1
|
Lawson JL, Sekar RP, Wright ARE, Wheeler G, Yanes J, Estridge J, Johansen CG, Farnsworth NL, Kumar P, Tay JW, Kumar R. The Spatial Distribution of Lipophilic Cations in Gradient Copolymers Regulates Polymer-pDNA Complexation, Polyplex Aggregation, and Intracellular pDNA Delivery. Biomacromolecules 2024; 25:6855-6870. [PMID: 39318335 DOI: 10.1021/acs.biomac.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Here, we demonstrate that the spatial distribution of lipophilic cations governs the complexation pathways, serum stability, and biological performance of polymer-pDNA complexes (polyplexes). Previous research focused on block/statistical copolymers, whereas gradient copolymers, where the density of lipophilic cations diminishes (gradually or steeply) along polymer backbones, remain underexplored. We engineered gradient copolymers that combine the polyplex colloidal stability of block copolymers with the transfection efficiency of statistical copolymers. We synthesized length- and compositionally equivalent gradient copolymers (G1-G3) along with statistical (S) and block (B) copolymers of 2-(diisopropylamino)ethyl methacrylate and 2-hydroxyethyl methacrylate. We mapped how polymer microstructure governs pDNA loading per polyplex, pDNA conformational changes, and polymer-pDNA binding thermodynamics via static light scattering, circular dichroism spectroscopy, and isothermal titration calorimetry, respectively. While gradient steepness is a powerful design handle to improve polyplex physical properties, augment pDNA delivery capacity, and attenuate polycation-triggered hemolysis, microstructural contrasts did not elicit differences in complement activation.
Collapse
Affiliation(s)
- Jessica L Lawson
- Materials Science, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ram Prasad Sekar
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Aryelle R E Wright
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Grant Wheeler
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jillian Yanes
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jordan Estridge
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chelsea G Johansen
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Nikki L Farnsworth
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Praveen Kumar
- Shared Instrumentation Facility, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jian Wei Tay
- Biofrontiers Institute, University of Colorado, Boulder, Colorado 80309, United States
| | - Ramya Kumar
- Materials Science, Colorado School of Mines, Golden, Colorado 80401, United States
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Jensen M, Eickhoff MK, Persson F, Rossing P, Thiel S, Hansen SWK, Palarasah Y, Svenningsen P, Jensen BL. Effect of dapagliflozin on collectins and complement activation in plasma from patients with type 2 diabetes and albuminuria: Data from the DapKid cohort. Immunobiology 2024; 229:152797. [PMID: 38518448 DOI: 10.1016/j.imbio.2024.152797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 (SGLT- 2) inhibitors exert cardiovascular and kidney-protective effects in people with diabetes. Attenuation of inflammation could be important for systemic protection. The lectin pathway of complement system activation is linked to diabetic nephropathy. We hypothesized that SGLT-2 inhibitors lower the circulating level of pattern-recognition molecules of the lectin cascade and attenuate systemic complement activation. METHODS Analysis of paired plasma samples from the DapKid crossover intervention study where patients with type 2 diabetes mellitus (T2DM) and albuminuria were treated with dapagliflozin and placebo for 12 weeks (10 mg/day, n=36). ELISA was used to determine concentrations of collectin kidney 1 (CL-K1), collectin liver 1 (CL-L1), mannose-binding lectin (MBL), MBL-associated serine protease 2 (MASP-2), the anaphylatoxin complement factor 3a (C3a), the stable C3 split product C3dg and the membrane attack complex (sC5b-9). RESULTS As published before, dapagliflozin treatment lowered Hba1C from 74 (14.9) mmol/mol to 66 (13.9) mmol/mol (p<0.0001), and the urine albumin/creatinine ratio from 167.8 mg/g to 122.5 mg/g (p<0.0001). Plasma concentrations of CL-K1, CL-L1, MBL, and MASP-2 did not change significantly after dapagliflozin treatment (P>0.05) compared to placebo treatment. The plasma levels of C3a (P<0.05) and C3dg (P<0.01) increased slightly but significantly, 0.6 [0.2] units/mL and 76 [52] units/mL respectively, after dapagliflozin treatment. The C9-associated neoepitope in C5b-9 did not change in plasma concentration by dapagliflozin (P>0.05). CONCLUSION In patients with type 2 diabetes and albuminuria, SGLT-2 inhibition resulted in modest C3 activation in plasma, likely not driven by primary changes in circulating collectins and not resulting in changes in membrane attack complex. Based on systemic analyses, organ-specific local protective effects of gliflozins against complement activation cannot be excluded.
Collapse
Affiliation(s)
- Mia Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark; University of Copenhagen, Department of Clinical Medicine, Copenhagen, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren W K Hansen
- Unit for Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Unit for Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Unit of Cardiovascular and Renal Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Holers VM. Complement therapeutics are coming of age in rheumatology. Nat Rev Rheumatol 2023; 19:470-485. [PMID: 37337038 DOI: 10.1038/s41584-023-00981-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 06/21/2023]
Abstract
The complement system was described over 100 years ago, and it is well established that activation of this pathway accompanies the great majority of autoimmune and inflammatory diseases. In addition, over three decades of work in murine models of human disease have nearly universally demonstrated that complement activation is upstream of tissue injury and the engagement of pro-inflammatory mechanisms such as the elaboration of cytokines and chemokines, as well as myeloid cell recruitment and activation. With that background, and taking advantage of advances in the development of biologic and small-molecule therapeutics, the creation and clinical evaluation of complement therapeutics is now rapidly expanding. This article reviews the current state of the complement therapeutics field, with a focus on their use in diseases cared for or consulted upon by rheumatologists. Included is an overview of the activation mechanisms and components of the system, in addition to the mechanisms by which the complement system interacts with other immune system constituents. The various therapeutic approaches to modulating the system in rheumatic and autoimmune diseases are reviewed. To understand how best to clinically assess the complement system, methods of its evaluation are described. Finally, next-generation therapeutic and diagnostic advances that can be envisioned for the future are discussed.
