregulation of programmed death-ligand 1 (PD-L1), an immune checkpoint protein that prohibits anti-tumor functions of T cells, probably causing poor overall survival of patients with CCA. METHODS To overcome this problem, we developed anti-MUC1-CAR T cells containing PD-1-CD28 switch receptor (SR), namely αM.CAR/SR T cells, to target MUC1 and switch on the inhibitory signal of PD-1/PD-L1 interaction to activate CD28 signaling. Our lentiviral construct contains the sequences that encode anti-MUC1-single chain variable fragment, CD137 and CD3ζ, linked with P2A, PD-1 and CD28. RESULTS Initially, the upregulations of MUC1 and PD-L1 proteins were confirmed in CCA cell lines. αM.CAR and SR were co-expressed in 53.53 ± 13.89% of transduced T cells, mainly CD8+ T cells (85.7 ± 0.75%, P<0.0001) with the effector memory phenotype (59.22 ± 16.31%, P < 0.01). αM.CAR/SR T cells produced high levels of intracellular tumor necrosis factor-α and interferon-γ in response to the activation by CCA cells expressing MUC1, including KKU-055 (27.18 ± 4.38% and 27.33 ± 5.55%, respectively, P < 0.05) and KKU-213A (47.37 ± 12.67% and 54.55 ± 8.66%, respectively, P < 0.01). Remarkably, the cytotoxic function of αM.CAR/SR T cells against KKU-213A cells expressing PD-L1 was significantly enhanced compared with the αM.CAR T cells (70.69 ± 14.38% versus 47.15 ± 8.413%, respectively; P = 0.0301), correlated with increased granzyme B production (60.6 ± 9.89% versus 43.2 ± 8.95%, respectively; P = 0.0402). Moreover, the significantly enhanced disruption of KKU-213A spheroids by αM.CAR/SR T cells (P = 0.0027), compared with αM.CAR T cells, was also observed. CONCLUSION Taken together, the cytotoxic function of αM.CAR/SR T cells was enhanced over the αM.CAR T cells, which are potential to be further tested for CCA treatment.
Collapse
Affiliation(s)
- Kamonlapat Supimon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanich Sangsuwannukul
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
7
|
Public and private human T-cell clones respond differentially to HCMV antigen when boosted by CD3 copotentiation. Blood Adv 2021; 4:5343-5356. [PMID: 33125463 DOI: 10.1182/bloodadvances.2020002255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces long-lasting T-cell immune responses that control but do not clear infection. Typical responses involve private T-cell clones, expressing T-cell antigen receptors (TCRs) unique to a person, and public T-cell clones with identical TCRs active in different people. Here, we report the development of a pretherapeutic immunostimulation modality against HCMV for human T cells, CD3 copotentiation, and the clonal analysis of its effects in recall assays at single-cell resolution. CD3 copotentiation of human T cells required identification of an intrinsically inert anti-CD3 Fab fragment that conditionally augmented signaling only when TCR was coengaged with antigen. When applied in recall assays, CD3 copotentiation enhanced the expansion of both public and private T-cell clones responding to autologous HLA-A2(+) antigen-presenting cells and immunodominant NLVPMVATV (NLV) peptide from HCMV pp65 protein. Interestingly, public vs private TCR expression was associated with distinct clonal expansion signatures in response to recall stimulus. This implied that besides possible differences in their generation and selection in an immune response, public and private T cells may respond differently to pharmacoimmunomodulation. Furthermore, a third clonal expansion profile was observed upon CD3 copotentiation of T-cell clones from HLA-A2(-) donors and 1 HLA-A2(+) presumed-uninfected donor, where NLV was of low intrinsic potency. We conclude that human T-cell copotentiation can increase the expansion of different classes of T-cell clones responding to recall antigens of different strengths, and this may be exploitable for therapeutic development against chronic, persistent infections such as HCMV.
Collapse
|
8
|
Anti-mucin 1 chimeric antigen receptor T cells for adoptive T cell therapy of cholangiocarcinoma. Sci Rep 2021; 11:6276. [PMID: 33737613 PMCID: PMC7973425 DOI: 10.1038/s41598-021-85747-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
Current treatments for cholangiocarcinoma (CCA) are largely unsuccessful due to late diagnosis at advanced stage, leading to high mortality rate. Consequently, improved therapeutic approaches are urgently needed. Chimeric antigen receptor (CAR) T cell therapy is a newly potential therapy that can recognize specific surface antigen without major histocompatibility complex (MHC) restriction. Mucin 1 (MUC1) is an attractive candidate antigen as it is highly expressed and associated with poor prognosis and survival in CCA. We, therefore, set forth to create the fourth-generation CAR (CAR4) construct containing anti-MUC1-single-chain variable fragment (scFv) and three co-stimulatory domains (CD28, CD137, and CD27) linked to CD3ζ and evaluate anti-MUC1-CAR4 T cells in CCA models. Compared to untransduced T cells, anti-MUC1-CAR4 T cells produced increased levels of TNF-α, IFN-γ and granzyme B when exposed to MUC1-expressing KKU-100 and KKU-213A CCA cells (all p < 0.05). Anti-MUC1-CAR4 T cells demonstrated specific killing activity against KKU-100 (45.88 ± 7.45%, p < 0.05) and KKU-213A cells (66.03 ± 3.14%, p < 0.001) at an effector to target ratio of 5:1, but demonstrated negligible cytolytic activity against immortal cholangiocytes. Furthermore, the anti-MUC1-CAR4 T cells could effectively disrupt KKU-213A spheroids. These activities of anti-MUC1-CAR4 T cells supports the development of this approach as an adoptive T cell therapeutic strategy for CCA.
Collapse
|
9
|
Marton C, Mercier-Letondal P, Galaine J, Godet Y. An unmet need: Harmonization of IL-7 and IL-15 combination for the ex vivo generation of minimally differentiated T cells. Cell Immunol 2021; 363:104314. [PMID: 33677140 DOI: 10.1016/j.cellimm.2021.104314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 11/29/2022]
Abstract
T cell-based adoptive cell transfer therapy is now clinically used to fight cancer with CD19-targeting chimeric antigen receptor T cells. The use of other T cell-based immunotherapies relying on antigen-specific T cells, genetically modified or not, is expanding in various neoplastic diseases. T cell manufacturing has evolved through sophisticated processes to produce T cells with improved therapeutic potential. Clinical-grade manufacturing processes associated with these therapies must meet pharmaceutical requirements and therefore be standardized. Here, we focus on the use of cytokines to expand minimally differentiated T cells, as well as their standardization and harmonization in research and clinical settings.
