1
|
Sanchez S, Dangi T, Awakoaiye B, Lew MH, Irani N, Fourati S, Penaloza-MacMaster P. Delayed reinforcement of costimulation improves the efficacy of mRNA vaccines in mice. J Clin Invest 2024; 134:e183973. [PMID: 39432667 PMCID: PMC11645141 DOI: 10.1172/jci183973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
mRNA vaccines have demonstrated efficacy during the COVID-19 pandemic and are now being investigated for multiple diseases. However, concerns linger about the durability of immune responses, and the high incidence of breakthrough infections among vaccinated individuals highlights the need for improved mRNA vaccines. In this study, we investigated the effects of reinforcing costimulation via 4-1BB, a member of the TNF receptor superfamily, on immune responses elicited by mRNA vaccines. We first immunized mice with mRNA vaccines, followed by treatment with 4-1BB costimulatory antibodies to reinforce the 4-1BB pathway at different time points after vaccination. Consistent with prior studies, reinforcing 4-1BB costimulation on the day of vaccination did not result in a substantial improvement in vaccine responses. However, reinforcing 4-1BB costimulation on day 4 after vaccination, when 4-1BB expression levels were highest, resulted in a profound improvement in CD8+ T cell responses associated with enhanced protection against pathogen challenges. A similar clinical benefit was observed in a therapeutic cancer vaccine model. We also report time-dependent effects with OX40, another costimulatory molecule of the TNF receptor superfamily. These findings demonstrate that delayed reinforcement of costimulation may exert an immunologic benefit, providing insights for the development of more effective mRNA vaccines for infectious diseases and cancer.
Collapse
MESH Headings
- mRNA Vaccines/administration & dosage
- mRNA Vaccines/immunology
- Immunogenicity, Vaccine
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Vaccination/methods
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- OX40 Ligand/agonists
- OX40 Ligand/immunology
- OX40 Ligand/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/immunology
- Mice, Inbred C57BL
- Animals
- Mice
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Immunization, Secondary/methods
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Male
- Female
Collapse
Affiliation(s)
| | | | | | | | | | - Slim Fourati
- Department of Medicine, Division of Allergy and Immunology, Feinberg School of Medicine and Center for Human Immunobiology, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
2
|
Sanchez S, Dangi T, Awakoaiye B, Irani N, Fourati S, Richner J, Penaloza-MacMaster P. Time-dependent enhancement of mRNA vaccines by 4-1BB costimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582992. [PMID: 38496467 PMCID: PMC10942304 DOI: 10.1101/2024.03.01.582992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
mRNA vaccines have demonstrated efficacy against COVID-19. However, concerns regarding waning immunity and breakthrough infections have motivated the development of next-generation vaccines with enhanced efficacy. In this study, we investigated the impact of 4-1BB costimulation on immune responses elicited by mRNA vaccines in mice. We first vaccinated mice with an mRNA vaccine encoding the SARS-CoV-2 spike antigen like the Moderna and Pfizer-BioNTech vaccines, followed by administration of 4-1BB costimulatory antibodies at various times post-vaccination. Administering 4-1BB costimulatory antibodies during the priming phase did not enhance immune responses. However, administering 4-1BB costimulatory antibodies after 96 hours elicited a significant improvement in CD8 T cell responses, leading to enhanced protection against breakthrough infections. A similar improvement in immune responses was observed with multiple mRNA vaccines, including vaccines against common cold coronavirus, human immunodeficiency virus (HIV), and arenavirus. These findings demonstrate a time-dependent effect by 4-1BB costimulation and provide insights for developing improved mRNA vaccines.
Collapse
Affiliation(s)
- Sarah Sanchez
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tanushree Dangi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bakare Awakoaiye
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nahid Irani
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Slim Fourati
- Department of Medicine, Division of Allergy and Immunology, Feinberg School of Medicine and Center for Human Immunobiology, Northwestern University, Chicago, IL 60611, USA
| | - Justin Richner
- Department of Microbiology & Immunology, University of Illinois Chicago College of Medicine, Chicago, IL 60612, USA
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Cummings SE, Delaney SP, St-Denis Bissonnette F, Stalker A, Muradia G, Mehic J, Graber TE, Alain T, Lavoie JR. SARS-CoV-2 antigen-carrying extracellular vesicles activate T cell responses in a human immunogenicity model. iScience 2024; 27:108708. [PMID: 38226155 PMCID: PMC10788222 DOI: 10.1016/j.isci.2023.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
Extracellular vesicles (EVs) are entering the clinical arena as novel biologics for infectious diseases, potentially serving as the immunogenic components of next generation vaccines. However, relevant human assays to evaluate the immunogenicity of EVs carrying viral antigens are lacking, contributing to challenges in translating rodent studies to human clinical trials. Here, we engineered EVs to carry SARS-CoV-2 Spike to evaluate the immunogenicity of antigen-carrying EVs using human peripheral blood mononuclear cells (PBMCs). Delivery of Spike EVs to PBMCs resulted in specific immune cell activation as assessed through T cell activation marker expression. Further, Spike EVs were taken up largely by antigen-presenting cells (monocytes, dendritic cells and B cells). Taken together, this human PBMC-based system models physiologically relevant pathways of antigen delivery, uptake and presentation. In summary, the current study highlights the suitability of using human PBMCs for evaluating the immunogenicity of EVs engineered to carry antigens for infectious disease therapeutics.
Collapse
Affiliation(s)
- Sarah E. Cummings
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sean P. Delaney
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Frederic St-Denis Bissonnette
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Andrew Stalker
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Gauri Muradia
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Jelica Mehic
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Tyson E. Graber
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1 Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1 Canada
| | - Jessie R. Lavoie
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Xue H, Jiang J, Gao J, Guo M, Tang Q, Li X, Lu H, Sun X, Wu J, Zhang Y. Correlation of TGF-β signaling pathway gene polymorphisms with unexplained recurrent spontaneous abortion. Medicine (Baltimore) 2023; 102:e35697. [PMID: 37904417 PMCID: PMC10615491 DOI: 10.1097/md.0000000000035697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The association of key genes in the transforming growth factor-β (TGF-β) signaling pathway and their gene polymorphisms with unexplained recurrent spontaneous abortion (URSA) is unclear. OBJECTIVE To investigate the association of gene polymorphisms related to the TGF-β signaling pathway in URSA women. METHODS The study population consisted of 80 women with URSA and 90 normal control women, of which 10 women with URSA and 10 normal control women underwent high-throughput sequencing to select loci, and the remaining 70 women with URSA and 80 normal control women underwent flight mass spectrometry experiments to verify gene loci polymorphism. A total of 7 polymorphic loci in interleukin-6 (IL-6), TGF-β1, TNF-α, SMAD1, and TNFRSF4 genes were screened by high-throughput sequencing combined with a review of databases. An SNP flight mass spectrometer (Mass ARRAY detection system) was applied to detect the polymorphisms and their frequencies in 70 women with URSA and 80 normal control women at the 7 gene loci. RESULTS Among the 7 loci of IL-6, TGF-β1, TNF-α, SMAD1, and TNFRSF4 genes, 2 loci were found to have significantly different allele and genotype frequency distributions between the 70 URSA and 80 normal controls, one was the IL-6 gene -174G/C locus (rs1800795), the risk of disease was 2.636 and 3.231 times higher in individuals carrying the C allele and CC genotype than in those carrying the G allele and GG genotype, respectively; the other was the TGF-β1 gene -509T/C locus (rs1800469), and the risk of disease was 1.959 and 3.609 times higher in individuals carrying the T allele and TT genotype than in those carrying the C allele and CC genotype, respectively. The remaining 5 genetic loci have no statistically significant. CONCLUSION IL-6 gene -174G/C locus (rs1800795) genotype CC and allele C may be the causative factor of URSA, TGF-β1 gene -509T/C locus (rs1800469) genotype TT and allele T may be the causative factor of URSA, and polymorphisms of the 2 loci may be associated with URSA.