Collapse
Affiliation(s)
- V Michael Holers
- Medicine/Rheumatology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
4
|
Miles S, Dematteis S, Mourglia-Ettlin G. Experimental cystic echinococcosis as a proof of concept for the development of peptide-based vaccines following a novel rational workflow. Biologicals 2023; 82:101684. [PMID: 37201271 DOI: 10.1016/j.biologicals.2023.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/14/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Vaccines are among the most important advances in medicine throughout the human history. However, conventional vaccines exhibit several drawbacks in terms of design and production costs. Peptide-based vaccines are attractive alternatives, since they can be designed mainly in silico, can be produced cheaply and safely, and are able to induce immune responses exclusively towards protective epitopes. Yet, a proper peptide design is needed, not only to generate peptide-specific immune responses, but also for them to recognize the native protein in the occurrence of a natural infection. Herein, we propose a rational workflow for developing peptide-based vaccines including novel steps that assure the cross-recognition of native proteins. In this regard, we increased the probability of generating efficient antibodies through the selection of linear B-cell epitopes free of post-translational modifications followed by analyzing the 3D-structure similarity between the peptide in-solution vs. within its parental native protein. As a proof of concept, this workflow was applied to a set of seven previously suggested potential protective antigens against the infection by Echinococcus granulosus sensu lato. Finally, two peptides were obtained showing the capacity to induce specific antibodies able to exert anti-parasite activities in different in vitro settings, as well as to provide significant protection in the murine model of secondary echinococcosis.
Collapse
Affiliation(s)
- Sebastian Miles
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la Republica, Uruguay
| | - Sylvia Dematteis
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.
| |
Collapse
|
5
|
García-González M, Gómez-Bernal F, Quevedo-Abeledo JC, Fernández-Cladera Y, González-Rivero AF, de Vera-González A, de la Rua-Figueroa I, López-Mejias R, Díaz-González F, González-Gay MÁ, Ferraz-Amaro I. Full characterization of the three pathways of the complement system in patients with systemic lupus erythematosus. Front Immunol 2023; 14:1167055. [PMID: 37153614 PMCID: PMC10160460 DOI: 10.3389/fimmu.2023.1167055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Background To date a complete characterization of the components of the complement (C) pathways (CLassical, LEctin and ALternative) in patients with systemic lupus erythematosus (SLE) has not been performed. We aimed to assess the function of these three C cascades through functional assays and the measurement of individual C proteins. We then studied how they relate to clinical characteristics. Methods New generation functional assays of the three pathways of the C system were assessed in 284 patients with SLE. Linear regression analysis was performed to study the relationship between the activity, severity, and damage of the disease and C system. Results Lower values of the functional tests AL and LE were more frequent than those of the CL pathway. Clinical activity was not related to inferior values of C routes functional assays. The presence of increased DNA binding was negatively linked to all three C pathways and products, except for C1-inh and C3a which were positively related. Disease damage revealed a consistent positive, rather than a negative, relationship with pathways and C elements. Anti-ribosomes and anti-nucleosomes were the autoantibodies that showed a greater relationship with C activation, mainly due to the LE and CL pathways. Regarding antiphospholipid antibodies, the most related with C activation were IgG anti-β2GP, predominantly involving the AL pathway. Conclusion Not only the CL route, but also the AL and LE are related to SLE features. C expression patterns are linked to disease profiles. While accrual damage was associated with higher functional tests of C pathways, anti-DNA, anti-ribosomes and anti-nucleosomes antibodies, were the ones that showed a higher relationship with C activation, mainly due to the LE and CL pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Raquel López-Mejias
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Federico Díaz-González
- Division of Rheumatology, Hospital Universitario de Canarias, Tenerife, Spain
- Department of Internal Medicine. University of La Laguna (ULL), Tenerife, Spain
| | - Miguel Á. González-Gay
- Division of Rheumatology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- University of Cantabria, Instituto de Investigación sanitaria Marqués de Valdecilla (IDIVAL), Santander, Spain
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Iván Ferraz-Amaro, ; Miguel Á. González-Gay,
| | - Iván Ferraz-Amaro
- Division of Rheumatology, Hospital Universitario de Canarias, Tenerife, Spain
- Department of Internal Medicine. University of La Laguna (ULL), Tenerife, Spain
- *Correspondence: Iván Ferraz-Amaro, ; Miguel Á. González-Gay,
| |
Collapse
|
6
|
Cavalli S, Lonati PA, Gerosa M, Caporali R, Cimaz R, Chighizola CB. Beyond Systemic Lupus Erythematosus and Anti-Phospholipid Syndrome: The Relevance of Complement From Pathogenesis to Pregnancy Outcome in Other Systemic Rheumatologic Diseases. Front Pharmacol 2022; 13:841785. [PMID: 35242041 PMCID: PMC8886148 DOI: 10.3389/fphar.2022.841785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Evidence about the relevance of the complement system, a highly conserved constituent of the innate immunity response that orchestrates the elimination of pathogens and the inflammatory processes, has been recently accumulated in many different rheumatologic conditions. In rheumatoid arthritis, complement, mainly the classical pathway, contributes to tissue damage especially in seropositive subjects, with complement activation occurring in the joint. Data about complement pathways in psoriatic arthritis are dated and poorly consistent; among patients with Sjögren syndrome, hypocomplementemia exerts a prognostic role, identifying patients at risk of extra-glandular manifestations. Hints about complement involvement in systemic sclerosis have been recently raised, following the evidence of complement deposition in affected skin and in renal samples from patients with scleroderma renal crisis. In vasculitides, complement plays a dual role: on one hand, stimulation of neutrophils with anti-neutrophil cytoplasmic antibodies (ANCA) results in the activation of the alternative pathway, on the other, C5a induces translocation of ANCA antigens, favouring the detrimental role of antibodies. Complement deposition in the kidneys identifies patients with more aggressive renal disease; patients with active disease display low serum levels of C3 and C4. Even though in dermatomyositis sC5b-9 deposits are invariably present in affected muscles, data on C3 and C4 fluctuation during disease course are scarce. C3 and C1q serum levels have been explored as potential markers of disease activity in Takayasu arteritis, whereas data in Behçet disease are limited to in vitro observations. Pregnancies in women with rheumatologic conditions are still burdened by a higher rate of pregnancy complications, thus the early identification of women at risk would be invaluable. A fine-tuning of complement activation is required from a physiological progression of pregnancy, from pre-implantation stages, through placentation to labour. Complement deregulation has been implicated in several pregnancy complications, such as recurrent abortion, eclampsia and premature birth; low complement levels have been shown to reliably identify women at risk of complications. Given its physiologic role in orchestrating pregnancy progression and its involvement as pathogenic effector in several rheumatologic conditions, complement system is an attractive candidate biomarker to stratify the obstetric risk among women with rheumatologic conditions.
