1
|
Cao S, Gao S, Ni C, Xu Y, Pang B, Zhang J, Zhang Y, Wang Y, Geng Z, Li S, Zhao R, Han B, Cui X, Bao Y. Study on the therapeutic mechanism of HJ granules in a rat model of urinary tract infection caused by Escherichia coli. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118056. [PMID: 38490287 DOI: 10.1016/j.jep.2024.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urinary tract infections (UTIs) are globally prevalent infectious diseases, predominantly caused by uropathogenic Escherichia coli (UPEC). The misuse of antibiotics has led to the emergence of several drug-resistant strains. Traditional Chinese Medicine (TCM) has its own advantages in the treatment of UTIs. HJ granules is a herbal formula used for the treatment of UTIs. However, its mechanism of action is not clear. AIM OF THE STUDY The aim of this study was to investigate the therapeutic efficacy and mechanism of action of HJ granules in a rat model of UTI caused by Escherichia coli (E coli) CFT073. MATERIALS AND METHODS SD rats were selected to establish a rat UTI model by injecting UPEC strain CFT073 into the bladder using the transurethral placement method. HJ granules were administered to rats after modelling and the efficacy of HJ granule was investigated by measuring urinary decanalogue, inflammatory factors in bladder tissue and pathological changes in the bladder after 3d of administration. Expression of sonic hedgehog (SHH), NOD-like receptor thermoprotein domain 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and activation of cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by western blotting and immunofluorescence staining in rat bladder tissue. NLRP3, ASC and caspase-1, a cysteine-containing aspartic protein, were expressed and activated. RESULTS The results showed that infection of rats with UPEC resulted in increased pH and erythrocytes in bladder irrigation fluid; increased expression of IL-1β, IL-6 and SHH and decreased expression of IL-10 in bladder tissue; and significant upregulation of the expression of both SHH and NLRP3 inflammasom and significant activation of NLRP3 inflammasom. HJ granules significantly increased the concentration of IL-10 in the bladder, inhibited the expression of SHH and NLRP3 inflammasom in bladder tissue, and suppressed the activation of NLRP3 inflammasom, thereby reducing inflammatory lesions in bladder tissue. CONCLUSION HJ granules may improve bladder injury and treat UTIs by inhibiting the expression and activation of NLRP3 inflammasom.
Collapse
Affiliation(s)
- Shan Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chen Ni
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingsheng Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shurang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Han
- Heilongjiang Jiren Pharmaceutical Co., Ltd., Harbin, 150000, China.
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanyan Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Kwon RS, Lee GY, Lee S, Song J. Antimicrobial properties of tomato juice and peptides against typhoidal Salmonella. Microbiol Spectr 2024; 12:e0310223. [PMID: 38289090 PMCID: PMC10913428 DOI: 10.1128/spectrum.03102-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/22/2023] [Indexed: 03/06/2024] Open
Abstract
Tomatoes are readily available and affordable vegetables that offer a range of health benefits due to their bioactive molecules, such as antioxidants and antimicrobials. In contrast to the widely recognized antioxidant properties of tomatoes, their antimicrobial properties remain largely unexplored. Here, we present our findings on the antimicrobial properties of tomato juice and peptides, namely, tomato-derived antimicrobial peptides (tdAMPs), in relation to their effectiveness against typhoidal Salmonella. Our research has revealed that tomato juice demonstrates significant antimicrobial properties against Salmonella Typhi, a pathogen that specifically affects humans and is responsible for causing typhoid fever. By employing computational analysis of the tomato genome sequence, conducting molecular dynamics simulation, and performing functional analyses, we have successfully identified two tdAMPs, namely, tdAMP-1 and tdAMP-2. These tdAMPs have demonstrated potent antimicrobial properties by effectively disrupting bacterial membranes. The efficacy of tdAMP-2 is shown to be more effective than tdAMP-1. The efficacy of tdAMP-1 and tdAMP-2 has been demonstrated against drug-resistant S. Typhi, as well as hyper-capsular S. Typhi variants that possess hypervirulent characteristics, which are presently circulating in countries with endemicity. Tomato juice, along with the two tdAMPs, has demonstrated effectiveness against uropathogenic Escherichia coli as well. This underscores their potential as viable agents in combating certain Gram-negative pathogens. This study provides valuable insights into the development of effective and sustainable public health strategies that utilize tomato and its derivatives as lifestyle interventions.IMPORTANCEIn this study, we investigate the antimicrobial properties of tomato juice, the most widely consumed affordable vegetables, as well as tomato-derived antimicrobial peptides, in relation to their effectiveness against foodborne pathogens with an emphasis on Salmonella Typhi, a deadly human-specific pathogen.
Collapse
Affiliation(s)
- Ryan S. Kwon
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Gi Young Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Sohyoung Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Jeongmin Song
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Westcott MM, Morse AE, Troy G, Blevins M, Wierzba T, Sanders JW. Photochemical inactivation as an alternative method to produce a whole-cell vaccine for uropathogenic Escherichia coli (UPEC). Microbiol Spectr 2024; 12:e0366123. [PMID: 38315025 PMCID: PMC10913755 DOI: 10.1128/spectrum.03661-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary causative agent of lower urinary tract infection (UTI). UTI presents a serious health risk and has considerable secondary implications including economic burden, recurring episodes, and overuse of antibiotics. A safe and effective vaccine would address this widespread health problem and emerging antibiotic resistance. Killed, whole-cell vaccines have shown limited efficacy to prevent recurrent UTI in human trials. We explored photochemical inactivation with psoralen drugs and UVA light (PUVA), which crosslinks nucleic acid, as an alternative to protein-damaging methods of inactivation to improve whole-cell UTI vaccines. Exposure of UPEC to the psoralen drug AMT and UVA light resulted in a killed but metabolically active (KBMA) state, as reported previously for other PUVA-inactivated bacteria. The immunogenicity of PUVA-UPEC as compared to formalin-inactivated UPEC was compared in mice. Both generated high UPEC-specific serum IgG titers after intramuscular delivery. However, using functional adherence as a measure of surface protein integrity, we found differences in the properties of PUVA- and formalin-inactivated UPEC. Adhesion mediated by Type-1 and P-fimbriae was severely compromised by formalin but was unaffected by PUVA, indicating that PUVA preserved the functional conformation of fimbrial proteins, which are targets of protective immune responses. In vitro assays indicated that although they retained metabolic activity, PUVA-UPEC lost virulence properties that could negatively impact vaccine safety. Our results imply the potential for PUVA to improve killed, whole-cell UTI vaccines by generating bacteria that more closely resemble their live, infectious counterparts relative to vaccines generated with protein-damaging methods. IMPORTANCE Lower urinary tract infection (UTI), caused primarily by uropathogenic Escherichia coli, represents a significant health burden, accounting for 7 million primary care and 1 million emergency room visits annually in the United States. Women and the elderly are especially susceptible and recurrent infection (rUTI) is common in those populations. Lower UTI can lead to life-threatening systemic infection. UTI burden is manifested by healthcare dollars spent (1.5 billion annually), quality of life impact, and resistant strains emerging from antibiotic overuse. A safe and effective vaccine to prevent rUTI would address a substantial healthcare issue. Vaccines comprised of inactivated uropathogenic bacteria have yielded encouraging results in clinical trials but improvements that enhance vaccine performance are needed. To that end, we focused on inactivation methodology and provided data to support photochemical inactivation, which targets nucleic acid, as a promising alternative to conventional protein-damaging inactivation methods to improve whole-cell UTI vaccines.
Collapse
Affiliation(s)
- Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Alexis E. Morse
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Gavin Troy
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Maria Blevins
- Department of Internal Medicine, Infectious Diseases Section, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Thomas Wierzba
- Department of Internal Medicine, Infectious Diseases Section, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - John W. Sanders
- Department of Internal Medicine, Infectious Diseases Section, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
4
|
Rezaei M, Habibi M, Ehsani P, Asadi Karam MR, Bouzari S. Design and computational analysis of an effective multi-epitope vaccine candidate using subunit B of cholera toxin as a build-in adjuvant against urinary tract infections. BIOIMPACTS : BI 2023; 14:27513. [PMID: 38327629 PMCID: PMC10844585 DOI: 10.34172/bi.2023.27513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2024]
Abstract
Introduction Urinary tract infection (UTI) is one of the most common infections, usually caused by uropathogenic Escherichia coli (UPEC). However, antibiotics are a usual treatment for UTIs; because of increasing antibiotic-resistant strains, vaccination can be beneficial in controlling UTIs. Using immunoinformatics techniques is an effective and rapid way for vaccine development. Methods Three conserved protective antigens (FdeC, Hma, and UpaB) were selected to develop a novel multi-epitope vaccine consisting of subunit B of cholera toxin (CTB) as a mucosal build-in adjuvant to enhance the immune responses. Epitopes-predicted B and T cells and suitable linkers were used to separate them and effectively increase the vaccine's immunogenicity. The vaccine protein's primary, secondary, and tertiary structures were evaluated, and the best 3D model was selected. Since CTB is the TLR2 ligand, molecular docking was made between the vaccine protein and TLR2. Molecular dynamic (MD) simulation was employed to evaluate the stability of the vaccine protein-TLR2 complex. The vaccine construct was subjected to in silico cloning. Results The designed vaccine protein has multiple properties in the analysis. The HADDOCK outcomes show an excellent interaction between vaccine protein and TLR2. The MD results confirm the stability of the vaccine protein- TLR2 complex during the simulation. In silico cloning verified the expression efficiency of our vaccine protein. Conclusion The results of this study suggest that our designed vaccine protein could be a promising vaccine candidate against UTI, but further in vitro and in vivo studies are needed.
Collapse
Affiliation(s)
- Maryam Rezaei
- Molecular Biology Department, Pasteur institute of Iran, Tehran, Iran
| | - Mehri Habibi
- Molecular Biology Department, Pasteur institute of Iran, Tehran, Iran
| | - Parasoo Ehsani
- Molecular Biology Department, Pasteur institute of Iran, Tehran, Iran
| | | | - Saeid Bouzari
- Molecular Biology Department, Pasteur institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Elebeedy D, Ghanem A, Aly SH, Ali MA, Faraag AHI, El-Ashrey MK, salem AM, Hassab MAE, Maksoud AIAE. Synergistic antiviral activity of Lactobacillus acidophilus and Glycyrrhiza glabra against Herpes Simplex-1 Virus (HSV-1) and Vesicular Stomatitis Virus (VSV): experimental and In Silico insights. BMC Microbiol 2023; 23:173. [PMID: 37391715 PMCID: PMC10311774 DOI: 10.1186/s12866-023-02911-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/25/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND The emergence of different viral infections calls for the development of new, effective, and safe antiviral drugs. Glycyrrhiza glabra is a well-known herbal remedy possessing antiviral properties. OBJECTIVE The objective of our research was to evaluate the effectiveness of a newly developed combination of the probiotics Lactobacillus acidophilus and G. glabra root extract against two viral models, namely the DNA virus Herpes simplex virus-1 (HSV-1) and the RNA virus Vesicular Stomatitis Virus (VSV), with regards to their antiviral properties. METHODOLOGY To examine the antiviral impacts of various treatments, we employed the MTT assay and real-time PCR methodology. RESULTS The findings of our study indicate that the co-administration of L. acidophilus and G. glabra resulted in a significant improvement in the survival rate of Vero cells, while also leading to a reduction in the titers of Herpes Simplex Virus Type 1 (HSV-1) and Vesicular Stomatitis Virus (VSV) in comparison to cells that were not treated. Additionally, an investigation was conducted on glycyrrhizin, the primary constituent of G. glabra extract, utilizing molecular docking techniques. The results indicated that glycyrrhizin exhibited a greater binding energy score for HSV-1 polymerase (- 22.45 kcal/mol) and VSV nucleocapsid (- 19.77 kcal/mol) in comparison to the cocrystallized ligand (- 13.31 and - 11.44 kcal/mol, respectively). CONCLUSIONS The combination of L. acidophilus and G. glabra extract can be used to develop a new, natural antiviral agent that is safe and effective.