Collapse
Affiliation(s)
- Chrystel Marton
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.
| | - Patricia Mercier-Letondal
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Jeanne Galaine
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Yann Godet
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.
| |
Collapse
|
10
|
Chamucero-Millares JA, Bernal-Estévez DA, Parra-López CA. Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. Cell Immunol 2020; 360:104257. [PMID: 33387685 DOI: 10.1016/j.cellimm.2020.104257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022]
Abstract
Clonal anergy and depletion of antigen-specific CD8+ T cells are characteristics of immunosuppressed patients such as cancer and post-transplant patients. This has promoted translational research on the adoptive transfer of T cells to restore the antigen-specific cellular immunity in these patients. In the present work, we compared the capability of PBMCs and two types of mature monocyte-derived DCs (moDCs) to prime and to expand ex-vivo antigen-specific CD8+ T cells using culture conditioned media supplemented with IL-7, IL-15, and IL-21. The data obtained suggest that protocols involving moDCs are as efficient as PBMCs-based cultures in expanding antigen-specific CD8+ T cell to ELA and CMV model epitopes. These three gamma common chain cytokines promote the expansion of naïve-like and central memory CD8+ T cells in PBMCs-based cultures and the expansion of effector memory T cells when moDCs were used. Our results provide new insights into the use of media supplemented with IL-7, IL-15, and IL-21 for the in-vitro expansion of early-differentiated antigen-specific CD8+ T cells for immunotherapy purposes.
Collapse
Affiliation(s)
- Julián A Chamucero-Millares
- Immunology and Translational Medicine Research Group, Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, South-America, Colombia; Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Calle 44 #58-05, Bogotá, South-America, Colombia.
| | - David A Bernal-Estévez
- Immunology and Clinical Oncology Research Group, Fundación Salud de los Andes, Calle 44 #58-05, Bogotá, South-America, Colombia
| | - Carlos A Parra-López
- Immunology and Translational Medicine Research Group, Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, South-America, Colombia.
| |
Collapse
|
11
|
Expanded activated autologous lymphocyte infusions improve outcomes of low- and intermediate-risk childhood acute myeloid leukemia with low level of minimal residual disease. Cancer Lett 2020; 493:128-132. [PMID: 32829005 DOI: 10.1016/j.canlet.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/22/2022]
Abstract
The presence of minimal residual disease (MRD) is a risk factor for relapse among children with acute myeloid leukemia (AML), and eliminating MRD can usually improve survival rates. To investigate the effect of expanded activated autologous lymphocytes (EAALs) combined with chemotherapy on eliminating MRD and improving survival rates of children with AML, we retrospectively analyzed the results of 115 children with low- or intermediate-risk AML with MRD treated at the Pediatric Hematological Center, Peking University People's Hospital, between January 2010 and January 2016. The patients were assigned to the chemotherapy plus EAAL (combined therapy) group (n = 61) and chemotherapy group (n = 54). The MRD-negativity rates were 95.1% (58/61) in the combined therapy group and 63.0% (34/54) in the chemotherapy group (P < 0.0001) during consolidation treatment. The 5-year event-free survival rate was higher in the combined therapy group than in the chemotherapy group (86.3 ± 4.6% vs. 72.1 ± 6.1%, P = 0.025). No severe adverse event was observed after EAAL infusion. The present study showed that EAAL combined with chemotherapy could improve the MRD-negativity rate and event-free survival rate among children with AML with low level MRD-positive status.
Collapse
|
12
|
Xiao Y, Liu C, Chen Z, Blatchley MR, Kim D, Zhou J, Xu M, Gerecht S, Fan R. Senescent Cells with Augmented Cytokine Production for Microvascular Bioengineering and Tissue Repairs. ADVANCED BIOSYSTEMS 2019; 3:1900089. [PMID: 32270028 PMCID: PMC7141414 DOI: 10.1002/adbi.201900089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Controlled delivery of cytokines and growth factors has been an area of intense research interest for molecular and cellular bioengineering, immunotherapy, and regenerative medicine. In this study, we show that primary human lung fibroblasts chemically induced to senescence (cell cycle arrest) can act as a living source to transiently produce factors essential for promoting vasculogenesis or angiogenesis, such as VEGF, HGF, and IL-8. Co-culture of senescent fibroblasts with HUVECs in a fibrin gel demonstrated accelerated formation and maturation of microvessel networks in as early as three days. Unlike the usage of non-senescent fibroblasts as the angiogenesis-promoting cells, this approach eliminates drawbacks related to the overproliferation of fibroblasts and the subsequent disruption of tissue architecture, integrity, or function. Co-culture of pancreatic islets with senescent fibroblasts and endothelial cells in a gel matrix maintains the viability and function of islets ex vivo for up to five days. Applying senescent fibroblasts to wound repair in vivo led to increased blood flow in a diabetic mouse model. Together, this work points to a new direction for engineering the delivery of cytokines and growth factors that promote microvascular tissue engineering and tissue repairs.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
| | - Chang Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
| | - Zhuo Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
| | - Michael R. Blatchley
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20218, U.S.A
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD 20218, U.S.A
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
| | - Jing Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
- Department of Anesthesiology, Yale University, New Haven, CT 06520, U.S.A
| | - Ming Xu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
| | - Sharon Gerecht
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 20218, U.S.A
- Department of Chemical and Biomolecular Engineering, Institute for NanoBioTechnology, Johns Hopkins University Baltimore, MD 20218, U.S.A
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 20218, U.S.A
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 20218, U.S.A
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, U.S.A
- Yale Comprehensive Cancer Center, New Haven, CT 06520, U.S.A
| |
Collapse
|
13
|
