1
|
Putilina MV. [Asthenic disorders as a manifestation of chronic fatigue syndrome]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:125-130. [PMID: 34481448 DOI: 10.17116/jnevro2021121081125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The article explains the changes in terminology and diagnostic criteria for asthenic disorders as manifestations of chronic fatigue syndrome CFS (myalgic encephalomyelitis). Chronic fatigue syndrome is defined as neuroimmune endocrine dysfunction with a purely clinical diagnosis. Probably, viral infections can play a leading role in the pathogenesis. Published diagnostic criteria reveal possible correlations between chronic fatigue syndrome and COVID-19 disease. A promising strategy for the therapy and rehabilitation of patients is the use of smart peptides, a representative of which is the drug cortexin.
Collapse
Affiliation(s)
- M V Putilina
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
2
|
Inhibition of Type III Interferon Expression in Intestinal Epithelial Cells-A Strategy Used by Coxsackie B Virus to Evade the Host's Innate Immune Response at the Primary Site of Infection? Microorganisms 2021; 9:microorganisms9010105. [PMID: 33466313 PMCID: PMC7824802 DOI: 10.3390/microorganisms9010105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence highlights the importance of the antiviral activities of the type III interferons (IFNλs; IL-28A, IL-28B, IL29, and IFNλ4) in the intestine. However, many viruses have developed strategies to counteract these defense mechanisms by preventing the production of IFNs. Here we use infection models, a clinical virus isolate, and several molecular biology techniques to demonstrate that both type I and III IFNs induce an antiviral state and attenuate Coxsackievirus group B (CVB) replication in human intestinal epithelial cells (IECs). While treatment of IECs with a viral mimic (poly (I:C)) induced a robust expression of both type I and III IFNs, no such up-regulation was observed after CVB infection. The blunted IFN response was paralleled by a reduction in the abundance of proteins involved in the induction of interferon gene transcription, including TIR-domain-containing adapter-inducing interferon-β (TRIF), mitochondrial antiviral-signaling protein (MAVS), and the global protein translation initiator eukaryotic translation initiation factor 4G (eIF4G). Taken together, this study highlights a potent anti-Coxsackieviral effect of both type I and III IFNs in cells located at the primary site of infection. Furthermore, we show for the first time that the production of type I and III IFNs in IECs is blocked by CVBs. These findings suggest that CVBs evade the host immune response in order to successfully infect the intestine.
Collapse
|
3
|
Bergamin CS, Pérez-Hurtado E, Oliveira L, Gabbay M, Piveta V, Bittencourt C, Russo D, Carmona RDC, Sato M, Dib SA. Enterovirus Neutralizing Antibodies, Monocyte Toll Like Receptors Expression and Interleukin Profiles Are Similar Between Non-affected and Affected Siblings From Long-Term Discordant Type 1 Diabetes Multiplex-Sib Families: The Importance of HLA Background. Front Endocrinol (Lausanne) 2020; 11:555685. [PMID: 33071971 PMCID: PMC7538605 DOI: 10.3389/fendo.2020.555685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Enteroviruses are main candidates among environmental agents in the development of type 1 diabetes (T1D). However, the relationship between virus and the immune system response during T1D pathogenesis is heterogeneous. This is an interesting paradigm and the search for answers would help to highlight the role of viral infection in the etiology of T1D. The current data is a cross-sectional study of affected and non-affected siblings from T1D multiplex-sib families to analyze associations among T1D, genetic, islet autoantibodies and markers of innate immunity. We evaluated the prevalence of anti-virus antibodies (Coxsackie B and Echo) and its relationships with human leukocyte antigen (HLA) class II alleles, TLR expression (monocytes), serum cytokine profile and islet β cell autoantibodies in 51 individuals (40 T1D and 11 non-affected siblings) from 20 T1D multiplex-sib families and 54 healthy control subjects. The viral antibody profiles were similar among all groups, except for antibodies against CVB2, which were more prevalent in the non-affected siblings. TLR4 expression was higher in the T1D multiplex-sib family's members than in the control subjects. TLR4 expression showed a positive correlation with CBV2 antibody prevalence (rS: 0.45; P = 0.03), CXCL8 (rS: 0.65, P = 0.002) and TNF-α (rS: 0.5, P = 0.01) serum levels in both groups of T1D multiplex-sib family. Furthermore, within these families, there was a positive correlation between HLA class II alleles associated with high risk for T1D and insulinoma-associated protein 2 autoantibody (IA-2A) positivity (odds ratio: 38.8; P = 0.021). However, the HLA protective haplotypes against T1D prevalence was higher in the non-affected than the affected siblings. This study shows that although the prevalence of viral infection is similar among healthy individuals and members from the T1D multiplex-sib families, the innate immune response is higher in the affected and in the non-affected siblings from these families than in the healthy controls. However, autoimmunity against β-islet cells and an absence of protective HLA alleles were only observed in the T1D multiplex-sib members with clinical disease, supporting the importance of the genetic background in the development of T1D and heterogeneity of the interaction between environmental factors and disease pathogenesis despite the high genetic diversity of the Brazilian population.
Collapse
Affiliation(s)
- Carla Sanchez Bergamin
- Endocrinology Division, Department of Medicine, Diabetes Center, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Carla Sanchez Bergamin
| | - Elizabeth Pérez-Hurtado
- Immunology Division, Microbiology, Immunology and Parasitological Department, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luanda Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology and Tropical Medicine Institute of São Paulo, Faculdade de Medicina - Universidade de São Paulo, São Paulo, Brazil
| | - Monica Gabbay
- Endocrinology Division, Department of Medicine, Diabetes Center, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Valdecira Piveta
- Endocrinology Division, Department of Medicine, Diabetes Center, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Célia Bittencourt
- Endocrinology Division, Department of Medicine, Diabetes Center, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| | - Denise Russo
- Enteric Diseases Laboratory, Virology Center From Instituto Adolfo Lutz, São Paulo, Brazil
| | - Rita de Cássia Carmona
- Enteric Diseases Laboratory, Virology Center From Instituto Adolfo Lutz, São Paulo, Brazil
| | - Maria Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology and Tropical Medicine Institute of São Paulo, Faculdade de Medicina - Universidade de São Paulo, São Paulo, Brazil
| | - Sergio A. Dib
- Endocrinology Division, Department of Medicine, Diabetes Center, Escola Paulista de Medicina - Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Blanter M, Sork H, Tuomela S, Flodström-Tullberg M. Genetic and Environmental Interaction in Type 1 Diabetes: a Relationship Between Genetic Risk Alleles and Molecular Traits of Enterovirus Infection? Curr Diab Rep 2019; 19:82. [PMID: 31401790 PMCID: PMC6689284 DOI: 10.1007/s11892-019-1192-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We provide an overview of the current knowledge regarding the natural history of human type 1 diabetes (T1D) and the documented associations between virus infections (in particular the enteroviruses) and disease development. We review studies that examine whether T1D-specific risk alleles in genes involved in the function of the immune system can alter susceptibility to virus infections or affect the magnitude of the host antiviral response. We also highlight where the major gaps in our knowledge exist and consider possible implications that new insights gained from the discussed gene-environment interaction studies may bring. RECENT FINDINGS A commonality between several of the studied T1D risk variants studied is their role in modulating the host immune response to viral infection. Generally, little support exists indicating that the risk variants increase susceptibility to infection and moreover, they usually appear to predispose the immune system towards a hyper-reactive state, decrease the risk of infection, and/or favor the establishment of viral persistence. In conclusion, although the current number of studies is limited, this type of research can provide important insights into the mechanisms that are central to disease pathogenesis and further describe how genetic and environmental factors jointly influence the risk of T1D development. The latter may provide genetic markers that could be used for patient stratification and for the selection of method(s) for disease prevention.