Collapse
Affiliation(s)
- Silvia Cavalli
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Clinical Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Paola Adele Lonati
- Experimental Laboratory of Immunorheumatological Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Maria Gerosa
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Clinical Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Clinical Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Pediatric Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Cecilia Beatrice Chighizola
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Pediatric Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| |
Collapse
|
7
|
Isaksson GL, Nielsen MB, Hinrichs GR, Krogstrup NV, Zachar R, Stubmark H, Svenningsen P, Madsen K, Bistrup C, Jespersen B, Birn H, Palarasah Y, Jensen BL. Proteinuria is accompanied by intratubular complement activation and apical membrane deposition of C3dg and C5b-9 in kidney transplant recipients. Am J Physiol Renal Physiol 2021; 322:F150-F163. [PMID: 34927448 PMCID: PMC8791842 DOI: 10.1152/ajprenal.00300.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Proteinuria predicts accelerated decline in kidney function in kidney transplant recipients (KTRs). We hypothesized that aberrant filtration of complement factors causes intraluminal activation, apical membrane attack on tubular cells, and progressive injury. Biobanked samples from two previous studies in albuminuric KTRs were used. The complement-activation split products C3c, C3dg, and soluble C5b-9-associated C9 neoantigen were analyzed by ELISA in urine and plasma using neoepitope-specific antibodies. Urinary extracellular vesicles (uEVs) were enriched by lectin and immunoaffinity isolation and analyzed by immunoblot analysis. Urine complement excretion increased significantly in KTRs with an albumin-to-creatinine ratio of ≥300 mg/g compared with <30 mg/g. Urine C3dg and C9 neoantigen excretion correlated significantly to changes in albumin excretion from 3 to 12 mo after transplantation. Fractional excretion of C9 neoantigen was significantly higher than for albumin, indicating postfiltration generation. C9 neoantigen was detected in uEVs in six of the nine albuminuric KTRs but was absent in non-albuminuric controls (n = 8). In C9 neoantigen-positive KTRs, lectin affinity enrichment of uEVs from the proximal tubules yielded signal for iC3b, C3dg, C9 neoantigen, and Na+-glucose transporter 2 but only weakly for aquaporin 2. Coisolation of podocyte markers and Tamm–Horsfall protein was minimal. Our findings show that albuminuria is associated with aberrant filtration and intratubular activation of complement with deposition of C3 activation split products and C5b-9-associated C9 neoantigen on uEVs from the proximal tubular apical membrane. Intratubular complement activation may contribute to progressive kidney injury in proteinuric kidney grafts. NEW & NOTEWORTHY The present study proposes a mechanistic coupling between proteinuria and aberrant filtration of complement precursors, intratubular complement activation, and apical membrane attack in kidney transplant recipients. C3dg and C5b-9-associated C9 neoantigen associate with proximal tubular apical membranes as demonstrated in urine extracellular vesicles. The discovery suggests intratubular complement as a mediator between proteinuria and progressive kidney damage. Inhibitors of soluble and/or luminal complement activation with access to the tubular lumen may be beneficial.
Collapse
Affiliation(s)
- Gustaf Lissel Isaksson
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Dept. of Nephrology, Odense University Hospital, Odense, Denmark
| | - Marie Bodilsen Nielsen
- Dept. of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Dept of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gitte Rye Hinrichs
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Dept. of Nephrology, Odense University Hospital, Odense, Denmark
| | | | - Rikke Zachar
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Heidi Stubmark
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Per Svenningsen
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Kirsten Madsen
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Dept. of Pathology, Odense University Hospital, Odense, Denmark
| | - Claus Bistrup
- Dept. of Nephrology, Odense University Hospital, Odense, Denmark.,Dept. of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Bente Jespersen
- Dept. of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Dept. of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Henrik Birn
- Dept. of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Dept of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Yaseelan Palarasah
- Dept. of Molecular Medicine - Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Boye L Jensen
- Dept. of Molecular Medicine - Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Ohtani K. Complement-Related Proteins and Their Measurements: The Current Status of Clinical Investigation. Nephron Clin Pract 2020; 144 Suppl 1:7-12. [PMID: 33232963 DOI: 10.1159/000512494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022] Open
Abstract
Complement has been considered to be a factor that protects the host against invading microorganisms during infection. However, in recent years, complement-related protein deficiency has been found to be involved in the onset of various diseases, such as autoimmune and inflammatory diseases. In Japan, C3, C4, and CH50 tests were generally performed only when a complement system examination was necessary and there were not enough examinations for other complement factors. Since the complement system has a very complicated activation pathway, at present, it is not well known which molecule must be measured to understand the pathological condition or pathogenesis in complement-related diseases. Furthermore, since the frequency of complement factor gene alleles also differs depending on race, data from foreign countries cannot be directly applied to Japanese populations. Under these circumstances, the Japanese Association for Complement Research (JACR) has prepared approximately 20 items for complement-related examinations, including the 5 categories of functional analysis, complement factors, complement regulators, activation products, and autoantibodies.