Collapse
Affiliation(s)
- Huiqin Xue
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jinsong Jiang
- Department of Paediatric Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jingbo Gao
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Min Guo
- Department of Paediatric Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Qiaoyin Tang
- Department of Paediatric Medicine, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xinyan Li
- Department of Obstetrics and Gynecology, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hongyong Lu
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiayu Sun
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jianrui Wu
- Department of Cytogenetic Laboratory, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, Children’s Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
5
|
Liu X, Zhao Z, Dai W, Liao K, Sun Q, Chen D, Pan X, Feng L, Ding Y, Wei S. The Development of Immunotherapy for the Treatment of Recurrent Glioblastoma. Cancers (Basel) 2023; 15:4308. [PMID: 37686584 PMCID: PMC10486426 DOI: 10.3390/cancers15174308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/10/2023] Open
Abstract
Recurrent glioblastoma (rGBM) is a highly aggressive form of brain cancer that poses a significant challenge for treatment in neuro-oncology, and the survival status of patients after relapse usually means rapid deterioration, thus becoming the leading cause of death among patients. In recent years, immunotherapy has emerged as a promising strategy for the treatment of recurrent glioblastoma by stimulating the body's immune system to recognize and attack cancer cells, which could be used in combination with other treatments such as surgery, radiation, and chemotherapy to improve outcomes for patients with recurrent glioblastoma. This therapy combines several key methods such as the use of monoclonal antibodies, chimeric antigen receptor T cell (CAR-T) therapy, checkpoint inhibitors, oncolytic viral therapy cancer vaccines, and combination strategies. In this review, we mainly document the latest immunotherapies for the treatment of glioblastoma and especially focus on rGBM.
Collapse
Affiliation(s)
- Xudong Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (X.L.); (Y.D.)
| | - Zihui Zhao
- School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China;
| | - Wufei Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering Research, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China;
| | - Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Qi Sun
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (Q.S.); (L.F.)
| | - Dongjiang Chen
- Division of Neuro-Oncology, USC Keck Brain Tumor Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - Xingxin Pan
- Department of Oncology, Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Lishuang Feng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (Q.S.); (L.F.)
| | - Ying Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (X.L.); (Y.D.)
| | - Shiyou Wei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Saghari M, Gal P, Gilbert S, Yateman M, Porter‐Brown B, Brennan N, Quaratino S, Wilson R, Grievink HW, Klaassen ES, Bergmann KR, Burggraaf J, Doorn MB, Powell J, Moerland M, Rissmann R. OX40L Inhibition Suppresses KLH‐driven Immune Responses in Healthy Volunteers: A Randomized Controlled Trial Demonstrating Proof‐of‐Pharmacology for KY1005. Clin Pharmacol Ther 2022; 111:1121-1132. [PMID: 35092305 PMCID: PMC9314635 DOI: 10.1002/cpt.2539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
Abstract
The safety, tolerability, immunogenicity, and pharmacokinetic (PK) profile of an anti‐OX40L monoclonal antibody (KY1005, currently amlitelimab) were evaluated. Pharmacodynamic (PD) effects were explored using keyhole limpet hemocyanin (KLH) and tetanus toxoid (TT) immunizations. Sixty‐four healthy male subjects (26.5 ± 6.0 years) were randomized to single doses of 0.006, 0.018, or 0.05 mg/kg, or multiple doses of 0.15, 0.45, 1.35, 4, or 12 mg/kg KY1005, or placebo (6:2). Serum KY1005 concentrations were measured. Antibody responses upon KLH and TT immunizations and skin response upon intradermal KLH administration were performed. PD data were analyzed using repeated measures analysis of covariances (ANCOVAs) and post hoc exposure‐response modeling. No serious adverse events occurred and all adverse events were temporary and of mild or moderate severity. A nonlinear increase in mean serum KY1005 concentrations was observed (median time to maximum concentration (Tmax) ~ 4 hours, geometric mean terminal half‐life (t½) ~ 24 days). Cutaneous blood perfusion (estimated difference (ED) −13.4 arbitrary unit (AU), 95% confidence interval (CI) −23.0 AU to −3.8 AU) and erythema quantified as average redness (ED −0.23 AU, 95% CI −0.35 AU to −0.11 AU) decreased after KY1005 treatment at doses of 0.45 mg/kg and above. Exposure‐response analysis displayed a statistically significant treatment effect on anti‐KLH antibody titers (IgG maximum effect (Emax) −0.58 AU, 95% CI −1.10 AU to −0.06 AU) and skin response (erythema Emax −0.20 AU, 95% CI −0.29 AU to −0.11 AU). Administration of KY1005 demonstrated an acceptable safety and tolerability profile and PK analyses displayed a nonlinear profile of KY1005. Despite the observed variability, skin challenge response after KY1005 treatment indicated pharmacological activity of KY1005. Therefore, KY1005 shows potential as a novel pharmacological treatment in immune‐mediated disorders.
Collapse
Affiliation(s)
- Mahdi Saghari
- Centre for Human Drug Research Leiden the Netherlands
- Leiden University Medical Centre Leiden the Netherlands
| | - Pim Gal
- Centre for Human Drug Research Leiden the Netherlands
- Leiden University Medical Centre Leiden the Netherlands
| | | | | | | | | | | | | | - Hendrika W. Grievink
- Centre for Human Drug Research Leiden the Netherlands
- Leiden Academic Centre for Drug Research Leiden the Netherlands
| | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research Leiden the Netherlands
- Leiden University Medical Centre Leiden the Netherlands
- Leiden Academic Centre for Drug Research Leiden the Netherlands
| | - Martijn B.A. Doorn
- Department of Dermatology Erasmus Medical Centre Rotterdam the Netherlands
| | | | - Matthijs Moerland
- Centre for Human Drug Research Leiden the Netherlands
- Leiden University Medical Centre Leiden the Netherlands
| | - Robert Rissmann
- Centre for Human Drug Research Leiden the Netherlands
- Leiden University Medical Centre Leiden the Netherlands
- Leiden Academic Centre for Drug Research Leiden the Netherlands
| |
Collapse
|
7
|
Mascarelli DE, Rosa RSM, Toscaro JM, Semionatto IF, Ruas LP, Fogagnolo CT, Lima GC, Bajgelman MC. Boosting Antitumor Response by Costimulatory Strategies Driven to 4-1BB and OX40 T-cell Receptors. Front Cell Dev Biol 2021; 9:692982. [PMID: 34277638 PMCID: PMC8277962 DOI: 10.3389/fcell.2021.692982] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 01/01/2023] Open
Abstract
Immunotherapy explores several strategies to enhance the host immune system’s ability to detect and eliminate cancer cells. The use of antibodies that block immunological checkpoints, such as anti–programed death 1/programed death 1 ligand and cytotoxic T-lymphocyte–associated protein 4, is widely recognized to generate a long-lasting antitumor immune response in several types of cancer. Evidence indicates that the elimination of tumors by T cells is the key for tumor control. It is well known that costimulatory and coinhibitory pathways are critical regulators in the activation of T cells. Besides blocking checkpoints inhibitors, the agonistic signaling on costimulatory molecules also plays an important role in T-cell activation and antitumor response. Therefore, molecules driven to costimulatory pathways constitute promising targets in cancer therapy. The costimulation of tumor necrosis factor superfamily receptors on lymphocytes surface may transduce signals that control the survival, proliferation, differentiation, and effector functions of these immune cells. Among the members of the tumor necrosis factor receptor superfamily, there are 4-1BB and OX40. Several clinical studies have been carried out targeting these molecules, with agonist monoclonal antibodies, and preclinical studies exploring their ligands and other experimental approaches. In this review, we discuss functional aspects of 4-1BB and OX40 costimulation, as well as the progress of its application in immunotherapies.
