1
|
List EO, Basu R, Berryman DE, Duran-Ortiz S, Martos-Moreno GÁ, Kopchick JJ. Common and uncommon mouse models of growth hormone deficiency. Endocr Rev 2024:bnae017. [PMID: 38853618 DOI: 10.1210/endrev/bnae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Mouse models of growth hormone deficiency (GHD) have provided important tools for uncovering the various actions of GH. Nearly 100 years of research using these mouse lines has greatly enhanced our knowledge of the GH/IGF-1 axis. Some of the shared phenotypes of the five "common" mouse models of GHD include reduced body size, delayed sexual maturation, decreased fertility, reduced muscle mass, increased adiposity, and enhanced insulin sensitivity. Since these common mouse lines outlive their normal-sized littermates - and have protection from age-associated disease - they have become important fixtures in the aging field. On the other hand, the twelve "uncommon" mouse models of GHD described herein have tremendously divergent health outcomes ranging from beneficial aging phenotypes (similar to those described for the common models) to extremely detrimental features (such as improper development of the CNS, numerous sensory organ defects, and embryonic lethality). Moreover, advancements in next generation sequencing technologies have led to the identification of an expanding array of genes that are recognized as causative agents to numerous rare syndromes with concomitant GHD. Accordingly, this review provides researchers with a comprehensive up-to-date collection of the common and uncommon mouse models of GHD that have been used to study various aspects of physiology and metabolism associated with multiple forms of GHD. For each mouse line presented, the closest comparable human syndromes are discussed providing important parallels to the clinic.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| | - Silvana Duran-Ortiz
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
| | - Gabriel Á Martos-Moreno
- Department of Endocrinology & Pediatrics, Hospital Infantil Universitario Niño Jesús, IIS La Princesa & Universidad Autónoma de Madrid. CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens Ohio, 45701, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Athens Ohio
| |
Collapse
|
2
|
Ahmad S, Ali MZ, Abbasi SW, Abbas S, Ahmed I, Abbas S, Nawaz S, Ziab M, Ahmed I, Fakhro KA, Khan MA, Akil AAS. A GHRHR founder mutation causes isolated growth hormone deficiency type IV in a consanguineous Pakistani family. Front Endocrinol (Lausanne) 2023; 14:1066182. [PMID: 36960394 PMCID: PMC10029353 DOI: 10.3389/fendo.2023.1066182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/23/2023] [Indexed: 03/09/2023] Open
Abstract
Background Isolated growth hormone deficiency (IGHD) is caused by a severe shortage or absence of growth hormone (GH), which results in aberrant growth and development. Patients with IGHD type IV (IGHD4) have a short stature, reduced serum GH levels, and delayed bone age. Objectives To identify the causative mutation of IGHD in a consanguineous family comprising four affected patients with IGHD4 (MIM#618157) and explore its functional impact in silico. Methods Clinical and radiological studies were performed to determine the phenotypic spectrum and hormonal profile of the disease, while whole-exome sequencing (WES) and Sanger sequencing were performed to identify the disease-causing mutation. In-silico studies involved protein structural modeling and docking, and molecular dynamic simulation analyses using computational tools. Finally, data from the Qatar Genome Program (QGP) were screened for the presence of the founder variant in the Qatari population. Results All affected individuals presented with a short stature without gross skeletal anomalies and significantly reduced serum GH levels. Genetic mapping revealed a homozygous nonsense mutation [NM_000823:c.G214T:p.(Glu72*)] in the third exon of the growth-hormone-releasing hormone receptor gene GHRHR (MIM#139191) that was segregated in all patients. The substituted amber codon (UAG) seems to truncate the protein by deleting the C-terminus GPCR domain, thus markedly disturbing the GHRHR receptor and its interaction with the growth hormone-releasing hormone. Conclusion These data support that a p.Glu72* founder mutation in GHRHR perturbs growth hormone signaling and causes IGHD type IV. In-silico and biochemical analyses support the pathogenic effect of this nonsense mutation, while our comprehensive phenotype and hormonal profiling has established the genotype-phenotype correlation. Based on the current study, early detection of GHRHR may help in better therapeutic intervention.
Collapse
Affiliation(s)
- Safeer Ahmad
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zeeshan Ali
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Safdar Abbas
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Iftikhar Ahmed
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Shakil Abbas
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Shoaib Nawaz
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, Doha, Qatar
| | - Mubarak Ziab
- Department of Human Genetics, Precision Medicine of Diabetes Prevention Program, Sidra Medicine, Doha, Qatar
| | - Ikhlak Ahmed
- Department of Human Genetics, Precision Medicine of Diabetes Prevention Program, Sidra Medicine, Doha, Qatar
| | - Khalid A. Fakhro
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College-Doha, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Muzammil Ahmad Khan
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Ammira Al-Shabeeb Akil
- Laboratory of Genomic Medicine-Precision Medicine Program, Sidra Medicine, Doha, Qatar
- Department of Human Genetics, Precision Medicine of Diabetes Prevention Program, Sidra Medicine, Doha, Qatar
| |
Collapse
|
3
|
Hu Y, Zhu L, Liu Q, Xue Y, Sun X, Li G. Thyroid function in children with short stature accompanied by isolated pituitary hypoplasia. Hormones (Athens) 2021; 20:707-713. [PMID: 34582001 DOI: 10.1007/s42000-021-00323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Few studies have focused on thyroid function in children with isolated pituitary hypoplasia (IPH). The purpose of this study was to investigate thyroid function in children with short stature accompanied by IPH and evaluate the values of thyroid function for the diagnosis of IPH. METHODS This was a retrospective observational study. A total of 100 children with short stature accompanied by IPH were enrolled. Among them, 68 children presenting with isolated growth hormone deficiency (IGHD) were chosen as the IPH group. Sixty-eight age-matched and sex-matched IGHD children without pituitary abnormalities were chosen as the control group. Clinical, hormonal, and imaging parameters were analyzed. The diagnostic value of thyroid function for IGHD children with IPH was evaluated. RESULTS Children in the IPH group had significantly lower height standard deviation score (HSDS), HSDS-target height standard deviation score (THSDS), free thyroxine (FT4), insulin-like growth factor-1 standard deviation score (IGF-1SDS), and pituitary height than the control subjects (p = 0.027, p = 0.033, p < 0.001, p = 0.03, and p < 0.001, respectively). The value of the area under the curve (AUC) was 0.701 (95% CI 0.614-0.788, p < 0.001) when the cut-off value for FT4 was ≤ 16.43 pmol/L and the sensitivity and specificity were 72.1 and 61.8%, respectively. FT4 levels were positively correlated with FT3, GH peak, and IGF-1 SDS levels in all children with short stature accompanied by IPH (p < 0.001, p = 0.009, and p = 0.01, respectively). CONCLUSION IGHD children with IPH had lower FT4 levels than IGHD children without pituitary abnormalities. FT4 levels may have diagnostic value for IGHD children with IPH.