Collapse
Affiliation(s)
- Katsuki Ohtani
- Department of Food Science and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan,
| |
Collapse
|
9
|
King RAN, Climacosa FMM, Santos BMM, Caoili SEC. A Human Erythrocyte-based Haemolysis Assay for the Evaluation of Human Complement Activity. Altern Lab Anim 2020; 48:127-135. [PMID: 33006498 DOI: 10.1177/0261192920953170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement system consists of at least 50 proteins that serve as one of the first lines of defence against foreign, or damaged, cells and invading microorganisms. Its dysregulation underlies the pathophysiology of many different diseases, which makes functional assays of complement activity crucial; they are, however, underutilised. Standard haemolysis assays for the analysis of complement function employ sensitised non-human erythrocytes (e.g. from the sheep, guinea-pig or rabbit), the use of which raises animal welfare concerns. To provide an alternative to the use of such animal-derived products for complement function assays, we developed a method that employs modified human erythrocytes to evaluate the activity of complement pathways. Human erythrocytes were subjected to various chemical and/or proteolytic treatments involving 2,4,6-trinitrobenzene sulphonate (TNBS) and pancreatin. Haemolysis assays demonstrated that sequential treatment with TNBS and pancreatin resulted in significantly greater complement-mediated haemolysis, as compared to TNBS or pancreatin treatment alone. Evidence that lysis of the modified erythrocytes was complement-mediated was provided by the chelation and subsequent restoration of calcium in the plasma. Thus, such modified human erythrocytes could be used as an alternative to animal-derived erythrocytes in haemolysis assays, in order to evaluate complement activity in human plasma during, for example, the screening of patients for complement deficiencies and other abnormalities in a clinical setting.
Collapse
Affiliation(s)
- Ruby Anne N King
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
| | - Fresthel Monica M Climacosa
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
- Department of Medical Microbiology, College of Public Health, 54733University of the Philippines Manila, Philippines
| | - Bobbie Marie M Santos
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
- Department of Ophthalmology and Visual Sciences, 172611Philippine General Hospital, Manila, Philippines
| | - Salvador Eugenio C Caoili
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
| |
Collapse
|
10
|
Brodszki N, Frazer-Abel A, Grumach AS, Kirschfink M, Litzman J, Perez E, Seppänen MRJ, Sullivan KE, Jolles S. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management. J Clin Immunol 2020; 40:576-591. [PMID: 32064578 PMCID: PMC7253377 DOI: 10.1007/s10875-020-00754-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
This guideline aims to describe the complement system and the functions of the constituent pathways, with particular focus on primary immunodeficiencies (PIDs) and their diagnosis and management. The complement system is a crucial part of the innate immune system, with multiple membrane-bound and soluble components. There are three distinct enzymatic cascade pathways within the complement system, the classical, alternative and lectin pathways, which converge with the cleavage of central C3. Complement deficiencies account for ~5% of PIDs. The clinical consequences of inherited defects in the complement system are protean and include increased susceptibility to infection, autoimmune diseases (e.g., systemic lupus erythematosus), age-related macular degeneration, renal disorders (e.g., atypical hemolytic uremic syndrome) and angioedema. Modern complement analysis allows an in-depth insight into the functional and molecular basis of nearly all complement deficiencies. However, therapeutic options remain relatively limited for the majority of complement deficiencies with the exception of hereditary angioedema and inhibition of an overactivated complement system in regulation defects. Current management strategies for complement disorders associated with infection include education, family testing, vaccinations, antibiotics and emergency planning.
Collapse
Affiliation(s)
- Nicholas Brodszki
- Department of Pediatrics, Children's Hospital, Skåne University Hospital, Lund, Sweden
| | - Ashley Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anete S Grumach
- Clinical Immunology, Reference Center on Rare Diseases, University Center Health ABC, Santo Andre, SP, Brazil
| | | | - Jiri Litzman
- Department of Clinical Immunology and Allergology, St Anne's University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Elena Perez
- Allergy Associates of the Palm Beaches, North Palm Beach, FL, USA
| | - Mikko R J Seppänen
- Rare Disease Center, Children's Hospital, and Adult Primary Immunodeficiency Outpatient Clinic, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, Cardiff University & University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
11
|
Koucký M, Malíčková K, Kopřivová H, Cindrová-Davies T, Čapek V, Pařízek A. Serum mannose-binding lectin (MBL) concentrations are reduced in non-pregnant women with previous adverse pregnancy outcomes. Scand J Immunol 2020; 92:e12892. [PMID: 32335925 DOI: 10.1111/sji.12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 04/20/2020] [Indexed: 11/28/2022]
Abstract
Mannose-binding lectin (MBL) is an important component of the innate immunity, and it is responsible not only for opsonization of micro-organisms, but also for efferocytosis. The aim of this study was to investigate whether MBL concentrations and lectin complement pathway activity are altered in non-pregnant women with previous adverse pregnancy outcomes. Patients were divided into four groups on the basis of their history of pregnancy complications, including control patients who had uncomplicated pregnancies and term deliveries (control, n = 33), and three groups of patients with a history of pregnancy complications, including preterm labour (n = 29), recurrent miscarriage (n = 19) or unexplained intrauterine foetal death (IUFD; n = 17). All women enrolled in the study had an interval of three to six months following their previous pregnancy, and they agreed to have a blood sample taken. We found significantly higher MBL concentrations and functional activity of the lectin complement pathway in healthy controls who had previous uneventful term pregnancies (1341 ng/mL; activity 100% (IQR: 62%-100%)), compared to women with the history of IUFD (684 ng/mL, P = .008; activity 8.5% (IQR: 0%-97.8%), P = .011), recurrent miscarriage (524 ng/mL, P = .022; activity 44% (IQR: 4%-83%), P = .011) or preterm labour (799 ng/mL, P = .022; activity 62.5% (IQR: 0%-83%), P = .003). Our results suggest that inadequate function of the complement lectin pathway is associated with a higher risk of preterm labour, recurrent miscarriage and unexplained intrauterine foetal death.