Collapse
Affiliation(s)
- Daniele E Mascarelli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Rhubia S M Rosa
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Jessica M Toscaro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isadora F Semionatto
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luciana P Ruas
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Carolinne T Fogagnolo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Medical School of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Gabriel C Lima
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Pro Rectory of Graduation, University of São Paulo, São Paulo, Brazil
| | - Marcio C Bajgelman
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.,Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil.,Medical School, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
8
|
Wang X, Lu J, Guo G, Yu J. Immunotherapy for recurrent glioblastoma: practical insights and challenging prospects. Cell Death Dis 2021; 12:299. [PMID: 33741903 PMCID: PMC7979733 DOI: 10.1038/s41419-021-03568-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma (GB) is the most common high-grade intracranial malignant tumor with highly malignant biological behavior and a high recurrence rate. Although anti-PD-1/PD-L1 antibodies have achieved significant survival benefits in several kinds of solid tumors, the phase III clinical trial Checkmate 143 demonstrated that nivolumab, which targets PD-1, did not achieve survival benefits compared with bevacizumab in recurrent glioblastoma (rGB) patients. Nevertheless, neoadjuvant anti-PD-1 therapy followed by surgery and adjuvant anti-PD-1 therapy could effectively activate local and systemic immune responses and significantly improve the OS of rGB patients. Furthermore, several studies have also confirmed the progress made in applying tumor-specific peptide vaccination or chimeric antigen receptor-T (CAR-T) cell therapy to treat rGB patients, and successes with antibodies targeting other inhibitory checkpoints or costimulatory molecules have also been reported. These successes inspired us to explore candidate combination treatments based on anti-PD-1/PD-L1 antibodies. However, effective predictive biomarkers for clinical efficacy are urgently needed to avoid economic waste and treatment delay. Attempts to prolong the CAR-T cell lifespan and increase T cell infiltration through engineering techniques are addressing the challenge of strengthening T cell function. In this review, we describe the immunosuppressive molecular characteristics of rGB; clinical trials exploring anti-PD-1/PD-L1 therapy, tumor-specific peptide vaccination, and CAR-T cell therapy; candidate combination strategies; and issues related to strengthening T cell function.
Collapse
Affiliation(s)
- Xin Wang
- Departmenlt of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| | - Jie Lu
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250117, Shandong Province, China
| | - Gaochao Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital Zhengzhou University, People's Hospital Henan University, Zhengzhou, 450003, Henan, China
| | - Jinming Yu
- Departmenlt of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
9
|
CD137 costimulation enhances the antiviral activity of Vγ9Vδ2-T cells against influenza virus. Signal Transduct Target Ther 2020; 5:74. [PMID: 32488072 PMCID: PMC7266814 DOI: 10.1038/s41392-020-0174-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/18/2023] Open
Abstract
Influenza epidemics and pandemics are constant threats to global public health. Although strategies including vaccines and antiviral drugs have achieved great advances in controlling influenza virus infection, the efficacy of these strategies is limited by the highly frequent mutations in the viral genome and the emergence of drug-resistant strains. Our previous study indicated that boosting the immunity of human Vγ9Vδ2-T cells with the phosphoantigen pamidronate could be a therapeutic strategy to treat seasonal and avian influenza virus infections. However, one notable drawback of γδ-T cell-based immunotherapy is the rapid exhaustion of proliferation and effector responses due to repeated treatments with phosphoantigens. Here, we found that the expression of CD137 was inducible in Vγ9Vδ2-T cells following antigenic stimulation. CD137+ Vγ9Vδ2-T cells displayed more potent antiviral activity against influenza virus than their CD137− counterparts in vitro and in Rag2-/- γc-/- mice. We further demonstrated that CD137 costimulation was essential for Vγ9Vδ2-T cell activation, proliferation, survival and effector functions. In humanized mice reconstituted with human peripheral blood mononuclear cells, CD137 costimulation with a recombinant human CD137L protein boosted the therapeutic effects of pamidronate against influenza virus. Our study provides a novel strategy of targeting CD137 to improve the efficacy of Vγ9Vδ2-T cell-based immunotherapy.
Collapse
|
10
|
Liao P, Wang H, Tang YL, Tang YJ, Liang XH. The Common Costimulatory and Coinhibitory Signaling Molecules in Head and Neck Squamous Cell Carcinoma. Front Immunol 2019; 10:2457. [PMID: 31708918 PMCID: PMC6819372 DOI: 10.3389/fimmu.2019.02457] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/01/2019] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are closely linked with immunosuppression, accompanied by complex immune cell functional activities. The abnormal competition between costimulatory and coinhibitory signal molecules plays an important role in the malignant progression of HNSCC. This review will summarize the features of costimulatory molecules (including CD137, OX40 as well as CD40) and coinhibitory molecules (including CTLA-4, PD-1, LAG3, and TIM3), analyze the underlying mechanism behind these molecules' regulation of the progression of HNSCC, and introduce the clinic application. Vaccines, such as those targeting STING while working synergistically with monoclonal antibodies, are also discussed. A deep understanding of the tumor immune landscape will help find new and improved tumor immunotherapy for HNSCC.
Collapse
Affiliation(s)
- Peng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haofan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Eomesodermin Increases Survival and IL-2 Responsiveness of Tumor-specific CD8+ T Cells in an Adoptive Transfer Model of Cancer Immunotherapy. J Immunother 2019; 41:53-63. [PMID: 29271784 DOI: 10.1097/cji.0000000000000206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor-specific CD8 T cells often fail to elicit effective antitumor immune responses due to an inability to expand into a substantial effector population and persist long-term in vivo. Using an adoptive transfer model of cancer immunotherapy, we demonstrate that constitutive eomesodermin (Eomes) expression in tumor-specific CD8 T cells improves tumor rejection and survival. The increase in tumor rejection was associated with an increased number and persistence of CD8 T cells in lymphoid tissues during acute tumor rejection, tumor regrowth, and in mice that remained tumor-free. Constitutive Eomes expression increased expression of CD25, and this was associated with enhanced interleukin-2 responsiveness and tumor-specific CD8 T-cell proliferation. Moreover, constitutive Eomes expression improved cell survival. Taken together, our data suggest that constitutive Eomes expression enhances CD8 T-cell proliferation and survival, in part through the enhancement of interleukin-2 responsiveness through CD25 induction.
Collapse
|
12
|
Deng J, Zhao S, Zhang X, Jia K, Wang H, Zhou C, He Y. OX40 (CD134) and OX40 ligand, important immune checkpoints in cancer. Onco Targets Ther 2019; 12:7347-7353. [PMID: 31564917 PMCID: PMC6735535 DOI: 10.2147/ott.s214211] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy has shown promising results in cancer treatment. Research shows that most patients might be resistant to these therapies. So, new immune therapies are needed. OX40 (CD134) and OX40 ligand (OX40L), costimulatory molecules, express on different types of immune cells. The interaction between OX40 and OX40L (OX40/OX40L) induces the expansion and proliferation of T cells and decreases the immunosuppression of regulatory T (Treg) cells to enhance the immune response to the specific antigen. For the important role OX40 takes in the process of immunity, many clinical trials are focusing on OX40 to find out whether it may have active effects in clinical cancer treatment. The results of clinical trials are still not enough. So, we reviewed the OX40 and its ligand (OX40L) function in cancer, clinical trials with OX40/OX40L and the correlation between OX40/OX40L and other immune checkpoints to add more ideas to tumor feasible treatment.