Ntranos A, Ntranos V, Bonnefil V, Liu J, Kim-Schulze S, He Y, Zhu Y, Brandstadter R, Watson CT, Sharp AJ, Katz Sand I, Casaccia P. Fumarates target the metabolic-epigenetic interplay of brain-homing T cells in multiple sclerosis. Brain 2019; 142:647-661. [PMID: 30698680 PMCID: PMC6821213 DOI: 10.1093/brain/awy344] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Cell-permeable formulations of metabolites, such as fumaric acid esters, have been used as highly effective immunomodulators in patients with multiple sclerosis and yet their mechanism of action remains elusive. Since fumaric acid esters are metabolites, and cell metabolism is highly intertwined with the epigenetic regulation of gene expression, we investigated whether this metabolic-epigenetic interplay could be leveraged for therapeutic purposes. To this end we recruited 47 treatment-naïve and 35 fumaric acid ester-treated patients with multiple sclerosis, as well as 16 glatiramer acetate-treated patients as a non-metabolite treatment control. Here we identify a significant immunomodulatory effect of fumaric acid esters on the expression of the brain-homing chemokine receptor CCR6 in CD4 and CD8 T cells of patients with multiple sclerosis, which include T helper-17 and T cytotoxic-17 cells. We report differences in DNA methylation of CD4 T cells isolated from untreated and treated patients with multiple sclerosis, using the Illumina EPIC 850K BeadChip. We first demonstrate that Krebs cycle intermediates, such as fumaric acid esters, have a significantly higher impact on epigenome-wide DNA methylation changes in CD4 T cells compared to amino-acid polymers such as glatiramer acetate. We then define a fumaric acid ester treatment-specific hypermethylation effect on microRNA MIR-21, which is critical for the differentiation of T helper-17 cells. This hypermethylation effect was attributed to the subpopulation of T helper-17 cells using a decomposition analysis and was further validated in an independent prospective cohort of seven patients before and after treatment with fumaric acid esters. In vitro treatment of CD4 and CD8 T cells with fumaric acid esters supported a direct and dose-dependent effect on DNA methylation at the MIR-21 promoter. Finally, the upregulation of miR-21 transcripts and CCR6 expression was inhibited if CD4 or CD8 T cells stimulated under T helper-17 or T cytotoxic-17 polarizing conditions were treated with fumaric acid esters in vitro. These data collectively define a direct link between fumaric acid ester treatment and hypermethylation of the MIR-21 locus in both CD4 and CD8 T cells and suggest that the immunomodulatory effect of fumaric acid esters in multiple sclerosis is at least in part due to the epigenetic regulation of the brain-homing CCR6+ CD4 and CD8 T cells.
Collapse
Affiliation(s)
- Achilles Ntranos
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Valentina Bonnefil
- Neuroscience, Advanced Science Research Center at The Graduate Center of the City University of New York, New York, NY, USA
| | - Jia Liu
- Neuroscience, Advanced Science Research Center at The Graduate Center of the City University of New York, New York, NY, USA
| | - Seunghee Kim-Schulze
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ye He
- Neuroscience, Advanced Science Research Center at The Graduate Center of the City University of New York, New York, NY, USA
| | - Yunjiao Zhu
- Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Brandstadter
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corey T Watson
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Andrew J Sharp
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilana Katz Sand
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrizia Casaccia
- Neuroscience, Advanced Science Research Center at The Graduate Center of the City University of New York, New York, NY, USA
- Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Calderon-Gonzalez R, Bronchalo-Vicente L, Freire J, Frande-Cabanes E, Alaez-Alvarez L, Gomez-Roman J, Yañez-Diaz S, Alvarez-Dominguez C. Exceptional antineoplastic activity of a dendritic-cell-targeted vaccine loaded with a Listeria peptide proposed against metastatic melanoma. Oncotarget 2017; 7:16855-65. [PMID: 26942874 PMCID: PMC4941355 DOI: 10.18632/oncotarget.7806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/09/2016] [Indexed: 01/24/2023] Open
Abstract
Vaccination with dendritic cells (DCs) is proposed to induce lasting responses against melanoma but its survival benefit in patients needs to be demonstrated. We propose a DC-targeted vaccine loaded with a Listeria peptide with exceptional anti-tumour activity to prevent metastasis of melanoma. Mice vaccinated with vaccines based on DCs loaded with listeriolysin O peptide (91–99) (LLO91–99) showed clear reduction of metastatic B16OVA melanoma size and adhesion, prevention of lung metastasis, enhanced survival, and reversion of immune tolerance. Robust innate and specific immune responses explained the efficiency of DC-LLO91–99 vaccines against B16OVA melanoma. The noTable features of this vaccine related to melanoma reduction were: expansion of immune-dominant LLO91–99-specific CD8 T cells that helped to expand melanoma-specific CD8+ T cells; high numbers of tumour-infiltrating lymphocytes with a cytotoxic phenotype; and a decrease in CD4+CD25high regulatory T cells. This vaccine might be a useful alternative treatment for advanced melanoma, alone or in combination with other therapies.
Collapse
Affiliation(s)
- Ricardo Calderon-Gonzalez
- Group of Genomics, Proteomics and Vaccines, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain
| | - Lucia Bronchalo-Vicente
- Group of Genomics, Proteomics and Vaccines, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain.,Dermatology Department, Marqués de Valdecilla University Hospital (HUMV), Santander, Spain
| | - Javier Freire
- Pathological Anatomy Department, Marqués de Valdecilla University Hospital (HUMV), Santander, Spain
| | - Elisabet Frande-Cabanes
- Group of Genomics, Proteomics and Vaccines, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain
| | - Lidia Alaez-Alvarez
- Group of Genomics, Proteomics and Vaccines, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain
| | - Javier Gomez-Roman
- Pathological Anatomy Department, Marqués de Valdecilla University Hospital (HUMV), Santander, Spain
| | - Sonsóles Yañez-Diaz
- Dermatology Department, Marqués de Valdecilla University Hospital (HUMV), Santander, Spain
| | - Carmen Alvarez-Dominguez
- Group of Genomics, Proteomics and Vaccines, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain
| |
Collapse
|
15
|
Nada MH, Wang H, Workalemahu G, Tanaka Y, Morita CT. Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation. J Immunother Cancer 2017; 5:9. [PMID: 28239463 PMCID: PMC5319075 DOI: 10.1186/s40425-017-0209-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/06/2017] [Indexed: 01/14/2023] Open
Abstract