Collapse
Affiliation(s)
- Michal Koucký
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Karin Malíčková
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Helena Kopřivová
- Institute of Medical Biochemistry and Laboratory Diagnostics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| | - Tereza Cindrová-Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Antonín Pařízek
- Department of Gynecology and Obstetrics of the First Faculty of Medicine and General Teaching Hospital, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Woo JJ, Pouget JG, Zai CC, Kennedy JL. The complement system in schizophrenia: where are we now and what's next? Mol Psychiatry 2020; 25:114-130. [PMID: 31439935 DOI: 10.1038/s41380-019-0479-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022]
Abstract
The complement system is a set of immune proteins involved in first-line defense against pathogens and removal of waste materials. Recent evidence has implicated the complement cascade in diseases involving the central nervous system, including schizophrenia. Here, we provide an up-to-date narrative review and critique of the literature on the relationship between schizophrenia and complement gene polymorphisms, gene expression, protein concentration, and pathway activity. A literature search identified 23 new studies since the first review on this topic in 2008. Overall complement pathway activity appears to be elevated in schizophrenia. Recent studies have identified complement component 4 (C4) and CUB and Sushi Multiple Domains 1 (CSMD1) as potential genetic markers of schizophrenia. In particular, there is some evidence of higher rates of C4B/C4S deficiency, reduced peripheral C4B concentration, and elevated brain C4A mRNA expression in schizophrenia patients compared to controls. To better elucidate the additive effects of multiple complement genotypes, we also conducted gene- and gene-set analysis through MAGMA which supported the role of Human Leukocyte Antigen class (HLA) III genes and, to a lesser extent, CSMD1 in schizophrenia; however, the HLA-schizophrenia association was likely driven by the C4 gene. Lastly, we identified several limitations of the literature on the complement system and schizophrenia, including: small sample sizes, inconsistent methodologies, limited measurements of neural concentrations of complement proteins, little exploration of the link between complement and schizophrenia phenotype, and lack of studies exploring schizophrenia treatment response. Overall, recent findings highlight complement components-in particular, C4 and CSMD1-as potential novel drug targets in schizophrenia. Given the growing availability of complement-targeted therapies, future clinical studies evaluating their efficacy in schizophrenia hold the potential to accelerate treatment advances.
Collapse
Affiliation(s)
- Julia J Woo
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Jennie G Pouget
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
13
|
Nagarajah S, Tepel M, Nielsen C, Assing K, Palarasah Y, Andersen LLT, Lange LB, Bistrup C. Reduced membrane attack complex formation in umbilical cord blood during Eculizumab treatment of the mother: a case report. BMC Nephrol 2019; 20:307. [PMID: 31390992 PMCID: PMC6686417 DOI: 10.1186/s12882-019-1469-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Background Atypical hemolytic uremic syndrome (aHUS) is a disorder of the microvasculature with hemolytic anemia, thrombocytopenia and acute kidney injury. Nowadays, aHUS is successfully treated with eculizumab, a humanized, chimeric IgG2/4 kappa antibody, which binds human complement C5 and blocks generation of C5a and membrane-attack-complex. Case presentation A 25-year-old woman with end stage renal disease due to relapsing atypical hemolytic uremic syndrome had a relapse of the disease during pregnancy. She was treated with eculizumab. We measured reduced formation of the membrane-attack complex in newborn’s umbilical cord vein blood using the sensitive and specific Palarasah-Nielsen-ELISA. Conclusions Eculizumab treatment of the mother with end stage renal disease may cause reduced innate immunity which could render newborns more susceptible to infections.
Collapse
Affiliation(s)
- Subagini Nagarajah
- Department of Nephrology, Odense University Hospital, 5000, Odense C, Denmark.,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Martin Tepel
- Department of Nephrology, Odense University Hospital, 5000, Odense C, Denmark. .,Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark. .,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Christian Nielsen
- Department of Immunology, Odense University Hospital, Odense, Denmark
| | - Kristian Assing
- Department of Immunology, Odense University Hospital, Odense, Denmark
| | - Yaseelan Palarasah
- Research Unit of Immunology and Microbiology, University of Southern Denmark, Odense, Denmark
| | | | - Lotte Borg Lange
- Department of Nephrology, Odense University Hospital, 5000, Odense C, Denmark
| | - Claus Bistrup
- Department of Nephrology, Odense University Hospital, 5000, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Post-transplant Alternative Complement Pathway Activation Influences Kidney Allograft Function. Arch Immunol Ther Exp (Warsz) 2019; 67:171-177. [PMID: 31028405 PMCID: PMC6509066 DOI: 10.1007/s00005-019-00541-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
The complement system is one of the crucial pathophysiological mechanisms that directly influence the function of a transplanted kidney. Since the complement pathways’ activation potential can be easily determined via their functional activity measurement, we focused on fluctuation in the cascade activity in the early post-transplant period. The aim of the study was to relate the kidney transplantation-induced complement system response to allograft outcome. Forty-two kidney recipients (aged: 53.5 [37–52], 17 females/25 males) and 24 healthy controls (aged: 40.5 [34–51], 13 females/11 males) were enrolled in the study. The functional activities of alternative, classical, and lectin pathways were determined before and in the first week after transplantation using Wielisa®-kit. We observed that the baseline functional activity of the alternative pathway (AP) was higher in chronic kidney disease patients awaiting transplantation compared to healthy controls and that its level depended on the type of dialysis. AP-functional activity was decreased following transplantation procedure and its post-transplant level was related to allograft function. The baseline and transplantation-induced functional activities of the classical and lectin pathways were not influenced by dialysis type and were not associated with transplant outcome. Moreover, our study showed that intraoperative graft surface cooling had a protective effect on AP activation. Our study confirms the influence of dialysis modality on persistent AP complement activation and supports the role of AP in an early phase after kidney transplantation and allograft outcome.