Collapse
Affiliation(s)
- Marfa Blanter
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- 0000 0001 0668 7884grid.5596.fLaboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, EU Belgium
| | - Helena Sork
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Soile Tuomela
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- 0000 0000 9241 5705grid.24381.3cCenter for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
He J, Zhang X, Lian C, Wu J, Fang Y, Ye X. KEAP1/NRF2 axis regulates H 2O 2-induced apoptosis of pancreatic β-cells. Gene 2018; 691:8-17. [PMID: 30594636 DOI: 10.1016/j.gene.2018.11.100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
In human pancreatic β-cells, oxidative stress and cellular injures can be induced by H2O2 treatment. The KEAP1/NRF2 axis is a key antioxidant signaling pathway. The present study attempted to elucidate the mechanism by which the KEAP1/NRF2 axis mediates oxidative stress-induced death in pancreatic β-cells. Our data showed that H2O2 treatment obviously induced the apoptosis of β-cells. Further experiments demonstrated that KEAP1 expression was downregulated in H2O2-treated pancreatic β-cells and this change correlated with increase in the cellular abundance and nuclear translocation of NRF2. The restoration of KEAP1 expression in cells resulted in a recovery of cell proliferation and inhibition of apoptosis. Furthermore, we found that KEAP1 overexpression negatively regulated the abundance of NRF2, subsequently causing decreased antioxidant response element activation. This led to HO-1 protein downregulation in H2O2-treated human pancreatic β-cells, which was also observed in NRF2-silenced β-cells. Conversely, the silencing of KEAP1 led to NRF2 upregulation and inhibited ARE and HO-1 signaling in pancreatic β-cells. The increase in the abundance of NRF2 following treatment with H2O2 drastically elevated the production of BAX, FAS, FAS-L, CASP-3, and CASP-9, and this change was reversed by KEAP1 overexpression or NRF2 silencing. Taken together, H2O2 treatment activated KEAP1/NRF2 signaling to promote the production of pro-apoptotic factors and consequently led to the apoptosis of human pancreatic β-cells.
Collapse
Affiliation(s)
- Jinshui He
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Xu Zhang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Chaowei Lian
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Jinzhi Wu
- Department of Endocrinology, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Yanling Fang
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China
| | - Xiaoling Ye
- Department of Pediatrics, Affiliated Hospital of Zhangzhou, Fujian Medical University, Zhangzhou, Fujian, China.
| |
Collapse
|
6
|
Rasa S, Nora-Krukle Z, Henning N, Eliassen E, Shikova E, Harrer T, Scheibenbogen C, Murovska M, Prusty BK. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med 2018; 16:268. [PMID: 30285773 PMCID: PMC6167797 DOI: 10.1186/s12967-018-1644-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background and main text Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and controversial clinical condition without having established causative factors. Increasing numbers of cases during past decade have created awareness among patients as well as healthcare professionals. Chronic viral infection as a cause of ME/CFS has long been debated. However, lack of large studies involving well-designed patient groups and validated experimental set ups have hindered our knowledge about this disease. Moreover, recent developments regarding molecular mechanism of pathogenesis of various infectious agents cast doubts over validity of several of the past studies. Conclusions This review aims to compile all the studies done so far to investigate various viral agents that could be associated with ME/CFS. Furthermore, we suggest strategies to better design future studies on the role of viral infections in ME/CFS.
Collapse
Affiliation(s)
- Santa Rasa
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Nina Henning
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Eva Eliassen
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Evelina Shikova
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Thomas Harrer
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Bhupesh K Prusty
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany. .,Institute for Virology and Immunobiology, Würzburg, Germany.
| | | |
Collapse
|
7
|
Karaoglan M, Eksi F. The Coincidence of Newly Diagnosed Type 1 Diabetes Mellitus with IgM Antibody Positivity to Enteroviruses and Respiratory Tract Viruses. J Diabetes Res 2018; 2018:8475341. [PMID: 30186878 PMCID: PMC6116462 DOI: 10.1155/2018/8475341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/01/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Viruses trigger and promote islet cell destruction and cause type 1 diabetes mellitus (T1DM). However, the existence of a cause-and-effect relationship is under debate. The aim of this study is to investigate the sero-epidemiological and molecular evidence on enteroviruses and respiratory viruses in patients with newly diagnosed T1DM during the cold season. DESIGN Forty children newly diagnosed with T1DM and 30 healthy children who presented to the clinic over the course of a year were included in the study. The IgM antibodies against enteroviruses and respiratory viruses were studied using the indirect immunofluorescence assay (IFA) test, and no CBV4-specific RNA was detected in the children. The onset times of T1DM were classified into fall-winter and spring-summer seasons and separated into cold, moderate, or warm months in terms of temperature. RESULTS The percentages of viral IgM antibodies against most common viruses were detected in the patients as follows: influenza B (IVB) (70%), echovirus 7 (ECHO7) (45%), parainfluenza virus 4 (PIV4) (40%), coxsackievirus A7 (CAV7) (27.5%), and H3N2 (22.5%). Compared with the control group, the above viruses had a significant association with T1DM (p ≤ 0.001, p ≤ 0.001, p = 0.035, p = 0.003, and p = 0.023, resp.). CBV4-specific RNA was not detected in any serum. A total of 75% and 95% patients were diagnosed with T1DM in the fall-winter seasons and cold-moderate months, respectively. CONCLUSION Our study demonstrates the significant association between T1DM and the presence of IgM antibodies against IVB, ECHO7, PIV4, CAV7, and H3N2, and the majority of newly diagnosed T1DM appeared in the fall-winter season. It suggests that enteroviruses and respiratory viruses, in addition to seasonal variation, could play a role in the etiopathogenesis and clinical onset of T1DM.
