1
|
Pan Y, Shao M, Li P, Xu C, Nie J, Zhang K, Wu S, Sui D, Xu FJ. Polyaminoglycoside-mediated cell reprogramming system for the treatment of diabetes mellitus. J Control Release 2022; 343:420-433. [DOI: 10.1016/j.jconrel.2022.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
|
2
|
Chen C, Rong P, Yang M, Ma X, Feng Z, Wang W. The Role of Interleukin-1β in Destruction of Transplanted Islets. Cell Transplant 2021; 29:963689720934413. [PMID: 32543895 PMCID: PMC7563886 DOI: 10.1177/0963689720934413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Islet transplantation is a promising β-cell replacement therapy for type 1 diabetes, which can reduce glucose lability and hypoglycemic episodes compared with standard insulin therapy. Despite the tremendous progress made in this field, challenges remain in terms of long-term successful transplant outcomes. The insulin independence rate remains low after islet transplantation from one donor pancreas. It has been reported that the islet-related inflammatory response is the main cause of early islet damage and graft loss after transplantation. The production of interleukin-1β (IL-1β) has considered to be one of the primary harmful inflammatory events during pancreatic procurement, islet isolation, and islet transplantation. Evidence suggests that the innate immune response is upregulated through the activity of Toll-like receptors and The NACHT Domain-Leucine-Rich Repeat and PYD-containing Protein 3 inflammasome, which are the starting points for a series of signaling events that drive excessive IL-1β production in islet transplantation. In this review, we show recent contributions to the advancement of knowledge of IL-1β in islet transplantation and discuss several strategies targeting IL-1β for improving islet engraftment.
Collapse
Affiliation(s)
- Cheng Chen
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhichao Feng
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Chung WY, Pollard CA, Kumar R, Drogemuller CJ, Naziruddin B, Stover C, Issa E, Isherwood J, Cooke J, Levy MF, Coates PTH, Garcea G, Dennison AR. A comparison of the inflammatory response following autologous compared with allogenic islet cell transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:98. [PMID: 33569400 PMCID: PMC7867892 DOI: 10.21037/atm-20-3519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The initial response to islet transplantation and the subsequent acute inflammation is responsible for significant attrition of islets following both autologous and allogenic procedures. This multicentre study compares this inflammatory response using cytokine profiles and complement activation. Methods Inflammatory cytokine and complement pathway activity were examined in two cohorts of patients undergoing total pancreatectomy followed either by autologous (n=11) or allogenic (n=6) islet transplantation. Two patients who underwent total pancreatectomy alone (n=2) served as controls. Results The peak of cytokine production occurred immediately following induction of anaesthesia and during surgery. There was found to be a greater elevation of the following cytokines: TNF-alpha (P<0.01), MCP-1 (P=0.0013), MIP-1α (P=0.001), MIP-1β (P=0.00020), IP-10 (P=0.001), IL-8 (P=0.004), IL-1α (P=0.001), IL-1ra (0.0018), IL-10 (P=0.001), GM-CSF (P=0.001), G-CSF (P=0.0198), and Eotaxin (P=0.01) in the allogenic group compared to autografts and controls. Complement activation and consumption was observed in all three pathways, and there were no significant differences in between the groups although following allogenic transplantation ∆IL-10 and ∆VEGF levels were significantly elevated those patients who became insulin-independent compared with those who were insulin-dependent. Conclusions The cytokine profiles following islet transplantation suggests a significantly greater acute inflammatory response following allogenic islet transplantation compared with auto-transplantation although a significant, non-specific inflammatory response occurs following both forms of islet transplantation.