Collapse
|
15
|
Phillips HR, Tolstyka ZP, Hall BC, Hexum JK, Hackett PB, Reineke TM. Glycopolycation–DNA Polyplex Formulation N/P Ratio Affects Stability, Hemocompatibility, and in Vivo Biodistribution. Biomacromolecules 2019; 20:1530-1544. [DOI: 10.1021/acs.biomac.8b01704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Haley R. Phillips
- Center for Genome Engineering and Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Zachary P. Tolstyka
- Center for Genome Engineering and Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Bryan C. Hall
- Center for Genome Engineering and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K. Hexum
- Center for Genome Engineering and Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Perry B. Hackett
- Center for Genome Engineering and Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Center for Genome Engineering and Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Eriksson O, Chiu J, Hogg PJ, Atkinson JP, Liszewski MK, Flaumenhaft R, Furie B. Thiol isomerase ERp57 targets and modulates the lectin pathway of complement activation. J Biol Chem 2019; 294:4878-4888. [PMID: 30670593 DOI: 10.1074/jbc.ra118.006792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/13/2019] [Indexed: 11/06/2022] Open
Abstract
ER protein 57 (ERp57), a thiol isomerase secreted from vascular cells, is essential for complete thrombus formation in vivo, but other extracellular ERp57 functions remain unexplored. Here, we employed a kinetic substrate-trapping approach to identify extracellular protein substrates of ERp57 in platelet-rich plasma. MS-based identification with immunochemical confirmation combined with gene ontology enrichment analysis revealed that ERp57 targets, among other substrates, components of the lectin pathway of complement activation: mannose-binding lectin, ficolin-2, ficolin-3, collectin-10, collectin-11, mannose-binding lectin-associated serine protease-1, and mannose-binding lectin-associated serine protease-2. Ficolin-3, the most abundant lectin pathway initiator in humans, circulates as disulfide-linked multimers of a monomer. ERp57 attenuated ficolin-3 ligand recognition and complement activation by cleaving intermolecular disulfide bonds in large ficolin-3 multimers, thereby reducing multimer size and ligand-binding affinity. We used MS to identify the disulfide-bonding pattern in ficolin-3 multimers and the disulfide bonds targeted by ERp57 and found that Cys6 and Cys23 in the N-terminal region of ficolin-3 form the intermolecular disulfide bonds in ficolin-3 multimers that are reduced by ERp57. Our results not only demonstrate that ERp57 can negatively regulate complement activation, but also identify a control mechanism for lectin pathway initiation in the vasculature. We conclude that extensive multimerization in large ficolin-3 multimers leads to a high affinity for ligands and strong complement-activating potential and that ERp57 suppresses complement activation by cleaving disulfide bonds in ficolin-3 and reducing its multimer size.
Collapse
Affiliation(s)
- Oskar Eriksson
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Joyce Chiu
- the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Philip J Hogg
- the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - John P Atkinson
- the Department of Medicine/Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - M Kathryn Liszewski
- the Department of Medicine/Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert Flaumenhaft
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Bruce Furie
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
17
|
Keizer MP, Aarts C, Kamp AM, Caron HN, van de Wetering MD, Wouters D, Kuijpers TW. Asparaginase inhibits the lectin pathway of complement activation. Mol Immunol 2017; 93:189-192. [PMID: 29197742 DOI: 10.1016/j.molimm.2017.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Oncological treatment has been associated with an increased risk of infection, most often related to therapy-induced pancytopenia. However, limited research has been conducted on the effect of oncological therapy on the complement system, being part of the non-cellular innate immune system. This became the rationale for an observational clinical study (C2012) in which we have investigated the prevalence of transient complement defects. Once we had observed such defects, a correlation of the complement defects to specific clinical parameters or to specific therapeutic regimens was investigated. A prominent defect observed in C2012 was the inhibition of the lectin pathway (LP) of complement activation during the treatment of acute lymphoblastic leukemia (ALL), which we could directly associate to the use of asparaginase (ASNase). Ex-vivo experiments confirmed a direct dose-dependent inhibitory effect of ASNase on the LP functionality.
Collapse
Affiliation(s)
- M P Keizer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands.
| | - C Aarts
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A M Kamp
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H N Caron
- Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - M D van de Wetering
- Department of Pediatric Oncology, Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - D Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - T W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory AMC, University of Amsterdam, Amsterdam, The Netherlands; Department of Pediatric Hematology, Immunology and Infectious Diseases, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Complement factor C4 activation in patients with hereditary angioedema. Clin Biochem 2017; 50:816-821. [DOI: 10.1016/j.clinbiochem.2017.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023]
|
19
|
Rasmussen KJ, Skjoedt MO, Vitved L, Skjoedt K, Palarasah Y. A novel antihuman C3d monoclonal antibody with specificity to the C3d complement split product. J Immunol Methods 2017; 444:51-55. [PMID: 28174050 DOI: 10.1016/j.jim.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 11/28/2022]
Abstract
The complement component C3 and the cleavage products of C3b/iC3b, C3c and C3d are used as biomarkers in clinical diagnostics. Currently, no specific antibodies are able to differentiate C3d from other fragments, although such a distinction could be very valuable considering that they may reflect different pathophysiological mechanisms. We have developed a rat antihuman C3d monoclonal antibody with specificity to the end sequence of the N-terminal region of C3d. The antibody can therefore only bind to C3d when it manifests itself as the final end product of cleaved C3. We believe that this specificity is it first of its kind, and predicts that it can be used as a detection tool in several immunological methods with great value in diagnostics.
Collapse
Affiliation(s)
- Karina Juhl Rasmussen
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Mikkel-Ole Skjoedt
- Department of Clinical Immunology, University Hospital of Copenhagen, Rigshospitalet, Denmark
| | - Lars Vitved
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Karsten Skjoedt
- Department of Cancer and Inflammation Research, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Unit for Thrombosis Research, Institute of Public Health, University of Southern Denmark, Esbjerg, Denmark.