Collapse
Affiliation(s)
- Murat Karaoglan
- Division of Pediatric Endocrinology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Fahriye Eksi
- Department of Medical Microbiology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| |
Collapse
|
8
|
Zhang XH, Shen M, Liu L, Li FM, Hu PC, Hua Q, Zhang J, Pang LN, Lu HW, Wang ZM, Chu X, Huang W. Association Analysis of Single Nucleotide Polymorphisms in C1QTNF6, RAC2, and an Intergenic Region at 14q32.2 with Graves' Disease in Chinese Han Population. Genet Test Mol Biomarkers 2017; 21:479-484. [PMID: 28665696 DOI: 10.1089/gtmb.2017.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Variation within the C1QTNF6 gene at 22q12.3, the RAC2 gene at 22q13.1, and an intergenic region at 14q32.2 were found to be associated with risk to Graves' disease (GD) in a recent study. We aimed to validate these associations with GD in an independent sample set of Han Chinese population. METHODS We investigated these associations by genotyping the most significantly associated single nucleotide polymorphisms (SNPs) located in these three regions. Rs1456988 within the intergenic region at 14q32.2, rs229527 within C1QTNF6 at 22q12.3, and rs2284038 within RAC2 at 22q13.1 were selected for genotyping. These three SNPs were genotyped using a case-control study that included 2382 GD patients and 3092 unrelated healthy controls from Northern Han Chinese ancestry. The genotyping was performed using TaqMan assays on the ABI7900 platform. RESULTS We found both the rs229527 allele within C1QTNF6 (odds ratio [OR] = 1.23, confidence interval [95% CI]: 1.12-1.33, pAllelic = 4.60 × 10-6) and the rs2284038 allele within RAC2 (OR = 1.10, 95% CI: 1.01-0.19, pAllelic = 3.00 × 10-2) showed significant associations with GD susceptibility. However, rs1456988 located in 14q32.2 (OR = 1.08, 95% CI: 0.99-1.16, pAllelic = 7.01 × 10-2) showed no association. Analysis of models of inheritance suggested that both the dominant and recessive models showed significant associations for rs229527 (OR = 1.24, 95% CI: 1.13-1.38, pDominant = 9.90 × 10-5; OR = 1.49, 95% CI: 1.19-1.86, pRecessive = 3.90 × 10-4), with the dominant model being preferred. For rs2284038, the recessive model was preferred (OR = 1.18, 95% CI: 1.00-1.40, pRecessive = 4.76 × 10-2), whereas analysis of dominant model showed no association (OR = 1.10, 95% CI: 0.98-1.22, pDominant = 0.10). CONCLUSIONS Our findings confirmed that chromosome 22q12.3 and 22q13.1 variants are associated with GD in an independent Han Chinese population; however, 14q32.2 showed no association with GD.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Min Shen
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Lin Liu
- 3 Department of Endocrinology, Weifang People's Hospital , Weifang, China
| | - Fa-Mei Li
- 3 Department of Endocrinology, Weifang People's Hospital , Weifang, China
| | - Peng-Chen Hu
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Qi Hua
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Jing Zhang
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Li-Nan Pang
- 3 Department of Endocrinology, Weifang People's Hospital , Weifang, China
| | - Hong-Wen Lu
- 3 Department of Endocrinology, Weifang People's Hospital , Weifang, China
| | - Zhi-Min Wang
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| | - Xun Chu
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
- 4 Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 5 Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition , Shanghai, China
| | - Wei Huang
- 1 Ruijin Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- 2 Shanghai-Ministry of Science and Technology (MOST) Key Laboratory of Health and Disease Genomics, Department of Genetics, Chinese National Human Genome Center and Shanghai Industrial Technology Institute (SITI) , Shanghai, China
| |
Collapse
|
9
|
Domsgen E, Lind K, Kong L, Hühn MH, Rasool O, van Kuppeveld F, Korsgren O, Lahesmaa R, Flodström-Tullberg M. An IFIH1 gene polymorphism associated with risk for autoimmunity regulates canonical antiviral defence pathways in Coxsackievirus infected human pancreatic islets. Sci Rep 2016; 6:39378. [PMID: 28000722 PMCID: PMC5175199 DOI: 10.1038/srep39378] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023] Open
Abstract
The IFIH1 gene encodes the pattern recognition receptor MDA5. A common polymorphism in IFIH1 (rs1990760, A946T) confers increased risk for autoimmune disease, including type 1-diabetes (T1D). Coxsackievirus infections are linked to T1D and cause beta-cell damage in vitro. Here we demonstrate that the rs1990760 polymorphism regulates the interferon (IFN) signature expressed by human pancreatic islets following Coxsackievirus infection. A strong IFN signature was associated with high expression of IFNλ1 and IFNλ2, linking rs1990760 to the expression of type III IFNs. In the high-responding genotype, IRF-1 expression correlated with that of type III IFN, suggesting a positive-feedback on type III IFN transcription. In summary, our study uncovers an influence of rs1990760 on the canonical effector function of MDA5 in response to an acute infection of primary human parenchymal cells with a clinically relevant virus linked to human T1D. It also highlights a previously unrecognized connection between the rs1990760 polymorphism and the expression level of type III IFNs.
Collapse
Affiliation(s)
- Erna Domsgen
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - Katharina Lind
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - Lingjia Kong
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, 205 20, Finland
| | - Michael H Hühn
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - Omid Rasool
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, 205 20, Finland
| | - Frank van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Olle Korsgren
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, 751 05, Sweden
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, 205 20, Finland
| | - Malin Flodström-Tullberg
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden.,Institute of Biosciences and Medical Technologies, University of Tampere, Tampere, 33520, Finland
| |
Collapse
|
10
|
Lundberg M, Krogvold L, Kuric E, Dahl-Jørgensen K, Skog O. Expression of Interferon-Stimulated Genes in Insulitic Pancreatic Islets of Patients Recently Diagnosed With Type 1 Diabetes. Diabetes 2016; 65:3104-10. [PMID: 27422384 DOI: 10.2337/db16-0616] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/08/2016] [Indexed: 11/13/2022]
Abstract
A primary insult to the pancreatic islets of Langerhans, leading to the activation of innate immunity, has been suggested as an important step in the inflammatory process in type 1 diabetes (T1D). The aim of this study was to examine whether interferon (IFN)-stimulated genes (ISGs) are overexpressed in human T1D islets affected with insulitis. By using laser capture microdissection and a quantitative PCR array, 23 of 84 examined ISGs were found to be overexpressed by at least fivefold in insulitic islets from living patients with recent-onset T1D, participating in the Diabetes Virus Detection (DiViD) study, compared with islets from organ donors without diabetes. Most of the overexpressed ISGs, including GBP1, TLR3, OAS1, EIF2AK2, HLA-E, IFI6, and STAT1, showed higher expression in the islet core compared with the peri-islet area containing the surrounding immune cells. In contrast, the T-cell attractant chemokine CXCL10 showed an almost 10-fold higher expression in the peri-islet area than in the islet, possibly partly explaining the localization of T cells mainly to this region. In conclusion, insulitic islets from recent-onset T1D subjects show overexpression of ISGs, with an expression pattern similar to that seen in islets infected with virus or exposed to IFN-γ/interleukin-1β or IFN-α.