Collapse
Affiliation(s)
- Dalia Elebeedy
- Department of Pharmaceutical Biotechnology Faculty of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Aml Ghanem
- School of Biotechnology, Badr University in Cairo, Badr City, 11829 Cairo Egypt
| | - Shaza H. Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, 11829 Egypt
| | - Mohamed A. Ali
- School of Biotechnology, Badr University in Cairo, Badr City, 11829 Cairo Egypt
| | - Ahmed H. I. Faraag
- School of Biotechnology, Badr University in Cairo, Badr City, 11829 Cairo Egypt
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795 Egypt
| | - Mohamed K. El-Ashrey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman Inter-National University, Ras Sudr, Egypt
| | - Aya M. salem
- Faculty of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman Inter-National University, Ras Sudr, Egypt
| | - Ahmed I. Abd El Maksoud
- Industrial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Monufia, Egypt
| |
Collapse
|
6
|
Rezaei M, Esmaeili F, Reza Asadi Karam M, Ehsani P, Abbasnezhad Farsangi Z, Bouzari S. In silico design and in vivo evaluation of two multi-epitope vaccines containing build-in adjuvant with chitosan nanoparticles against uropathogenic Escherichia coli. Int Immunopharmacol 2023; 117:109999. [PMID: 37012877 DOI: 10.1016/j.intimp.2023.109999] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Urinary pathogenic Escherichia coli (UPEC) is one of the most important bacterial causes of urinary tract infections (UTIs). Rising antimicrobial resistance and serious clinical challenges such as persistent and recurrent UTIs make it a serious public health concern. Therefore, preventative approaches such as vaccinations are required. METHODS In this study, we selected three conserve and protective antigens (FdeC, Hma and UpaB) and also subunit B of cholera toxin (as build-in adjuvant) to design two multi-epitope vaccines (construct B containing B cell epitopes and construct T containing T epitopes) using different bioinformatics methods. The expression of the recombinant protein was performed using the BL21(DE3)/pET28 expression system and purified through a Ni-NTA column. Vaccine proteins were encapsulated in chitosan nanoparticles (CNP) based on ionic gelation via a microfluidic system. Mice were immunized intranasally with different vaccine formulations. Antibody responses and also cytokine expression (IFN-γ and IL-4) were measured by ELISA and real-time PCR respectively. The effectiveness of immune responses was assessed by bladder challenge. RESULTS Based on the in silico study, construct B and construct T have high confidence value and stable structure in vivo. High yield expression of both constructs was confirmed by SDS-PAGE and western blot assay. Immunization of mice with construct B induced strong Th2 (IgG1 and IL4) responses and construct T shift immune responses to Th1 (IFNγ and IgG2a). Vaccine protein-encapsulated CNP elicited higher levels of antibodies and cell-mediated responses than the vaccine proteins alone. CONCLUSIONS The results of this study suggest that intranasal administration of the construct B has the potential to enhance humoral immunity and construct T has the potential to stimulate cellular immunity. In addition, the combination of CTB as a build-in adjuvant and CNP can be proposed as a potent adjuvant for the development of a novel vaccine against UTI.
Collapse
Affiliation(s)
- Maryam Rezaei
- Department of Molecular Biology, Pasteur institute of Iran, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur institute of Iran, Tehran, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Jafari NV, Rohn JL. An immunoresponsive three-dimensional urine-tolerant human urothelial model to study urinary tract infection. Front Cell Infect Microbiol 2023; 13:1128132. [PMID: 37051302 PMCID: PMC10083561 DOI: 10.3389/fcimb.2023.1128132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionMurine models of urinary tract infection (UTI) have improved our understanding of host-pathogen interactions. However, given differences between rodent and human bladders which may modulate host and bacterial response, including certain biomarkers, urothelial thickness and the concentration of urine, the development of new human-based models is important to complement mouse studies and to provide a more complete picture of UTI in patients.MethodsWe originally developed a human urothelial three-dimensional (3D) model which was urine tolerant and demonstrated several urothelial biomarkers, but it only achieved human thickness in heterogenous, multi-layered zones and did not demonstrate the comprehensive differentiation status needed to achieve barrier function. We optimised this model by altering a variety of conditions and validated it with microscopy, flow cytometry, transepithelial electrical resistance and FITC-dextran permeability assays to confirm tissue architecture, barrier integrity and response to bacterial infection.ResultsWe achieved an improved 3D urine-tolerant human urothelial model (3D-UHU), which after 18-20 days of growth, stratified uniformly to 7-8 layers comprised of the three expected, distinct human cell types. The apical surface differentiated into large, CD227+ umbrella-like cells expressing uroplakin-1A, II, III, and cytokeratin 20, all of which are important terminal differentiation markers, and a glycosaminoglycan layer. Below this layer, several layers of intermediate cells were present, with a single underlying layer of CD271+ basal cells. The apical surface also expressed E-cadherin, ZO-1, claudin-1 and -3, and the model possessed good barrier function. Infection with both Gram-negative and Gram-positive bacterial classes elicited elevated levels of pro-inflammatory cytokines and chemokines characteristic of urinary tract infection in humans and caused a decrease in barrier function.DiscussionTaken together, 3D-UHU holds promise for studying host-pathogen interactions and host urothelial immune response.
Collapse
|
8
|
Inflammation in Urological Malignancies: The Silent Killer. Int J Mol Sci 2023; 24:ijms24010866. [PMID: 36614308 PMCID: PMC9821648 DOI: 10.3390/ijms24010866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/02/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Several studies have investigated the role of inflammation in promoting tumorigenesis and cancer progression. Neoplastic as well as surrounding stromal and inflammatory cells engage in well-orchestrated reciprocal interactions to establish an inflammatory tumor microenvironment. The tumor-associated inflammatory tissue is highly plastic, capable of continuously modifying its phenotypic and functional characteristics. Accumulating evidence suggests that chronic inflammation plays a critical role in the development of urological cancers. Here, we review the origins of inflammation in urothelial, prostatic, renal, testicular, and penile cancers, focusing on the mechanisms that drive tumor initiation, growth, progression, and metastasis. We also discuss how tumor-associated inflammatory tissue may be a diagnostic marker of clinically significant tumor progression risk and the target for future anti-cancer therapies.
Collapse
|
9
|
Zhang X, Yan Y, Lv Y, Li X, Chen L, Huang Z, Zhou J, Wang Y, Wang X, Wang X, Gu H. Dendrobium officinale polysaccharides attenuate uropathogenic Escherichia coli (UPEC)-induced pyroptosis in macrophage cells. Biomed Pharmacother 2022; 151:113098. [PMID: 35594714 DOI: 10.1016/j.biopha.2022.113098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022] Open
Abstract
Urinary tract infections (UTI) are recognized as one of the most common infectious diseases worldwide, and uropathogenic Escherichia coli (UPEC) is the main causative agent of UTI. Dendrobium officinale polysaccharides (DOPs), the main effective ingredient in Dendrobium officinale, have been reported to possess an anti-inflammatory role. Whether DOPs can attenuate the inflammatory injury (pyroptosis) induced by UPEC remains unknown. The present study aimed to assess the protective effect and potential mechanism of DOPs in UPEC-induced pyroptosis. Cell viability of THP-1 differentiated macrophage cells with DOPs was determined using MTT assay. Pyroptosis by UPEC in macrophage cells with or not DOPs pre-treatment was evaluated with flow cytometry analysis, lactate dehydrogenase (LDH) assay, and proinflammatory cytokines secretion. Expression level of key proteins in the NLRP3/Caspase-1/GSDMD pyroptotic pathway was analyzed with western blot. Furthermore the effect of DOPs on ROS activation was investigated. Results indicated that DOPs attenuated UPEC-induced cell damage in macrophage cells, inhibited the activation of NLRP3 mediated inflammasome, subsequently decreased induction and activation of caspase-1/GSDMD, and reduced the secretion of pro-inflammatory cytokine (IL-1β et al.). Moreover, pretreatment with DOPs significantly reduces ROS production, an important/putative pyroptosis stimulus signal. These results suggested that DOPs successfully mitigate UPEC-promoted pyroptosis in macrophage cells. The protective effects of DOPs are associated with the inhibition of the NLRP3/Caspase-1/GSDMD pathway and ROS signal activation.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Yanfeng Yan
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Yunxia Lv
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Xin Li
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Leiyao Chen
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Zihui Huang
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Junbo Zhou
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Yong Wang
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Xiaoming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xu Wang
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| | - Hongwei Gu
- Central Laboratory, Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese Medicine, Nanjing 210014, China
| |
Collapse
|
10
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
11
|
Cetin N, Kiraz ZK, Gencler A. Diagnostic Value of Urine Ribonuclease 7 (RNase 7) to Creatinine Ratio for Detecting Urinary Tract Infection in Children with Pyuria. J PEDIAT INF DIS-GER 2022. [DOI: 10.1055/s-0042-1748922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Objective Ribonuclease 7 (RNase 7) is one of the members of the antimicrobial peptides playing a role in maintaining urinary tract sterility. We aimed to investigate the predictive value of the urine RNase 7 levels in children with pyuria and associations between RNase 7 and vesicoureteral reflux (VUR) and renal scarring.
Methods This study included 109 children with pyuria (46 febrile urinary tract infections [UTIs], 38 nonfebrile UTIs, and 25 sterile pyuria) whose RNase 7 levels were measured by enzyme-linked immunoassay. The results for urine RNase 7 concentrations were expressed as micrograms per milligrams creatinine.
Results RNase 7/Cr levels were higher in patients with both febrile and nonfebrile UTIs than the patients with sterile pyuria (p = 0.001). RNase 7/Cr had predictive values of diagnosis of febrile and nonfebrile UTIs (cut-off value: 2.92 µg/mg, p = 0.003; cut-off value: 3.67 µg/mg, p < 0.001, respectively). RNase 7/Cr had higher levels in the patients with VUR than without VUR (cut-off value: 4.28 µg/mg, p = 0.037). The patients with renal scarring had higher urine RNase 7/Cr than those without scarring (cut-off value: 4.54 µg/mg, p = 0.041).
Conclusion The evaluation of RNase 7/Cr may help prevent unnecessary and/or inappropriate antibiotic use in children with pyuria. The higher RNase 7 levels in patients with VUR and renal scarring may reflect long-term inflammation or greater inflammatory response during acute infection.