| |
Collapse
|
20
|
Keizer MP, Kamp AM, Aarts C, Geisler J, Caron HN, van de Wetering MD, Wouters D, Kuijpers TW. The High Prevalence of Functional Complement Defects Induced by Chemotherapy. Front Immunol 2016; 7:420. [PMID: 27799929 PMCID: PMC5066094 DOI: 10.3389/fimmu.2016.00420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
Abstract
Introduction To date, oncology patients are more dependent on non-cellular host defense against pathogens due to intensive (chemo)therapy-related bone marrow suppression. Since data on complement functionality in oncology patients are limited, we aimed to investigate the innate complement function in relation to the type of malignancy and therapy in a longitudinal cohort of patients. Methods A large single-center, prospective non-intervention study was conducted, in which blood samples were taken from patients before, during, and after treatment with chemotherapy and/or subsequent admittance for (febrile) neutropenia. Results/findings Analysis of 48 patients showed a high percentage of defects in complement activity of the alternative pathway (19.1%), the classical pathway (4.3%), or both (42.6%). Post hoc analysis of six different treatment protocols with more than three patients each showed distinct effects of specific therapies. Whereas patients treated according to the Ewing, EpSSG-rhabdomyosarcoma, or SIOP CNS germ cell tumor protocol showed no defects, patients treated according to the ALL-11 (leukemia), the EURAMOS I (osteosarcoma), or the ACNS (medulloblastoma) protocols showed an almost universal reduction in complement function. Although we could not explain the reduced complement functionality under all conditions, a strong effect was observed following high-dose methotrexate or ifosfamide. Conclusion Acquired complement defects were commonly observed in more than 50% of oncology patients, some of which associated with certain chemotherapeutic drugs. Additional studies are needed to determine the clinical and therapeutic context of complement defects and their possible effect on treatment outcome or the increased risk of infection.
Collapse
Affiliation(s)
- Mischa P Keizer
- Sanquin Research and Landsteiner Laboratory AMC, Department of Immunopathology, University of Amsterdam, Amsterdam, Netherlands; Academic Medical Center (AMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | - Angela M Kamp
- Sanquin Research and Landsteiner Laboratory AMC, Department of Immunopathology, University of Amsterdam , Amsterdam , Netherlands
| | - Cathelijn Aarts
- Sanquin Research and Landsteiner Laboratory AMC, Department of Immunopathology, University of Amsterdam , Amsterdam , Netherlands
| | - Judy Geisler
- Sanquin Research and Landsteiner Laboratory AMC, Department of Blood Cell Research, University of Amsterdam , Amsterdam , Netherlands
| | - Huib N Caron
- Academic Medical Center (AMC), Emma Children's Hospital, University of Amsterdam , Amsterdam , Netherlands
| | - Marianne D van de Wetering
- Academic Medical Center (AMC), Emma Children's Hospital, University of Amsterdam , Amsterdam , Netherlands
| | - Diana Wouters
- Sanquin Research and Landsteiner Laboratory AMC, Department of Immunopathology, University of Amsterdam , Amsterdam , Netherlands
| | - Taco W Kuijpers
- Academic Medical Center (AMC), Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands; Sanquin Research and Landsteiner Laboratory AMC, Department of Blood Cell Research, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Damgaard C, Reinholdt J, Palarasah Y, Enevold C, Nielsen C, Brimnes MK, Holmstrup P, Nielsen CH. In vitro complement activation, adherence to red blood cells and induction of mononuclear cell cytokine production by four strains of Aggregatibacter actinomycetemcomitans with different fimbriation and expression of leukotoxin. J Periodontal Res 2016; 52:485-496. [PMID: 27663487 DOI: 10.1111/jre.12414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND OBJECTIVE The periodontal pathogen Aggregatibacter actinomycetemcomitans has been proposed as pro-atherogenic, and complement-mediated adherence to red blood cells (RBCs) may facilitate its systemic spread. We investigated the ability of four strains of A. actinomycetemcomitans with differential expression of leukotoxin A (LtxA) and fimbriae to activate complement, adhere to RBCs and elicit cytokine responses by mononuclear cells (MNCs). MATERIAL AND METHODS Aggregatibacter actinomycetemcomitans serotype b strains HK 921, HK 1651, HK 2092 and HK 2108 were fluorescence-labeled, incubated with human whole blood cells in the presence of autologous serum, and assessed for RBC adherence by flow cytometry and for capacity to induce cytokine production by cytometric bead array analysis. The levels of IgG to A. actinomycetemcomitans serotype b were quantified by ELISA, as was consumption of complement. RESULTS The JP2 clone variants HK 1651 and, to a lesser extent, HK 2092, consumed complement efficiently, while HK 2108 (= strain Y4) consumed complement poorly. Nonetheless, the four tested strains adhered equally well to RBCs in the presence of autologous serum, without causing RBC lysis. The JP2 clone variant HK 2092, selectively lacking LtxA production, induced higher production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-10 by MNCs than did the other three strains, while the four strains induced similar production of IL-12p70. RBCs facilitated the HK 2092-induced production of TNF-α and IL-1β, and IL-6 was enhanced by RBCs, and this facilitation could be counteracted by blockade of complement receptor 3 (CD11b/CD18). CONCLUSION Our data suggest that the JP2 clone of A. actinomycetemcomitans, most closely resembled by the variant HK 1651, activates complement well, while strain Y4, represented by HK 2108, activates complement poorly. However, all strains of A. actinomycetemcomitans adhere to RBCs and, when capable of producing LtxA, prevent production of inflammatory cytokines by MNCs. This "immunologically silent" immune adherence may facilitate systemic spread and atherogenesis.
Collapse
Affiliation(s)
- C Damgaard
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - J Reinholdt
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Y Palarasah
- Unit for Thrombosis Research, Institute of Public Health, University of Southern Denmark, Esbjerg, Denmark
| | - C Enevold
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - C Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - M K Brimnes
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - P Holmstrup
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C H Nielsen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
22
|
Quantitative analysis of factor P (Properdin) in monkey serum using immunoaffinity capturing in combination with LC–MS/MS. Bioanalysis 2016; 8:425-38. [DOI: 10.4155/bio.15.258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Factor P (Properdin), an endogenous glycoprotein, plays a key role in innate immune defense. Its quantification is important for understanding the pharmacodynamics (PD) of drug candidate(s). Results: In the present work, an immunoaffinity capturing LC–MS/MS method has been developed and validated for the first time for the quantification of factor P in monkey serum with a dynamic range of 125 to 25,000 ng/ml using the calibration standards and QCs prepared in factor P depleted monkey serum. The intra- and inter-run precision was ≤7.2% (CV) and accuracy within ±16.8% (%Bias) across all QC levels evaluated. Results of other evaluations (e.g., stability) all met the acceptance criteria. Conclusion: The validated method was robust and implemented in support of a preclinical PK/PD study.