Collapse
Affiliation(s)
- Yanyan Hu
- Department of Pediatrics, Linyi People's Hospital, NO. 27, Eastern Jiefang Road, Linyi, 276003, Shandong Province, China.
| | - Liping Zhu
- Department of Pediatrics, Linyi People's Hospital, NO. 27, Eastern Jiefang Road, Linyi, 276003, Shandong Province, China
| | - Qiang Liu
- Department of Pediatrics, Linyi People's Hospital, NO. 27, Eastern Jiefang Road, Linyi, 276003, Shandong Province, China
| | - Yongzhen Xue
- Department of Pediatrics, Linyi People's Hospital, NO. 27, Eastern Jiefang Road, Linyi, 276003, Shandong Province, China
| | - Xuemei Sun
- Department of Pediatrics, Linyi People's Hospital, NO. 27, Eastern Jiefang Road, Linyi, 276003, Shandong Province, China.
| | - Guimei Li
- Department of Pediatrics, Linyi People's Hospital, NO. 27, Eastern Jiefang Road, Linyi, 276003, Shandong Province, China.
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong Province, China.
| |
Collapse
|
4
|
Fehrenbach U, Jadan A, Auer TA, Kreutz K, Geisel D, Ziagaki A, Bobbert T, Wiener E. Obesity and pituitary gland volume - a correlation study using three-dimensional magnetic resonance imaging. Neuroradiol J 2020; 33:400-409. [PMID: 32666872 DOI: 10.1177/1971400920937843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Obesity has become a major health problem and is associated with endocrine disorders and a disturbed hypothalamic-pituitary axis. The purpose of this study was to correlate pituitary gland volume determined by routine magnetic resonance imaging with patient characteristics, in particular body mass index and obesity. MATERIAL AND METHODS A total of 144 'healthy' patients with normal findings in cerebral magnetic resonance imaging were retrospectively included. Pituitary gland volume was measured in postcontrast three-dimensional T1-weighted sequences. A polygonal three-dimensional region of interest covering the whole pituitary gland was assessed manually. Physical characteristics (gender, age, body height and body mass index) were correlated with pituitary gland volume. Multiple subgroup and regression analyses were performed. RESULTS Pituitary gland volumes were significantly larger in females than in males (p<0.001) and young individuals (<35 years) versus middle-aged patients (35-47 years) (p=0.042). Obese patients (body mass index ≥30) had significantly larger pituitary gland volumes than overweight (25<body mass index<30; p=0.011) and normal-weight (body mass index <25; p=0.005) patients. In males, pituitary gland volumes of body mass index subgroups showed significant differences (p=0.038). Obese males had larger pituitary gland volumes than overweight patients (p=0.066) and significantly larger volumes than normal-weight (p=0.023) patients. Obese females also had larger pituitary gland volumes but without statistical significance (p>0.05). Regression analysis showed that increased pituitary gland volume is associated with higher body mass index independent from gender, age and body height. CONCLUSION Pituitary gland volume is increased in obese individuals and a high body mass index can be seen as an independent predictor of increased pituitary gland volume. Therefore, gland enlargement might be an imaging indicator of dysfunction in the hypothalamus-pituitary axis. Besides gender and age, body mass index should be considered by radiologists when diagnosing abnormal changes in pituitary gland volume.
Collapse
Affiliation(s)
- Uli Fehrenbach
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany.,Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Germany
| | - Anas Jadan
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Germany
| | - Timo A Auer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Katharina Kreutz
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Germany
| | - Dominik Geisel
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Athanasia Ziagaki
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Germany
| | - Thomas Bobbert
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Germany
| | - Edzard Wiener
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
5
|
Cohen E, Belkacem S, Fedala S, Collot N, Khallouf E, Dastot F, Polak M, Duquesnoy P, Brioude F, Rose S, Viot G, Soleyan A, Carel JC, Sobrier ML, Chanson P, Gatelais F, Heinrichs C, Kaffel N, Coutant R, Savaş Erdeve Ş, Kurnaz E, Aycan Z, Thalassinos C, Lyonnet S, Şıklar Z, Berberoglu M, Brachet C, Amselem S, Legendre M. Contribution of functionally assessed GHRHR mutations to idiopathic isolated growth hormone deficiency in patients without GH1 mutations. Hum Mutat 2019; 40:2033-2043. [PMID: 31231873 DOI: 10.1002/humu.23847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 01/05/2023]
Abstract
Isolated growth hormone deficiency (IGHD) is a rare condition mainly caused by mutations in GH1. The aim of this study was to assess the contribution of GHRHR mutations to IGHD in an unusually large group of patients. All GHRHR coding exons and flanking intronic regions were sequenced in 312 unrelated patients with nonsyndromic IGHD. Functional consequences of all newly identified missense variants were assessed in vitro (i.e., study of the expression of recombinant GHRHRs and their ability to activate the cyclic adenosine monophosphate (cAMP) signaling pathway). Genotype-phenotype correlation analyses were performed according to the nature of the identified mutation. We identified 20 different disease-causing GHRHR mutations (truncating and missense loss-of-function mutations), among which 15 are novel, in 24 unrelated patients. Of note, about half (13/24) of those patients represent sporadic cases. The clinical phenotype of patients with at least one missense GHRHR mutation was found to be indistinguishable from that of patients with bi-allelic truncating mutations. This study, which unveils disease-causing GHRHR mutations in 8% (24/312) of IGHD cases, identifies GHRHR as the second IGHD gene most frequently involved after GH1. The finding that 8% of IGHD cases without GH1 mutations are explained by GHRHR molecular defects (including missense mutations), together with the high proportion of sporadic cases among those patients, has important implications for genetic counseling.