Collapse
Affiliation(s)
- Nuran Cetin
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Zeynep Kusku Kiraz
- Department of Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Aylin Gencler
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
12
|
Machado L, de Oliveira MC, Barbieri CR, Riboldi CI, Leotti VB, González FHD, Valle SDF, Siqueira FM, Pöppl ÁG. Clinical and microbiological characterization of subclinical bacteriuria and sporadic bacterial cystitis in dogs with spontaneous hypercortisolism. Comp Immunol Microbiol Infect Dis 2021; 75:101624. [PMID: 33609989 DOI: 10.1016/j.cimid.2021.101624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022]
Abstract
Study's aims were to characterize subclinical bacteriuria (SB) and sporadic bacterial cystitis (SBC) in dogs with spontaneous hypercortisolism (HC). Prospective cross-sectional design divided patients as newly diagnosed (n = 27), poorly controlled (n = 21), well controlled (n = 34), and controls (n = 19). Urine culture positive results were identified by MALDI-TOF and submitted to antibiogram. Escherichia coli was the most common microorganism (36%). The majority of positive cultures in HC were SB (12.2%). All 4.1% SBC cases were in well controlled HC cases. Bacteriuria correlated with low urine specific gravity and low lymphocyte count. HC degree of control correlated with leukocyturia. SB/SBC cases were treated based in antimicrobial susceptibility leading to microbiological cure in 75% of HC cases. Persistent infections occurred only in SB cases, all by E. coli which became more resistant. SB/SBC prevalence in canine HC is actually lower. Further evidence for current ISCAID guideline contraindication for SB treatment due to HC were provided.
Collapse
Affiliation(s)
- Letícia Machado
- Veterinary Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil
| | - Milena Cleff de Oliveira
- Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil
| | - Cláudia Ruga Barbieri
- Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil
| | - Camila Impérico Riboldi
- Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil
| | - Vanessa Bielefeldt Leotti
- Department of Statistics, Mathematics and Statistics Institute, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil
| | - Félix Hilário Díaz González
- Veterinary Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil; Department of Veterinary Clinical Pathology, School of Veterinary Medicine, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil
| | - Stella de Faria Valle
- Veterinary Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil; Department of Veterinary Clinical Pathology, School of Veterinary Medicine, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil
| | - Franciele Maboni Siqueira
- Veterinary Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil; Department of Veterinary Clinical Pathology, School of Veterinary Medicine, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil
| | - Álan Gomes Pöppl
- Veterinary Sciences Post-Graduation Program, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil; Department of Animal Medicine, School of Veterinary Medicine, Federal University of Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, Rio Grande do Sul, CEP 91540-000, Brazil.
| |
Collapse
|
13
|
Pirdel L, Pirdel M. A Differential Immune Modulating Role of Vitamin D in Urinary Tract Infection. Immunol Invest 2020; 51:531-545. [PMID: 33353437 DOI: 10.1080/08820139.2020.1845723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vitamin D is known as an important modulator of numerous immune functions. We aimed to investigate the association of 25-hydroxyvitamin D [25(OH)D] with several humoral mediators of the immune system in the patients with urinary tract infection (UTI) caused by uropathogenic E. coli (UPEC). Serum levels of 25(OH)D, cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-6, IL-10, IL-17A, tumor necrosis factor transforming growth factor (TNF)-α, and tumor growth factor (TGF)-β), immunoglobulin (Ig) isotypes (IgG, IgM, and IgM), complement proteins (C3 and C4) with hemolytic activities (CH50 and AP50), and nitric oxide (NO) were evaluated in 65 patients, compared to 45 age- and sex-matched healthy controls. An insignificant decrease in 25(OH)D levels was observed in patients, compared to controls. In the patient group, elevated levels of IFN-γ, IL-17A, and IL-10 had a significant association with the serum levels of 25(OH)D, while the levels of TGF-β, IL-6, and TNF-α showed an insignificant association. The levels of IgG, C3, and NO also displayed such a statistically significant association with serum 25(OH)D levels. The AP50 levels which had significant difference were found to be not associated with serum 25(OH)D levels. Vitamin D might mediate a link between the innate and adaptive immune responses via the induction of Th1/Th17 polarization of cytokine responses and isotype regulation of antibody production, along with the maintenance of the capacity of the alternative complement pathway, in response to a UPEC infection. However, further studies are needed to validate the defined nature of the host immune response.
Collapse
Affiliation(s)
- Leila Pirdel
- Department of Medicine, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Manijeh Pirdel
- Department of Midwifery, Astara Branch, Islamic Azad University, Astara, Iran
| |
Collapse
|
14
|
In Silico Design of a Poly-epitope Vaccine for Urinary Tract Infection Based on Conserved Antigens by Modern Vaccinology. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10137-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Sen A, Kaul A, Kaul R. Estrogen receptors in human bladder cells regulate innate cytokine responses to differentially modulate uropathogenic E. coli colonization. Immunobiology 2020; 226:152020. [PMID: 33246308 DOI: 10.1016/j.imbio.2020.152020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
The bladder epithelial cells elicit robust innate immune responses against urinary tract infections (UTIs) for preventing the bacterial colonization. Physiological fluctuations in circulating estrogen levels in women increase the susceptibility to UTI pathogenesis, often resulting in adverse health outcomes. Dr adhesin bearing Escherichia coli (Dr E. coli) cause recurrent UTIs in menopausal women and acute pyelonephritis in pregnant women. Dr E. coli bind to epithelial cells via host innate immune receptor CD55, under hormonal influence. The role of estrogens or estrogen receptors (ERs) in regulating the innate immune responses in the bladder are poorly understood. In the current study, we investigated the role of ERα, ERβ and GPR30 in modulating the innate immune responses against Dr E. coli induced UTI using human bladder epithelial carcinoma 5637 cells (HBEC). Both ERα and ERβ agonist treatment in bladder cells induced a protection against Dr E. coli invasion via upregulation of TNFα and downregulation of CD55 and IL10, and these effects were reversed by action of ERα and ERβ antagoinsts. In contrast, the agonist-mediated activation of GPR30 led to an increased bacterial colonization due to suppression of innate immune factors in the bladder cells, and these effects were reversed by the antagonist-mediated suppression of GPR30. Further, siRNA-mediated ERα knockdown in the bladder cells reversed the protection against bacterial invasion observed in the ERα positive bladder cells, by modulating the gene expression of TNFα, CD55 and IL10, thus confirming the protective role of ERα. We demonstrate for the first time a protective role of nuclear ERs, ERα and ERβ but not of membrane ER, GPR30 against Dr E. coli invasion in HBEC 5637 cells. These findings have many clinical implications and suggest that ERs may serve as potential drug targets towards developing novel therapeutics for regulating local innate immunity and treating UTIs.
Collapse
Affiliation(s)
- Ayantika Sen
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA; Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anil Kaul
- Health Care Administration, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA.
| |
Collapse
|
16
|
Qureshi AH, Liang D, Canas J, Hooks J, Arrregui SW, Saxena V, Rooney R, Nolan V, Schwaderer AL, Hains DS. DCHS1 DNA copy number loss associated with pediatric urinary tract infection risk. Innate Immun 2020; 26:473-481. [PMID: 32295462 PMCID: PMC7491237 DOI: 10.1177/1753425920917193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Urinary tract infections (UTI), associated with vesicoureteral reflux (VUR), can lead to chronic kidney disease. Genetic alterations in the innate immune defenses contribute to UTI risk. We investigated a novel gene, Dachsous Cadherin-Related 1 (DCHS1), in children with UTI. We determined absolute DNA copy number (CN) of DCHS1 in children with UTI. In this case-control study, we utilized multiple complementary methods to determine the genomic CN of DCHS1. Children with (n = 370) and without (n = 71) VUR from two well-phenotyped clinical trials of UTI were copy-typed and compared to 491 healthy controls with no known history of VUR or UTI. Less than 1% of controls had a single copy of DCHS1, while 31% of children with UTI and no VUR and 7% of children with UTI and VUR had a single copy of the DCHS1 gene. Using immunostaining, we localized expression postnatally to the bladder and renal epithelia. Mice were also challenged with two uropathogenic Escherichia coli strains, and Dchs1 mRNA was quantified. This study represents the first report of DCHS1 in association with pediatric UTI. We hypothesize that its role in innate immunity is critical to lower urinary tract defense. Further investigation is required to determine the role of DCHS1 in innate immunity.
Collapse
Affiliation(s)
- Aslam H Qureshi
- Division of Pediatric Nephrology, Department of Pediatrics, University of Tennessee Health Science Center, USA.,Department of Pediatrics, Children's Hospital at Erlanger, University of Tennessee College of Medicine, USA
| | - Dong Liang
- Department of Pediatrics, Indiana University School of Medicine, USA
| | - Jorge Canas
- Department of Pediatrics, Indiana University School of Medicine, USA
| | - Jenaya Hooks
- Department of Pediatrics, Indiana University School of Medicine, USA
| | - Samuel W Arrregui
- Department of Pediatrics, Indiana University School of Medicine, USA
| | - Vijay Saxena
- Department of Pediatrics, Indiana University School of Medicine, USA
| | - Robert Rooney
- Integrative Genomics Biorepository, Department of Pediatrics, University of Tennessee Health Science Center, USA
| | - Vikki Nolan
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, USA
| | - Andrew L Schwaderer
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, USA
| | - David S Hains
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, USA
| |
Collapse
|
17
|
Eichler T, Bender K, Murtha MJ, Schwartz L, Metheny J, Solden L, Jaggers RM, Bailey MT, Gupta S, Mosquera C, Ching C, La Perle K, Li B, Becknell B, Spencer JD. Ribonuclease 7 Shields the Kidney and Bladder from Invasive Uropathogenic Escherichia coli Infection. J Am Soc Nephrol 2019; 30:1385-1397. [PMID: 31239387 PMCID: PMC6683711 DOI: 10.1681/asn.2018090929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/17/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Evidence suggests that antimicrobial peptides, components of the innate immune response, protect the kidneys and bladder from bacterial challenge. We previously identified ribonuclease 7 (RNase 7) as a human antimicrobial peptide that has bactericidal activity against uropathogenic Escherichia coli (UPEC). Functional studies assessing RNase 7's contributions to urinary tract defense are limited. METHODS To investigate RNase 7's role in preventing urinary tract infection (UTI), we quantified urinary RNase 7 concentrations in 29 girls and adolescents with a UTI history and 29 healthy female human controls. To assess RNase 7's antimicrobial activity in vitro in human urothelial cells, we used siRNA to silence urothelial RNase 7 production and retroviral constructs to stably overexpress RNase 7; we then evaluated UPEC's ability to bind and invade these cells. For RNase 7 in vivo studies, we developed humanized RNase 7 transgenic mice, subjected them to experimental UTI, and enumerated UPEC burden in the urine, bladder, and kidneys. RESULTS Compared with controls, study participants with a UTI history had 1.5-fold lower urinary RNase 7 concentrations. When RNase 7 was silenced in vitro, the percentage of UPEC binding or invading human urothelial cells increased; when cells overexpressed RNase 7, UPEC attachment and invasion decreased. In the transgenic mice, we detected RNase 7 expression in the kidney's intercalated cells and bladder urothelium. RNase 7 humanized mice exhibited marked protection from UPEC. CONCLUSIONS These findings provide evidence that RNase 7 has a role in kidney and bladder host defense against UPEC and establish a foundation for investigating RNase 7 as a UTI prognostic marker or nonantibiotic-based therapy.