Background Human γδ T cells expressing Vγ2Vδ2 T cell receptors monitor foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis to mediate immunity to microbes and tumors. Adoptive immunotherapy with Vγ2Vδ2 T cells has been used to treat cancer patients with partial and complete remissions. Most clinical trials and preclinical studies have used continuous zoledronate exposure to expand Vγ2Vδ2 cells where zoledronate is slowly diluted over the course of the culture. Zoledronate inhibits farnesyl diphosphate synthase (FDPS) in monocytes causing isopentenyl pyrophosphate to accumulate that then stimulates Vγ2Vδ2 cells. Because zoledronate inhibition of FDPS is also toxic for T cells, we hypothesized that a short period of exposure would reduce T cell toxicity but still be sufficient for monocytes uptake. Additionally, IL-15 increases the anti-tumor activity of murine αβ T cells in mice but its effect on the in vivo anti-tumor activity of human Vγ2Vδ2 cells has not been assessed. Methods Human Vγ2Vδ2 T cells were expanded by pulse or continuous zoledronate stimulation with IL-2 or IL-15. Expanded Vγ2Vδ2 cells were tested for their expression of effector molecules and killing of tumor cells as well as their in vivo control of human prostate cancer tumors in immunodeficient NSG mice. Results Pulse zoledronate stimulation with either IL-2 or IL-15 resulted in more uniform expansion of Vγ2Vδ2 cells with higher purity and cell numbers as compared with continuous exposure. The Vγ2Vδ2 cells had higher levels of CD107a and perforin and increased tumor cytotoxicity. Adoptive immunotherapy with Vγ2Vδ2 cells derived by pulse stimulation controlled human PC-3 prostate cancer tumors in NSG mice significantly better than those derived by continuous stimulation, halting tumor growth. Although pulse zoledronate stimulation with IL-15 preserved early memory subsets, adoptive immunotherapy with IL-15-derived Vγ2Vδ2 cells equally inhibited PC-3 tumor growth as those derived with IL-2. Conclusions Pulse zoledronate stimulation maximizes the purity, quantity, and quality of expanded Vγ2Vδ2 cells for adoptive immunotherapy but there is no advantage to using IL-15 over IL-2 in our humanized mouse model. Pulse zoledronate stimulation is a simple modification to existing protocols that will enhance the effectiveness of adoptively transferred Vγ2Vδ2 cells by increasing their numbers and anti-tumor activity. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0209-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Pathology, College of Medicine, Tikrit University, Tikrit, Iraq
| | - Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA
| | - Grefachew Workalemahu
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| |
Collapse
|
16
|
Change in peripheral blood lymphocyte count in dogs following adoptive immunotherapy using lymphokine-activated T killer cells combined with palliative tumor resection. Vet Immunol Immunopathol 2016; 177:58-63. [DOI: 10.1016/j.vetimm.2016.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/11/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023]
|
17
|
Li K, Baird M, Yang J, Jackson C, Ronchese F, Young S. Conditions for the generation of cytotoxic CD4(+) Th cells that enhance CD8(+) CTL-mediated tumor regression. Clin Transl Immunology 2016; 5:e95. [PMID: 27588200 PMCID: PMC5007627 DOI: 10.1038/cti.2016.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 12/14/2022] Open
Abstract
Adoptive cell therapies (ACTs) using tumor-reactive T cells have shown clinical benefit and potential for cancer treatment. While the majority of the current ACT are focused on using CD8+ cytotoxic T lymphocytes (CTL), others have shown that the presence of tumor-reactive CD4+ T helper (Th) cells can greatly enhance the anti-tumor activity of CD8+ CTL. However, difficulties in obtaining adequate numbers of CD4+ Th cells through in vitro expansion can limit the application of CD4 Th cells in ACT. This study aims to optimize the culture conditions for mouse CD4 T cells to provide basic information for animal studies of ACT using CD4 T cells. Taking advantage of the antigen-specificity of CD4+ Th cells from OT-II transgenic mice, we examined different methodologies for generating antigen-specific CD4+ Th1 cells in vitro. We found that cells grown in complete advanced-DMEM/F12 medium supplemented with low-dose IL-2 and IL-7 induced substantial cell expansion. These Th cells were Th1-like, as they expressed multiple Th1-cytokines and exhibited antigen-specific cytotoxicity. In addition co-transfer of these CD4+ Th1-like cells with CD8+ CTL significantly enhanced tumor regression, leading to complete cure in 80% of mice bearing established B16-OVA. These observations indicate that the CD4+ Th1-like cells generated using the method we optimized are functionally active to eliminate their target cells, and can also assist CD8+ CTL to enhance tumor regression. The findings of this study provide valuable data for further research into in vitro expansion of CD4+ Th1-like cells, with potential applications to cancer treatment involving ACT.
Collapse
Affiliation(s)
- Kunyu Li
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
| | - Margaret Baird
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
| | - Jianping Yang
- Malaghan Institute of Research , Wellington, New Zealand
| | - Chris Jackson
- Departmemt of Medicine, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
| | | | - Sarah Young
- Department of Pathology, Dunedin School of Medicine, University of Otago , Dunedin, New Zealand
| |
Collapse
|
18
|
Abstract
There is a clear need to develop strategies to induce tolerance without the need of chronic immunosuppression in transplant recipient and in patients with autoimmunity. Adoptive T regulatory cell (Treg) therapy offers the potential of long-lasting protection. However, based on results of clinical trials so far with ex vivo expanded autologous Tregs in type 1 diabetic (T1D) patients, it seems unlikely that single immunotherapy with Treg infusion without immunomodulation regimens that promote stable donor Treg engraftment and persistence would afford truly significant clinical benefit. Combination therapies could provide improved outcomes with consideration of the fundamental factors required for Treg generation, homeostasis, and function to promote long-term donor Treg persistence to provoke beneficial therapeutic outcomes.
Collapse
|
19
|
Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech 2015; 8:337-50. [PMID: 26035842 PMCID: PMC4381333 DOI: 10.1242/dmm.018036] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tumours use many strategies to evade the host immune response, including downregulation or weak immunogenicity of target antigens and creation of an immune-suppressive tumour environment. T cells play a key role in cell-mediated immunity and, recently, strategies to genetically modify T cells either through altering the specificity of the T cell receptor (TCR) or through introducing antibody-like recognition in chimeric antigen receptors (CARs) have made substantial advances. The potential of these approaches has been demonstrated in particular by the successful use of genetically modified T cells to treat B cell haematological malignancies in clinical trials. This clinical success is reflected in the growing number of strategic partnerships in this area that have attracted a high level of investment and involve large pharmaceutical organisations. Although our understanding of the factors that influence the safety and efficacy of these therapies has increased, challenges for bringing genetically modified T-cell immunotherapy to many patients with different tumour types remain. These challenges range from the selection of antigen targets and dealing with regulatory and safety issues to successfully navigating the routes to commercial development. However, the encouraging clinical data, the progress in the scientific understanding of tumour immunology and the improvements in the manufacture of cell products are all advancing the clinical translation of these important cellular immunotherapies.