Collapse
Affiliation(s)
- Juan Deng
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200092, People's Republic of China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200092, People's Republic of China
| | - Xiaoshen Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200092, People's Republic of China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200092, People's Republic of China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China.,Medical School, Tongji University, Shanghai 200092, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai 200433, People's Republic of China
| |
Collapse
|
13
|
Hulett TW, Fox BA, Messenheimer DJ, Marwitz S, Moudgil T, Afentoulis ME, Wegman KW, Ballesteros-Merino C, Jensen SM. Future Research Goals in Immunotherapy. Surg Oncol Clin N Am 2019; 28:505-518. [DOI: 10.1016/j.soc.2019.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
MohanKrishnan A, Patel H, Bhurani V, Parmar R, Yadav N, Dave N, Rana S, Gupta S, Madariya J, Vyas P, Dalai SK. Inclusion of non-target antigen in vaccination favors generation of OVA specific CD4 memory T cells. Cell Immunol 2019; 337:1-14. [PMID: 30773218 DOI: 10.1016/j.cellimm.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/04/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022]
Abstract
Inducing long-lived memory T cells by sub-unit vaccines has been a challenge. Subunit vaccines containing single immunogenic target antigen from a given pathogen have been designed with the presumption of mimicking the condition associated with natural infection, but fail to induce quality memory responses. In this study, we have included non-target antigens with vaccine candidate, OVA, in the inoculum containing TLR ligands to suffice the minimal condition of pathogen to provoke immune response. We found that inclusion of immunogenic HEL (hen egg lysozyme) or poorly immunogenic MBP (Myelin Basic protein) non-target antigen enhances the OVA specific CD4 T cell responses. Interestingly, poorly immunogenic MBP was found to strongly favor the generation of OVA specific memory CD4 T cells. MBP not only improves magnitude of T cell response but also promotes the T cells to undergo higher cycles of division, one of the characteristic of central memory T cells. Inclusion of MBP with vaccine targets was also found to promote multiple cytokine producing CD4 T cells. We also found that challenge of host with non-target antigen MBP favors generation of central Memory T cells.
Collapse
Affiliation(s)
| | - Hardik Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Vishakha Bhurani
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Rajesh Parmar
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Niyam Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Sonal Rana
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Somnath Gupta
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Jagdish Madariya
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Prerak Vyas
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | | |
Collapse
|
15
|
Wang X, Guo G, Guan H, Yu Y, Lu J, Yu J. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res 2019; 38:87. [PMID: 30777100 PMCID: PMC6380009 DOI: 10.1186/s13046-019-1085-3] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 01/23/2023] Open
Abstract
PD-1/PD-L1 checkpoint blockades have achieved significant progress in several kinds of tumours. Pembrolizumab, which targets PD-1, has been approved as a first-line treatment for advanced non-small cell lung cancer (NSCLC) patients with positive PD-L1 expression. However, PD-1/PD-L1 checkpoint blockades have not achieved breakthroughs in treating glioblastoma because glioblastoma has a low immunogenic response and an immunosuppressive microenvironment caused by the precise crosstalk between cytokines and immune cells. A phase III clinical trial, Checkmate 143, reported that nivolumab, which targets PD-1, did not demonstrate survival benefits compared with bavacizumab in recurrent glioblastoma patients. Thus, the combination of a PD-1/PD-L1 checkpoint blockade with RT, TMZ, antibodies targeting other inhibitory or stimulatory molecules, targeted therapy, and vaccines may be an appealing solution aimed at achieving optimal clinical benefit. There are many ongoing clinical trials exploring the efficacy of various approaches based on PD-1/PD-L1 checkpoint blockades in primary or recurrent glioblastoma patients. Many challenges need to be overcome, including the identification of discrepancies between different genomic subtypes in their response to PD-1/PD-L1 checkpoint blockades, the selection of PD-1/PD-L1 checkpoint blockades for primary versus recurrent glioblastoma, and the identification of the optimal combination and sequence of combination therapy. In this review, we describe the immunosuppressive molecular characteristics of the tumour microenvironment (TME), candidate biomarkers of PD-1/PD-L1 checkpoint blockades, ongoing clinical trials and challenges of PD-1/PD-L1 checkpoint blockades in glioblastoma.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 Hubei Province China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Gaochao Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China
- Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Hui Guan
- Department of Radiation Oncology, The Fourth People’s Hospital of Jinan, Jinan, Shandong Province China
| | - Yang Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Jie Lu
- Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong University, Shandong Province, Jinan, 250014 China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| |
Collapse
|
16
|
Saung MT, Muth S, Ding D, Thomas DL, Blair AB, Tsujikawa T, Coussens L, Jaffee EM, Zheng L. Targeting myeloid-inflamed tumor with anti-CSF-1R antibody expands CD137+ effector T-cells in the murine model of pancreatic cancer. J Immunother Cancer 2018; 6:118. [PMID: 30424804 PMCID: PMC6234697 DOI: 10.1186/s40425-018-0435-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/26/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The pancreatic cancer vaccine, GVAX, induces novel lymphoid aggregates in the otherwise immune quiescent pancreatic ductal adenocarcinoma (PDAC). GVAX also upregulates the PD-1/PD-L1 pathway, and a pre-clinical model demonstrated the anti-tumor effects of combination GVAX and anti-PD-1 antibody therapy (GVAX/αPD-1). Resistance to GVAX was associated with an immune-suppressive myeloid cell infiltration, which may limit further therapeutic gains of GVAX/αPD-1 therapy. The expression of CSF-1R, a receptor important for myeloid cell migration, differentiation and survival, and the effect of its therapeutic blockade in the context of GVAX in PDAC has not been investigated. METHODS Lymphoid aggregates appreciated in 24 surgically resected PDAC from patients who received one dose of neoadjuvant GVAX were analyzed with multiplex immunohistochemistry. Flow cytometry analysis of tumor infiltrating T-cells in a murine model of PDAC was performed to investigate the therapeutic effects and mechanism of anti-CSF-1R/anti-PD-1/GVAX combination immunotherapy. RESULTS High CSF-1R expression in resected PDAC from patients who received neoadjuvant GVAX was associated with a higher myeloid to lymphoid cell ratio (p < 0.05), which has been associated with poorer survival. This higher CSF-1R expression was associated with a higher intra-tumoral infiltration of immature dendritic cells (p < 0.05), but not mature dendritic cells (p = 0.132). In the pre-clinical murine model, administering anti-CSF-1R antibody prior to and after GVAX/αPD-1 ("pre/post-αCSF-1R + αPD-1 + GVAX") enhanced the survival rate compared to GVAX/αPD-1 dual therapy (p = 0.005), but administering anti-CSF-1R only before GVAX/αPD-1 did not (p = 0.41). The "pre/post-αCSF-1R + αPD-1 + GVAX" group also had higher intra-tumoral infiltration of PD-1 + CD8+ and PD-1 + CD4+ T-cells compared to αPD-1/GVAX (p < 0.001). Furthermore, this regimen increased the intra-tumoral infiltration of PD-1 + CD137 + CD8+, PD-1 + CD137 + CD4+ and PD-1 + OX40 + CD4+ T-cells (p < 0.001). These PD-1 + CD137 + CD8+ T-cells expressed high levels of interferon-γ (median 80-90%) in response to stimulation with CD3/CD28 activation beads, and this expression was higher than that of PD-1 + CD137-CD8+ T-cells (p < 0.001). CONCLUSIONS The conversion of exhausted PD-1+ T-cells to CD137+ activated effector T-cells may contribute to the anti-tumor effects of the anti-CSF-1R/anti-PD-1/GVAX combination therapy. Anti-CSF-1R antibody with anti-PD-1 antibody and GVAX have the potential be an effective therapeutic strategy for treatment of PDAC.
Collapse
Affiliation(s)
- May Tun Saung
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen Muth
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ding Ding
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dwayne L Thomas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex B Blair
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takahiro Tsujikawa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Lisa Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Pancreatic Cancer Precision Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Development of a reliable and accurate algorithm to quantify the tumor immune stroma (QTiS) across tumor types. Oncotarget 2017; 8:114935-114944. [PMID: 29383131 PMCID: PMC5777743 DOI: 10.18632/oncotarget.22932] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/05/2017] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment plays an important role in the tumor biology. Overall survival of tumor patients after resection is influenced by tumor-infiltrating lymphocytes (TILs) as a component of the tumor stroma. However, it is not clear how to assess TILs in the tumor stroma due to heterogeneous methods in different cancer types. Therefore, we present a novel Quantification of the Tumor immune Stroma (QTiS) Algorithm to reliably and accurately quantify cells in the tumor stroma. Immunohistochemical staining of CD3 and CD8 cells in sections of metastatic colorectal cancer (mCRC), ovarian cancer (OvCa), hepatocellular carcinoma (HCC), and pancreatic ductal adenocarcinoma (PDAC), alltogether N = 80, was performed. Hot spots of infiltrating immune cells are reported in the literature. Reliability of the hot spot identification of TILs was examined by two blinded observers. Accuracy was tested in 1 and 3 hot spots using computed counting methods (ZEN 2 software counting (ZC), ImageJ software with subjective threshold (ISC) and ImageJ with color deconvolution (IAC)) and compared to manual counting. All tumor types investigated showed an accumulation of TILs in the tumor stroma (peri- and intratumoral). Reliability between observers indicated a high level consistency. Accuracy for CD8+/CD3+ ratio and absolute cell count required 1 and 3 hot spots, respectively. ISC was found to be the best for paraffin sections, whereas IAC was ideal for frozen sections. ImageJ software is cost-effective and yielded the best results. In conclusion, an algorithm for quantification of tumoral stroma could be established. With this QTiS Algorithm counting of tumor stromal cells is reliable, accurate, and cost-effective.