Collapse
Affiliation(s)
- Tad Eichler
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | - Kristin Bender
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | - Matthew J Murtha
- Centers for Clinical and Translational Research and
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
| | - Laura Schwartz
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | | | - Lindsey Solden
- Microbial Pathogenesis, The Research Institute at Nationwide Children's, Columbus, Ohio
| | - Robert M Jaggers
- Microbial Pathogenesis, The Research Institute at Nationwide Children's, Columbus, Ohio
| | - Michael T Bailey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Microbial Pathogenesis, The Research Institute at Nationwide Children's, Columbus, Ohio
| | - Sudipti Gupta
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
| | | | - Christina Ching
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Divisions of Urology and
- Departments of Pediatric Surgery and
| | - Krista La Perle
- Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University College of Veterinary Medicine, Columbus, Ohio
| | - Birong Li
- Centers for Clinical and Translational Research and
| | - Brian Becknell
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Nephrology, and
- Pediatrics, Nationwide Children's, Columbus, Ohio
| | - John David Spencer
- Centers for Clinical and Translational Research and
- Nephrology and Urology Research Affinity Group
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; and
- Nephrology, and
- Pediatrics, Nationwide Children's, Columbus, Ohio
| |
Collapse
|
18
|
Wnorowska U, Piktel E, Durnaś B, Fiedoruk K, Savage PB, Bucki R. Use of ceragenins as a potential treatment for urinary tract infections. BMC Infect Dis 2019; 19:369. [PMID: 31046689 PMCID: PMC6498624 DOI: 10.1186/s12879-019-3994-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are one of the most common bacterial infections. High recurrence rates and the increasing antibiotic resistance among uropathogens constitute a large social and economic problem in current public health. We assumed that combination of treatment that includes the administration ceragenins (CSAs), will reinforce the effect of antimicrobial LL-37 peptide continuously produced by urinary tract epithelial cells. Such treatment might be an innovative approach to enhance innate antibacterial activity against multidrug-resistant E. coli. METHODS Antibacterial activity measured using killing assays. Biofilm formation was assessed using crystal violet staining. Viability of bacteria and bladder epithelial cells subjected to incubation with tested agents was determined using MTT assays. We investigated the effects of chosen molecules, both alone and in combinations against four clinical strains of E. coli, obtained from patients diagnosed with recurrent UTI. RESULTS We observed that the LL-37 peptide, whose concentration increases at sites of urinary infection, exerts increased bactericidal effect against E. coli when combined with ceragenins CSA-13 and CSA-131. CONCLUSION We suggest that the employment of combination of natural peptide LL-37 with synthetic analogs might be a potential solution to treat urinary tract infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland
| | - Bonita Durnaś
- Department of Microbiology and Immunology, The Faculty of Health Sciences of the Jan Kochanowski University in Kielce, 25-001, Kielce, Poland
| | - Krzysztof Fiedoruk
- Department of Microbiology, Medical University of Bialystok, Bialystok, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222, Bialystok, Poland.
| |
Collapse
|
19
|
Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol Immunol 2019; 108:56-67. [PMID: 30784763 DOI: 10.1016/j.molimm.2019.02.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Urinary tract infections (UTIs) are recognized as one of the most common infectious diseases in the world that can be divided to different types. Uropathogenic Escherichia coli (UPEC) strains are the most prevalent causative agent of UTIs that applied different virulence factors such as fimbriae, capsule, iron scavenger receptors, flagella, toxins, and lipopolysaccharide for their pathogenicity in the urinary tract. Despite the high pathogenicity of UPEC strains, host utilizes different immune systems such as innate and adaptive immunity for eradication of them from the urinary tract. The routine therapy of UTIs is based on the use of antibiotics such as β-lactams, trimethoprim, nitrofurantoin and quinolones in many countries. Unfortunately, the widespread and misuse of these antibiotics resulted in the increasing rate of resistance to them in the societies. Increasing antibiotic resistance and their side effects on human body show the need to develop alternative strategies such as vaccine against UTIs. Developing a vaccine against UTI pathogens will have an important role in reduction the mortality rate as well as reducing economic costs. Different vaccines based on the whole cells (killed or live-attenuated vaccines) and antigens (subunits, toxins and conjugatedvaccines) have been evaluated against UTIs pathogens. Furthermore, other therapeutic strategies such as the use of probiotics and antimicrobial peptides are considered against UTIs. Despite the extensive efforts, limited success has been achieved and more studies are needed to reach an alternative of antibiotics for treatment of UTIs.
Collapse
Affiliation(s)
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran.
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran.
| |
Collapse
|
20
|
Lueptow LM, Devi LA, Fakira AK. Targeting the Recently Deorphanized Receptor GPR83 for the Treatment of Immunological, Neuroendocrine and Neuropsychiatric Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:1-25. [PMID: 30340784 DOI: 10.1016/bs.pmbts.2018.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
G-protein coupled receptors (GPCRs) are a superfamily of receptors responsible for initiation of a myriad of intracellular signaling cascades. Currently, GPCRs represent approximately 34% of marketed pharmaceuticals, a large portion of which have no known endogenous ligand. These orphan GPCRs represent a large pool of novel targets for drug development. Very recently, the neuropeptide PEN, derived from the proteolytic processing of the precursor proSAAS, has been identified as a selective, high-affinity endogenous ligand for the orphan receptor, GPR83. GPR83 is highly expressed in the brain, spleen and thymus, indicating that this receptor may be a target to treat neurological and immune disorders. In the brain GPR83 is expressed in regions involved in the reward pathway, stress/anxiety responses, learning and memory and metabolism. However, the cell type specific expression of GPR83 in these regions has only recently begun to be characterized. In the immune system, GPR83 expression is regulated by Foxp3 in T-regulatory cells that are involved in autoimmune responses. Moreover, in the brain this receptor is regulated by interactions with other GPCRs, such as the recently deorphanized receptor, GPR171, and other hypothalamic receptors such as MC4R and GHSR. The following review will summarize the properties of GPR83 and highlight its known and potential significance in health and disease, as well as its promise as a novel target for drug development.
Collapse
Affiliation(s)
- Lindsay M Lueptow
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lakshmi A Devi
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Amanda K Fakira
- Department of Pharmacological Sciences, Freidman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
21
|
Habibi M, Asadi Karam MR, Bouzari S. Construction and evaluation of the immune protection of a recombinant divalent protein composed of the MrpA from MR/P fimbriae and flagellin of Proteus mirabilis strain against urinary tract infection. Microb Pathog 2018; 117:348-355. [PMID: 29452195 DOI: 10.1016/j.micpath.2018.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Urinary tract infections (UTI) caused by Proteus mirabilis are prevalent among the catheterized patients. There is no effective vaccine to reduce the frequency of UTIs caused by P. mirabilis. In the present study, the immune responses and effectiveness of different combinations of MrpA and flagellin (FliC) of P. mirabilis were assessed intranasally in the mice model. The addition of FliC as adjuvant to MrpA in fusion form significantly raised the mucosal IgA and cellular (IFN-γ and IL-17) responses and maintained the serum IgG responses for 180 days after the first vaccination. Furthermore, MrpA in fusion form with FliC significantly increased the systemic, mucosal and IFN-γ responses of the FliC alone. In a bladder challenge assay with P. mirabilis, the fusion MrpA.FliC and the mixture of MrpA and FliC significantly decreased the colony count of the bacteria in the bladder and kidneys of mice in comparison to the control mice. It suggests a complex of the systemic, mucosal and cellular responses are needed for protection of the bladder and kidneys against P. mirabilis UTI. In our knowledge, the adjuvant property of the recombinant P. mirabilis flagellin was evaluated for the first time in a vaccine combination administered by an intranasal route. Our results suggest the recombinant flagellin of P. mirabilis could be used as an intranasal adjuvant in combination with other potential antigens against UTIs.
Collapse
Affiliation(s)
- Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| |
Collapse
|
22
|
Lacerda Mariano L, Ingersoll MA. Bladder resident macrophages: Mucosal sentinels. Cell Immunol 2018; 330:136-141. [PMID: 29422271 DOI: 10.1016/j.cellimm.2018.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 12/28/2022]
Abstract
Macrophages are instrumental in the response to infectious and noninfectious diseases, however, their role in the bladder is poorly understood. Indeed, the bladder is a mucosal tissue frequently overlooked in research, despite the prevalence of illnesses such as urinary tract infection and bladder cancer. Notably, bladder tissue macrophages are among the most populous resident immune cells in this organ and recent studies support that resident macrophages and infiltrating monocytes play nonredundant roles in response to infection, immunotherapy, and inflammation. Advancing our understanding of macrophage behavior in the bladder is complicated by the difficulty in obtaining tissue-resident cells. Surmounting this challenge, however, for a greater understanding of macrophage ontology, impact on innate and adaptive immunity, and regulation of homeostasis, will ultimately contribute to better therapies for common afflictions of the bladder.
Collapse
Affiliation(s)
- Livia Lacerda Mariano
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris 75015, France; Inserm U1223, Paris 75015, France
| | - Molly A Ingersoll
- Unit of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris 75015, France; Inserm U1223, Paris 75015, France.
| |
Collapse
|
23
|
Babikir IH, Abugroun EA, Bilal NE, Alghasham AA, Abdalla EE, Adam I. The impact of cathelicidin, the human antimicrobial peptide LL-37 in urinary tract infections. BMC Infect Dis 2018; 18:17. [PMID: 29310594 PMCID: PMC5759217 DOI: 10.1186/s12879-017-2901-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 12/10/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The defense mechanisms of the urinary tract are attributed mainly to the innate immune system and the urinary tract urothelium which represent the first line of defense against invading pathogens and maintaining sterility of the urinary tract. There are only a few publications regarding cathelicidin (LL-37) and a urinary tract infection (UTI). This study was done to investigate the plasma and urine levels of human LL-37 in patients with UTI. METHODS A case-control study was conducted at Omdurman Hospital, Sudan during the period from August 2014 to May 2017. The cases were patients with confirmed UTI and the controls were healthy volunteers without UTI. Sociodemographic and clinical data were obtained from each participant using questionnaires. Urine cultures and antimicrobial susceptibility were tested. Plasma and urine levels of LL-37 were determined using an enzyme-linked immunosorbent assay (ELISA) kit. SPSS (version 16.0) was used for analyses. RESULTS Cases and controls (87 in each arm) were matched according to their basic characteristics. Compared with controls, the median (inter-quartile) LL-37 level in plasma [2.100 (1.700-2.700) vs. 1.800 (1.000-2.200) ng/ml, P = 0.002] and in urine [0.900 (0.300-1.600) vs. 0.000 (0.000-1.000) ng/mg creatinine, P < 0.001] was significantly higher in cases. There was no significant difference in the median plasma [2.1 (1.7-2.9) vs. 2.000 (1.700-2.400) ng/ml, P = 0.561] and urine [0.850 (0.275-2.025) vs. 0.900 (0.250-1.350) ng/mg creatinine, P = 0.124]. The uropathogenic Escherichia coli (UPEC) was the predominant isolate, n = 38 (43.7%). LL-37 levels between the E. coli isolates and the other isolated organisms. There was no significant correlation between plasma and urine LL-37 levels (r = 0.221), even when the data of the cases were analyzed separately. CONCLUSION LL-37 is notably increased among patients with UTI compared with normal control subjects. Severity of UTI increases the levels of LL-37. The increased level was not only in the patient's urine, but has also been observed in the patient's plasma. Detection of increased levels of LL-37 could help to differentiate subjects with suspected UTI. Accordingly, LL-37 could act as a good marker for diagnosing UTIs.