Collapse
Affiliation(s)
- Marcus Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Enida Kuric
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
He J, Lian C, Fang Y, Wu J, Zhou H, Ye X. The influence of exendin-4 intervention on -obese diabetic mouse blood and the pancreatic tissue immune microenvironment. Exp Ther Med 2016; 12:2893-2898. [PMID: 27882092 PMCID: PMC5103724 DOI: 10.3892/etm.2016.3694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022] Open
Abstract
The aim of the study was to determine the influence of exendin-4 intervention on non-obese diabetic (NOD) mouse blood and the pancreatic tissue immune microenvironment. A total of 40 clean NOD mice were used in the study and randomly divided into 4 groups (n=10/group). The first group was blank control group D with normal saline intervention, and with different doses of exendin, i.e.,-4 2, 4 and 8 µg/kg/day. The three remaining groups were: i) Low-dose group A; ii) medium-dose group B; and iii) high-dose group C. Mice in the four groups went through intervention for 8 weeks. Their mass and blood glucose levels were tested each week. After 8 weeks, the mice were sacrificed, and mouse serum samples were reserved. The ELISA method was used to test peripheral blood (PB), IL-2, IFN-γ and IL-10 levels. Pancreatic samples were created. Immunohistochemistry was used to observe the infiltration degree of mouse pancreatitis and the local expression state of pancreatic IL-10. Mouse pancreatic tissues were suspended in pancreatic cell suspension. Flow cytometry was used to test the state of T-cell subsets CD4 and CD25. Mouse pancreatitis in control group D was mainly at grade 2and 3. Under a light microscope, it was observed that pancreatic cell morphology was in disorder, and the size and quantity of the pancreas was small. Mouse pancreatitis in the exendin-4 low-dose group A, medium-dose group B and high-dose group C was mainly at grade 0 and 1. Under a light microscope, it was observed that pancreatic cell morphology improved, the infiltration degree of lymphocyte was improved and pancreatic islet size was restored somewhat. Additionally, a few brownish granules were identified within the pancreatic sample cells in control group D. There were many brownish granules with deep color within the pancreatic sample cells in exendin-4 low-dose group A, medium-dose group B and high-dose group C. IL-10 immunohistochemistry scores in the low-dose group A, medium-dose group B and high-dose group C were 3.82±0.72, 4.34±0.86 and 4.81±0.94, respectively, and were higher than the score of 2.25±0.63 in control group D. CD4+CD25+T-cell proportions in mouse pancreatic tissues of low-dose group A, medium-dose group B and high-dose group C were 5.31, 5.53 and 5.74%, respectively, which were higher than that of the CD4+CD25+T-cell proportion (1.62% in control group D). The CD4+CD25high T-cell proportion in CD4+T-cells in group A, B and C increased. Compared with control group D, serum IL-10 levels in the exendin-4 low-dose group A, medium-dose group B and high-dose group C increased (P<0.05), while levels of IL-2 and IFN-γ decreased (P<0.05). Additionally, the difference of serum IL-10, IL-2 and IFN-γ levels in the low-dose group A, medium-dose group B and high-dose group C was of statistical significance (P<0.05). Exendin-4 intervention can increase quantities of CD4 and CD8+T cells in NOD mouse pancreases, with PB IL-10 expression and local expression of IL-10 in pancreatic tissues. It also can inhibit the expression of serum IL-2 and IFN-γ, regulate the organism immune microenvironment and prevent diabetes. CD4+CD25high T cells increase in NOD tumor infiltration lymphocytes mediated by exendin-4 intervention, which may be related to the fact that exendin-4 inhibits the lethal effect of CD8+T cells through contact among cells and eventually exerts immunosuppressive effect.
Collapse
Affiliation(s)
- Jinshui He
- Department of Pediatrics, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Chaowei Lian
- Department of Pediatrics, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Yanling Fang
- Department of Pediatrics, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Jinzhi Wu
- Department of Pediatrics, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Huowang Zhou
- Department of Pediatrics, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| | - Xiaoling Ye
- Department of Pediatrics, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou, Fujian 363000, P.R. China
| |
Collapse
|
12
|
Schulte BM, Gielen PR, Kers-Rebel ED, Prosser AC, Lind K, Flodström-Tullberg M, Tack CJ, Elving LD, Adema GJ. Enterovirus Exposure Uniquely Discriminates Type 1 Diabetes Patients with a Homozygous from a Heterozygous Melanoma Differentiation-Associated Protein 5/Interferon Induced with Helicase C Domain 1 A946T Genotype. Viral Immunol 2016; 29:389-97. [PMID: 27482829 DOI: 10.1089/vim.2015.0140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In children at risk for type 1 diabetes, innate immune activity is detected before seroconversion. Enterovirus infections have been linked to diabetes development, and a polymorphism (A946T) in the innate immune sensor recognizing enterovirus RNA, interferon-induced with helicase C domain 1/melanoma differentiation-associated protein 5, predisposes to disease. We hypothesized that the strength of innate antienteroviral responses is affected in autoimmune type 1 diabetes patients and linked to the A946T polymorphism. We compared induction of interferon-stimulated genes (ISGs) in peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs) in healthy individuals and diabetes patients upon stimulation with enterovirus, enterovirus-antibody complexes, or ligands mimicking infection in relation to the A946T polymorphism. Overall, PBMCs of diabetes patients and healthy donors showed comparable ISG induction upon stimulation. No differences were observed in DCs. Interestingly, the data imply that the magnitude of responses to enterovirus and enterovirus-antibody complexes in PBMCs is critically influenced by the A946T polymorphism and elevated in heterozygotes compared to TT homozygous individuals in autoimmune diabetes patients, but not healthy controls. These data imply an intrinsic difference in the responses to enterovirus and enterovirus-antibody complexes in diabetes patients carrying a TT risk genotype compared to heterozygotes that may influence control of enterovirus clearance.
Collapse
Affiliation(s)
- Barbara M Schulte
- 1 Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Paul R Gielen
- 1 Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Esther D Kers-Rebel
- 1 Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Amy C Prosser
- 1 Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Katharina Lind
- 2 Department of Medicine HS, Karolinska Institutet , The Center for Infectious Medicine, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- 2 Department of Medicine HS, Karolinska Institutet , The Center for Infectious Medicine, Stockholm, Sweden
| | - Cees J Tack
- 3 Department of Internal Medicine, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Lammy D Elving
- 3 Department of Internal Medicine, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Gosse J Adema
- 1 Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| |
Collapse
|
13
|
Lind K, Svedin E, Domsgen E, Kapell S, Laitinen OH, Moll M, Flodström-Tullberg M. Coxsackievirus counters the host innate immune response by blocking type III interferon expression. J Gen Virol 2016; 97:1368-1380. [PMID: 26935471 DOI: 10.1099/jgv.0.000443] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type I IFNs play an important role in the immune response to enterovirus infections. Their importance is underscored by observations showing that many enteroviruses including coxsackie B viruses (CVBs) have developed strategies to block type I IFN production. Recent studies have highlighted a role for the type III IFNs (also called IFNλs) in reducing permissiveness to infections with enteric viruses including coxsackievirus. However, whether or not CVBs have measures to evade the effects of type III IFNs remains unknown. By combining virus infection studies and different modes of administrating the dsRNA mimic poly I : C, we discovered that CVBs target both TLR3- and MDA5/RIG-I-mediated type III IFN expression. Consistent with this, the cellular protein expression levels of the signal transduction proteins TRIF and IPS1 were reduced and no hyperphosphorylation of IRF-3 was observed following infection with the virus. Notably, decreased expression of full-length TRIF and IPS1 and the appearance of cleavage products was observed upon both CVB3 infection and in cellular protein extracts incubated with recombinant 2Apro, indicating an important role for the viral protease in subverting the cellular immune system. Collectively, our study reveals that CVBs block the expression of type III IFNs, and that this is achieved by a similar mechanism as the virus uses to block type I IFN production. We also demonstrate that the virus blocks several intracellular viral recognition pathways of importance for both type I and III IFN production. The simultaneous targeting of numerous arms of the host immune response may be required for successful viral replication and dissemination.