Collapse
Affiliation(s)
- Wen Yuan Chung
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Cristina A Pollard
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Rohan Kumar
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | | | | | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Eyad Issa
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - John Isherwood
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Jill Cooke
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Marlon F Levy
- Baylor Research Institute, Dallas & Fort Worth, TX, USA
| | - P Toby H Coates
- Australian Islet Consortium, Royal Adelaide Hospital, South Australia, Australia
| | - Giuseppe Garcea
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| |
Collapse
|
4
|
D'Mello RJ, Hsu CD, Chaiworapongsa P, Chaiworapongsa T. Update on the Use of Intravenous Immunoglobulin in Pregnancy. Neoreviews 2021; 22:e7-e24. [PMID: 33386311 DOI: 10.1542/neo.22-1-e7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intravenous immunoglobulin (IVIG) was first administered to humans in the 1980s. The mechanism of action of IVIG is still a subject of debate but the pharmacokinetics have been well characterized, albeit outside of pregnancy. IVIG has been used in pregnancy to treat several nonobstetrical and obstetrical-related conditions. However, current evidence suggests that IVIG use during pregnancy can be recommended for 1) in utero diagnosis of neonatal alloimmune thrombocytopenia; 2) gestational alloimmune liver disease; 3) hemolytic disease of the fetus and newborn for early-onset severe intrauterine disease; 4) antiphospholipid syndrome (APS) when refractory to or contraindicated to standard treatment, or in catastrophic antiphospholipid syndrome; and 5) immune thrombocytopenia when standard treatment is ineffective or rapid increase of platelet counts is needed. All recommendations are based on case series and cohort studies without randomized trials usually because of the rare prevalence of the conditions, the high incidence of adverse outcomes if left untreated, and ethical concerns. In contrast, IVIG therapy cannot be recommended for recurrent pregnancy loss, and the use of IVIG in subgroups of those with recurrent pregnancy loss requires further investigations. For non-obstetrical-related conditions, we recommend using IVIG as indicated for nonpregnant patients. In conclusion, the use of IVIG during pregnancy is an effective treatment in some obstetrical-related conditions with rare serious maternal side effects. However, the precise mechanisms of action and the long-term immunologic effects on the fetus and neonate are poorly understood and merit further investigations.
Collapse
Affiliation(s)
- Rahul J D'Mello
- Department of Obstetrics and Gynecology, Detroit Medical Center, Detroit, MI
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology and.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI
| | | | | |
Collapse
|
5
|
Regenerative Therapy of Type 1 Diabetes Mellitus: From Pancreatic Islet Transplantation to Mesenchymal Stem Cells. Stem Cells Int 2016; 2016:3764681. [PMID: 27047547 PMCID: PMC4800095 DOI: 10.1155/2016/3764681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease resulting in the permanent destruction of pancreatic islets. Islet transplantation to portal vein provides an approach to compensate for loss of insulin producing cells. Clinical trials demonstrated that even partial islet graft function reduces severe hypoglycemic events in patients. However, therapeutic impact is restrained due to shortage of pancreas organ donors and instant inflammation occurring in the hepatic environment of the graft. We summarize on what is known about regenerative therapy in type 1 diabetes focusing on pancreatic islet transplantation and new avenues of cell substitution. Metabolic pathways and energy production of transplanted cells are required to be balanced and protection from inflammation in their intravascular bed is desired. Mesenchymal stem cells (MSCs) have anti-inflammatory features, and so they are interesting as a therapy for type 1 diabetes. Recently, they were reported to reduce hyperglycemia in diabetic rodents, and they were even discussed as being turned into endodermal or pancreatic progenitor cells. MSCs are recognized to meet the demand of an individual therapy not raising the concerns of embryonic or induced pluripotent stem cells for therapy.
Collapse
|
6
|
The regulatory roles of NADPH oxidase, intra- and extra-cellular HSP70 in pancreatic islet function, dysfunction and diabetes. Clin Sci (Lond) 2015; 128:789-803. [DOI: 10.1042/cs20140695] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The 70 kDa heat-shock protein (HSP70) family is important for a dynamic range of cellular processes that include protection against cell stress, modulation of cell signalling, gene expression, protein synthesis, protein folding and inflammation. Within this family, the inducible 72 kDa and the cognate 73 kDa forms are found at the highest level. HSP70 has dual functions depending on location. For example, intracellular HSP70 (iHSP70) is anti-inflammatory whereas extracellular HSP70 (eHSP70) has a pro-inflammatory function, resulting in local and systemic inflammation. We have recently identified a divergence in the levels of eHSP70 and iHSP70 in subjects with diabetes compared with healthy subjects and also reported that eHSP70 was correlated with insulin resistance and pancreatic β-cell dysfunction/death. In the present review, we describe possible mechanisms by which HSP70 participates in cell function/dysfunction, including the activation of NADPH oxidase isoforms leading to oxidative stress, focusing on the possible role of HSPs and signalling in pancreatic islet α- and β-cell physiological function in health and Type 2 diabetes mellitus.