Collapse
Affiliation(s)
- Ibrahim H Babikir
- College of Medical Laboratory Sciences, Microbiology Department, University of Khartoum, Khartoum, Sudan. .,College of Medicine, Qassim University, Buraydah, Qassim, Kingdom of Saudi Arabia.
| | - Elsir A Abugroun
- Faculty of Medical Laboratory Sciences, University of Science and Technology, Omdurman, Sudan
| | - Naser Eldin Bilal
- Khartoum University Central Research Laboratory, University of Khartoum, PO Box 321, Khartoum, Sudan
| | | | | | - Ishag Adam
- College of Medicine, Qassim University, Buraydah, Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
24
|
Hussein A, Askar E, Badawy A, Saad K, Zahran A, Elderwy AA. Impact of cytokine genetic polymorphisms on the risk of renal parenchymal infection in children. J Pediatr Urol 2017; 13:593.e1-593.e10. [PMID: 28716390 DOI: 10.1016/j.jpurol.2017.05.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/24/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Acute pyelonephritis is associated with renal scarring in up to 30% of patients. Renal scarring may cause significant long-term morbidity. The pathogenesis of acute pyelonephritis remains unclear, although it involves interaction among uroepithelium, the immune system cells, and the locally produced cytokines. That some UTI-prone children develop acute pyelonephritis, and eventually renal parenchymal scarring, suggests a genetic role. Interleukin-6, interleukin-8, chemokine receptor-1 (CXCR1), and tumor necrosis factor-alpha (TNFα), the key regulators of the host immune responses, are proteins whose secretion is controlled by genes. We postulated that functional polymorphic variants of their genes might have a role in APN susceptibility. OBJECTIVES We sought to investigate a possible association of the common functional polymorphisms in genes encoding IL-6, IL-8, CXCR1, and TNFα with the risk of APN in children. METHODS Urine culture was used to diagnose 300 children with UTI, of mean age of 51.31 ± 37.4 months (2-180 months). 99Tc-DMSA scans diagnosed 86 children with APN. Follow-up scans identified new renal scars in 18 children. Six functional single-nucleotide polymorphisms (SNPs) in genes encoding IL-6, IL-8, CXCR1, and TNFα were genotyped in all subjects (IL-6 rs1800795 (-174G/C), IL-6 rs1800796 (-572G/C), IL-8 rs2227306 (781C/T), IL8 rs4073 (-251A/T), CXCR1 rs2234671 (2607G/C), and TNFα rs1800629 (-308G/A)). RESULTS TT genotype of IL-8 -251A/T polymorphism was significantly higher in APN patients (26.7%) than those with lower UTI (11.7%, p = 0.01) and control individuals (12.2%, p = 0.002). T allele was significantly more common in APN than in lower UTI (p = 0.025) and was significantly more common in APN (46%) than in the controls (p = 0.001). Similarly, TT genotype of IL-8 781C/T polymorphism was significantly more common in APN patients (31.4%) than those with lower UTI (17.3%, p = 0.003) and the controls (14.3%, p = 0.001). T allele was significantly more common in APN (55%) than lower UTI (40%, p = 0.005) and controls (37%, p = 0.001). However, IL-8 -251A/T and +781C/T SNPs did not qualify as an independent risk for parenchymal infection (OR 1.9, 95% CI 0.68-2.6, p = 0.13 and OR 2.3, 95% CI 0.89-3.7, p = 0.091, respectively). Lower UTI did not differ from the controls. The frequency of the genotypes and alleles of IL-6, CXCR1, and TNFα SNPs did not differ significantly among the different groups of the study. CONCLUSION IL-8 -251A/T and +781C/T SNPs are associated with susceptibility to renal parenchymal infection in children and could be implicated in APN risk. However, none of these variants could clearly and independently predict this risk.
Collapse
Affiliation(s)
- Almontaser Hussein
- Pediatric Nephrology, Children's Hospital, Assiut University, Egypt; Genetic Unit, Children's Hospital, Assiut University, Egypt.
| | - Eman Askar
- Children's Hospital, Assiut University, Egypt
| | - Ahlam Badawy
- Pediatric Nephrology, Children's Hospital, Assiut University, Egypt
| | - Khaled Saad
- Children's Hospital, Assiut University, Egypt
| | - Asmaa Zahran
- Clinical Pathology, SECI, Assiut University, Egypt
| | | |
Collapse
|
25
|
Simpson AC, Schissler JR, Rosychuk RA, Moore AR. The frequency of urinary tract infection and subclinical bacteriuria in dogs with allergic dermatitis treated with oclacitinib: a prospective study. Vet Dermatol 2017; 28:485-e113. [PMID: 28513001 DOI: 10.1111/vde.12450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Andrew C. Simpson
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; 300 West Drake Road Fort Collins CO 80525 USA
| | - Jennifer R. Schissler
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; 300 West Drake Road Fort Collins CO 80525 USA
| | - Rod A.W. Rosychuk
- Department of Clinical Sciences; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; 300 West Drake Road Fort Collins CO 80525 USA
| | - A Russell Moore
- Department of Microbiology, Immunology, and Pathology; College of Veterinary Medicine and Biomedical Sciences; Colorado State University; 311 Diagnostic Medical Center 300 West Drake Fort Collins CO 80524 USA
| |
Collapse
|
26
|
Toll-like receptor 7 is overexpressed in the bladder of Hunner-type interstitial cystitis, and its activation in the mouse bladder can induce cystitis and bladder pain. Pain 2017; 158:1538-1545. [DOI: 10.1097/j.pain.0000000000000947] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Sierra-Diaz E, Bravo Cuéllar A, Ortiz Lazareno PC, García Gutiérrez M, Georgina HF, Anaya Prado R. Urine TREM-1 as a marker of urinary tract infection in children. J Int Med Res 2017; 45:631-638. [PMID: 28367708 PMCID: PMC5536650 DOI: 10.1177/0300060517696199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective Triggering receptor expressed on myeloid cells (TREM)-1 is a receptor that is thought to improve recognition of patients with true infection. In this study, we investigated whether Triggering receptor expressed on myeloid cells (TREM-1) is present in urine samples from children with urinary tract infection (UTI) and in samples from healthy children. Methods A total of 128 samples met the inclusion criteria for the study. Urine samples were processed for culture and urinalysis as a regular protocol for patients with UTI. Samples were classified according to culture and urinalysis results. TREM-1 protein expression was detected with flow cytometry and sTREM-1 was assessed by ELISA. Results Flow cytometry showed detectable expression of TREM-1 in 100% of samples, UTI and non-UTI groups (p < 0.001). Mean fluorescence intensity of TREM-1 was different between the groups (p < 0.001). Levels of sTREM-1 were detected in patients with UTI, but not in non-UTI patients. Conclusions All of our patients (healthy and diseased) showed TREM-1 expression. However, TREM-1 levels in patients with UTI tend to be higher and are associated with increased neutrophils and cytokine activity induced by bacteria.
Collapse
Affiliation(s)
- Erick Sierra-Diaz
- 1 Departamento de Urología, Centro Medico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México
| | - Alejandro Bravo Cuéllar
- 2 Departamento de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada, Colonia Independencia, Guadalajara, Jalisco, Mexico
| | - Pablo Cesar Ortiz Lazareno
- 3 Departamento de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Mariana García Gutiérrez
- 4 Departamento de Endocrinología Pediátrica, Hospital Angeles del Carmen, Guadalajara, Jalisco, Mexico
| | - Hernandez Flores Georgina
- 5 Departamento de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - Roberto Anaya Prado
- 6 Departamento de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| |
Collapse
|
28
|
Wu J, Miao Y, Abraham SN. The multiple antibacterial activities of the bladder epithelium. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:35. [PMID: 28217700 DOI: 10.21037/atm.2016.12.71] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The urinary tract is subject to frequent challenges from the gut microflora. Indeed, up to 40% of women will experience at least one urinary tract infection (UTI) during their lifetime. Uropathogenic Escherichia coli (UPEC) contribute to an overwhelming majority of these cases and they typically initiate UTIs by invading the superficial epithelium that lines the bladder lumen. In addition to serving as an effective barrier to noxious agents found in urine, bladder epithelial cells (BECs) play a key physiological role in regulating bladder volume to accommodate urine flow. UPEC appear to coopt this latter property to circumvent this normally impregnable epithelial barrier. However, in spite of this shortcoming, recent studies suggest that BECs possess several immune mechanisms to combat bacterial invasion including expulsion of invading bacteria back into the bladder lumen following infection. These antibacterial activities of BECs are triggered and coordinated by sensory molecules located on the epithelial cell membrane and within the cells. Although, they are the primary targets of microbial attack, BECs appear to be equipped with a diverse repertoire of defense schemes to fend off many of these microbial challenges.
Collapse
Affiliation(s)
- Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuxuan Miao
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N Abraham
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA;; Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA;; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore
| |
Collapse
|
29
|
Altered Expression of TLR2 and TLR4 on Peripheral CD14+ Blood Monocytes in Children with Urinary Tract Infection. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6052891. [PMID: 27252945 PMCID: PMC4871981 DOI: 10.1155/2016/6052891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/08/2016] [Accepted: 04/18/2016] [Indexed: 12/15/2022]
Abstract
Urinary tract infection (UTI) is the second most common bacterial infection, after otitis media, in infants and children. The mechanisms of disease susceptibility and the role of immunity in the pathogenesis of UTI in children have been evaluated. In recent years, Toll-Like Receptors (TLRs) have been recognized as specific components of the innate immune system constituting important mediators in host immune recognition. The aim of the present study was to determine ΤLR2 and TLR4 expression during the acute phase of UTI in infants and children by measuring the CD14/TLR2 and CD14/TLR4 expression on monocytes. We also attempted to compare the TLRs expression with the immunological status of the patients to healthy children. The study group consisted of 60 children (36 females and 24 males) and the control group included 60 age-matched pediatric subjects (27 females and 33 males). In our study, no antibody deficiency was found either in the children with UTI or in healthy subjects. There might be a connection between low IgA, IgG, and IgG subclasses serum levels and UTI as there was a statistically significant difference between patients and healthy children. A higher expression of CD14/TLR2 was revealed in patients (90,07%) compared to controls (85,48%) as well as CD14/TLR4 in patients (90,53%) compared to controls (87,25%) (statistically significant difference, p < 0,05). The results of this study could provide new understanding of UTIs' pathogenesis in children.