Collapse
Affiliation(s)
- Enzo Cohen
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Sabrina Belkacem
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Soumeya Fedala
- Endocrinology Department, Hôpital Lamine Debaghine, CHU Bab El Oued, Bab El Oued, Algeria
| | - Nathalie Collot
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Eliane Khallouf
- Pediatric Endocrinology and Diabetology, Hôtel Dieu de France, Beyrouth, Lebanon
| | - Florence Dastot
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Michel Polak
- Pediatric Endocrinology Department, Hôpital Necker, AP-HP, Paris, France
| | - Philippe Duquesnoy
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Frederic Brioude
- Endocrine Investigation Department, Hôpital Trousseau, AP-HP, Paris, France
| | - Sophie Rose
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Géraldine Viot
- Prenatal Diagnosis and Foetal Medicine Unit, CHU Paris Centre, AP-HP, Paris, France
| | - Aude Soleyan
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Jean-Claude Carel
- Pediatric Endocrinology Department, Hôpital Robert Debré, AP-HP, Paris, France
| | - Marie-Laure Sobrier
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Philippe Chanson
- Endocrinology and Reproductive Medicine Department and Rare Pituitary Disorder Reference Center, Hôpital de Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,UMR_S1885, Faculté de Médecine Paris-Sud, Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Claudine Heinrichs
- Endocrinology Department, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Noureddine Kaffel
- Endocrinology Department, Dar Attabib, Complexe Médical Multidisciplinaire, Sfax, Tunisia
| | - Regis Coutant
- Diabetology and Nutrition Unit, CHU d'Angers, Angers, France
| | - Şenay Savaş Erdeve
- Clinic of Pediatric Endocrinology, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Health Sciences University, Ankara, Turkey
| | - Erdal Kurnaz
- Clinic of Pediatric Endocrinology, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Health Sciences University, Ankara, Turkey
| | - Zehra Aycan
- Clinic of Pediatric Endocrinology, Dr Sami Ulus Obstetrics and Gynecology, Children's Health and Disease, Health Implementation and Research Center, Health Sciences University, Ankara, Turkey
| | | | - Stanislas Lyonnet
- Genetics Department and Institut Imagine, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Zeynep Şıklar
- Department of Pediatric Endocrinology, Medical School of Ankara University, Ankara, Turkey
| | - Merih Berberoglu
- Department of Pediatric Endocrinology, Medical School of Ankara University, Ankara, Turkey
| | - Cécile Brachet
- Endocrinology Department, Hôpital Universitaire des Enfants Reine Fabiola, Brussels, Belgium
| | - Serge Amselem
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| | - Marie Legendre
- Genetic Department, INSERM UMR_S933, Hôpital Trousseau, Sorbonne Université, AP-HP, Paris, France
| |
Collapse
|
6
|
Hu J, Yan J, Zheng X, Zhang Y, Ran Q, Tang X, Shu T, Shen R, Duan L, Zhang D, Guo Q, Zhang W, Yang H, Li S. Magnetic resonance spectroscopy may serve as a presurgical predictor of somatostatin analog therapy response in patients with growth hormone-secreting pituitary macroadenomas. J Endocrinol Invest 2019; 42:443-451. [PMID: 30171531 DOI: 10.1007/s40618-018-0939-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Somatostatin analogs (SSAs) are considered one of the most effective medical treatments for patients with growth hormone-secreting pituitary adenomas (GH-PAs). The postoperative electron microscopy (EM) pathological subtype and SSTR2 expression in the tumor are the most established predictors of patient response to SSA therapy. The aim of this study was to evaluate how will magnetic resonance spectroscopy (MRS) measurements before surgery predict the EM pathological subtypes and SSTR2 expression of tumors, and thereby serve as an indicator for the therapeutic sensitivity to SSAs of patients with GH-PAs. METHODS Eighteen patients with GH pituitary macroadenomas who underwent transsphenoidal surgery were included in this retrospective study. The preoperative MRS data and T2 signal intensity were obtained from patients by 1.5 T MR spectroscopy of the sellar mass. The EM pathological subtypes of tumors were determined after surgery through examination of cell granulations. The expressions of somatostatin receptor 2 (SSTR2), SSTR5, P21, P27, and Ki-67 were evaluated by immunohistochemistry. RESULTS The MRS parameters that were found to significantly predict the EM pathological subtypes of tumors, as calculated by the receiver operating characteristic curve, were the choline (Ch) value at 3140.5 MR units (sensitivity 69.2%, specificity 100%) and the choline/creatine (Ch/Cr) ratio at 1.27 (sensitivity 92.3%, specificity 100%). Further, the Ch/Cr ratio, but not other MRS data, was shown to negatively correlate with the expression of SSTR2 (P = 0.02). The Ch/Cr ratio was also found to positively correlate with the Ki-67 value (P < 0.05) and T2 signal (P < 0.05), but not with other factors that were examined in this study. Moreover, the Ch/Cr ratio could predict the EM pathological subtypes of tumors with an accuracy of 83.3% (5/6) for patients with an isointense T2 signal. CONCLUSION The Ch/Cr ratio by MRS could effectively predict the tumor subtype and was significantly correlated with the expression of SSTR2, which was consistent with other predictors. It was also able to distinguish the patients with isointense T2 signals. Our results provide a potentially new and non-invasive method to predict the response to SSAs in patients with GH pituitary macroadenomas.