Collapse
|
18
|
Rahman MM, Badruzzaman ATM, Altaf Hossain FM, Husna A, Bari AM, Eo SK. The promise of 4-1BB (CD137) mediated immunomodulation and immunotherapy for viral diseases. Future Virol 2017. [DOI: 10.2217/fvl-2016-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The T-cell surface receptor, 4-1BB (CD137), has been of increasing interest to immunologists as a co-stimulatory immune checkpoint molecule over the last two decades. Ligation of 4-1BB can activate signals in CD8+ T cells and NK cells, resulting in increased proinflammatory cytokine secretion, cytolytic function and antibody-dependent cell-mediated cytotoxicity. Targeting 4-1BB, using a 4-1BB ligand (4-1BBL) or agonistic monoclonal antibodies, has delivered a new strategy to fight against cancer, autoimmune diseases and viral infections. In this review, different aspects of 4-1BB mediated antiviral responses, the mechanistic basis of such responses and future directions are discussed.
Collapse
Affiliation(s)
- Md Masudur Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - ATM Badruzzaman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Ferdaus Mohd Altaf Hossain
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Asmaul Husna
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Abusaleh Mahfuzul Bari
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Seong Kug Eo
- College of Veterinary Medicine & Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Republic of Korea
| |
Collapse
|
19
|
Abstract
The tumour necrosis factor receptor OX40 (CD134) is activated by its cognate ligand OX40L (CD134L, CD252) and functions as a T cell co-stimulatory molecule. OX40-OX40L interactions have been proposed as a potential therapeutic target for treating autoimmunity. OX40 is expressed on activated T cells, and in the mouse at rest on regulatory T cells (Treg). OX40L is found on antigen-presenting cells, activated T cells and others including lymphoid tissue inducer cells, some endothelia and mast cells. Expression of both molecules is increased after antigen presentation occurs and also in response to multiple other pro-inflammatory factors including CD28 ligation, CD40L ligation and interferon-gamma signaling. Their interactions promote T cell survival, promote an effector T cell phenotype, promote T cell memory, tend to reduce regulatory function, increase effector cytokine production and enhance cell mobility. In some circumstances, OX40 agonism may be associated with increased tolerance, although timing with respect to antigenic stimulus is important. Further, recent work has suggested that OX40L blockade may be more effective than OX40 blockade in reducing autoimmunity. This article reviews the expression of OX40 and OX40L in health, the effects of their interactions and insights from their under- or over-expression. We then review OX40 and OX40L expression in human autoimmune disease, identified associations of variations in their genes (TNFRSF4 and TNFSF4, respectively) with autoimmunity, and data from animal models of human diseases. A rationale for blocking OX40-OX40L interaction in human autoimmunity is then presented along with commentary on the one trial of OX40L blockade in human disease conducted to date. Finally, we discuss potential problems with clinical use of OX40-OX40L directed pharmacotherapy.
Collapse
Affiliation(s)
- Gwilym J Webb
- MRC Centre for Immune Regulation, Institute of Biomedical Research, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK. .,National Institute for Health Research Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK.
| | - Gideon M Hirschfield
- National Institute for Health Research Birmingham Liver Biomedical Research Unit, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| | - Peter J L Lane
- MRC Centre for Immune Regulation, Institute of Biomedical Research, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK
| |
Collapse
|
20
|
Kumai T, Lee S, Cho HI, Sultan H, Kobayashi H, Harabuchi Y, Celis E. Optimization of Peptide Vaccines to Induce Robust Antitumor CD4 T-cell Responses. Cancer Immunol Res 2016; 5:72-83. [PMID: 27941004 DOI: 10.1158/2326-6066.cir-16-0194] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 12/19/2022]
Abstract
Substantial evidence indicates that immunotherapy is a feasible and effective approach for the treatment of numerous types of cancer. Among various immunotherapy options, peptide vaccines to generate antitumor T cells appear as promising candidates, because of their cost effectiveness and ease of implementation. Nevertheless, most peptide vaccines are notorious for being weekly immunogenic and, thus, optimization of the vaccination strategy is essential to achieve therapeutic effectiveness. In addition, effective peptide vaccines must stimulate both CD8 cytotoxic and CD4 helper T lymphocytes. Our group has been successful in designing effective peptide vaccination strategies for inducing CD8 T-cell responses in mouse tumor models. Here, we describe a somewhat similar, but distinct, peptide vaccination strategy capable of generating vast CD4 T-cell responses by combining synthetic peptides with toll-like receptor (TLR) agonists and OX40/CD40 costimulation. This vaccination strategy was efficient in overcoming immune tolerance to a self-tumor-associated antigen and generated significant antitumor effects in a mouse model of malignant melanoma. The optimized peptide vaccine also allowed the expansion of adoptively transferred CD4 T cells without the need for lymphodepletion and IL2 administration, generating effective antimelanoma responses through the enhancement of proliferative and antiapoptotic activities of CD4 T cells. These results have practical implications in the design of more effective T-cell-based immunotherapies. Cancer Immunol Res; 5(1); 72-83. ©2016 AACR.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antigens, Neoplasm/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Epitopes, T-Lymphocyte/immunology
- Female
- Immune Tolerance/drug effects
- Immunotherapy
- Immunotherapy, Adoptive
- Interferons/metabolism
- Interferons/pharmacology
- Mice
- Mice, Knockout
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Receptors, OX40/agonists
- Toll-Like Receptors/metabolism
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
Collapse
Affiliation(s)
- Takumi Kumai
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, Georgia
- Department of Innovative Research for Diagnosis and Treatment of Head & Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Sujin Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
- Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Hyun-Il Cho
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hussein Sultan
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, Georgia
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, Georgia.
| |
Collapse
|
21
|
Ryan JM, Wasser JS, Adler AJ, Vella AT. Enhancing the safety of antibody-based immunomodulatory cancer therapy without compromising therapeutic benefit: Can we have our cake and eat it too? Expert Opin Biol Ther 2016; 16:655-74. [PMID: 26855028 DOI: 10.1517/14712598.2016.1152256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) targeting checkpoint inhibitors have demonstrated clinical benefit in treating patients with cancer and have paved the way for additional immune-modulating mAbs such as those targeting costimulatory receptors. The full clinical utility of these agents, however, is hampered by immune-related adverse events (irAEs) that can occur during therapy. AREAS COVERED We first provide a general overview of tumor immunity, followed by a review of the two major classes of immunomodulatory mAbs being developed as cancer therapeutics: checkpoint inhibitors and costimulatory receptor agonists. We then discuss therapy-associated adverse events. Finally, we describe in detail the mechanisms driving their therapeutic activity, with an emphasis on interactions between antibody fragment crystallizable (Fc) domains and Fc receptors (FcR). EXPERT OPINION Given that Fc-FcR interactions appear critical in facilitating the ability of immunomodulatory mAbs to elicit both therapeutically useful as well as adverse effects, the engineering of mAbs that can effectively engage their targets while limiting interaction with FcRs might represent a promising future avenue for developing the next generation of immune-enhancing tumoricidal agents with increased safety and retention of efficacy.