Collapse
|
7
|
Campanha-Rodrigues AL, Grazioli G, Oliveira TC, Campos-Lisbôa ACV, Mares-Guia TR, Sogayar MC. Therapeutic Potential of Laminin–Biodritin Microcapsules for Type 1 Diabetes Mellitus. Cell Transplant 2015; 24:247-61. [DOI: 10.3727/096368913x675160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet microencapsulation constitutes an attractive therapy for type 1 diabetes mellitus; however, long-term β-cell function remains a major problem. Loss of extracellular matrix interactions during islet isolation dramatically affects β-cell viability. We have previously shown beneficial effects of laminin (LN) in human islet cultures. Herein, we investigated whether LN could improve the outcome of transplantation after islet microencapsulation in Biodritin, an alginate-based material. To test LN-Biodritin stability, microcapsules were subjected to different types of in vitro stress. Focusing on biocompatibility, empty microcapsules were coincubated with the RAW 264.7 macrophage cell line for up to 24 h, and empty beads were implanted IP in mice and retrieved for analyses after 7 and 30 days. Upon culturing for 48 h, mRNA, protein levels, and caspase 3 activity were evaluated in islets microencapsulated with LN-Biodritin. Mice rendered diabetic by streptozotocin injection were transplanted with microencapsulated islets, followed by assessment of body weight, glycemia, and graft function (evaluated by OGTT). Graft efficiency was observed upon microencapsulated islet explantation. The results obtained showed that LN-Biodritin microcapsules were as stable and biocompatible as Biodritin. Modulation of mRNA and protein levels suggested protection against apoptosis and islet stress. Mice transplanted with LN-Biodritin microencapsulated islets presented a better outcome at 198 days postsurgery. Graft explantation led animals to hyperglycemia. In conclusion, LN-Biodritin constitutes a very promising biomaterial for islet transplantation.
Collapse
Affiliation(s)
- Ana Lucia Campanha-Rodrigues
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Gisella Grazioli
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Talita C. Oliveira
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Carolina V. Campos-Lisbôa
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Thiago R. Mares-Guia
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Mari C. Sogayar
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Giovannoni L, Muller YD, Lacotte S, Parnaud G, Borot S, Meier RP, Lavallard V, Bédat B, Toso C, Daubeuf B, Elson G, Shang L, Morel P, Kosco-Vilbois M, Bosco D, Berney T. Enhancement of Islet Engraftment and Achievement of Long-Term Islet Allograft Survival by Toll-Like Receptor 4 Blockade. Transplantation 2015; 99:29-35. [DOI: 10.1097/tp.0000000000000468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Efficacy of DHMEQ, a NF-κB inhibitor, in islet transplantation: II. Induction DHMEQ treatment ameliorates subsequent alloimmune responses and permits long-term islet allograft acceptance. Transplantation 2013; 96:454-62. [PMID: 23860082 DOI: 10.1097/tp.0b013e31829b077f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Long-term graft deterioration remains a major obstacle in the success of pancreatic islet transplantation (PITx). Antigen-independent inflammatory and innate immune responses strengthen subsequent antigen-dependent immunity; further, activation of nuclear factor (NF)-κB plays a key role during these responses. In this study, we tested our hypothesis that, by the inhibition of NF-κB activation, the suppression of these early responses after PITx could facilitate graft acceptance. METHODS Full major histocompatibility complex (MHC)-mismatched BALB/c (H-2) mice islets were transplanted into streptozotocin-induced diabetic C57BL/6 (B6: H-2) mice. The NF-κB inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) was administered for either 3 or 14 days after PITx. To some PITx recipients, tacrolimus was also administered. Islet allograft survival, alloimmune responses, and in vitro effects of DHMEQ on dendritic cells (DCs) were assessed. RESULTS With a vehicle treatment, 600 islet allografts were promptly rejected after PITx. In contrast, 3-day treatment with DHMEQ, followed by 2-week treatment with tacrolimus, allowed permanent acceptance of islet allografts. The endogenous danger-signaling molecule high mobility group complex 1 (HMGB1) was elevated in sera shortly after PITx, whereas DHMEQ administration abolished this elevation. DHMEQ suppressed HMGB1-driven cellular activation and proinflammatory cytokine secretion in mouse bone marrow-derived DCs and significantly reduced the capacity of DCs to prime allogeneic T-cell proliferation in vitro. Finally, the DHMEQ plus tacrolimus regimen reverted the diabetic state with only 300 islet allografts. CONCLUSIONS Inhibition of NF-κB activation by DHMEQ shortly after PITx suppresses HMGB1, which activates DCs and strengthens the magnitude of alloimmune responses; this permits long-term islet allograft acceptance, even in case of fewer islet allografts.