Collapse
Affiliation(s)
- J Hu
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - J Yan
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - X Zheng
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Y Zhang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Q Ran
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - X Tang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - T Shu
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - R Shen
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Endocrinology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - L Duan
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Endocrinology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - D Zhang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Q Guo
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - W Zhang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - H Yang
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China.
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - S Li
- Multidisciplinary Center for Pituitary Adenomas of Chongqing, Chongqing, 400037, China.
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
7
|
Sundralingam T, Tennekoon KH, de Silva S, De Silva S, Hewage S, Ranasinghe R. Novel gross deletion at the GHRHR gene locus possibly mediated by Alu specific microhomology identified in a Sri Lankan patient with isolated growth hormone deficiency. Growth Horm IGF Res 2018; 42-43:94-101. [PMID: 30390533 DOI: 10.1016/j.ghir.2018.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Characterization of a deletion in the exon 1 and 5' regulatory region of the GHRHR gene in a proband with isolated growth hormone deficiency. METHODS Multiple ligation dependent probe amplification (MLPA) assay was carried out to confirm the homozygous deletion which was suspected during screening of the GHRHR gene by single strand conformation polymorphism. A series of short range PCR amplifications were carried out to map the approximate location of the break points of the deletion. Sanger sequencing was carried out to locate the break points and to identify the length of the deletion. Long range PCR amplification was carried out to confirm the length of the deletion and to screen the parents of the proband for the deletion. RESULTS A homozygous deletion was confirmed via MLPA assay. Zones of sequence similarity between upstream intergenic region and intron 1 of the GHRHR gene were identified. Break points of the deletion were identified within perfectly matching 32 bp repeat sequences ie: microhomologies in the specified zones. The novel deletion may have arisen via Alu specific microhomology mediated non-recurrent rearrangement in the maternal lineage of the proband. The deletion being reported in this study include, last 3118 bp from the upstream intergenic region and complete exon 1 and first 2620 bp from intron 1 and one of the 32 bp microhomologies. The total length of the deleted segment was 5875 bp. As the deleted region contained significant elements essential for gene expression, the identified deletion is being reported as likely pathogenic. The same deletion was identified in the mother in heterozygous state. CONCLUSION We have characterized a novel deletion that seems to have arisen via Alu specific microhomology mediated non-recurrent rearrangement at GHRHR gene locus. HGVS nomenclature of the deletion is c.-3166_58-2057del. This novel structural variant was identified to be the cause of IGHD of the affected proband.
Collapse
Affiliation(s)
- Tharmini Sundralingam
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| | - Shamya de Silva
- Department of Paediatrics, Faculty of Medicine, University of Colombo, PO Box 271, Kynsey Road, Colombo 08, Sri Lanka; Lady Ridgeway Hospital, Dr. Danister de Silva Mawatha, Colombo 08, Sri Lanka
| | - Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| | - Sudeshini Hewage
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| | - Ruwandi Ranasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, 90, Cumaratunga Munidasa Mawatha, Colombo 03, Sri Lanka.
| |
Collapse
|
8
|
Birla S, Khadgawat R, Jyotsna VP, Jain V, Garg MK, Bhalla AS, Sharma A. Identification of novel GHRHR and GH1 mutations in patients with isolated growth hormone deficiency. Growth Horm IGF Res 2016; 29:50-56. [PMID: 27114065 DOI: 10.1016/j.ghir.2016.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Human growth is an elementary process which starts at conception and continues through different stages of development under the influence of growth hormone (GH) secreted by the anterior pituitary gland. Variation affecting the production, release and functional activity of GH leads to growth hormone deficiency (GHD), which is of two types: isolated growth hormone deficiency (IGHD) and combined pituitary hormone deficiency (CPHD). IGHD may result from mutations in GH1 and GHRHR while CPHD is associated with defects in transcription factor genes PROP1, POU1F1 and HESX1. The present study reports on the molecular screening of GHRHR and GH1 in IGHD patients. METHODS A total of 116 clinically diagnosed IGHD patients and 100 controls were enrolled for the study after taking informed consent. Family history was noted and 5ml blood sample was drawn. Anatomical and/or morphological pituitary gland alterations were studied using magnetic resonance imaging (MRI). DNA from blood samples was processed for screening the GHRHR and GH1 by Sanger sequencing. RESULTS Mean age at presentation of the 116 patients (67 males and 49 females) was 11.71±3.5years. Mean height standard deviation score (SDS) and weight SDS were -4.5 and -3.5 respectively. Nine (7.8%) were familial and parental consanguinity was present in 21 (19.8%) families. Eighty-three patients underwent MRI and morphological alterations of the pituitary were observed in 39 (46.9%). GH1 and GHRHR screening revealed eleven variations in 24 (21%) patients of which, four were novel deleterious, one novel non-pathogenic and six reported changes. CONCLUSIONS GHRHR contributed more to IGHD in our patients which confirmed that GHRHR should be screened first before GH1 in our population. Identification of GH1 and GHRHR variations helped in defining our mutational spectrum which will play a crucial role in providing predictive and prenatal genetic testing to the patients.