Collapse
|
30
|
Habibi M, Asadi Karam MR, Bouzari S. Transurethral instillation with fusion protein MrpH.FimH induces protective innate immune responses against uropathogenic Escherichia coli and Proteus mirabilis. APMIS 2016; 124:444-52. [PMID: 26918627 DOI: 10.1111/apm.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/12/2016] [Indexed: 12/25/2022]
Abstract
Urinary tract infections (UTIs) are among the most common infections in human. Innate immunity recognizes pathogen-associated molecular patterns (PAMPs) by Toll-like receptors (TLRs) to activate responses against pathogens. Recently, we demonstrated that MrpH.FimH fusion protein consisting of MrpH from Proteus mirabilis and FimH from Uropathogenic Escherichia coli (UPEC) results in the higher immunogenicity and protection, as compared with FimH and MrpH alone. In this study, we evaluated the innate immunity and adjuvant properties induced by fusion MrpH.FimH through in vitro and in vivo methods. FimH and MrpH.FimH were able to induce significantly higher IL-8 and IL-6 responses than untreated or MrpH alone in cell lines tested. The neutrophil count was significantly higher in the fusion group than other groups. After 6 h, IL-8 and IL-6 production reached a peak, with a significant decline at 24 h post-instillation in both bladder and kidney tissues. Mice instilled with the fusion and challenged with UPEC or P. mirabilis showed a significant decrease in the number of bacteria in bladder and kidney compared to control mice. The results of these studies demonstrate that the use of recombinant fusion protein encoding TLR-4 ligand represents an effective vaccination strategy that does not require the use of a commercial adjuvant. Furthermore, MrpH.FimH was presented as a promising vaccine candidate against UTIs caused by UPEC and P. mirabilis.
Collapse
Affiliation(s)
- Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
31
|
Symington JW, Wang C, Twentyman J, Boaitey NO, Schwendener R, Núñez G, Schilling JD, Mysorekar IU. ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1β-dependent manner. Mucosal Immunol 2015; 8:1388-99. [PMID: 25669147 PMCID: PMC4532666 DOI: 10.1038/mi.2015.7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 12/11/2014] [Indexed: 02/04/2023]
Abstract
Urinary tract infections (UTIs) are frequent, commonly recurrent, and costly. Deficiency in a key autophagy protein, ATG16L1, protects mice from infection with the predominant bacterial cause of UTIs, Uropathogenic E. coli (UPEC). Here, we report that loss of ATG16L1 in macrophages accounts for this protective phenotype. Compared with wild-type macrophages, macrophages deficient in ATG16L1 exhibit increased uptake of UPEC and enhanced secretion of interleukin-1β (IL-1β). The increased IL-1β production is dependent upon activation of the NLRP3 inflammasome and caspase-1. IL-1β secretion was also enhanced during UPEC infection of ATG16L1-deficient mice in vivo, and inhibition of IL-1β signaling abrogates the ATG16L1-dependent protection from UTIs. Our results argue that ATG16L1 normally suppresses a host-protective IL-1β response to UPEC by macrophages.
Collapse
Affiliation(s)
- Jane W. Symington
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Caihong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Joy Twentyman
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Nana Owusu Boaitey
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Reto Schwendener
- Laboratory of Liposome Research, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | - Joel D. Schilling
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO, USA,Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA,Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO, USA
| | - Indira U. Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri,Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO, USA,To whom correspondence should be addressed: Indira U. Mysorekar, Ph.D. Washington University School of Medicine Depts. of Obstetrics and Gynecology & Pathology and Immunology, 660 S. Euclid Ave., St. Louis, MO 63110 Phone: 314-747-1329 Fax: 314-747-0264
| |
Collapse
|
32
|
Hughes FM, Turner DP, Todd Purves J. The potential repertoire of the innate immune system in the bladder: expression of pattern recognition receptors in the rat bladder and a rat urothelial cell line (MYP3 cells). Int Urol Nephrol 2015; 47:1953-64. [PMID: 26490556 DOI: 10.1007/s11255-015-1126-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/24/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE The urothelium is a frontline sensor of the lower urinary tract, sampling the bladder lumen and stimulating an immune response to infectious and noxious agents. Pattern recognition receptors (PRRs) recognize such agents and coordinate the innate response, often by forming inflammasomes that activate caspase-1 and the release of interleukin-1. We have shown the presence of one PRR (NLRP3) in the urothelia and its central role in the inflammatory response to cyclophosphamide. The purpose of this study was to (1) assess the likely range of the PPR response by assessing the repertoire present in the rat bladder and (2) determine the utility of the MYP3 rat urothelia cell line for in vitro studies by assessing its PPR repertoire and functional responsiveness. METHODS Immunohistochemistry was performed for seven PPRs (NLRP1, NLRP3, NLRP6, NLRP7, NLRP12, NLRC4 and AIM2) on bladder sections and MYP3 cells. For functionality, MYP3 cells were challenged with the quintessential NLRP3 activator ATP and assessed for caspase-1 activation. RESULTS All PPRs examined were expressed in the bladder and localized to the urothelial layer with several also in the detrusor (none in the interstitia). MYP3 cells also expressed all PRRs with a variable intracellular location. ATP-stimulated caspase-1 activity in MYP3 cells in a dose-dependent manner was reduced by knockdown of NLRP3 expression. CONCLUSION The results suggest that the bladder possesses the capacity to initiate an innate immune response to a wide array of uropathological agents and the MYP3 cells will provide an excellent investigational tool for this field.
Collapse
Affiliation(s)
- Francis M Hughes
- Division of Urology, Department of Surgery, Duke University Medical Center, DUMC Box 3831, Durham, NC, 27710, USA. .,Department of Urology, Medical University of South Carolina, Charleston, SC, USA.
| | - David P Turner
- Department of Pathology and Lab Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - J Todd Purves
- Division of Urology, Department of Surgery, Duke University Medical Center, DUMC Box 3831, Durham, NC, 27710, USA.,Department of Urology, Medical University of South Carolina, Charleston, SC, USA.,Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
33
|
Nesi G, Nobili S, Cai T, Caini S, Santi R. Chronic inflammation in urothelial bladder cancer. Virchows Arch 2015; 467:623-633. [PMID: 26263854 DOI: 10.1007/s00428-015-1820-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023]
Abstract
The association between inflammation and cancer has been pointed out in epidemiological and clinical studies, revealing how chronic inflammation may contribute to carcinogenesis in various malignancies. However, the molecular events leading to malignant transformation in a chronically inflamed environment are not fully understood. In urothelial carcinoma of the urinary bladder, inflammation plays a dual role. On the one hand, chronic inflammation is a well-established risk factor for the development of bladder cancer (BC), as seen in Schistosoma haematobium infection. On the other, intravesical therapy by bacillus Calmette-Guérin (BCG), which induces inflammation, offers protection against cancer recurrence. The large variety of pro-inflammatory mediators expressed by BC and immune cells binds to specific receptors which control signalling pathways. These activate transcription of a plethora of downstream factors. This review summarizes recent data regarding inflammation and urothelial carcinoma, with special emphasis on the role the inflammatory response plays in BC recurrence risk and progression.
Collapse
Affiliation(s)
- Gabriella Nesi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Stefania Nobili
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, Largo Medaglie d'Oro 9, 50011, Trento, Italy
| | - Saverio Caini
- Unit of Molecular and Nutritional Epidemiology, Institute for Cancer Research and Prevention (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Raffaella Santi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
34
|
Evaluation of the effect of MPL and delivery route on immunogenicity and protectivity of different formulations of FimH and MrpH from uropathogenic Escherichia coli and Proteus mirabilis in a UTI mouse model. Int Immunopharmacol 2015; 28:70-8. [PMID: 26033493 DOI: 10.1016/j.intimp.2015.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 11/21/2022]
Abstract
Urinary tract infections (UTIs) caused by Escherichia coli and Proteus mirabilis are an important cause of morbidity and with the high rate of relapse and spread of multi-drug resistant pathogens, pose a significant public health challenge worldwide. Lack of an efficacious commercial vaccine targeting both uropathogens makes development of a combined vaccine highly desirable. In this study the immunogenicity and protective efficacy of different formulations of FimH of UPEC, MrpH of P. mirabilis and their fusion protein (MrpH.FimH) subcutaneously administered with and without Monophosphoryl lipid A (MPL) adjuvant were evaluated. Our data showed that the subcutaneously administered proteins induced both serum and mucosal IgG, which MPL significantly improved developing a mixed Th1 and Th2 immune response. However, the preparations induced a higher systemic and mucosal IgG and IL-2 levels by this route compared to the intranasal. Immunization of mice with MrpH.FimH fusion with MPL or a mixture of FimH, MrpH and MPL conferred the highest protection of the bladder and kidneys when challenged with UPEC and P. mirabilis in a UTI mouse model. Therefore considering these results MrpH.FimH fusion with MPL administered subcutaneously or intranasally could be a promising vaccine candidate for elimination of UTIs caused by UPEC and P. mirabilis.
Collapse
|
35
|
Thompson DB, Siref LE, Feloney MP, Hauke RJ, Agrawal DK. Immunological basis in the pathogenesis and treatment of bladder cancer. Expert Rev Clin Immunol 2015; 11:265-79. [PMID: 25391391 PMCID: PMC4637163 DOI: 10.1586/1744666x.2015.983082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pathogenesis and transition of normal urothelium into bladder carcinoma are multifactorial processes. Chronic inflammation causes initiation and progression of the underlying pathophysiology of invasive and metastatic cancer. A dichotomy is observed in the role of immune cells in bladder cancer. While the immune response defends the host by suppressing neoplastic growth, several immune cells, including neutrophils, macrophages and T-lymphocytes, promote tumor development and progression. The levels of human neutrophil peptide-1, -2 and -3, produced by neutrophils, increase in bladder cancer and might promote tumor angiogenesis and growth. The effect of macrophages is primarily mediated by pro-inflammatory cytokines, IL-6 and TNF-α. In addition, the underlying immunological mechanisms of two treatments, BCG and cytokine gene-modified tumor vaccines, and future directions are critically discussed.
Collapse
Affiliation(s)
- David B Thompson
- Center for Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | | | | | |
Collapse
|
36
|
Spencer JD, Schwaderer AL, Becknell B, Watson J, Hains DS. The innate immune response during urinary tract infection and pyelonephritis. Pediatr Nephrol 2014; 29:1139-49. [PMID: 23732397 PMCID: PMC3800267 DOI: 10.1007/s00467-013-2513-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/16/2013] [Accepted: 05/08/2013] [Indexed: 11/27/2022]
Abstract
Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.
Collapse
Affiliation(s)
- John David Spencer
- Department of Pediatrics, Division of Nephrology, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA,
| | | | | | | | | |
Collapse
|
37
|
Bens M, Vimont S, Ben Mkaddem S, Chassin C, Goujon JM, Balloy V, Chignard M, Werts C, Vandewalle A. Flagellin/TLR5 signalling activates renal collecting duct cells and facilitates invasion and cellular translocation of uropathogenic Escherichia coli. Cell Microbiol 2014; 16:1503-17. [PMID: 24779433 DOI: 10.1111/cmi.12306] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/03/2014] [Accepted: 04/18/2014] [Indexed: 12/11/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) colonizing kidneys is the main cause of acute pyelonephritis. TLR5 that senses flagellin was shown to be highly expressed in the bladder and to participate in host defence against flagellated UPEC, although its role in kidneys still remains elusive. Here we show that TLR5 is expressed in renal medullary collecting duct (MCD) cells, which represent a preferential site of UPEC adhesion. Flagellin, like lipopolysaccharide, stimulated the production of the chemoattractant chemokines CXCL1 and CXCL2, and subsequent migration capacity of neutrophils in cultured wild-type (WT) and Tlr4(-/-) MCDs, but not in Tlr5(-/-) MCDs. UPEC can translocate across intact MCD layers without altering tight junctions. Strikingly, the invasion capacity and transcellular translocation of the UPEC strain HT7 were significantly lower in Tlr5(-/-) than in WT MCDs. The non-motile HT7ΔfliC mutant lacking flagellin also exhibited much lower translocation capacities than the HT7 isolates. Finally, Tlr5(-/-) kidneys exhibited less infiltrating neutrophils than WT kidneys one day after the transurethral inoculation of HT7, and greater delayed renal bacterial loads in the day 4 post-infected Tlr5(-/-) kidneys. Overall, these findings indicate that the epithelial TLR5 participates to renal antibacterial defence, but paradoxically favours the translocation of UPEC across intact MCD cell layers.