Collapse
|
10
|
Abstract
Early innate inflammatory reaction strongly affects islet engraftment and survival after intrahepatic transplantation. This early immune response is triggered by ischemia-reperfusion injury and instant blood mediated inflammatory reaction (IBMIR) occurring hours and days after islet infusion. Evidence in both mouse model and in human counterpart suggest the involvement of coagulation, complement system, and proinflammatory chemokines/cytokines. Identification and targeting of pathway(s), playing a role as "master regulator(s)" in post-transplant detrimental inflammatory events, is now mandatory to improve islet transplantation success. This review will focus on inflammatory pathway(s) differentially modulated by islet isolation and mainly associated with the early post-transplant events. Moreover, we will take into account anti-inflammatory strategies that have been tested at 2 levels: on the graft, ex vivo, during islet culture (i.e., donor) and/or on the graft site, in vivo, early after islet infusion (i.e., recipient).
Collapse
Affiliation(s)
- Antonio Citro
- Beta Cell Biology Unit, Diabetes Research Institute, San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy,
| | | | | |
Collapse
|
11
|
Mueller KR, Martins KV, Murtaugh MP, Schuurman HJ, Papas KK. Manufacturing porcine islets: culture at 22 °C has no advantage above culture at 37 °C: a gene expression evaluation. Xenotransplantation 2013; 20:418-28. [PMID: 23941232 DOI: 10.1111/xen.12048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The manufacturing process of islets includes a culture step which was originally introduced to ease the logistics of procedures in preparing the graft and transplant recipient. It has been suggested that culture at room temperature has an advantage over culture at 37 °C, in part by reducing immunogenicity via preferential elimination of contaminating cells (such as passenger leukocytes) within islets. We investigated this using islets isolated from pancreata of adult pigs. METHODS Porcine islets were isolated from three donors and cultured at 37 °C for 1 day, and then under three different conditions: 37 °C for 6 days (condition A); 22 °C for 6 days (condition B); or 22 °C for 5 days followed by 37 °C for 1 day (condition C). Recovery was assessed by DNA measurement, viability by oxygen consumption rate normalized for DNA (OCR/DNA), and gene expression by RT-PCR for a series of 9 lymphocyte markers, 11 lymphokines and chemokines, and 14 apoptotic and stress markers. RESULTS Post-culture islet recoveries were similar for the three culture conditions. Average OCR/DNA values were 129-159 nmol/min·mgDNA before culture, and 259-291, 204-212, and 207-228 nmol/min·mgDNA, respectively, for culture under conditions A, B, and C, respectively. Irrespective of culture condition, examined gene expression in all three series of lymphocyte markers, lymphokines and chemokines, and apoptotic and stress markers manifested a statistically significant decrease upon culture for 7 days. This decrease was most dramatic for condition A: in particular, most of lymphocyte markers showed a >10-fold reduction and also six markers in the lymphokine and chemokine series; these reductions are consistent with the elimination of immune cells present within islets during culture. The reduction was less for apoptotic and stress markers. For culture under condition B, the reduction in gene expression was less, and culture under condition C resulted in gene expression levels similar to those under condition A: this indicates that 24 h at 37 °C is sufficient to re-equilibrate gene expression levels from those in islets cultured at 22 °C to those in islets cultured at 37 °C. Results were consistent among the preparations from the three donors. CONCLUSIONS Culture of porcine islets at 37 °C provides benefits over culture at 22 °C with respect to OCR/DNA outcomes and reduced expression of genes encoding lymphocyte markers, lymphokines and chemokines, and markers for apoptosis and stress.
Collapse
Affiliation(s)
- Kate R Mueller
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
12
|
Bellin MD, Barton FB, Heitman A, Alejandro R, Hering BJ, Balamurugan AN, Sutherland DER, Alejandro R, Hering BJ. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am J Transplant 2012; 12:1576-83. [PMID: 22494609 PMCID: PMC3390261 DOI: 10.1111/j.1600-6143.2011.03977.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The seemingly inexorable decline in insulin independence after islet transplant alone (ITA) has raised concern about its clinical utility. We hypothesized that induction immunosuppression therapy determines durability of insulin independence. We analyzed the proportion of insulin-independent patients following final islet infusion in four groups of ITA recipients according to induction immunotherapy: University of Minnesota recipients given FcR nonbinding anti-CD3 antibody alone or T cell depleting antibodies (TCDAb) and TNF-α inhibition (TNF-α-i) (group 1; n = 29); recipients reported to the Collaborative Islet Transplant Registry (CITR) given TCDAb+TNF-α-i (group 2; n = 20); CITR recipients given TCDAb without TNF-α-i (group 3; n = 43); and CITR recipients given IL-2 receptor antibodies (IL-2RAb) alone (group 4; n = 177). Results were compared with outcomes in pancreas transplant alone (PTA) recipients reported to the Scientific Registry of Transplant Recipients (group 5; n = 677). The 5-year insulin independence rates in group 1 (50%) and group 2 (50%) were comparable to outcomes in PTA (group 5: 52%; p>>0.05) but significantly higher than in group 3 (0%; p = 0.001) and group 4 (20%; p = 0.02). Induction immunosuppression was significantly associated with 5-year insulin independence (p = 0.03), regardless of maintenance immunosuppression or other factors. These findings support potential for long-term insulin independence after ITA using potent induction therapy, with anti-CD3 Ab or TCDAb+TNF-α-i.