Collapse
Affiliation(s)
- Shweta Birla
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Khadgawat
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Viveka P Jyotsna
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Vandana Jain
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - M K Garg
- Department of Endocrinology and Metabolism, Army Hospital (Referral and Research), Delhi Cantonment, India
| | - Ashu Seith Bhalla
- Department of Radio-diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Arundhati Sharma
- Laboratory of Cyto-Molecular Genetics, Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
9
|
Arman A, Dündar BN, Çetinkaya E, Erzaim N, Büyükgebiz A. Novel growth hormone-releasing hormone receptor gene mutations in Turkish children with isolated growth hormone deficiency. J Clin Res Pediatr Endocrinol 2014; 6:202-8. [PMID: 25541890 PMCID: PMC4293654 DOI: 10.4274/jcrpe.1518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Isolated growth hormone deficiency (IGHD) is defined as a medical condition associated with growth failure due to insufficient production of GH or lack of GH action. Mutations in the gene encoding for GH-releasing hormone receptor (GHRHR) have been detected in patients with IGHD type IB. However, genetic defects on GHRHR causing IGHD in the Turkish population have not yet been reported. To identify mutations on GHRHR gene in a population of Turkish children with IGHD. METHODS Ninety-six Turkish children with IGHD were included in this study. Exon1-13 and exon/intron boundaries of GHRHR were amplified by suitable primers. The polymerase chain reaction products for GHRHR gene were sequenced with primers. RESULTS We analyzed the GHRHR gene for mutations in ninety-six patients with IGHD based on sequence results. We identified novel p.K264E, p.S317T, p.S330L, p.G369V, p.T257A and C base insertion on position 380 (c.380inserC) mutations. In 5 of the patients, the mutation was homozygote and in 1-heterozygote (p.S317T). CONCLUSION Six new missense mutations and one first case of insertion mutations for the GHRHR gene are reported.
Collapse
Affiliation(s)
- Ahmet Arman
- Marmara University Faculty of Medicine, Department of Medical Genetics, İstanbul, Turkey. E-ma-il:
| | - Bumin Nuri Dündar
- Katip Çelebi University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | | | - Nilüfer Erzaim
- Yeditepe University Faculty of Medicine, Department of Genetics and Bioengineering, İstanbul, Turkey
| | - Atilla Büyükgebiz
- Bilim University Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| |
Collapse
|
10
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
11
|
Soneda A, Adachi M, Muroya K, Asakura Y, Takagi M, Hasegawa T, Inoue H, Itakura M. Novel compound heterozygous mutations of the growth hormone-releasing hormone receptor gene in a case of isolated growth hormone deficiency. Growth Horm IGF Res 2013; 23:89-97. [PMID: 23602557 DOI: 10.1016/j.ghir.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/27/2013] [Accepted: 03/13/2013] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To elucidate the pathogenesis of isolated growth hormone (GH) deficiency in a Japanese girl without consanguinity. DESIGN A 2-year-old girl of height 77.2 cm (-3.0 SD for Japanese girls) was found to have an insulin-like growth factor (IGF)-1 level of 7 ng/mL and IGF binding protein-3 (IGFBP-3) level of 0.41 μg/mL. GH responded modestly to a series of pharmacological stimulants, increasing to 2.81 ng/mL with insulin-induced hypoglycemia, 3.78 ng/mL with arginine, and 3.93 with GH-releasing hormone (GHRH). Following direct sequencing of the GHRH receptor (GHRHR) gene, evaluation by the luciferase reporter assay, immunofluorescence study, and in vitro splicing assay with minigene constructs was conducted. RESULTS Novel compound heterozygous GHRHR gene mutations were identified in the patient. A p.G136V substitution elicited no luciferase activity increment in response to GHRH stimulation, with normal membranous expression. Splicing assay demonstrated that the IVS2+3a>g mutation would lead to aberrant splicing. CONCLUSIONS A case of isolated GH deficiency due to novel GHRHR gene mutations was identified.
Collapse
Affiliation(s)
- Akiko Soneda
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Phenotype-genotype correlations in congenital isolated growth hormone deficiency (IGHD). Indian J Pediatr 2012; 79:99-106. [PMID: 22139958 DOI: 10.1007/s12098-011-0614-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
Abstract
Isolated growth hormone deficiency (IGHD) may be congenital, often due to genetic mutations, or acquired as a result of other factors such as cranial irradiation. The commonest genes implicated in its genetic etiology are those encoding growth hormone (GH1) and the receptor for GH-releasing hormone (GHRHR). Rarely, IGHD may be caused by mutations in transcription factors (HESX1, SOX3, OTX2) or be the first presentation before the development of other pituitary hormone deficiencies. IGHD has been classified in four genetic forms (type IA, IB, II and III). Despite the increasing number of genes implicated in the etiology of IGHD, mutations in known genes account only for a small percentage of cases; therefore, other as yet unidentified factors may be implicated in its etiology. Although there is no strict genotype/phenotype correlation in patients with IGHD, there are some emerging patterns that may guide us towards a genetic diagnosis of the condition. There is increasing understanding that the phenotype of patients with IGHD is highly variable and sometimes even evolving, dictating the need for long term follow-up in these cases.
Collapse
|
13
|
Mullis PE. Genetics of GHRH, GHRH-receptor, GH and GH-receptor: its impact on pharmacogenetics. Best Pract Res Clin Endocrinol Metab 2011; 25:25-41. [PMID: 21396573 DOI: 10.1016/j.beem.2010.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required and, appropriate consideration should be given to genetic defects causing GH deficiency (GHD). Because Insulin-like-Growth Factor-I (IGF-I) plays a pivotal role, GHD could also be considered as a form of IGF-I deficiency (IGFD). Although IGFD can develop at any level of the GHRH-GH-IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH-gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency they may present initially as GHD. These defects are discussed in various different chapters within this book, whereas, the impact of alterations of the GHRH-, GHRH-receptor- --as well as the GH-receptor (GHR) gene--will be discussed here.