Collapse
Affiliation(s)
- Katharina Lind
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Emma Svedin
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Erna Domsgen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Kapell
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Olli H Laitinen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Markus Moll
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Laitinen OH, Svedin E, Kapell S, Nurminen A, Hytönen VP, Flodström-Tullberg M. Enteroviral proteases: structure, host interactions and pathogenicity. Rev Med Virol 2016; 26:251-67. [PMID: 27145174 PMCID: PMC7169145 DOI: 10.1002/rmv.1883] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/22/2022]
Abstract
Enteroviruses are common human pathogens, and infections are particularly frequent in children. Severe infections can lead to a variety of diseases, including poliomyelitis, aseptic meningitis, myocarditis and neonatal sepsis. Enterovirus infections have also been implicated in asthmatic exacerbations and type 1 diabetes. The large disease spectrum of the closely related enteroviruses may be partially, but not fully, explained by differences in tissue tropism. The molecular mechanisms by which enteroviruses cause disease are poorly understood, but there is increasing evidence that the two enteroviral proteases, 2Apro and 3Cpro, are important mediators of pathology. These proteases perform the post‐translational proteolytic processing of the viral polyprotein, but they also cleave several host‐cell proteins in order to promote the production of new virus particles, as well as to evade the cellular antiviral immune responses. Enterovirus‐associated processing of cellular proteins may also contribute to pathology, as elegantly demonstrated by the 2Apro‐mediated cleavage of dystrophin in cardiomyocytes contributing to Coxsackievirus‐induced cardiomyopathy. It is likely that improved tools to identify targets for these proteases will reveal additional host protein substrates that can be linked to specific enterovirus‐associated diseases. Here, we discuss the function of the enteroviral proteases in the virus replication cycle and review the current knowledge regarding how these proteases modulate the infected cell in order to favour virus replication, including ways to avoid detection by the immune system. We also highlight new possibilities for the identification of protease‐specific cellular targets and thereby a way to discover novel mechanisms contributing to disease. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olli H Laitinen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Emma Svedin
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Kapell
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Anssi Nurminen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Vesa P Hytönen
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland
| | - Malin Flodström-Tullberg
- BioMediTech, Finland and Fimlab Laboratories, University of Tampere, Tampere, Finland.,The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Witsø E, Cinek O, Tapia G, Brorsson CA, Stene LC, Gjessing HK, Rasmussen T, Bergholdt R, Pociot FM, Rønningen KS. Genetic Determinants of Enterovirus Infections: Polymorphisms in Type 1 Diabetes and Innate Immune Genes in the MIDIA Study. Viral Immunol 2015; 28:556-63. [DOI: 10.1089/vim.2015.0067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
| | - Ondrej Cinek
- Department of Pediatrics, University Hospital Motol, and 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - German Tapia
- Norwegian Institute of Public Health, Oslo, Norway
| | - Caroline A. Brorsson
- Department of Pediatrics E, Copenhagen Diabetes Research Centre (CPH-DIRECT), Herlev University Hospital, Herlev, Denmark
| | | | - Håkon K. Gjessing
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | | | - Flemming M. Pociot
- Department of Pediatrics E, Copenhagen Diabetes Research Centre (CPH-DIRECT), Herlev University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
16
|
Bergamin CS, Dib SA. Enterovirus and type 1 diabetes: What is the matter? World J Diabetes 2015; 6:828-839. [PMID: 26131324 PMCID: PMC4478578 DOI: 10.4239/wjd.v6.i6.828] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/30/2015] [Accepted: 04/09/2015] [Indexed: 02/05/2023] Open
Abstract
A complex interaction of genetic and environmental factors can trigger the immune-mediated mechanism responsible for type 1 diabetes mellitus (T1DM) establishment. Environmental factors may initiate and possibly sustain, accelerate, or retard damage to β-cells. The role of environmental factors in this process has been exhaustive studied and viruses are among the most probable ones, especially enteroviruses. Improvements in enterovirus detection methods and randomized studies with patient follow-up have confirmed the importance of human enterovirus in the pathogenesis of T1DM. The genetic risk of T1DM and particular innate and acquired immune responses to enterovirus infection contribute to a tolerance to T1DM-related autoantigens. However, the frequency, mechanisms, and pathways of virally induced autoimmunity and β-cell destruction in T1DM remain to be determined. It is difficult to investigate the role of enterovirus infection in T1DM because of several concomitant mechanisms by which the virus damages pancreatic β-cells, which, consequently, may lead to T1DM establishment. Advances in molecular and genomic studies may facilitate the identification of pathways at earlier stages of autoimmunity when preventive and therapeutic approaches may be more effective.
Collapse
|
17
|
Panarina M, Kisand K, Alnek K, Heilman K, Peet A, Uibo R. Interferon and interferon-inducible gene activation in patients with type 1 diabetes. Scand J Immunol 2014; 80:283-92. [PMID: 24965593 DOI: 10.1111/sji.12204] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/15/2014] [Indexed: 12/18/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is thought to be triggered by environmental factors in genetically susceptible individuals. Enteroviruses have been mentioned as the most probable induction component of the disease. Nevertheless, the literature is controversial regarding the association of T1D with viral infection and first-line antiviral defence components, for example type I interferons (IFNs). Our aim was to test the hypothesis that an abnormality in IFN-stimulated gene patterns may cause a failure in immunological tolerance and, thereby, initiate T1D as an autoimmune disorder. We studied material from 64 T1D and 36 control subjects, divided into two age groups: <10 years and ≥10 years old. Using a relative gene expression method, we observed a lower expression of interferon-induced helicase 1 (IFIH1) and other type I IFN-induced genes in the blood cells of T1D subjects, especially subjects under 10 years old, in spite of their higher IFN levels as measured by the pSTAT1-inducing capacity of their sera. Likewise, freshly purified CpG-stimulated cells from T1D patients showed significantly lower upregulation of IFN-induced genes, that is IFIH1 and CXCL10, compared to cells from the control group. The identified dysregulation in the IFN-α-induced antiviral response in T1D patients, especially in early childhood, could be one of the factors affecting T1D development.
Collapse
Affiliation(s)
- M Panarina
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia
| | | | | | | | | | | |
Collapse
|
18
|
Hämäläinen S, Nurminen N, Ahlfors H, Oikarinen S, Sioofy-Khojine AB, Frisk G, Oberste MS, Lahesmaa R, Pesu M, Hyöty H. Coxsackievirus B1 reveals strain specific differences in plasmacytoid dendritic cell mediated immunogenicity. J Med Virol 2014; 86:1412-20. [PMID: 24616040 DOI: 10.1002/jmv.23903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 12/15/2022]
Abstract
Enterovirus infections are usually mild but can also cause severe illnesses and play a role in chronic diseases, such as cardiomyopathies and type 1 diabetes. Host response to the invading virus can markedly modulate the course of the infection, and this response varies between individuals due to the polymorphism of immune response genes. However, it is currently not known if virus strains also differ in their ability to stimulate the host immune system. Coxsackievirus B1 (CBV1) causes severe epidemics in young infants and it has recently been connected with type 1 diabetes in seroepidemiological studies. This study evaluated the ability of different field isolates of CBV1 to induce innate immune responses in PBMCs. CBV1 strains differed markedly in their capacity to induce innate immune responses. Out of the 18 tested CBV1 strains two induced exceptionally strong alpha interferon (IFN-α) response in PBMC cultures. The responding cell type was found to be the plasmacytoid dendritic cell. Such a strong innate immune response was accompanied by an up-regulation of several other immune response genes and secretion of cytokines, which modulate inflammation, and adaptive immune responses. These results suggest that enterovirus-induced immune activation depends on the virus strain. It is possible that the immunotype of the virus modulates the course of the infection and plays a role in the pathogenesis of chronic immune-mediated enterovirus diseases.