Collapse
Affiliation(s)
- Melena D Bellin
- The Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN
| | | | | | | | - Bernhard J Hering
- The Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN
| | | | | | | | | |
Collapse
|
13
|
Tomasello G, Sciumé C, Rappa F, Rodolico V, Zerilli M, Martorana A, Cicero G, De Luca R, Damiani P, Accardo FM, Romeo M, Farina F, Bonaventura G, Modica G, Zummo G, Conway de Macario E, Macario AJL, Cappello F. Hsp10, Hsp70, and Hsp90 immunohistochemical levels change in ulcerative colitis after therapy. Eur J Histochem 2011; 55:e38. [PMID: 22297444 PMCID: PMC3284240 DOI: 10.4081/ejh.2011.e38] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 01/11/2023] Open
Abstract
Ulcerative colitis (UC) is a form of inflammatory bowel disease (IBD) characterized by damage of large bowel mucosa and frequent extra-intestinal autoimmune comorbidities. The role played in IBD pathogenesis by molecular chaperones known to interact with components of the immune system involved in inflammation is unclear. We previously demonstrated that mucosal Hsp60 decreases in UC patients treated with conventional therapies (mesalazine, probiotics), suggesting that this chaperonin could be a reliable biomarker useful for monitoring response to treatment, and that it might play a role in pathogenesis. In the present work we investigated three other heat shock protein/molecular chaperones: Hsp10, Hsp70, and Hsp90. We found that the levels of these proteins are increased in UC patients at the time of diagnosis and decrease after therapy, supporting the notion that these proteins deserve attention in the study of the mechanisms that promote the development and maintenance of IBD, and as biomarkers of this disease (e.g., to monitor response to treatment at the histological level).
Collapse
Affiliation(s)
- G Tomasello
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università di Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Similar islet function in islet allotransplant and autotransplant recipients, despite lower islet mass in autotransplants. Transplantation 2011; 91:367-72. [PMID: 21228753 DOI: 10.1097/tp.0b013e318203fd09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite high initial rates of insulin independence after islet allotransplant for type 1 diabetes, long-term islet function is suboptimal. Possible contributing factors include autoimmune recurrence, alloimmune rejection, or immunosuppressant medication toxicity. In contrast, islet autografts, infused at the time of pancreatectomy for chronic pancreatitis, are not subject to these variables. Islet function was compared in autograft and allograft recipients. METHODS Eight autograft and eight allograft recipients, insulin independent or requiring minimal insulin, were matched for similar duration posttransplant (mean 2.1±1.2 years). Eleven healthy control subjects were also enrolled. Subjects underwent oral and intravenous glucose tolerance testing and arginine stimulation testing. RESULTS Age, gender, body mass index, duration posttransplant, and hemoglobin A1c levels were similar between groups. Glucose tolerance was worse in transplant recipients compared with controls. Alloislet recipients received significantly more islet equivalents per kg body weight (IE/kg) than autograft recipients (9958±6229 IE/kg vs. 4589±1232 IE/kg, P=0.03). However, the glycemic response to oral glucose tolerance testing, the acute insulin response to glucose, and the acute insulin response to arginine did not differ significantly between islet allograft and autograft recipients. CONCLUSIONS Insulin secretion and glucose excursion were similar in allograft and autograft recipients, despite the latter group receiving less than half as many islets. Better preservation of islet mass in the autograft setting is likely related to the lack of autoimmunity, alloimmunity, and immunosuppressive drug toxicity, highlighting the potential for better outcomes in islet allotransplant for type 1 diabetes mellitus with refinements in immunosuppression.