Collapse
Affiliation(s)
- Primus-E Mullis
- Division of Paediatric Endocrinology, Diabetology & Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland.
| |
Collapse
|
14
|
Inoue H, Kangawa N, Kinouchi A, Sakamoto Y, Kimura C, Horikawa R, Shigematsu Y, Itakura M, Ogata T, Fujieda K. Identification and functional analysis of novel human growth hormone-releasing hormone receptor (GHRHR) gene mutations in Japanese subjects with short stature. Clin Endocrinol (Oxf) 2011; 74:223-33. [PMID: 21044116 DOI: 10.1111/j.1365-2265.2010.03911.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CONTEXT Growth hormone-releasing hormone receptor (GHRHR) gene mutations have been identified in patients of different ethnic origins with isolated GH deficiency (IGHD) type IB. However, the prevalence of these mutations in the Japanese population has yet to be fully determined. OBJECTIVES This study aimed to evaluate the contributions of GHRHR mutations to the molecular mechanism underlying short stature in Japanese subjects. DESIGN The GHRHR gene was sequenced in 127 unrelated Japanese patients with either IGHD (n = 14) or idiopathic short stature (ISS; n = 113). Sequence variants were evaluated in family members and 188 controls, and then examined in functional studies. RESULTS A novel homozygous E382E (c.1146G>A) synonymous variant, at the last base of exon 12, was identified in an IGHD family with two affected sisters. In vitro splicing studies showed this mutation to result in skipping of exon 12. In one ISS patient, a heterozygous ATG-166T>C variant was found in the distal Pit-1 P2 binding element of the GHRHR promoter. In two control subjects, a close but distinct variant, ATG-164T>C, was detected. Functional studies showed that both promoter variants diminish promoter activity by altering Pit-1 binding ability. Four missense variants were also found in both patient and control groups but had no detectable functional consequences. CONCLUSIONS The homozygous GHRHR mutation was rare, being detected in only one Japanese IGHD family. Future research is needed to clarify the genetic contributions of heterozygous functional promoter variants to GHD, ISS and normal-stature variations.
Collapse
Affiliation(s)
- Hiroshi Inoue
- Division of Genetic Information, Institute for Genome Research, The University of Tokushima, Kuramoto 3-18-15, Tokushima 770-8503, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McArthur S, Robinson IC, Gillies GE. Novel ontogenetic patterns of sexual differentiation in arcuate nucleus GHRH neurons revealed in GHRH-enhanced green fluorescent protein transgenic mice. Endocrinology 2011; 152:607-17. [PMID: 21159856 DOI: 10.1210/en.2010-0798] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
GH secretion and growth rates are developmentally regulated and sexually dimorphic, but the neuroregulatory mechanisms between birth and puberty are unclear. Using the GHRH-enhanced green fluorescent protein (eGFP) transgenic mouse, in which eGFP provides a strong surrogate signal for identifying GHRH neurons, we showed that numbers in the male arcuate nucleus were double those seen in females at x postnatal day (P)1 and P10, during which time numbers increased 2- to 3-fold. Thereafter (P20, P30, P60, P365) there was a significant trend for numbers to decrease in males and increase in females, such that sex differences were, surprisingly, absent in young and late adulthood. Conversely, we identified the emergence of male-dominant sex differences in the number of processes extended per GHRH perikarya across puberty. Intriguingly, prepubertal gonadectomy (P28), unlike adult gonadectomy, caused a dramatic 40% loss of GHRH cells in both sexes in adulthood and a significant (30%) increase in processes emanating from cell bodies only in females. These findings establish a novel ontogenetic profile for GHRH neurons and suggest previously undiscovered roles for peripubertal gonadal factors in establishing population size in both sexes. They also provide the first demonstration of emergent sex-specific GHRH architecture, which may signal the onset of sex-dependent regulation of activity reported for adult GHRH-eGFP neurons, and its differential regulation by gonadal factors in males and females. This information adds to our knowledge of processes that underpin the emergence of sex-specific GH secretory dynamics and hence biological activity of this pleiotropic hormone.
Collapse
Affiliation(s)
- Simon McArthur
- Division of Experimental Medicine, Imperial College, London W12 0NN, United Kingdom
| | | | | |
Collapse
|
16
|
Genetic defects causing functional and structural isolated growth hormone deficiency. Transl Neurosci 2011. [DOI: 10.2478/s13380-011-0013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNormal somatic growth requires the integrated function of many of the hormonal, metabolic, and other growth factors involved in the hypothalamo-pituitary-somatotrope axis. Human growth hormone (hGH) causes a variety of physiological and metabolic effects in humans and its pivotal role in postnatal growth is undisputed. Disturbances that occur during this process often cause subnormal GH secretion and/or subnormal GH sensitivity/responsiveness resulting in short stature. Despite the complexity of this linear growth process, the growth pattern of children, if evaluated in the context of normal standards, is rather predictable. Children presenting with short stature (i.e out of normal standards) are treated with daily injections of recombinant human GH (rhGH), which leads in almost all cases to an increase of height velocity. Although it is becoming more and more evident that many genes are involved in controlling the regulation of growth, the main aim of this review is to focus on the GH-1 gene, the various gene alterations and their important physiological and pathophysiological role in growth.
Collapse
|
17
|
Abstract
Isolated growth hormone deficiency is the most common pituitary hormone deficiency and can result from congenital or acquired causes, although the majority of cases are idiopathic with no identifiable etiology. Known genes involved in the genetic etiology of isolated growth hormone deficiency include those that encode growth hormone (GH1), growth-hormone-releasing hormone receptor (GHRHR) and transcription factor SOX3. However, mutations are identified in a relatively small percentage of patients, which suggests that other, yet unidentified, genetic factors are involved. Among the known factors, heterozygous mutations in GH1 remain the most frequent cause of isolated growth hormone deficiency. The identification of mutations has clinical implications for the management of patients with this condition, as individuals with heterozygous GH1 mutations vary in phenotype and can, in some cases, develop additional pituitary hormone deficiencies. Lifelong follow-up of these patients is, therefore, recommended. Further studies in the genetic etiology of isolated growth hormone deficiency will help to elucidate mechanisms implicated in the control of growth and may influence future treatment options. Advances in pharmacogenomics will also optimize the treatment of isolated growth hormone deficiency and other conditions associated with short stature, for which recombinant human growth hormone is a licensed therapy.