Collapse
Affiliation(s)
- Michaela Sharpe
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Natalie Mount
- Cell Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
20
|
Khan MWA, Curbishley SM, Chen HC, Thomas AD, Pircher H, Mavilio D, Steven NM, Eberl M, Moser B. Expanded Human Blood-Derived γδT Cells Display Potent Antigen-Presentation Functions. Front Immunol 2014; 5:344. [PMID: 25101086 PMCID: PMC4107971 DOI: 10.3389/fimmu.2014.00344] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/06/2014] [Indexed: 01/12/2023] Open
Abstract
Cell-based immunotherapy strategies target tumors directly (via cytolytic effector cells) or aim at mobilizing endogenous anti-tumor immunity. The latter approach includes dendritic cells (DC) most frequently in the form of in vitro cultured peripheral blood monocytes-derived DC. Human blood γδT cells are selective for a single class of non-peptide agonists (“phosphoantigens”) and develop into potent antigen-presenting cells (APC), termed γδT-APC within 1–3 days of in vitro culture. Availability of large numbers of γδT-APC would be advantageous for use as a novel cellular vaccine. We here report optimal γδT cell expansion (>107 cells/ml blood) when peripheral blood mononuclear cells (PBMC) from healthy individuals and melanoma patients were stimulated with zoledronate and then cultured for 14 days in the presence of IL-2 and IL-15, yielding γδT cell cultures of variable purity (77 ± 21 and 56 ± 26%, respectively). They resembled effector memory αβT (TEM) cells and retained full functionality as assessed by in vitro tumor cell killing as well as secretion of pro-inflammatory cytokines (IFNγ, TNFα) and cell proliferation in response to stimulation with phosphoantigens. Importantly, day 14 γδT cells expressed numerous APC-related cell surface markers and, in agreement, displayed potent in vitro APC functions. Day 14 γδT cells from PBMC of patients with cancer were equally effective as their counterparts derived from blood of healthy individuals and triggered potent CD8+ αβT cell responses following processing and cross-presentation of simple (influenza M1) and complex (tuberculin purified protein derivative) protein antigens. Of note, and in clear contrast to peripheral blood γδT cells, the ability of day 14 γδT cells to trigger antigen-specific αβT cell responses did not depend on re-stimulation. We conclude that day 14 γδT cell cultures provide a convenient source of autologous APC for use in immunotherapy of patients with various cancers.
Collapse
Affiliation(s)
- Mohd Wajid A Khan
- Institute of Infection and Immunity, Cardiff University School of Medicine , Cardiff , UK
| | - Stuart M Curbishley
- NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham Medical School , Birmingham , UK
| | - Hung-Chang Chen
- Institute of Infection and Immunity, Cardiff University School of Medicine , Cardiff , UK
| | - Andrew D Thomas
- Institute of Infection and Immunity, Cardiff University School of Medicine , Cardiff , UK
| | - Hanspeter Pircher
- Department of Immunology, Institute of Medical Microbiology and Hygiene, University of Freiburg , Freiburg , Germany
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano , Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy
| | - Neil M Steven
- CR-UK Clinical Trials Unit, School of Cancer Sciences, University of Birmingham Medical School , Birmingham , UK
| | - Matthias Eberl
- Institute of Infection and Immunity, Cardiff University School of Medicine , Cardiff , UK
| | - Bernhard Moser
- Institute of Infection and Immunity, Cardiff University School of Medicine , Cardiff , UK
| |
Collapse
|
21
|
Wölfl M, Merker K, Morbach H, Van Gool SW, Eyrich M, Greenberg PD, Schlegel PG. Primed tumor-reactive multifunctional CD62L+ human CD8+ T cells for immunotherapy. Cancer Immunol Immunother 2010; 60:173-86. [PMID: 20972785 DOI: 10.1007/s00262-010-0928-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 10/05/2010] [Indexed: 12/11/2022]
Abstract
T cell-mediated immunotherapy against malignancies has been shown to be effective for certain types of cancer. However, ex vivo expansion of tumor-reactive T cells has been hindered by the low precursor frequency of such cells, often requiring multiple rounds of stimulation, resulting in full differentiation, loss of homing receptors and potential exhaustion of the expanded T cells. Here, we show that when using highly purified naïve CD8+ T cells, a single stimulation with peptide-pulsed, IFNγ/LPS-matured dendritic cells in combination with the sequential use of IL-21, IL-7 and IL-15 is sufficient for extensive expansion of antigen-specific T cells. Short-term expanded T cells were tumor-reactive, multifunctional and retained a central-memory-like phenotype (CD62L+, CCR7+, CD28+). The procedure is highly reproducible and robust as demonstrated for different healthy donors and for cancer patients. Such short-term tumor-antigen-primed, multifunctional T cells may therefore serve as a platform to target different malignancies accessible to immunotherapy.
Collapse
Affiliation(s)
- Matthias Wölfl
- Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, Josef-Schneider-Strasse 2, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Casado JG, DelaRosa O, Pawelec G, Peralbo E, Duran E, Barahona F, Solana R, Tarazona R. Correlation of effector function with phenotype and cell division after in vitro differentiation of naive MART-1-specific CD8+ T cells. Int Immunol 2008; 21:53-62. [DOI: 10.1093/intimm/dxn123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
23
|
Skoberne M, Yewdall A, Bahjat KS, Godefroy E, Lauer P, Lemmens E, Liu W, Luckett W, Leong M, Dubensky TW, Brockstedt DG, Bhardwaj N. KBMA Listeria monocytogenes is an effective vector for DC-mediated induction of antitumor immunity. J Clin Invest 2008; 118:3990-4001. [PMID: 19033668 PMCID: PMC2579623 DOI: 10.1172/jci31350] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 10/01/2008] [Indexed: 01/16/2023] Open
Abstract
Vaccine strategies that utilize human DCs to enhance antitumor immunity have yet to realize their full potential. Approaches that optimally target a spectrum of antigens to DCs are urgently needed. Here we report the development of a platform for loading DCs with antigen. It is based on killed but metabolically active (KBMA) recombinant Listeria monocytogenes and facilitates both antigen delivery and maturation of human DCs. Highly attenuated KBMA L. monocytogenes were engineered to express an epitope of the melanoma-associated antigen MelanA/Mart-1 that is recognized by human CD8+ T cells when presented by the MHC class I molecule HLA-A*0201. The engineered KBMA L. monocytogenes induced human DC upregulation of costimulatory molecules and secretion of pro-Th1 cytokines and type I interferons, leading to effective priming of Mart-1-specific human CD8+ T cells and lysis of patient-derived melanoma cells. KBMA L. monocytogenes expressing full-length NY-ESO-1 protein, another melanoma-associated antigen, delivered the antigen for presentation by MHC class I and class II molecules independent of the MHC haplotype of the DC donor. A mouse therapeutic tumor model was used to show that KBMA L. monocytogenes efficiently targeted APCs in vivo to induce protective antitumor responses. Together, our data demonstrate that KBMA L. monocytogenes may be a powerful platform that can both deliver recombinant antigen to DCs for presentation and provide a potent DC-maturation stimulus, making it a potential cancer vaccine candidate.