Collapse
Affiliation(s)
- Sanna Hämäläinen
- Immunoregulation, BioMediTech, University of Tampere, Tampere, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ghazarian L, Diana J, Beaudoin L, Larsson PG, Puri RK, van Rooijen N, Flodström-Tullberg M, Lehuen A. Protection against type 1 diabetes upon Coxsackievirus B4 infection and iNKT-cell stimulation: role of suppressive macrophages. Diabetes 2013; 62:3785-96. [PMID: 23894189 PMCID: PMC3806597 DOI: 10.2337/db12-0958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Invariant natural killer T (iNKT) cells belong to the innate immune system and exercise a dual role as potent regulators of autoimmunity and participate in responses against different pathogens. They have been shown to prevent type 1 diabetes development and to promote antiviral responses. Many studies in the implication of environmental factors on the etiology of type 1 diabetes have suggested a link between enteroviral infections and the development of this disease. This study of the pancreatropic enterovirus Coxsackievirus B4 (CVB4) shows that although infection accelerated type 1 diabetes development in a subset of proinsulin 2-deficient NOD mice, the activation of iNKT cells by a specific agonist, α-galactosylceramide, at the time of infection inhibited the disease. Diabetes development was associated with the infiltration of pancreatic islets by inflammatory macrophages, producing high levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α and activation of anti-islet T cells. On the contrary, macrophages infiltrating the islets after CVB4 infection and iNKT-cell stimulation expressed a number of suppressive enzymes, among which indoleamine 2,3-dioxygenase was sufficient to inhibit anti-islet T-cell response and to prevent diabetes. This study highlights the critical interaction between virus and the immune system in the acceleration or prevention of type 1 diabetes.
Collapse
Affiliation(s)
- Liana Ghazarian
- INSERM U1016, Hospital Cochin/St. Vincent de Paul, Paris, France
- Université Paris Descartes and Laboratoire d’Excellence INFLAMEX, Sorbonne Paris Cité, Paris, France
| | - Julien Diana
- INSERM U1016, Hospital Cochin/St. Vincent de Paul, Paris, France
- Université Paris Descartes and Laboratoire d’Excellence INFLAMEX, Sorbonne Paris Cité, Paris, France
| | - Lucie Beaudoin
- INSERM U1016, Hospital Cochin/St. Vincent de Paul, Paris, France
- Université Paris Descartes and Laboratoire d’Excellence INFLAMEX, Sorbonne Paris Cité, Paris, France
| | - Pär G. Larsson
- Center for Infectious Medicine, Department of Medicine, the Karolinska Institute, Stockholm, Sweden
| | - Raj K. Puri
- Tumor Vaccines and Biotechnology Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland
| | - Nico van Rooijen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine, the Karolinska Institute, Stockholm, Sweden
| | - Agnès Lehuen
- INSERM U1016, Hospital Cochin/St. Vincent de Paul, Paris, France
- Université Paris Descartes and Laboratoire d’Excellence INFLAMEX, Sorbonne Paris Cité, Paris, France
- Corresponding author: Agnès Lehuen,
| |
Collapse
|
20
|
Pothlichet J, Quintana-Murci L. The genetics of innate immunity sensors and human disease. Int Rev Immunol 2013; 32:157-208. [PMID: 23570315 DOI: 10.3109/08830185.2013.777064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since their discovery, innate immunity microbial sensors have been increasingly studied and shown to play a critical role in innate responses to microbes in several experimental in vitro, ex vivo, and animal models. However, their role in the human response to infection in natural conditions has just started to be deciphered, by means of clinical studies of primary immunodeficiencies and epidemiological genetic studies. Here, we summarize the major findings concerning the genetic diversity of the various families of microbial sensors in humans, and of other molecules involved in the signaling pathways they trigger. Specifically, we review the genetic associations, revealed by both clinical and epidemiological genetics studies, of microbial sensors from five different families: Toll-like receptors, C-type lectin receptors, NOD-like receptors, RIG-I-like receptors, and cytosolic DNA sensors. In particular, we consider the relationships between variation at the genes encoding these molecules and susceptibility to and the severity of infectious diseases and other clinical conditions associated with immune dysfunction, including autoimmunity, inflammation, allergy, and cancer. Despite the fact that the genetic links between innate immunity sensors and human disorders remain still limited, human genetics studies are increasingly improving our understanding of the genuine functions of microbial sensors and downstream signaling molecules in the natural setting.
Collapse
Affiliation(s)
- Julien Pothlichet
- Institut Pasteur, Unit of Human Evolutionary Genetics, Paris, France
| | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) results from interplay between genetic predisposition, immune system, and environmental factors. Epidemiological and experimental data strongly suggest a role for enteroviruses in the development of T1D, but a lot of controversies and unanswered questions remained. This review focuses on issues that are fueling debate. RECENT FINDINGS Beyond HLA genes, which provide genetic susceptibility for T1D, other loci have been identified to be associated with the disease. There is a link between T1D and single-nucleotide polymorphisms (SNPs) in the interferon-induced helicase 1 (IFIH1) gene that encodes melanoma differentiation-associated protein 5 (MDA5). This protein is a cytoplasmic sensor for viruses especially coxsackieviruses B, the most incriminated enteroviruses in T1D pathogenesis. Upon viral infection, MDA5 stimulates the production of mediators of the innate antiviral immune response, which is believed to play a role in a 'bystander activation' scenario. Rare variants of IFIH1 through a lost or reduced expression of the protein are protective against T1D, whereas common IFIH1 SNPs are associated with the disease. However, a clear association has not been yet established between T1D-associated IFIH1 polymorphisms and enterovirus detection. SUMMARY Literature have accumulated a lot of evidence supporting that enteroviruses can contribute, at least in some patients, to the pathogenesis of T1D through various mechanisms. But it is still a challenge to date to prove a causal relationship between enteroviruses and T1D. Future studies may lead to a better understanding of this relationship and ultimately can help toward disease prevention.
Collapse
|
22
|
Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes Metab 2013; 15 Suppl 3:71-81. [PMID: 24003923 DOI: 10.1111/dom.12162] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/17/2013] [Indexed: 12/15/2022]
Abstract
Genome-wide association studies (GWAS) have identified more than 50 loci associated with genetic risk of type 1 diabetes (T1D). Several T1D candidate genes have been suggested or identified within these regions, but the molecular mechanisms by which they contribute to insulitis and β-cell destruction remain to be clarified. More than 60% of the T1D candidate genes are expressed in human pancreatic islets, suggesting that they contribute to T1D by regulating at least in part pathogenic mechanisms at the β-cell level. Recent studies by our group indicate that important genetically regulated pathways in β-cells include innate immunity and antiviral activity, involving RIG-like receptors (particularly MDA5) and regulators of type I IFNs (i.e. PTPN2 and USP18), and genes related to β-cell phenotype and susceptibility to pro-apoptotic stimuli (i.e. GLIS3). These observations reinforce the concept that the early pathogenesis of T1D is characterized by a dialogue between the immune system and pancreatic β-cells. This dialogue is probably influenced by polymorphisms in genes expressed at the β-cell and/or immune system level, leading to inadequate responses to environmental cues such as viral infections. Further studies are needed to clarify how these disease-associated variants affect pancreatic β-cell responses to inflammation and the subsequent triggering of autoimmune responses and progressive β-cell loss.