Collapse
|
15
|
Lacotte S, Berney T, Shapiro AJ, Toso C. Immune monitoring of pancreatic islet graft: towards a better understanding, detection and treatment of harmful events. Expert Opin Biol Ther 2010; 11:55-66. [PMID: 21073277 DOI: 10.1517/14712598.2011.536530] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Long-term clinical outcomes of islet transplantation are hampered by rejection and recurrence of autoimmunity, which lead to a gradual decrease in islet function usually taking place over the first five years after transplantation. An accurate monitoring strategy could allow for the detection and treatment of harmful immune events, potentially resulting in higher rates of insulin-independence. AREAS COVERED IN THIS REVIEW This article provides a critical review of the various assays currently available for the assessment of allo- and autoimmunity both prior to and after islet transplantation. The accuracy in predicting clinical outcome is specifically addressed. WHAT THE READER WILL GAIN Most current tests based on the assessment of allo- and auto-immune antibody are of minimal help in clinical practice. Cell-based tests (including the assessment of cytotoxic T lymphocyte precursors, proliferation tests, enzyme-linked immunospot) have the potential to allow earlier and more accurate detection of harmful events. TAKE HOME MESSAGE A specific and accurate immune monitoring has the potential to significantly improve islet transplant outcomes. The development and use of such tests (favouring cell-based tests) should be promoted.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- University of Geneva, Department of Surgery, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | | | | | | |
Collapse
|
16
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:177-85. [PMID: 20190584 DOI: 10.1097/med.0b013e3283382286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Surrogate end points in the design of immunotherapy trials: emerging lessons from type 1 diabetes. Nat Rev Immunol 2010; 10:145-52. [DOI: 10.1038/nri2705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Zhang S, Zhong J, Yang P, Gong F, Wang CY. HMGB1, an innate alarmin, in the pathogenesis of type 1 diabetes. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2009; 3:24-38. [PMID: 19918326 PMCID: PMC2776260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/05/2009] [Indexed: 05/28/2023]
Abstract
HMGB1, an evolutionarily conserved chromosomal protein, was recently re-discovered to act as a "danger signal" (alarmin) to alert the innate immune system for the initiation of host defense or tissue repair. Extracellular HMGB1 can be either passively released from damaged/necrotic cells or secreted by activated immune cells. Upon stimulation, dendritic cells (DCs), macrophages and natural killer (NK) cells secrete high levels of HMGB1 into the intercellular milieu. HMGB1 is potent to target DCs, macrophages, neutrophils and CD4(+) T cells. It also upregulates the expression of BCL-XL by which it may prevent the elimination of activated immune cells. As a result, HMGB1 has been suggested to be implicated in the pathogenesis of autoimmune disorders such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and experimental allergic encephalomyelitis (EAE). Given the similarities of autoimmune response against beta cell self-antigens in type 1 diabetes (T1D), in this view we will discuss the possible implications of HMGB1 in T1D pathogenesis. Specifically, we will summarize and update the advancement of HMGB1 in the pathogenesis of autoimmune initiation and progression during T1D development, as well as islet allograft rejection of diabetic patients after islet transplantation. Elucidation of the role for HMGB1 in T1D pathogenesis would not only enhance the understanding of disease etiology, but also have the potential to shed new insight into the development of therapeutic strategies for prevention or intervention of this disorder.
Collapse
Affiliation(s)
- Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Hua-Zhong University of Science and Technology1095 Jiefang Ave., Wuhan, 430030, China
| | - Jixin Zhong
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Hua-Zhong University of Science and Technology1095 Jiefang Ave., Wuhan, 430030, China
- The Center for Biotechnology and Genomic Medicine, Medical College of Georgia1120 15th Street, CA4098, Augusta, GA 30912
| | - Ping Yang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Hua-Zhong University of Science and Technology1095 Jiefang Ave., Wuhan, 430030, China
- The Center for Biotechnology and Genomic Medicine, Medical College of Georgia1120 15th Street, CA4098, Augusta, GA 30912
| | - Feili Gong
- Department of Immunology, Tongji Medical College, Hua-Zhong University of Science and Technology13 Hong Kong Road, Wuhan, 430030, China
| | - Cong-Yi Wang
- The Center for Biotechnology and Genomic Medicine, Medical College of Georgia1120 15th Street, CA4098, Augusta, GA 30912
- Georgia Esoteric & Molecular laboratories, Department of Pathology, Medical College of Georgia1120 15th Street, Augusta, GA 30912
| |
Collapse
|