Collapse
Affiliation(s)
- Joseph M Ryan
- a Department of Immunology , UConn Health , Farmington , CT , USA
| | | | - Adam J Adler
- a Department of Immunology , UConn Health , Farmington , CT , USA
| | - Anthony T Vella
- a Department of Immunology , UConn Health , Farmington , CT , USA
| |
Collapse
|
22
|
Kim SB, Choi JY, Kim JH, Uyangaa E, Patil AM, Park SY, Lee JH, Kim K, Han YW, Eo SK. Amelioration of Japanese encephalitis by blockage of 4-1BB signaling is coupled to divergent enhancement of type I/II IFN responses and Ly-6C(hi) monocyte differentiation. J Neuroinflammation 2015; 12:216. [PMID: 26597582 PMCID: PMC4657197 DOI: 10.1186/s12974-015-0438-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022] Open
Abstract
Background Japanese encephalitis (JE), a neuroinflammation caused by zoonotic JE virus, is the major cause of viral encephalitis worldwide and poses an increasing threat to global health and welfare. To date, however, there has been no report describing the regulation of JE progression using immunomodulatory tools for developing therapeutic strategies. We tested whether blocking the 4-1BB signaling pathway would regulate JE progression using murine JE model. Methods Infected wild-type and 4-1BB-knockout (KO) mice were examined daily for mortality and clinical signs, and neuroinflammation in the CNS was evaluated by infiltration of inflammatory leukocytes and cytokine expression. In addition, viral burden, JEV-specific T cell, and type I/II IFN (IFN-I/II) innate responses were analyzed. Results Blocking the 4-1BB signaling pathway significantly increased resistance to JE and reduced viral burden in extraneural tissues and the CNS, rather than causing a detrimental effect. In addition, treatment with 4-1BB agonistic antibody exacerbated JE. Furthermore, JE amelioration and reduction of viral burden by blocking the 4-1BB signaling pathway were associated with an increased frequency of IFN-II-producing NK and CD4+ Th1 cells as well as increased infiltration of mature Ly-6Chi monocytes in the inflamed CNS. More interestingly, DCs and macrophages derived from 4-1BB KO mice showed potent and rapid IFN-I innate immune responses upon JEV infection, which was coupled to strong induction of PRRs (RIG-I, MDA5), transcription factors (IRF7), and antiviral ISG genes (ISG49, ISG54, ISG56). Further, the ablation of 4-1BB signaling enhanced IFN-I innate responses in neuron cells, which likely regulated viral spread in the CNS. Finally, we confirmed that blocking the 4-1BB signaling pathway in myeloid cells derived from hematopoietic stem cells (HSCs) played a dominant role in ameliorating JE. In support of this finding, HSC-derived leukocytes played a dominant role in generating the IFN-I innate responses in the host. Conclusions Blocking the 4-1BB signaling pathway ameliorates JE via divergent enhancement of IFN-II-producing NK and CD4+ Th1 cells and mature Ly-6Chi monocyte infiltration, as well as an IFN-I innate response of myeloid-derived cells. Therefore, regulation of the 4-1BB signaling pathway with antibodies or inhibitors could be a valuable therapeutic strategy for the treatment of JE.
Collapse
Affiliation(s)
- Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Jin Hyoung Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Sang-Youel Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, 50612, Republic of Korea
| | - Young Woo Han
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, 54596, Republic of Korea. .,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
23
|
Bartkowiak T, Curran MA. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity. Front Oncol 2015; 5:117. [PMID: 26106583 PMCID: PMC4459101 DOI: 10.3389/fonc.2015.00117] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy is a rapidly expanding field of oncology aimed at targeting, not the tumor itself, but the immune system combating the cancerous lesion. Of the many approaches currently under study to boost anti-tumor immune responses; modulation of immune co-receptors on lymphocytes in the tumor microenvironment has thus far proven to be the most effective. Antibody blockade of the T cell co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) has become the first FDA approved immune checkpoint blockade; however, tumor infiltrating lymphocytes express a diverse array of additional stimulatory and inhibitory co-receptors, which can be targeted to boost tumor immunity. Among these, the co-stimulatory receptor 4-1BB (CD137/TNFSF9) possesses an unequaled capacity for both activation and pro-inflammatory polarization of anti-tumor lymphocytes. While functional studies of 4-1BB have focused on its prominent role in augmenting cytotoxic CD8 T cells, 4-1BB can also modulate the activity of CD4 T cells, B cells, natural killer cells, monocytes, macrophages, and dendritic cells. 4-1BB’s expression on both T cells and antigen presenting cells, coupled with its capacity to promote survival, expansion, and enhanced effector function of activated T cells, has made it an alluring target for tumor immunotherapy. In contrast to immune checkpoint blocking antibodies, 4-1BB agonists can both potentiate anti-tumor and anti-viral immunity, while at the same time ameliorating autoimmune disease. Despite this, 4-1BB agonists can trigger high grade liver inflammation which has slowed their clinical development. In this review, we discuss how the underlying immunobiology of 4-1BB activation suggests the potential for therapeutically synergistic combination strategies in which immune adverse events can be minimized.
Collapse
Affiliation(s)
- Todd Bartkowiak
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| |
Collapse
|
24
|
Zamarin D, Wolchok JD. Potentiation of immunomodulatory antibody therapy with oncolytic viruses for treatment of cancer. MOLECULAR THERAPY-ONCOLYTICS 2014; 1:14004. [PMID: 27119094 PMCID: PMC4782939 DOI: 10.1038/mto.2014.4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 02/07/2023]
Abstract
Identification of the immune suppressive mechanisms active within the tumor microenvironment led to development of immunotherapeutic strategies aiming to reverse the immunosuppression and to enhance the function of tumor-infiltrating lymphocytes. Of those, cancer therapy with antibodies targeting the immune costimulatory and coinhibitory receptors has demonstrated significant promise in the recent years, with multiple antibodies entering clinical testing. The responses to these agents, however, have not been universal and have not been observed in all cancer types, calling for identification of appropriate predictive biomarkers and development of combinatorial strategies. Pre-existing immune infiltration in tumors has been demonstrated to have a strong association with response to immunotherapies, with the type I interferon (IFN) pathway emerging as a key player in tumor innate immune recognition and activation of adaptive immunity. These findings provide a rationale for evaluation of strategies targeting the type I IFN pathway as a means to enhance tumor immune recognition and infiltration, which could potentially make them susceptible to therapeutics targeting the cosignaling receptors. To this end in particular, oncolytic viruses (OVs) have been demonstrated to enhance tumor recognition by the immune system through multiple mechanisms, which include upregulation of major histocompatibility complex and costimulatory molecules on cancer cells, immunogenic cell death and antigen release, and activation of the type I IFN pathway. Evidence is now emerging that combination therapies using OVs and agents targeting immune cosignaling receptors such as 4-1BB, PD-1, and CTLA-4 may work in concert to enhance antitumor immunity and therapeutic efficacy. Our evolving understanding of the interplay between OVs and the immune system demonstrates that the virus-induced antitumor immune responses can be harnessed to drive the efficacy of the agents targeting cosignaling receptors and provides a strong rationale for integration of such therapies in clinic.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA; Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| | - Jedd D Wolchok
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA; Department of Medicine, Melanoma and Immunotherapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| |
Collapse
|
25
|
|
26
|
Adler AJ, Vella AT. Betting on improved cancer immunotherapy by doubling down on CD134 and CD137 co-stimulation. Oncoimmunology 2014; 2:e22837. [PMID: 23482891 PMCID: PMC3583935 DOI: 10.4161/onci.22837] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ability of T cells to recognize a vast array of antigens enables them to destroy tumor cells while inflicting minimal collateral damage. Nevertheless, tumor antigens often are a form of self-antigen, and thus tumor immunity can be dampened by tolerance mechanisms that evolved to prevent autoimmunity. Since tolerance can be induced by steady-state antigen-presenting cells that provide insufficient co-stimulation, the exogenous administration of co-stimulatory agonists can favor the expansion and tumoricidal functions of tumor-specific T cells. Agonists of the co-stimulatory tumor necrosis factor receptor (TNFR) family members CD134 and CD137 exert antitumor activity in mice, and as monotherapies have exhibited encouraging results in clinical trials. This review focuses on how the dual administration of CD134 and CD137 agonists synergistically boosts T-cell priming and elaborates a multi-pronged antitumor immune response, as well as how such dual co-stimulation might be translated into effective anticancer therapies.