Collapse
|
18
|
E. Mullis P. Genetics of isolated growth hormone deficiency. J Clin Res Pediatr Endocrinol 2010; 2:52-62. [PMID: 21274339 PMCID: PMC3014602 DOI: 10.4274/jcrpe.v2i2.52] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/04/2010] [Indexed: 12/31/2022] Open
Abstract
When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required, and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency (GHD). Because Insulin-like Growth Factor-I (IGF-I) plays a pivotal role, GHD could also be considered as a form of IGF-I deficiency (IGFD). Although IGFD can develop at any level of the GH-releasing hormone (GHRH)-GH-IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency, they may present initially as GHD.
Collapse
Affiliation(s)
- Primus E. Mullis
- Inselspital, Division of Paediatric Endocrinology, Diabetology&Metabolism, University Children’s Hospital, Bern, Switzerland
| |
Collapse
|
19
|
Godi M, Mellone S, Petri A, Arrigo T, Bardelli C, Corrado L, Bellone S, Prodam F, Momigliano-Richiardi P, Bona G, Giordano M. A recurrent signal peptide mutation in the growth hormone releasing hormone receptor with defective translocation to the cell surface and isolated growth hormone deficiency. J Clin Endocrinol Metab 2009; 94:3939-47. [PMID: 19622623 DOI: 10.1210/jc.2009-0833] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
CONTEXT Mutations in the GHRH receptor (GHRHR) have been detected in the familial type-IB isolated GH deficiency (IGHD-IB) inherited as an autosomal recessive disorder and characterized by a low but detectable serum GH level and good response to substitutive GH therapy. OBJECTIVE The aim of our study was the identification of mutations in sporadic patients with a IGHD-IB phenotype. SUBJECTS AND METHODS The GHRHR gene was systematically screened by DHPLC in 134 IGHD patients with no family history of the disorder or declared parental consanguinity. RESULTS We identified a novel variation, Val10Gly, within the signal peptide at the heterozygous state in three patients and in one of 1084 controls (P = 0.004), suggesting that it might contribute to IGHD. The functional analysis showed that the signal peptide is not cleaved from the mutant GHRHR, which in turn is not translocated to the cellular surface, demonstrating that 10Gly drastically affects the receptor correct processing. Because 10Gly was also present in normal-stature relatives of the patients as well as in a control, it is likely that it exerts its effects in the context of other genetic and environmental susceptibility factors. CONCLUSION At difference from previous papers reporting GHRHR mutations in familial cases with a clear recessive mode of inheritance, our study was conducted on a large sample of sporadic patients and allowed to discover a novel mechanism of the disease caused by a recurrent dominant mutation in the GHRHR signal peptide associated with incomplete penetrance.
Collapse
Affiliation(s)
- Michela Godi
- Laboratory of Human Genetics, Department of Medical Sciences and Interdisciplinary Research Center of Autoimmune Diseases, University of Eastern Piedmont, 28100 Novara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Alatzoglou KS, Turton JP, Kelberman D, Clayton PE, Mehta A, Buchanan C, Aylwin S, Crowne EC, Christesen HT, Hertel NT, Trainer PJ, Savage MO, Raza J, Banerjee K, Sinha SK, Ten S, Mushtaq T, Brauner R, Cheetham TD, Hindmarsh PC, Mullis PE, Dattani MT. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. J Clin Endocrinol Metab 2009; 94:3191-9. [PMID: 19567534 DOI: 10.1210/jc.2008-2783] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT It is estimated that 3-30% of cases with isolated GH deficiency (IGHD) have a genetic etiology, with a number of mutations being reported in GH1 and GHRHR. The aim of our study was to genetically characterize a cohort of patients with congenital IGHD and analyze their characteristics. PATIENTS AND METHODS A total of 224 patients (190 pedigrees) with IGHD and a eutopic posterior pituitary were screened for mutations in GH1 and GHRHR. To explore the possibility of an association of GH1 abnormalities with multiple pituitary hormone deficiencies, we have screened 62 patients with either multiple pituitary hormone deficiencies (42 pedigrees), or IGHD with an ectopic posterior pituitary (21 pedigrees). RESULTS Mutations in GH1 and GHRHR were identified in 41 patients from 21 pedigrees (11.1%), with a higher prevalence in familial cases (38.6%). These included previously described and novel mutations in GH1 (C182X, G120V, R178H, IVS3+4nt, a>t) and GHRHR (W273S, R94L, R162W). Autosomal dominant, type II IGHD was the commonest form (52.4%), followed by type IB (42.8%) and type IA (4.8%). Patients with type II IGHD had highly variable phenotypes. There was no difference in the endocrinology or magnetic resonance imaging appearance between patients with and without mutations, although those with mutations presented with more significant growth failure (height, -4.7 +/- 1.6 SDS vs. -3.4 +/- 1.7 SDS) (P = 0.001). There was no apparent difference between patients with mutations in GH1 and GHRHR. CONCLUSIONS IGHD patients with severe growth failure and a positive family history should be screened for genetic mutations; the evolving endocrinopathy observed in some of these patients suggests the need for long-term follow-up.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group, Clinical and Molecular Genetics Unit, University College London Institute of Child Health, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chapter 3 Diseases Associated with Growth Hormone‐Releasing Hormone Receptor (GHRHR) Mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:57-84. [DOI: 10.1016/s1877-1173(09)88003-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Hilal L, Hajaji Y, Vie-Luton MP, Ajaltouni Z, Benazzouz B, Chana M, Chraïbi A, Kadiri A, Amselem S, Sobrier ML. Unusual phenotypic features in a patient with a novel splice mutation in the GHRHR gene. Mol Med 2008; 14:286-92. [PMID: 18297129 DOI: 10.2119/2007-00128.hilal] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/15/2008] [Indexed: 11/06/2022] Open
Abstract
Isolated growth hormone deficiency (IGHD) may be of genetic origin. One of the few genes involved in that condition encodes the growth hormone releasing hormone receptor (GHRHR) that, through its ligand (GHRH), plays a pivotal role in the GH synthesis and secretion by the pituitary. Our objective is to describe the phenotype of two siblings born to a consanguineous union presenting with short stature (IGHD) and Magnetic Resonance Imaging (MRI) abnormalities, and to identify the molecular basis of this condition. Our main outcome measures were clinical and endocrinological investigations, MRI of the pituitary region, study of the GHRHR gene sequence and transcripts. In both patients, the severe growth retardation (-5SD) was combined with anterior pituitary hypoplasia. In addition to these classical phenotypic features for IGHD, one of the patients had a Chiari I malformation, an arachnoid cyst, and a dysmorphic anterior pituitary. A homozygous sequence variation in the consensus donor splice site of intron 1 (IVS1 + 2T > G) of the GHRHR gene was identified in both patients. Using in vitro transcription assay, we showed that this mutation results in abnormal splicing of GHRHR transcripts. In this report, which broadens the phenotype associated with GHRHR defects, we discuss the possible role of the GHRHR in the proper development of extrapituitary structures, through a mechanism that could be direct or secondary to severe GH deficiency.