Collapse
Affiliation(s)
- I Santin
- Laboratory of Experimental Medicine, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium.
| | | |
Collapse
|
23
|
Lind K, Richardson SJ, Leete P, Morgan NG, Korsgren O, Flodström-Tullberg M. Induction of an antiviral state and attenuated coxsackievirus replication in type III interferon-treated primary human pancreatic islets. J Virol 2013; 87:7646-54. [PMID: 23637411 PMCID: PMC3700265 DOI: 10.1128/jvi.03431-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/23/2013] [Indexed: 12/23/2022] Open
Abstract
Type III interferons (IFNs), also called lambda interferons (IFN-λ), comprise three isoforms, IFN-λ1 (interleukin-29 [IL-29]), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). Only limited information is available on their expression and biological functions in humans. Type I and type II IFNs protect human pancreatic islets against coxsackievirus infection, and this is important since such viruses have been proposed to play a role in the development of human type 1 diabetes. Here we investigated whether type III IFN is expressed during infection of human islet cells with coxsackievirus and if type III IFN regulates permissiveness to such infections. We show that human islets respond to a coxsackievirus serotype B3 (CVB3) infection by inducing the expression of type III IFNs. We also demonstrate that islet endocrine cells from nondiabetic individuals express the type III IFN receptor subunits IFN-λR1 and IL-10R2. Pancreatic alpha cells express both receptor subunits, while pancreatic beta cells express only IL-10R2. Type III IFN stimulation elicited a biological response in human islets as indicated by the upregulated expression of antiviral genes as well as pattern recognition receptors. We also show that type III IFN significantly reduces CVB3 replication. Our studies reveal that type III IFNs are expressed during CVB3 infection and that the expression of the type III IFN receptor by the human pancreatic islet allows this group of IFNs to regulate the islets' permissiveness to infection. Our novel observations suggest that type III IFNs may regulate viral replication and thereby contribute to reduced tissue damage and promote islet cell survival during coxsackievirus infection.
Collapse
Affiliation(s)
- Katharina Lind
- Department of Medicine HS, The Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sarah J. Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Plymouth, Devon, United Kingdom
| | - Pia Leete
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Plymouth, Devon, United Kingdom
| | - Noel G. Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Plymouth, Devon, United Kingdom
| | - Olle Korsgren
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Malin Flodström-Tullberg
- Department of Medicine HS, The Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
24
|
von Herrath M, Peakman M, Roep B. Progress in immune-based therapies for type 1 diabetes. Clin Exp Immunol 2013; 172:186-202. [PMID: 23574316 DOI: 10.1111/cei.12085] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 01/10/2023] Open
Abstract
Immune-based therapies that prevent type 1 diabetes or preserve metabolic function remaining at diagnosis have become a major objective for funding agencies and international trial consortia, and receive backing from notable patient advocate groups. The development of immune-based therapeutic strategies in this arena requires a careful balancing of the risks of the therapy against the potential benefits, because many individuals are diagnosed or identified as being at increased risk of disease in early childhood, a period when manipulation of the developing immune system should be undertaken with caution. In addition, a therapy exists (daily insulin injection) that is life-saving in the acute stages of disease and can be used effectively over a lifetime as maintenance. Conversely, the disease is increasing in incidence; is peaking in ever-younger age groups; carries significant risk of increased morbidity and early mortality; and remains difficult to manage effectively in many settings. With these issues in mind, in this article we review progress towards immune-based strategies for this chronic autoimmune disease.
Collapse
Affiliation(s)
- M von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | |
Collapse
|
25
|
Ahmed ST, Akirav E, Bradshaw E, Buckner J, McKinney E, Quintana FJ, Waldron-Lynch F, Nepom J. Immunological biomarkers: catalysts for translational advances in autoimmune diabetes. Clin Exp Immunol 2013; 172:178-85. [PMID: 23574315 DOI: 10.1111/cei.12063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2012] [Indexed: 12/20/2022] Open
Abstract
In a recent workshop organized by the JDRF focused on the 'Identification and Utilization of Robust Biomarkers in Type1 Diabetes', leaders in the field of type 1 diabetes (T1D)/autoimmunity and assay technology came together from academia, government and industry to assess the current state of the field, evaluate available resources/technologies and identify gaps that need to be filled for moving the field of T1D research forward. The highlights of this workshop are discussed in this paper, as well as the proposal for a larger, planned consortium effort, incorporating a JDRF Biomarker Core, to foster collaboration and accelerate progress in this critically needed area of T1D research.
Collapse
Affiliation(s)
- S T Ahmed
- JDRF, 26, Broadway, 14th Floor, New York, NY 10004, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Cells are equipped with mechanisms that allow them to rapidly detect and respond to viruses. These defense mechanisms rely partly on receptors that monitor the cytosol for the presence of atypical nucleic acids associated with virus infection. RIG-I-like receptors detect RNA molecules that are absent from the uninfected host. DNA receptors alert the cell to the abnormal presence of that nucleic acid in the cytosol. Signaling by RNA and DNA receptors results in the induction of restriction factors that prevent virus replication and establish cell-intrinsic antiviral immunity. In light of these formidable obstacles, viruses have evolved mechanisms of evasion, masking nucleic acid structures recognized by the host, sequestering themselves away from the cytosol or targeting host sensors, and signaling adaptors for deactivation or degradation. Here, we detail recent advances in the molecular understanding of cytosolic nucleic acid detection and its evasion by viruses.
Collapse
Affiliation(s)
- Delphine Goubau
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Safia Deddouche
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
27
|
Abstract
Following almost 30 years of intensive research, initiated by the observation that Type 1 diabetes development is associated with a characteristic pancreatic immune cell infiltrate, a picture is emerging of which of the diverse effector arms of the immune system are involved in β-cell destruction. Like any chronic pathology, there is considerable complexity, and our ability to model the disease is hampered by a lack of ready access to the target organ and limited longitudinal analyses. However, it seems that putative pathways can start to be ruled in and out, in part as a result of focused mechanistic studies that make use of new technologies, and in part through analysis of the outcomes of clinical trials of new agents aimed at halting the disease process. The picture that emerges suggests a pathway to prevention that may require combinations of therapeutic agents that target different aspects of the immune system and will need to be used with due attention to their risk-benefit profiles.
Collapse
Affiliation(s)
- M Peakman
- Department of Immunobiology, King's College London, School of Medicine and National Institute of Health Research Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College, London, UK.
| |
Collapse
|
28
|
Peakman M. Broadening the translational immunology landscape. Clin Exp Immunol 2012; 170:249-53. [DOI: 10.1111/j.1365-2249.2012.04671.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SummaryIt is just over 5 years sinceClinical and Experimental Immunology came under the direction of a new team of Editors and made a concerted effort to refresh its approach to promoting clinical and applied immunology through its pages. There were two major objectives: to foster papers in a field which, at the time, we loosely termed ‘translational immunology’; and to create a forum for the presentation and discussion of immunology that is relevant to clinicians operating in this space. So, how are we doing with these endeavours? This brief paper aims to summarize some of the key learning points and successes and highlight areas in which translational gaps remain.