Collapse
Affiliation(s)
- Adam J Adler
- Department of Immunology; University of Connecticut Health Center; Farmington, CT USA
| | | |
Collapse
|
27
|
Spencer AJ, Furze J, Honeycutt JD, Calvert A, Saurya S, Colloca S, Wyllie DH, Gilbert SC, Bregu M, Cottingham MG, Hill AVS. 4-1BBL enhances CD8+ T cell responses induced by vectored vaccines in mice but fails to improve immunogenicity in rhesus macaques. PLoS One 2014; 9:e105520. [PMID: 25140889 PMCID: PMC4139357 DOI: 10.1371/journal.pone.0105520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/21/2014] [Indexed: 01/28/2023] Open
Abstract
T cells play a central role in the immune response to many of the world's major infectious diseases. In this study we investigated the tumour necrosis factor receptor superfamily costimulatory molecule, 4-1BBL (CD137L, TNFSF9), for its ability to increase T cell immunogenicity induced by a variety of recombinant vectored vaccines. To efficiently test this hypothesis, we assessed a number of promoters and developed a stable bi-cistronic vector expressing both the antigen and adjuvant. Co-expression of 4-1BBL, together with our model antigen TIP, was shown to increase the frequency of murine antigen-specific IFN-γ secreting CD8(+) T cells in three vector platforms examined. Enhancement of the response was not limited by co-expression with the antigen, as an increase in CD8(+) immunogenicity was also observed by co-administration of two vectors each expressing only the antigen or adjuvant. However, when this regimen was tested in non-human primates using a clinical malaria vaccine candidate, no adjuvant effect of 4-1BBL was observed limiting its potential use as a single adjuvant for translation into a clinical vaccine.
Collapse
Affiliation(s)
| | - Julie Furze
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Alice Calvert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Saroj Saurya
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - David H. Wyllie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Migena Bregu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
28
|
Tang Q, Jiang D, Alonso S, Pant A, Martínez Gómez JM, Kemeny DM, Chen L, Schwarz H. CD137 ligand signaling enhances myelopoiesis during infections. Eur J Immunol 2013; 43:1555-67. [DOI: 10.1002/eji.201243071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/30/2013] [Accepted: 03/15/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | - Lieping Chen
- Department of Immunobiology; Yale University School of Medicine; New Haven; CT; USA
| | | |
Collapse
|
29
|
Saito K, Mori S, Date F, Ono M. Sjögren's syndrome-like autoimmune sialadenitis in MRL-Faslpr mice is associated with expression of glucocorticoid-induced TNF receptor-related protein (GITR) ligand and 4-1BB ligand. Autoimmunity 2013; 46:231-7. [PMID: 23301790 DOI: 10.3109/08916934.2012.757307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although costimulatory molecules have been shown to play crucial roles in the immune response, their involvement in the pathogenesis of Sjögren's syndrome is incompletely understood. In this study, we evaluated the relationship between the severity of spontaneous Sjögren's syndrome-like autoimmune sialadenitis in MRL/MpJ-lpr/lpr (MRL-Fas(lpr)) mice and the expression of 6 costimulatory molecules that play important roles in the immune response: CD80, CD86, OX40 ligand (OX40L), 4-1BB ligand (4-1BBL), glucocorticoid-induced TNF receptor-related protein ligand (GITRL), and B cell-activating factor of the tumor necrosis factor family (BAFF). Expression of the costimulatory molecules in the submandibular salivary glands of age-matched autoimmune MRL-Fas(lpr) mice and non-autoimmune MRL/MpJ-+/+(MRL/+) and C3H/HeJ-lpr/lpr (C3H-Fas(lpr)) mice was examined immunohistochemically and scored on a scale of 0 to 3. The severity of sialadenitis was evaluated histologically and scored on a scale of 0 to 3. We found that all of the costimulatory molecules were expressed in duct epithelial cells of salivary glands from MRL-Fas(lpr) mice, whereas immunoreactivity was absent or weak in the MRL/+ mice. The staining intensity for all 6 costimulatory molecules was significantly higher in the MRL-Fas(lpr) than in the MRL/+ mice. Partial correlation analysis was performed to assess the degree of association between costimulatory molecule staining scores and disease scores, which clearly revealed a significant correlation for only GITRL and 4-1BBL. These molecules showed negligible immunoreactivity in the submandibular glands of C3H-Fas(lpr) mice, suggesting that their expression was independent of the Fas(lpr) mutation. In conclusion, the expression of GITRL and 4-1BBL in salivary gland duct epithelial cells is associated with background genes in the MRL strain, but not with the Fas(lpr) mutation itself, and contributes significantly to the pathogenesis of autoimmune sialadenitis in MRL-Fas(lpr) mice. These results suggest that GITRL and 4-1BBL may be effective targets for the development of therapies for Sjögren's syndrome.
Collapse
Affiliation(s)
- Keiichi Saito
- Liaison Centre for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai, Japan.
| | | | | | | |
Collapse
|
30
|
Goulding J, Tahiliani V, Salek-Ardakani S. OX40:OX40L axis: emerging targets for improving poxvirus-based CD8(+) T-cell vaccines against respiratory viruses. Immunol Rev 2012; 244:149-68. [PMID: 22017437 PMCID: PMC3422077 DOI: 10.1111/j.1600-065x.2011.01062.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human respiratory tract is an entry point for over 200 known viruses that collectively contribute to millions of annual deaths worldwide. Consequently, the World Health Organization has designated respiratory viral infections as a priority for vaccine development. Despite enormous advances in understanding the attributes of a protective mucosal antiviral immune response, current vaccines continue to fail in effectively generating long-lived protective CD8(+) T-cell immunity. To date, the majority of licensed human vaccines afford protection against infectious pathogens through the generation of specific immunoglobulin responses. In recent years, the selective manipulation of specific costimulatory pathways, which are critical in regulating T cell-mediated immune responses, has generated increasing interest. Impressive results in animal models have shown that the tumor necrosis factor receptor (TNFR) family member OX40 (CD134) and its binding partner OX40L (CD252) are key costimulatory molecules involved in the generation of protective CD8(+) T-cell responses at mucosal surfaces, such as the lung. In this review, we highlight these new findings with a particular emphasis on their potential as immunological adjuvants to enhance poxvirus-based CD8(+) T-cell vaccines.
Collapse
Affiliation(s)
- John Goulding
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | | | | |
Collapse
|
31
|
Vezys V, Penaloza-MacMaster P, Barber DL, Ha SJ, Konieczny B, Freeman GJ, Mittler RS, Ahmed R. 4-1BB signaling synergizes with programmed death ligand 1 blockade to augment CD8 T cell responses during chronic viral infection. THE JOURNAL OF IMMUNOLOGY 2011; 187:1634-42. [PMID: 21742975 DOI: 10.4049/jimmunol.1100077] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies have identified the inhibitory role that the programmed death 1 (PD-1) pathway plays during chronic infection. Blockade of this pathway results in rescue of viral-specific CD8 T cells, as well as reduction of viral loads in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). We tested the effect of combining PD ligand 1 (PD-L1) blockade with an agonistic regimen that induces 4-1BB costimulation during chronic LCMV infection. There is a boosting effect in the rescue of LCMV-specific CD8 T cell responses after dual treatment with PD-L1 blockade and 4-1BB agonistic Abs when the amount and timing of 4-1BB costimulation are carefully controlled. When PD-L1-blocking Abs are given together with a single low dose of anti-4-1BB agonistic Abs, there is an enhanced and stable expansion of viral-specific CD8 T cells. Conversely, when blocking Abs to PD-L1 are given with a repetitive high dose of anti-4-1BB, there is an initial synergistic expansion of viral-specific CD8 T cells by day 7, followed by dramatic apoptosis by day 14. Viral control paralleled CD8 T cell kinetics after dual treatment. By day 7 posttreatment, viral titers were lower in both of the combined regimens (compared with PD-L1 blockade alone). However, whereas the high dose of anti-4-1BB plus PD-L1 blockade resulted in rebound of viral titers to original levels, the low dose of anti-4-1BB plus PD-L1 blockade resulted in a stable reduction of viral loads. These findings demonstrate the importance of carefully manipulating the balance between activating and inhibitory signals to enhance T cell responses during chronic infection.