Collapse
Affiliation(s)
- Latifa Hilal
- Laboratoire de Génétique et de Physiologie Neuroendocrinienne, Equipe des Bases Moléculaires de Maladies Génétiques, UFR de Génétique et Biologie Moléculaire, Université Ibn Tofaïl, Faculté des Sciences, Kenitra, Maroc
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
When a child is not following the normal, predicted growth curve, an evaluation for underlying illness and central nervous system abnormalities is required and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency. This article focuses on the GH gene, the various gene alterations, and their possible impact on the pituitary gland. Transcription factors regulating pituitary gland development may cause multiple pituitary hormone deficiency but may present initially as GH deficiency. The role of two most important transcription factors, POU1F1 (Pit-1) and PROP 1, is discussed.
Collapse
Affiliation(s)
- Primus E Mullis
- Paediatric Endocrinology and Diabetology and Metabolism, University Children's Hospital, University of Berne, Inselspital, CH-3010 Bern, Switzerland.
| |
Collapse
|
24
|
Taoka T, Iwasaki S, Okamoto S, Sakamoto M, Nakagawa H, Otake S, Fujioka M, Hirohashi S, Kichikawa K. Pituitary stalk compression by the dorsum sellae: possible cause for late childhood onset growth disorders. Magn Reson Imaging 2006; 24:651-6. [PMID: 16735189 DOI: 10.1016/j.mri.2005.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 12/17/2005] [Indexed: 11/23/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the relationship between pituitary stalk compression by the dorsum sellae and clinical or laboratory findings in short stature children. MATERIALS AND METHODS We retrospectively reviewed magnetic resonance images of the pituitary gland and pituitary stalk for 34 short stature children with growth hormone (GH) deficiency and 24 age-matched control cases. We evaluated the degree of pituitary stalk compression caused by the dorsum sellae. Body height, GH level, pituitary height and onset age of the short stature were statistically compared between cases of pituitary stalk compression with associated stalk deformity and cases without compression. RESULTS Compression of the pituitary stalk with associated stalk deformity was seen in nine cases within the short stature group. There were no cases observed in the control group. There were no significant differences found for body height, GH level and pituitary height between the cases of pituitary stalk compression with associated stalk deformity and cases without compression. However, a significant difference was seen in the onset age between cases with and without stalk compression. CONCLUSION Pituitary stalk compression with stalk deformity caused by the dorsum sellae was significantly correlated with late childhood onset of short stature.
Collapse
Affiliation(s)
- Toshiaki Taoka
- Department of Radiology, Nara Medical University, Nara 634-8522, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Haskin O, Lazar L, Jaber L, Salvatori R, Alba M, Kornreich L, Phillip M, Gat-Yablonski G. A new mutation in the growth hormone-releasing hormone receptor gene in two Israeli Arab families. J Endocrinol Invest 2006; 29:122-30. [PMID: 16610237 DOI: 10.1007/bf03344084] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mutations in the GHRH receptor gene (GHRH-R) are emerging as a common cause of familial isolated GH deficiency (IGHD). DESIGN We searched for GHRH-R mutations in 10 patients with IGHD of Israeli-Arab origin, belonging to two highly consanguineous families. METHODS Analysis of the 13 coding exons, the intron-exon boundaries, and the proximal promoter of the GHRH-R was performed by denaturing gradient gel electrophoresis. Abnormally migrating bands were sequenced. The newly found mutation was inserted into GHRH-R cDNA. Wild type and mutant receptor were expressed in Chinese hamster ovary (CHO) cells, and the cAMP response to GHRH was measured. RESULTS All patients were homozygous for a novel GHRH-R missense mutation in exon 11 that replaces arginine with cysteine (R357C). Functional assay demonstrated complete inactivity of the mutant receptor in vitro. The prevalence of the mutant allele in the Israeli-Arab population was found to be 2%. All the patients had low but detectable GH reserve, proportionate short stature, and growth retardation since early childhood, with good growth response to GH treatment. Magnetic resonance imaging, performed in 3 patients, revealed a normal sized anterior pituitary in one patient evaluated at early childhood, and a borderline hypoplastic gland in the 2 patients evaluated at puberty. CONCLUSIONS We describe a novel missense mutation in the GHRH-R. The high incidence of the mutant allele in Israeli Arabs suggests that the mutation may be a common cause of familial IGHD in this population.
Collapse
Affiliation(s)
- O Haskin
- Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes Petach Tikva, Israel
| | | | | | | | | | | | | | | |
Collapse
|