Collapse
Affiliation(s)
- M Peakman
- Department of Immunobiology, King's College London
- NIHR Comprehensive Biomedical Research Centre, Guy's and St Thomas’ NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
29
|
Stene LC, Rewers M. Immunology in the clinic review series; focus on type 1 diabetes and viruses: the enterovirus link to type 1 diabetes: critical review of human studies. Clin Exp Immunol 2012; 168:12-23. [PMID: 22385232 DOI: 10.1111/j.1365-2249.2011.04555.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hypothesis that under some circumstances enteroviral infections can lead to type 1 diabetes (T1D) was proposed several decades ago, based initially on evidence from animal studies and sero-epidemiology. Subsequently, enterovirus RNA has been detected more frequently in serum of patients than in control subjects, but such studies are susceptible to selection bias and reverse causality. Here, we review critically recent evidence from human studies, focusing on longitudinal studies with potential to demonstrate temporal association. Among seven longitudinal birth cohort studies, the evidence that enterovirus infections predict islet autoimmunity is quite inconsistent in our interpretation, due partially, perhaps, to heterogeneity in study design and a limited number of subjects studied. An association between enterovirus and rapid progression from autoimmunity to T1D was reported by one longitudinal study, but although consistent with evidence from animal models, this novel observation awaits replication. It is possible that a potential association with initiation and/or progression of islet autoimmunity can be ascribed to a subgroup of the many enterovirus serotypes, but this has still not been investigated properly. There is a need for larger studies with frequent sample intervals and collection of specimens of sufficient quality and quantity for detailed characterization of enterovirus. More research into the molecular epidemiology of enteroviruses and enterovirus immunity in human populations is also warranted. Ultimately, this knowledge may be used to devise strategies to reduce the risk of T1D in humans.
Collapse
Affiliation(s)
- L C Stene
- Division of Epidemiology, Norwegian Institute of Public Health, Nydalen, Oslo, Norway.
| | | |
Collapse
|
30
|
Hober D, Sane F, Jaïdane H, Riedweg K, Goffard A, Desailloud R. Immunology in the clinic review series; focus on type 1 diabetes and viruses: role of antibodies enhancing the infection with Coxsackievirus-B in the pathogenesis of type 1 diabetes. Clin Exp Immunol 2012; 168:47-51. [PMID: 22385236 DOI: 10.1111/j.1365-2249.2011.04559.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Type 1 diabetes results from an interaction between genetic and environmental factors. Coxsackieviruses B (CV-B) are major environmental candidates, as suggested by epidemiological and experimental studies. The mechanisms leading to the disease involve interactions between the virus, host target tissue (pancreas) and the immune system. The infection of target cells with viruses can be prevented by antibodies. Conversely, the infection can be enhanced by antibodies. The antibody-dependent enhancement (ADE) of infection has been described with various viruses, especially Picornaviruses. In mice infected with CV-B3 this phenomenon resulted in an extended inflammatory reaction and myocarditis. In the human system non-neutralizing antibodies can increase the infection of monocytes with CV-B4 and stimulate the production of interferon (IFN)-α by these cells in vitro. CV-B4/immunoglobulin (Ig)G immune complexes interacted with a specific viral receptor [Coxsackievirus and adenovirus receptor (CAR)] and with IgG Fc fraction receptors (FcγRII and FcγRIII) at the surface of monocytes. The virus-antibody complexes are internalized (CAR) and receptors for the Fc of IgG (FcγRII and FcγRIII). Such antibodies have been detected in patients with type 1 diabetes and they could be responsible for the presence of enteroviral RNA and IFN-α in peripheral blood mononuclear cells (PBMC) of these individuals. The target of enhancing antibodies has been identified as the VP4 protein, which allowed the detection of these antibodies by enzyme-linked immunosorbent assay (ELISA). It cannot be excluded that antibodies enhancing the infection with CV-B may play a role in the pathogenesis of type 1 diabetes, induced or aggravated by these viruses. They can cause a viral escape from the immune response and may participate in the spreading of viruses to β cells. Whether enhancing antibodies raised against VP4 can play a role in iterative homologous and/or heterologous CV-B infections and in the persistence of viruses within the host deserves further study.
Collapse
Affiliation(s)
- D Hober
- Université Lille 2, CHRU Laboratoire de virologie EA3610, Institut Hippocrate CHRU, 152 Rue du Dr Yersin, Loos-lez-Lille, France.
| | | | | | | | | | | |
Collapse
|
31
|
Coppieters KT, Wiberg A, Tracy SM, von Herrath MG. Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 2012; 168:39-46. [PMID: 22385231 DOI: 10.1111/j.1365-2249.2011.04558.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Convincing evidence now indicates that viruses are associated with type 1 diabetes (T1D) development and progression. Human enteroviruses (HEV) have emerged as prime suspects, based on detection frequencies around clinical onset in patients and their ability to rapidly hyperglycaemia trigger in the non-obese diabetic (NOD) mouse. Whether or not HEV can truly cause islet autoimmunity or, rather, act by accelerating ongoing insulitis remains a matter of debate. In view of the disease's globally rising incidence it is hypothesized that improved hygiene standards may reduce the immune system's ability to appropriately respond to viral infections. Arguments in favour of and against viral infections as major aetiological factors in T1D will be discussed in conjunction with potential pathological scenarios. More profound insights into the intricate relationship between viruses and their autoimmunity-prone host may lead ultimately to opportunities for early intervention through immune modulation or vaccination.
Collapse
Affiliation(s)
- K T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
32
|
Grieco FA, Sebastiani G, Spagnuolo I, Patti A, Dotta F. Immunology in the clinic review series; focus on type 1 diabetes and viruses: how viral infections modulate beta cell function. Clin Exp Immunol 2012; 168:24-9. [PMID: 22385233 DOI: 10.1111/j.1365-2249.2011.04556.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a multi-factorial immune-mediated disease characterized by the autoimmune destruction of insulin-producing pancreatic islet beta cells in genetically susceptible individuals. Epidemiological evidence has also documented the constant rise in the incidence of T1DM worldwide, with viral infections representing one of the candidate environmental risk factors identified by several independent studies. In fact, epidemiological data showed that T1DM incidence increases after epidemics due to enteroviruses and that enteroviral RNA can be detected in the blood of >50% of T1DM patients at the time of disease onset. Furthermore, both in-vitro and ex-vivo studies have shown that viruses can infect pancreatic beta cells with consequent effects ranging from functional damage to cell death.
Collapse
Affiliation(s)
- F A Grieco
- Diabetes Unit, Dept. of Internal Medicine, Endocrine and Metabolic Sciences and Biochemistry, University of Siena, Viale Bracci 18, Siena, Italy
| | | | | | | | | |
Collapse
|
33
|
Coppieters KT, Wiberg A, Tracy SM, von Herrath MG. Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 2012; 168:5-11. [PMID: 22385231 DOI: 10.1111/j.1365-2249.2011.04554.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Convincing evidence now indicates that viruses are associated with type 1 diabetes (T1D) development and progression. Human enteroviruses (HEV) have emerged as prime suspects, based on detection frequencies around clinical onset in patients and their ability to rapidly hyperglycaemia trigger in the non-obese diabetic (NOD) mouse. Whether or not HEV can truly cause islet autoimmunity or, rather, act by accelerating ongoing insulitis remains a matter of debate. In view of the disease's globally rising incidence it is hypothesized that improved hygiene standards may reduce the immune system's ability to appropriately respond to viral infections. Arguments in favour of and against viral infections as major aetiological factors in T1D will be discussed in conjunction with potential pathological scenarios. More profound insights into the intricate relationship between viruses and their autoimmunity-prone host may lead ultimately to opportunities for early intervention through immune modulation or vaccination.
Collapse
Affiliation(s)
- K T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|