Collapse
|
23
|
Heat differentiated complement factor profiling. J Proteomics 2015; 126:155-62. [DOI: 10.1016/j.jprot.2015.05.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/14/2015] [Accepted: 05/23/2015] [Indexed: 11/17/2022]
|
24
|
Bryan AR, Wu EY. Complement deficiencies in systemic lupus erythematosus. Curr Allergy Asthma Rep 2014; 14:448. [PMID: 24816552 DOI: 10.1007/s11882-014-0448-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The complement system is a major, multifunctional part of innate immunity and serves as a bridge between the innate and adaptive immune systems. It consists of more than 30 distinct proteins that interact with one another in a specific sequence. There are three pathways of complement activation: the classical, the lectin, and the alternative pathways. The three pathways are initiated by distinct mechanisms, but they all generate the same core set of effector molecules. Inherited complete deficiencies in complement components are generally very rare and predispose to infections and autoimmune disease. One of the better described associations is between deficiencies in early classical pathway components and the development of systemic lupus erythematosus. The goal of this review will be to discuss the associations between and the causal mechanisms of complement deficiencies and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Angela R Bryan
- Pediatric Rheumatology Division, Duke University Children's Health Center, 2301 Erwin Road, Durham, NC, 27710, USA,
| | | |
Collapse
|
25
|
Pilely K, Skjoedt MO, Nielsen C, Andersen TE, Louise Aabom A, Vitved L, Koch C, Skjødt K, Palarasah Y. A specific assay for quantification of human C4c by use of an anti-C4c monoclonal antibody. J Immunol Methods 2014; 405:87-96. [PMID: 24472768 DOI: 10.1016/j.jim.2014.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
The increasing evidence of the implication of the complement system in the pathogenesis of several diseases has emphasized the need for the development of specific and valid assays, optimized for quantitative detection of complement activation in vivo. In the present study, we have developed a mouse monoclonal antibody (mAb) that is able to detect fluid phase C4c without interference from other products generated from the complement component C4. The C4c specific mAb was tested in different enzyme-linked immunosorbent assay (ELISA) combinations with various types of in vitro activated sera and samples from factor I deficient patients. The specificity of the mAb was further evaluated by immunoprecipitation techniques and by analysis of eluted fragments of C4 after immunoaffinity chromatography. The anti-C4c mAb was confirmed to be C4c specific, as it showed no cross-reactivity with native (un-cleaved) C4, C4b, iC4b, or C4d. Also, no reaction was observed with C4 fragments in factor I deficient plasma or serum samples. We established and validated a sandwich ELISA based on this C4c specific antibody. The normal range of C4c in EDTA/futhan plasma collected from 100 Danish blood donors was measured, with a mean of 0.85mg/L and a range of 0.19-2.21mg/L. We believe that the C4c specific antibody and the ELISA might be important tools in the future assessment of in vivo activation in situations where the classical or the lectin complement pathways are involved in the pathogenesis.
Collapse
Affiliation(s)
- Katrine Pilely
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne Louise Aabom
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark
| | - Lars Vitved
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Claus Koch
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Karsten Skjødt
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Cancer & Inflammation Research, Institute of Molecular Medicine, Faculty of Health Science, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
26
|
Complement defects in patients with chronic rhinosinusitis. PLoS One 2012; 7:e47383. [PMID: 23144819 PMCID: PMC3492390 DOI: 10.1371/journal.pone.0047383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/12/2012] [Indexed: 11/19/2022] Open
Abstract
The complement system is an important part of our immune system, and complement defects lead generally to increased susceptibility to infections and autoimmune diseases. We have studied the role of complement activity in relation with chronic rhinosinusitis (CRS), and more specifically studied whether complement defects collectively predispose individuals for CRS or affect CRS severity. The participants comprised 87 CRS patients randomly selected from the general population, and a control group of 150 healthy blood donors. The CRS patients were diagnosed according to the European Position Paper on Rhinosinusitis and nasal Polyps criteria, and severity was evaluated by the Sino-nasal Outcome Test-22. Serum samples were analysed by ELISA for activity of the respective pathways of complement, and subsequently for serum levels of relevant components. We found that the frequency of complement defects was significantly higher among CRS patients than among healthy control subjects. A majority of Mannan-binding lectin deficient CRS patients was observed. The presence of complement defects had no influence on the severity of subjective symptoms. Our studies show that defects in the complement system collectively may play an immunological role related to the development of CRS. However, an association between severity of symptoms and presence of complement defects could not be demonstrated.
Collapse
|
27
|
Skjoedt MO, Roversi P, Hummelshøj T, Palarasah Y, Rosbjerg A, Johnson S, Lea SM, Garred P. Crystal structure and functional characterization of the complement regulator mannose-binding lectin (MBL)/ficolin-associated protein-1 (MAP-1). J Biol Chem 2012; 287:32913-21. [PMID: 22854970 DOI: 10.1074/jbc.m112.386680] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human lectin complement pathway activation molecules comprise mannose-binding lectin (MBL) and ficolin-1, -2, and -3 in complex with associated serine proteases MASP-1, -2, and -3 and the non-enzymatic small MBL associated protein or sMAP. Recently, a novel plasma protein named MBL/ficolin-associated protein-1 (MAP-1) was identified in humans. This protein is the result of a differential splicing of the MASP1 gene and includes the major part of the heavy chain but lacks the serine protease domain. We investigated the direct interactions of MAP-1 and MASP-3 with ficolin-3 and MBL using surface plasmon resonance and found affinities around 5 nm and 2.5 nm, respectively. We studied structural aspects of MAP-1 and could show by multi-angle laser light scattering that MAP-1 forms a calcium-dependent homodimer in solution. We were able to determine the crystal structure of MAP-1, which also contains a head-to-tail dimer ∼146 Å long. This structure of MAP-1 also enables modeling and assembly of the MASP-1 molecule in its entirety. Finally we found that MAP-1 competes with all three MASPs for ligand binding and is able to mediate a strong dose-dependent inhibitory effect on the lectin pathway activation, as measured by levels of C3 and C9.
Collapse
Affiliation(s)
- Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|