Collapse
Affiliation(s)
- Mojca Skoberne
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Alice Yewdall
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Keith S. Bahjat
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Emmanuelle Godefroy
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Peter Lauer
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Edward Lemmens
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Weiqun Liu
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Will Luckett
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Meredith Leong
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Thomas W. Dubensky
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Dirk G. Brockstedt
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| | - Nina Bhardwaj
- Cancer Institute, New York University School of Medicine, New York, New York, USA.
Anza Therapeutics, Concord, California, USA
| |
Collapse
|
24
|
Voelter V, Rufer N, Reynard S, Greub G, Brookes R, Guillaume P, Grosjean F, Fagerberg T, Michelin O, Rowland-Jones S, Pinilla C, Leyvraz S, Romero P, Appay V. Characterization of Melan-A reactive memory CD8+ T cells in a healthy donor. Int Immunol 2008; 20:1087-96. [DOI: 10.1093/intimm/dxn066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Mercier-Letondal P, Montcuquet N, Sauce D, Certoux JM, Jeanningros S, Ferrand C, Bonyhadi M, Tiberghien P, Robinet E. Alloreactivity of ex vivo-expanded T cells is correlated with expansion and CD4/CD8 ratio. Cytotherapy 2008; 10:275-88. [PMID: 18418773 DOI: 10.1080/14653240801927032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background We have demonstrated previously that retroviral-mediated transfer of a suicide gene into bone marrow (BM) donor T cells allows an efficient control of graft-versus-host disease (GvHD) after allogeneic BM transplantation. However, the 12 days of ex vivo culture required for the production of gene-modified cells (GMC), including soluble CD3 monoclonal antibody (MAb)-mediated activation and expansion with interleukin (IL)-2, induced a decrease of GMC alloreactivity and a reversal of their CD4/CD8 ratio. Improving the culture protocol in order to maintain the highest alloreactivity is of critical importance in obtaining an optimal graft-versus-leukemia (GvL) effect. Methods Peripheral blood mononuclear cells were activated with soluble CD3 MAb or CD3 and CD28 MAb co-immobilized on beads and expanded for 12 days in the presence of IL-2, IL-7 or IL-15 before analysis of alloreactivity and phenotype. Results Replacing the CD3 MAb by CD3/CD28 beads led to similar in vitro alloreactivity but improved the expansion and in vivo alloreactivity of GMC. Replacing the IL-2 with IL-7, but not IL-15, or decreasing IL-2 or IL-7 concentrations, improved the in vitro alloreactivity of expanded cells but was associated with lower expansion. Indeed, the alloreactivity of expanded cells was negatively correlated with cell expansion and positively correlated with CD4/CD8 ratio and CD8 expression level. Discussion Quantitative (i.e. low CD4/CD8 ratio) and qualitative (e.g. low CD8 expression) defects may account for the decreased alloreactivity of GMC. Using CD3/CD28 beads and/or IL-7 is more beneficial than CD3 MAb and IL-2 for preventing perturbations of the alloreactivity and phenotype of GMC.
Collapse
|
26
|
Weinzierl AO, Maurer D, Altenberend F, Schneiderhan-Marra N, Klingel K, Schoor O, Wernet D, Joos T, Rammensee HG, Stevanović S. A cryptic vascular endothelial growth factor T-cell epitope: identification and characterization by mass spectrometry and T-cell assays. Cancer Res 2008; 68:2447-54. [PMID: 18381453 DOI: 10.1158/0008-5472.can-07-2540] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) is involved in various physiologic processes, such as angiogenesis or wound healing, but is also crucial in pathologic events, such as tumor growth. Thus, clinical anti-VEGF treatments have been developed that could already show beneficial effects for cancer patients. In this article, we describe the first VEGF-derived CD8(+) T-cell epitope. The natural HLA ligand SRFGGAVVR was identified by differential mass spectrometry in two primary renal cell carcinomas (RCC) and was significantly overpresented on both tumor tissues. SRFGGAVVR is derived from a cryptic translated region of VEGF presumably by initiation of translation at the nonclassic start codon CUG(499). SRFGGAVVR-specific T cells were generated in vitro using peptide-loaded dendritic cells or artificial antigen-presenting cells. SRFGGAVVR-specific CD8(+) T cells, identified by HLA tetramer analysis after in vitro stimulation, were fully functional T effector cells, which were able to secrete IFN-gamma on stimulation and killed tumor cells in vitro. Additionally, we have quantitatively analyzed VEGF mRNA and protein levels in RCC tumor and normal tissue samples by gene chip analysis, quantitative reverse transcription-PCR, in situ hybridization, and bead-based immunoassay. In the future, T cells directed against VEGF as a tumor-associated antigen may represent a possible way of combining peptide-based anti-VEGF immunotherapy with already existent anti-VEGF cancer therapies.
Collapse
Affiliation(s)
- Andreas O Weinzierl
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chaparro RJ, Burton AR, Serreze DV, Vignali DAA, DiLorenzo TP. Rapid identification of MHC class I-restricted antigens relevant to autoimmune diabetes using retrogenic T cells. J Immunol Methods 2008; 335:106-15. [PMID: 18439618 DOI: 10.1016/j.jim.2008.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/29/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
The method described herein provides a novel strategy for the rapid identification of CD8(+) T cell epitopes relevant to type 1 diabetes in the context of the nonobese diabetic (NOD) mouse model of disease. Obtaining the large number of antigen-sensitive monospecific T cells required for conventional antigen discovery methods has historically been problematic due to (1) difficulties in culturing autoreactive CD8(+) T cells from NOD mice and (2) the large time and resource investments required for the generation of transgenic NOD mice. We circumvented these problems by exploiting the rapid generation time of retrogenic (Rg) mice, relative to transgenic mice, as a novel source of sensitive monospecific CD8(+) T cells, using the diabetogenic AI4 T cell receptor on NOD.SCID and NOD.Rag1(-/-) backgrounds as a model. Rg AI4 T cells are diabetogenic in vivo, demonstrating for the first time that Rg mice are a means for assessing the pathogenic potential of CD8(+) T cell receptor specificities. In order to obtain a sufficient number of Rg CD8(+) T cells for antigen screens, we optimized a method for their in vitro culture that resulted in a approximately 500 fold expansion. We demonstrate the high sensitivity and specificity of expanded Rg AI4 T cells in the contexts of (1) specific peptide challenge, (2) islet cytotoxicity, and (3) their ability to resolve previously defined mimotope candidates from a positional scanning peptide library. Our method is the first to combine the speed of Rg technology with an optimized in vitro Rg T cell expansion protocol to enable the rapid discovery of T cell antigens.