Collapse
Affiliation(s)
- Marcelle Bens
- Centre de Recherche sur l'Inflammation (CRI), UMRS 1149, Université Denis Diderot - Paris 7, Paris, France; Groupe ATIP-AVENIR INSERM, Université Denis Diderot - Paris 7, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nielsen KL, Dynesen P, Larsen P, Jakobsen L, Andersen PS, Frimodt-Møller N. Role of urinary cathelicidin LL-37 and human β-defensin 1 in uncomplicated Escherichia coli urinary tract infections. Infect Immun 2014; 82:1572-8. [PMID: 24452682 PMCID: PMC3993379 DOI: 10.1128/iai.01393-13] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/14/2014] [Indexed: 01/19/2023] Open
Abstract
Cathelicidin (LL-37) and human β-defensin 1 (hBD-1) are important components of the innate defense in the urinary tract. The aim of this study was to characterize whether these peptides are important for developing uncomplicated Escherichia coli urinary tract infections (UTIs). This was investigated by comparing urinary peptide levels of UTI patients during and after infection to those of controls, as well as characterizing the fecal flora of participants with respect to susceptibility to LL-37 and in vivo virulence. Forty-seven UTI patients and 50 controls who had never had a UTI were included. Participants were otherwise healthy, premenopausal, adult women. LL-37 MIC levels were compared for fecal E. coli clones from patients and controls and were also compared based on phylotypes (A, B1, B2, and D). In vivo virulence was investigated in the murine UTI model by use of selected fecal isolates from patients and controls. On average, UTI patients had significantly more LL-37 in urine during infection than postinfection, and patient LL-37 levels postinfection were significantly lower than those of controls. hBD-1 showed similar urine levels for UTI patients and controls. Fecal E. coli isolates from controls had higher LL-37 susceptibility than fecal and UTI E. coli isolates from UTI patients. In vivo studies showed a high level of virulence of fecal E. coli isolates from both patients and controls and showed no difference in virulence correlated with the LL-37 MIC level. The results indicate that the concentration of LL-37 in the urinary tract and low susceptibility to LL-37 may increase the likelihood of UTI in a complex interplay between host and pathogen attributes.
Collapse
Affiliation(s)
- Karen L. Nielsen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen S, Denmark
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | | | | | - Lotte Jakobsen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen S, Denmark
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| | - Paal S. Andersen
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen S, Denmark
| | - Niels Frimodt-Møller
- Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen S, Denmark
- Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark
| |
Collapse
|
39
|
Vandewalle A, Tourneur E, Bens M, Chassin C, Werts C. Calcineurin/NFAT signaling and innate host defence: a role for NOD1-mediated phagocytic functions. Cell Commun Signal 2014; 12:8. [PMID: 24479879 PMCID: PMC3910266 DOI: 10.1186/1478-811x-12-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/23/2014] [Indexed: 12/12/2022] Open
Abstract
The calcineurin/nuclear factor of activated T cells (NFATs) signaling pathway plays a central role in T cell mediated adaptive immune responses, but a number of recent studies demonstrated that calcineurin/NFAT signaling also plays a key role in the control of the innate immune response by myeloid cells. Calcineurin inhibitors, such as cyclosporine A (CsA) and tacrolimus (FK506), are commonly used in organ transplantation to prevent graft rejection and in a variety of immune diseases. These immunosuppressive drugs have adverse effects and significantly increase host's susceptibility towards bacterial or fungal infections. Recent studies highlighted the role of NFAT signaling in fungal infection and in the control of the pattern recognition receptor nucleotide-binding oligomerization domain-containing protein 1 (NOD1), which predominantly senses invasive Gram-negative bacteria and mediates neutrophil phagocytic functions. This review summarises some of the current knowledge concerning the role of NFAT signaling in the innate immune response and the recent advances on NFAT-dependent inhibition of NOD1-mediated innate immune response caused by CsA, which may contribute to sensitizing transplant recipients to bacterial infection.
Collapse
Affiliation(s)
- Alain Vandewalle
- Centre de Recherche sur l'Inflammation (CRI), UMRS 1149 et Groupe ATIP-AVENIR, Université Denis Diderot - Paris 7, Paris, France.
| | | | | | | | | |
Collapse
|
40
|
Association of interleukin-10 gene promoter polymorphisms with susceptibility to acute pyelonephritis in children. Folia Microbiol (Praha) 2014; 59:307-13. [PMID: 24449078 DOI: 10.1007/s12223-014-0303-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/12/2014] [Indexed: 01/06/2023]
Abstract
Interleukin-10 (IL-10) is a potent inhibitor of leukocyte chemotaxis, bacterial killing in phagocytes and synthesis of pro-inflammatory cytokines and chemokines, and recent studies have suggested an important role for this immunoregulatory cytokine in the pathogenesis of urinary tract infections (UTIs). Therefore, the gene encoding IL-10 (IL10) is an attractive candidate for association studies attempting to identify susceptibility genes conferring risk of UTIs. In this case-control study, we aimed to investigate the association of single nucleotide polymorphisms (SNPs) in the promoter region of IL10 with acute pyelonephritis in the Slovak population. Polymerase chain reaction with sequence-specific primers was used to analyse IL10 -1082A/G (rs1800896), -819C/T (rs1800871) and -592C/A (rs1800872) SNPs in 147 children with acute pyelonephritis and 215 healthy controls. Comparison of patients with healthy controls using the logistic regression analysis revealed significantly increased risk of developing recurrent attacks of acute pyelonephritis for -1082 G allele in a dominant genetic model GG (GG + AG vs. AA, P = 0.019, odds ratio (OR) = 2.26). A similar tendency was also found when the recurrent acute pyelonephritis subgroup was compared to episodic pyelonephritis cases (GG + AG vs. AA, P = 0.009, OR = 3.38). In conclusion, our results suggest that IL10 -1082 A/G SNP is a susceptibility factor for development of recurrent attacks of acute pyelonephritis.
Collapse
|
41
|
Abstract
Urinary tract infections (UTIs) are among the most common of bacterial infections in humans. Although a number of Gram-negative bacteria can cause UTIs, most cases are due to infection by uropathogenic E. coli (UPEC). Genomic studies have shown that UPEC encode a number of specialized activities that allow the bacteria to initiate and maintain infections in the environment of the urinary tract. Proteomic analyses have complemented the genomic data and have documented differential patterns of protein synthesis for bacteria growing ex vivo in human urine or recovered directly from the urinary tracts of infected mice. These studies provide valuable insights into the molecular basis of UPEC pathogenesis and have aided the identification of putative vaccine targets. Despite the substantial progress that has been achieved, many future challenges remain in the application of proteomics to provide a comprehensive view of bacterial pathogenesis in both acute and chronic UTIs.
Collapse
Affiliation(s)
- Phillip Cash
- Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen AB32 6QX, Scotland
| |
Collapse
|
42
|
Hughes FM, Vivar NP, Kennis JG, Pratt-Thomas JD, Lowe DW, Shaner BE, Nietert PJ, Spruill LS, Purves JT. Inflammasomes are important mediators of cyclophosphamide-induced bladder inflammation. Am J Physiol Renal Physiol 2013; 306:F299-308. [PMID: 24285499 DOI: 10.1152/ajprenal.00297.2013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bladder inflammation (cystitis) underlies numerous bladder pathologies and is elicited by a plethora of agents such as urinary tract infections, bladder outlet obstruction, chemotherapies, and catheters. Pattern recognition receptors [Toll-like receptors (TLRs) and Nod-like receptors (NLRs)] that recognize pathogen- and/or damage-associated molecular patterns (PAMPs and/or DAMPs, respectively) are key components of the innate immune system that coordinates the production (TLRs) and maturation (NLRs) of proinflammatory IL-1β. Despite multiple studies of TLRs in the bladder, none have investigated NLRs beyond one small survey. We now demonstrate that NLRP3 and NLRC4, and their binding partners apoptosis-associated speck-like protein containing a COOH-terminal caspase recruitment domain (ASC) and NLR family apoptosis inhibitory protein (NAIP), are expressed in the bladder and localized predominantly to the urothelia. Activated NLRs form inflammasomes that activate caspase-1. Placement of a NLRP3- or NLRC4-activating PAMP or NLRP3-activating DAMPs into the lumen of the bladder stimulated caspase-1 activity. To investigate inflammasomes in vivo, we induced cystitis with cyclophosphamide (CP, 150 mg/kg ip) in the presence or absence of the inflammasome inhibitor glyburide. Glyburide completely blocked CP-induced activation of caspase-1 and the production of IL-1β at 4 h. At 24 h, glyburide reduced two markers of inflammation by 30-50% and reversed much of the inflammatory morphology. Furthermore, glyburide reversed changes in bladder physiology (cystometry) induced by CP. In conclusion, NLRs/inflammasomes are present in the bladder urothelia and respond to DAMPs and PAMPs, whereas NLRP3 inhibition blocks bladder dysfunction in the CP model. The coordinated response of NLRs and TLRs in the urothelia represents a first-line innate defense that may provide an important target for pharmacological intervention.
Collapse
Affiliation(s)
- Francis M Hughes
- Jr., Dept. of Urology, CSB644, Medical Univ. of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yoon GS, Dong C, Gao N, Kumar A, Standiford TJ, Yu FSX. Interferon regulatory factor-1 in flagellin-induced reprogramming: potential protective role of CXCL10 in cornea innate defense against Pseudomonas aeruginosa infection. Invest Ophthalmol Vis Sci 2013; 54:7510-21. [PMID: 24130180 DOI: 10.1167/iovs.13-12453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE We previously showed that pre-exposure of the cornea to Toll-like receptor (TLR)5 ligand flagellin induces strong protective innate defense against microbial pathogens and hypothesized that flagellin modulates gene expression at the transcriptional levels. Thus, we sought to determine the role of one transcription factor, interferon regulatory factor (IRF1), and its target gene CXCL10 therein. METHODS Superarray was used to identify transcription factors differentially expressed in Pseudomonas aeruginosa-challenged human corneal epithelial cells (CECs) with or without flagellin pretreatment. The expression of CXCL10, IRF1, LI-8(CXCL2), and IFNγ was determined by PCR, immunohistochemistry, Western/dot blotting, and/or ELISA. IRF1 knockout mice, CXCL10 and IFNγ neutralization, and NK cell depletion were used to define in vivo regulation and function of CXCL10. The severity of P. aeruginosa was assessed using clinical scoring, slit-lamp microscopy, bacterial counting, polymorphonuclear leukocytes (PMN) infiltration, and macrophage inflammatory protein 2/Chemokine (C-X-C motif) ligand 2 (MIP-2/CXCL2) expression. RESULTS Flagellin pretreatment drastically affected P. aeruginosa-induced IRF1 expression in human CECs. However, flagellin pretreatment augmented the P. aeruginosa-induced expression of Irf1 and its target gene Cxcl10 in B6 mouse corneas. Irf1 deficiency reduced infection-triggered CXCL10 expression, increased keratitis severity, and attenuated flagellin-elicited protection compared to values in wild-type (WT) controls. CXCL10 neutralization in the cornea of WT mice displayed pathogenesis similar to that of IRF1⁻/⁻ mice. IFNγ receptor neutralization and NK cell depletion prevented flagellin-augmented IRF1 and CXCL10 expression and increased the susceptibility to P. aeruginosa infection in mouse corneas. CONCLUSIONS IRF1 plays a role in the corneal innate immune response by regulating CXCL10 expression. IFNγ-producing NK cells augment the epithelial expression of IRF1 and CXCL10 and thus contribute to the innate defense of the cornea against P. aeruginosa infection.