Collapse
Affiliation(s)
- Rodolfo José Chaparro
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
28
|
Rudolf D, Silberzahn T, Walter S, Maurer D, Engelhard J, Wernet D, Bühring HJ, Jung G, Kwon BS, Rammensee HG, Stevanović S. Potent costimulation of human CD8 T cells by anti-4-1BB and anti-CD28 on synthetic artificial antigen presenting cells. Cancer Immunol Immunother 2008; 57:175-83. [PMID: 17657490 PMCID: PMC11030657 DOI: 10.1007/s00262-007-0360-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 06/20/2007] [Indexed: 12/31/2022]
Abstract
The in vitro generation of cytotoxic T lymphocytes (CTLs) for anticancer immunotherapy is a promising approach to take patient-specific therapy from the bench to the bedside. Two criteria must be met by protocols for the expansion of CTLs: high yield of functional cells and suitability for good manufacturing practice (GMP). The antigen presenting cells (APCs) used to expand the CTLs are the key to achieving both targets but they pose a challenge: Unspecific stimulation is not feasible because only memory T cells are expanded and not rare naïve CTL precursors; in addition, antigen-specific stimulation by cell-based APCs is cumbersome and problematic in a clinical setting. However, synthetic artificial APCs which can be loaded reproducibly with MHC-peptide monomers and antibodies specific for costimulatory molecules could resolve these problems. The purpose of this study was to investigate the potential of complex synthetic artificial APCs in triggering the costimulatory molecules CD28 and 4-1BB on the T cell. Anti-4-1BB antibodies were added to an established system of microbeads coated with MHC-peptide monomers and anti-CD28. Triggering via CD28 and 4-1BB resulted in strong costimulatory synergy. The quantitative ratio between these signals determined the outcome of the stimulation with optimal results when anti-4-1BB and anti-CD28 were applied in a 3:1 ratio. Functional CTLs of an effector memory subtype (CD45RA(-) CCR7(-)) were generated in high numbers. We present a highly defined APC platform using off-the-shelf reagents for the convenient generation of large numbers of antigen-specific CTLs.
Collapse
Affiliation(s)
- Despina Rudolf
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Tobias Silberzahn
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Steffen Walter
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Dominik Maurer
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Johanna Engelhard
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Dorothee Wernet
- Department of Transfusion Medicine, Division of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Hans-Jörg Bühring
- Department of Internal Medicine II, Division of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Gundram Jung
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Byoung S. Kwon
- The Immunomodulation Research Center, University of Ulsan, Ulsan, Republic of Korea
- LSU Eye Center, 2020 Gravier Street Suite B, New Orleans, LA 70112 USA
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| |
Collapse
|
29
|
Zhu F, Ramadan G, Davies B, Margolis DA, Keever-Taylor CA. Stimulation by means of dendritic cells followed by Epstein-Barr virus-transformed B cells as antigen-presenting cells is more efficient than dendritic cells alone in inducing Aspergillus f16-specific cytotoxic T cell responses. Clin Exp Immunol 2007; 151:284-96. [PMID: 18005260 DOI: 10.1111/j.1365-2249.2007.03544.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adoptive immunotherapy with in vitro expanded antigen-specific cytotoxic T lymphocytes (CTLs) may be an effective approach to prevent, or even treat, Aspergillus (Asp) infections. Such lines can be generated using monocyte-derived dendritic cells (DC) as antigen-presenting cells (APC) but requires a relatively high volume of starting blood. Here we describe a method that generates Asp-specific CTL responses more efficiently using a protocol of antigen presented on DC followed by Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell lines (BLCL) as APC. Peripheral blood mononuclear cells were stimulated weekly (2-5x) with a complete pool of pentadecapeptides (PPC) spanning the coding region of Asp f16 pulsed onto autologous mature DC. Cultures were split and stimulated subsequently with either PPC-DC or autologous PPC-pulsed BLCL (PPC-BLCL). Lines from the DC/BLCL arm demonstrated Asp f16-specific cytotoxicity earlier and to a higher degree than lines generated with PPC-DC alone. The DC/BLCL-primed lines showed a higher frequency of Asp f16-specific interferon (IFN)-gamma producing cells but an identical effector cell phenotype and peptide specificity compared to PPC-DC-only-primed lines. Tumour necrosis factor (TNF)-alpha, but not IL-10, appeared to play a role in the effectiveness of BLCL as APC. These results demonstrate that BLCL serve as highly effective APC for the stimulation of Asp f16-specific T cell responses and that a culture approach using initial priming with PPC-DC followed by PPC-BLCL may be a more effective method to generate Asp f16-specific T cell lines and requires less starting blood than priming with PPC-DC alone.
Collapse
Affiliation(s)
- F Zhu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
30
|
Alves PMS, Viatte S, Fagerberg T, Michielin O, Bricard G, Bouzourene H, Vuilleumier H, Kruger T, Givel JC, Lévy F, Speiser DE, Cerottini JC, Romero P. Immunogenicity of the carcinoembryonic antigen derived peptide 694 in HLA-A2 healthy donors and colorectal carcinoma patients. Cancer Immunol Immunother 2007; 56:1795-805. [PMID: 17447064 PMCID: PMC11030050 DOI: 10.1007/s00262-007-0323-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 03/23/2007] [Indexed: 12/14/2022]
Abstract
Carcinoembryonic antigen (CEACAM5) is commonly overexpressed in human colon cancer. Several antigenic peptides recognized by cytolytic CD8+ T-cells have been identified and used in colon cancer phase-I vaccination clinical trials. The HLA-A*0201-binding CEA(694-702) peptide was recently isolated from acid eluted MHC-I associated peptides from a human colon tumor cell line. However, the immunogenicity of this peptide in humans remains unknown. We found that the peptide CEA(694-702) binds weakly to HLA-A*0201 molecules and is ineffective at inducing specific CD8+ T-cell responses in healthy donors. Immunogenic-altered peptide ligands with increased affinity for HLA-A*0201 were identified. Importantly, the elicited cytolytic T lymphocyte (CTL) lines and clones cross-reacted with the wild-type CEA(694-702) peptide. Tumor cells expressing CEA were recognized in a peptide and HLA-A*0201 restricted fashion, but high-CEA expression levels appear to be required for CTL recognition. Finally, CEA-specific T-cell precursors could be readily expanded by in vitro stimulation of peripheral blood mononuclear cell (PBMC) from colon cancer patients with altered CEA peptide. However, the CEA-specific CD8+ T-cell clones derived from cancer patients revealed low-functional avidity and impaired tumor-cell recognition. Together, using T-cells to demonstrate the processing and presentation of the peptide CEA694-702, we were able to corroborate its presentation by tumor cells. However, the low avidity of the specific CTLs generated from cancer patients as well as the high-antigen expression levels required for CTL recognition pose serious concerns for the use of CEA694-702 in cancer immunotherapy.
Collapse
Affiliation(s)
- Pedro M S Alves
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Hôpital Orthopédique, HO-05, Rue Pierre-Decker, 4, 1005, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Alves PMS, Lévy N, Bouzourene H, Viatte S, Bricard G, Ayyoub M, Vuilleumier H, Givel JCR, Halkic N, Speiser DE, Romero P, Lévy F. Molecular and immunological evaluation of the expression of cancer/testis gene products in human colorectal cancer. Cancer Immunol Immunother 2007; 56:839-47. [PMID: 16960690 PMCID: PMC11030638 DOI: 10.1007/s00262-006-0228-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 08/08/2006] [Indexed: 01/07/2023]
Abstract
Tumor-specific gene products, such as cancer/testis (CT) antigens, constitute promising targets for the development of T cell vaccines. Whereas CT antigens are frequently expressed in melanoma, their expression in colorectal cancers (CRC) remains poorly characterized. Here, we have studied the expression of the CT antigens MAGE-A3, MAGE-A4, MAGE-A10, NY-ESO-1 and SSX2 in CRC because of the presence of well-described HLA-A2-restricted epitopes in their sequences. Our analyses of 41 primary CRC and 14 metastatic liver lesions confirmed the low frequency of expression of these CT antigens. No increased expression frequencies were observed in metastatic tumors compared to primary tumors. Histological analyses of CRC samples revealed heterogeneous expression of individual CT antigens. Finally, evidence of a naturally acquired CT antigen-specific CD8(+) T cell response could be demonstrated. These results show that the expression of CT antigens in a subset of CRC patients induces readily detectable T cell responses.
Collapse
Affiliation(s)
- Pedro M. S. Alves
- NCCR, Molecular Oncology, ISREC, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Nicole Lévy
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Hanifa Bouzourene
- Institute of Pathology, University of Lausanne, rue du Bugnon 25, 1011 Lausanne, Switzerland
| | - Sébastien Viatte
- NCCR, Molecular Oncology, ISREC, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Gabriel Bricard
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Maha Ayyoub
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Henri Vuilleumier
- Department of Visceral Surgery, University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Jean-Claude R. Givel
- Department of Visceral Surgery, University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Nermin Halkic
- Department of Visceral Surgery, University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Daniel E. Speiser
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Pedro Romero
- NCCR, Molecular Oncology, ISREC, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Frédéric Lévy
- NCCR, Molecular Oncology, ISREC, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| |
Collapse
|
32
|
Abstract
The cornerstone of the concept of immunosurveillance in cancer should be the experimental demonstration of immune responses able to alter the course of in vivo spontaneous tumor progression. Elegant genetic manipulation of the mouse immune system has proved this tenet. In parallel, progress in understanding human T cell mediated immunity has allowed to document the existence in cancer patients of naturally acquired T cell responses to molecularly defined tumor antigens. Various attributes of cutaneous melanoma tumors, notably their adaptability to in vitro tissue culture conditions, have contributed to convert this tumor in the prototype for studies of human antitumor immune responses. As a consequence, the first human cytolytic T lymphocyte (CTL)-defined tumor antigen and numerous others have been identified using lymphocyte material from patients bearing this tumor, detailed analyses of specific T cell responses have been reported and a relatively large number of clinical trials of vaccination have been performed in the last 15 years. Thus, the "melanoma model" continues to provide valuable insights to guide the development of clinically effective cancer therapies based on the recruitment of the immune system. This chapter reviews recent knowledge on human CD8 and CD4 T cell responses to melanoma antigens.
Collapse
Affiliation(s)
- Pedro Romero
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne Branch, University Hospital (CHUV), Lausanne, Switzerland
| | | | | |
Collapse
|
33
|
Viatte S, Alves PM, Romero P. Reverse immunology approach for the identification of CD8 T-cell-defined antigens: advantages and hurdles. Immunol Cell Biol 2006; 84:318-30. [PMID: 16681829 DOI: 10.1111/j.1440-1711.2006.01447.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the challenges of tumour immunology remains the identification of strongly immunogenic tumour antigens for vaccination. Reverse immunology, that is, the procedure to predict and identify immunogenic peptides from the sequence of a gene product of interest, has been postulated to be a particularly efficient, high-throughput approach for tumour antigen discovery. Over one decade after this concept was born, we discuss the reverse immunology approach in terms of costs and efficacy: data mining with bioinformatic algorithms, molecular methods to identify tumour-specific transcripts, prediction and determination of proteasomal cleavage sites, peptide-binding prediction to HLA molecules and experimental validation, assessment of the in vitro and in vivo immunogenic potential of selected peptide antigens, isolation of specific cytolytic T lymphocyte clones and final validation in functional assays of tumour cell recognition. We conclude that the overall low sensitivity and yield of every prediction step often requires a compensatory up-scaling of the initial number of candidate sequences to be screened, rendering reverse immunology an unexpectedly complex approach.
Collapse
Affiliation(s)
- Sebastien Viatte
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, Lausanne branch, University Hospital, CHUV, and National Center for Competence in Research, NCCR, Molecular Oncology, Lausanne, Switzerland
| | | | | |
Collapse
|