Collapse
Affiliation(s)
- Gi Sang Yoon
- Department of Anatomy and Cell Biology, Kresge Eye Institute, Wayne State University, Detroit, Michigan
| | | | | | | | | | | |
Collapse
|
44
|
Ingersoll MA, Albert ML. From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa. Mucosal Immunol 2013; 6:1041-53. [PMID: 24064671 DOI: 10.1038/mi.2013.72] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/20/2013] [Indexed: 02/04/2023]
Abstract
The pathogenesis of urinary tract infection and mechanisms of the protective effect of Bacillus Calmette-Guerin (BCG) therapy for bladder cancer highlight the importance of studying the bladder as a unique mucosal surface. Innate responses to bacteria are reviewed, and although our collective knowledge remains incomplete, we discuss how adaptive immunity may be generated following bacterial challenge in the bladder microenvironment. Interestingly, the widely held belief that the bladder is sterile has been challenged recently, indicating the need for further study of the impact of commensal microorganisms on the immune response to uropathogen infection or intentional instillation of BCG. This review addresses the aspects of bladder biology that have been well explored and defines what still must be discovered about the immunobiology of this understudied organ.
Collapse
Affiliation(s)
- M A Ingersoll
- 1] Unité d'Immunobiologie des Cellules Dendritiques, Department of Immunology, Institut Pasteur, Paris, France [2] INSERM U818, Department of Immunology, Institut Pasteur, Paris, France [3] Université Paris Descartes, Paris, France
| | | |
Collapse
|
45
|
LaRue H, Ayari C, Bergeron A, Fradet Y. Toll-like receptors in urothelial cells—targets for cancer immunotherapy. Nat Rev Urol 2013; 10:537-45. [DOI: 10.1038/nrurol.2013.153] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Umpiérrez A, Scavone P, Romanin D, Marqués JM, Chabalgoity JA, Rumbo M, Zunino P. Innate immune responses to Proteus mirabilis flagellin in the urinary tract. Microbes Infect 2013; 15:688-96. [PMID: 23817034 DOI: 10.1016/j.micinf.2013.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 11/29/2022]
Abstract
Flagella are bacterial virulence factors allowing microorganisms to move over surfaces. Flagellin, the structural component of flagella, is sensed by the host via Toll and NOD-like receptors and triggers pro-inflammatory responses. The use of Toll-like receptors agonists to modulate innate immune responses has aroused great interest as an alternative to improve the treatment of diverse infectious diseases. Proteus mirabilis is a Gram negative bacterium that causes urinary tract infections in humans. In the present work we used different approaches to study the ability of P. mirabilis flagellin to induce an innate immune response. We demonstrated that P. mirabilis flagellin has the ability to induce pro-inflammatory chemokines expression in T24 bladder cultures cells and in the mouse bladder after instillation. It was evidenced also that flagellin from different P. mirabilis strains differed in their capacity to induce an innate immune response in the CacoCCL20-Luc system. Also, flagellin elicited inflammation, with recruitment of leukocytes to the bladder epithelium. Flagellin instillation before an experimental P. mirabilis infection showed that the inflammatory response due to flagellin did not help to clear the infection but favored bacterial colonization. Thus, induction of inflammatory response in the bladder did not contribute to P. mirabilis infection neutralization.
Collapse
Affiliation(s)
- Ana Umpiérrez
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, PC 11600 Montevideo, Uruguay
| | | | | | | | | | | | | |
Collapse
|
47
|
Intravesical Bacille Calmette-Guérin Eradicates Bacteriuria in Antibiotic-naïve Bladder Cancer Patients. Eur Urol 2013; 63:832-5. [DOI: 10.1016/j.eururo.2012.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/12/2012] [Indexed: 11/20/2022]
|
48
|
Tourneur E, Ben Mkaddem S, Chassin C, Bens M, Goujon JM, Charles N, Pellefigues C, Aloulou M, Hertig A, Monteiro RC, Girardin SE, Philpott DJ, Rondeau E, Elbim C, Werts C, Vandewalle A. Cyclosporine A impairs nucleotide binding oligomerization domain (Nod1)-mediated innate antibacterial renal defenses in mice and human transplant recipients. PLoS Pathog 2013; 9:e1003152. [PMID: 23382681 PMCID: PMC3561241 DOI: 10.1371/journal.ppat.1003152] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 12/08/2012] [Indexed: 12/12/2022] Open
Abstract
Acute pyelonephritis (APN), which is mainly caused by uropathogenic Escherichia coli (UPEC), is the most common bacterial complication in renal transplant recipients receiving immunosuppressive treatment. However, it remains unclear how immunosuppressive drugs, such as the calcineurin inhibitor cyclosporine A (CsA), decrease renal resistance to UPEC. Here, we investigated the effects of CsA in host defense against UPEC in an experimental model of APN. We show that CsA-treated mice exhibit impaired production of the chemoattractant chemokines CXCL2 and CXCL1, decreased intrarenal recruitment of neutrophils, and greater susceptibility to UPEC than vehicle-treated mice. Strikingly, renal expression of Toll-like receptor 4 (Tlr4) and nucleotide-binding oligomerization domain 1 (Nod1), neutrophil migration capacity, and phagocytic killing of E. coli were significantly reduced in CsA-treated mice. CsA inhibited lipopolysaccharide (LPS)-induced, Tlr4-mediated production of CXCL2 by epithelial collecting duct cells. In addition, CsA markedly inhibited Nod1 expression in neutrophils, macrophages, and renal dendritic cells. CsA, acting through inhibition of the nuclear factor of activated T-cells (NFATs), also markedly downregulated Nod1 in neutrophils and macrophages. Silencing the NFATc1 isoform mRNA, similar to CsA, downregulated Nod1 expression in macrophages, and administration of the 11R-VIVIT peptide inhibitor of NFATs to mice also reduced neutrophil bacterial phagocytosis and renal resistance to UPEC. Conversely, synthetic Nod1 stimulating agonists given to CsA-treated mice significantly increased renal resistance to UPEC. Renal transplant recipients receiving CsA exhibited similar decrease in NOD1 expression and neutrophil phagocytosis of E. coli. The findings suggest that such mechanism of NFATc1-dependent inhibition of Nod1-mediated innate immune response together with the decrease in Tlr4-mediated production of chemoattractant chemokines caused by CsA may contribute to sensitizing kidney grafts to APN.
Collapse
Affiliation(s)
- Emilie Tourneur
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Université Paris 7 - Denis Diderot, Paris, France
| | - Sanae Ben Mkaddem
- INSERM U699, Paris, France; Université Paris 7 - Denis Diderot, Paris, France
| | - Cécilia Chassin
- INSERM U699, Paris, France; Université Paris 7 - Denis Diderot, Paris, France
| | - Marcelle Bens
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Université Paris 7 - Denis Diderot, Paris, France
| | - Jean-Michel Goujon
- Université de Poitiers, CHU Poitiers; Service d'Anatomie et Cytologie Pathologiques, Poitiers, France
| | - Nicolas Charles
- INSERM U699, Paris, France; Université Paris 7 - Denis Diderot, Paris, France
| | | | - Meryem Aloulou
- INSERM U699, Paris, France; Université Paris 7 - Denis Diderot, Paris, France
| | - Alexandre Hertig
- Service Urgences Néphrologiques et Transplantation Rénale and INSERM U702, Hôpital Tenon; Université Paris 6 - Pierre et Marie Curie, Paris, France
| | - Renato C. Monteiro
- INSERM U699, Paris, France; Université Paris 7 - Denis Diderot, Paris, France
| | - Stephen E. Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Eric Rondeau
- Service Urgences Néphrologiques et Transplantation Rénale and INSERM U702, Hôpital Tenon; Université Paris 6 - Pierre et Marie Curie, Paris, France
| | - Carole Elbim
- INSERM UMR-S 945, Hôpital Pitié-Salpêtrière, Université Paris 6 - Pierre et Marie Curie, Paris, France
| | - Catherine Werts
- Institut Pasteur, G5 Biologie et Génétique des Parois Bactériennes, Paris, France
| | - Alain Vandewalle
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Université Paris 7 - Denis Diderot, Paris, France
- * E-mail:
| |
Collapse
|
49
|
Roundy LM, Jia W, Zhang J, Ye X, Prestwich GD, OottamasathienQ S. LL-37 induced cystitis and the receptor for advanced glycation end-products (RAGE) pathway. ACTA ACUST UNITED AC 2013; 4:1-8. [DOI: 10.4236/abb.2013.48a2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Karam MRA, Oloomi M, Mahdavi M, Habibi M, Bouzari S. Assessment of immune responses of the flagellin (FliC) fused to FimH adhesin of Uropathogenic Escherichia coli. Mol Immunol 2012; 54:32-9. [PMID: 23220068 DOI: 10.1016/j.molimm.2012.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 10/25/2012] [Accepted: 11/05/2012] [Indexed: 01/21/2023]
Abstract
Urinary tract infection (UTI) caused by Uropathogenic Escherichia coli (UPEC) is one of the most common infectious diseases in the world. Despite extensive efforts, a vaccine that protects humans against UTI is currently missing. In this study, the immunogenicity of flagellin (FliC) of UPEC strain in different vaccine combinations with FimH antigen of UPEC and conventional adjuvant Montanide ISA 206 was assessed. Finally, efficacy of the immune responses was evaluated for protection of the bladder and kidney of challenged immunized mice. Mice immunized with the fusion FimH·FliC induced significantly higher anti-FliC humoral (IgG1) and cellular (Th1 and Th2) immune responses than with FliC alone or FliC admixed with FimH. The Montanide enhanced the immune responses of FliC antigen and directed the anti-FliC responses preferentially toward Th1. The FliC vaccine combinations reduced bladder infection as compared to control mice. The fusion FimH·FliC and FliC admixed with FimH and Montanide combinations gave the best results in protection of kidney infection, compared to the control mice. The results of this study propose new promising vaccine combinations based on the FliC antigen and Montanide against UTI caused by UPEC.
Collapse
|