Collapse
Affiliation(s)
- Vaiva Vezys
- Emory Vaccine Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Eftimie R, Dushoff J, Bridle BW, Bramson JL, Earn DJD. Multi-Stability and Multi-Instability Phenomena in a Mathematical Model of Tumor-Immune-Virus Interactions. Bull Math Biol 2011; 73:2932-61. [DOI: 10.1007/s11538-011-9653-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/15/2011] [Indexed: 02/01/2023]
|
33
|
Dubrot J, Portero A, Orive G, Hernández RM, Palazón A, Rouzaut A, Perez-Gracia JL, Hervás-Stubbs S, Pedraz JL, Melero I. Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunol Immunother 2010; 59:1621-31. [PMID: 20607237 PMCID: PMC11030103 DOI: 10.1007/s00262-010-0888-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 06/12/2010] [Indexed: 12/15/2022]
Abstract
Immunostimulatory monoclonal antibodies are immunoglobulins directed toward surface proteins of immune system cells that augment the immune response against cancer in a novel therapeutic fashion. Exogenous administration of the recombinant humanized immunoglobulins is being tested in clinical trials with agents of this kind directed at a variety of immune-controlling molecular targets. In this study, the encapsulation of antibody-producing hybridoma cells was tested in comparison with the systemic administration of monoclonal antibodies. Hybridomas producing anti-CD137 and anti-OX40 mAb were encapsulated in alginate to generate microcapsules containing viable cells that secrete antibody. Immobilized cells in vitro were able to release the rat immunoglobulin produced by the hybridomas into the supernatant. Microcapsules were implanted by injection into the subcutaneous tissue of mice and thereby provided a platform for viable secreting cells, which lasted for more than 1 week. The pharmacokinetic profile of the rat monoclonal antibodies following microcapsule implantation was similar to that attained following an intraperitoneal administration of the purified antibodies. The rat-mouse hybridoma cells did not engraft as tumors in immunocompetent mice, while they lethally xenografted in immunodeficient mice, if not microencapsulated. The antitumor therapeutic activity of the strategy was studied on established CT26 colon carcinomas resulting in complete tumor eradication in an elevated fraction of cases and strong tumor-specific CTL responses with either anti-CD137 or anti-OX40 producing hybridomas, thus offering proof of the concept. This form of administration permitted combinations of more than one immunostimulatory monoclonal antibody to exploit the synergistic effects such as those known to be displayed by anti-CD137 and anti-OX40 mAb.
Collapse
Affiliation(s)
- Juan Dubrot
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, CIMA. Av. Pio XII, 55 31008 Pamplona, Spain
| | - Aitziber Portero
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Rosa María Hernández
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Asis Palazón
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, CIMA. Av. Pio XII, 55 31008 Pamplona, Spain
| | - Ana Rouzaut
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, CIMA. Av. Pio XII, 55 31008 Pamplona, Spain
| | | | - Sandra Hervás-Stubbs
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, CIMA. Av. Pio XII, 55 31008 Pamplona, Spain
| | - Jose Luis Pedraz
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Ignacio Melero
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, CIMA. Av. Pio XII, 55 31008 Pamplona, Spain
- Clinica Universitaria, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
34
|
Salek-Ardakani S, Croft M. Tumor necrosis factor receptor/tumor necrosis factor family members in antiviral CD8 T-cell immunity. J Interferon Cytokine Res 2010; 30:205-18. [PMID: 20377415 DOI: 10.1089/jir.2010.0026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD8 memory T cells can play a critical role in protection against repeated exposure to infectious agents such as viruses, yet can also contribute to the immunopathology associated with these pathogens. Understanding the mechanisms that control effective memory responses has important ramifications for vaccine design and in the management of adverse immune reactions. Recent studies have implicated several members of the tumor necrosis factor receptor (TNFR) family as key stimulatory and inhibitory molecules involved in the regulation of CD8 T cells. In this review, we discuss their control of the generation, persistence, and reactivation of CD8 T cells during virus infection.
Collapse
Affiliation(s)
- Shahram Salek-Ardakani
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA.
| | | |
Collapse
|
35
|
Lee SW, Croft M. 4-1BB as a therapeutic target for human disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 647:120-9. [PMID: 19760070 DOI: 10.1007/978-0-387-89520-8_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
4-1BB (CD137) is being thought of as an attractive target for immunotherapy of many human immune diseases based on encouraging results with 4-1BB agonistic antibody treatment in mouse models of cancer, autoimmune disease, asthma and additionally as a means to improve vaccination. In this review, we will summarize the results of basic research on 4-1BB and 4-1BB immunotherapy of disease and provide some potential mechanistic insights into the many stimulatory and regulatory functions of 4-1BB.
Collapse
Affiliation(s)
- Seung-Woo Lee
- Molecular Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California, 92037, USA
| | | |
Collapse
|
36
|
Abstract
TNFR/TNF superfamily members can control diverse aspects of immune function. Research over the past 10 years has shown that one of the most important and prominent interactions in this family is that between OX40 (CD134) and its partner OX40L (CD252). These molecules strongly regulate conventional CD4 and CD8 T cells, and more recent data are highlighting their ability to modulate NKT cell and NK cell function as well as to mediate cross-talk with professional antigen-presenting cells and diverse cell types such as mast cells, smooth muscle cells, and endothelial cells. Additionally, OX40-OX40L interactions alter the differentiation and activity of regulatory T cells. Blocking OX40L has produced strong therapeutic effects in multiple animal models of autoimmune and inflammatory disease, and, in line with a prospective clinical future, reagents that stimulate OX40 signaling are showing promise as adjuvants for vaccination as well as for treatment of cancer.
Collapse
Affiliation(s)
- Michael Croft
- La Jolla Institute for Allergy and Immunology, California 92037, USA.
| |
Collapse
|
37
|
Ponte JF, Ponath P, Gulati R, Slavonic M, Paglia M, O'Shea A, Tone M, Waldmann H, Vaickus L, Rosenzweig M. Enhancement of humoral and cellular immunity with an anti-glucocorticoid-induced tumour necrosis factor receptor monoclonal antibody. Immunology 2010; 130:231-42. [PMID: 20201988 DOI: 10.1111/j.1365-2567.2009.03228.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adjuvants, including antibodies to tumour necrosis factor receptor superfamily members, augment immune responses. One member of this family, glucocorticoid-induced tumour necrosis factor receptor (GITR), is expressed at low levels on naive/resting T cells, B cells and macrophages, but at higher levels on T regulatory cells. The aim of this study was to determine the ability of a rat anti-mouse GITR monoclonal antibody, 2F8, to stimulate murine humoral and cellular immunity in a prime boost model with particular attention to posology and antigen-specific effects. 2F8 enhanced the humoral immune response to ovalbumin and haemagglutinin (HA) compared with controls and this enhancement was equal to or greater than that obtained in mice dosed with standard adjuvants. 2F8 F(ab')(2) fragments were as effective as intact antibody in boosting humoral immunity, indicating that FcR-mediated cross-linking of 2F8 is not required for efficacy. Moreover, the enhanced response was durable and antigen specific. Administration of 2F8 shifted the immune response towards a T helper type 1 response with significant enhancement of immunoglobulin G2a- and G2b-specific anti-HA antibodies, as well as enhanced cellular immunity as measured by ELISPOT. 2F8-treated mice also generated significantly more neutralizing antibodies to HA than control mice. Our findings show that anti-GITR is a robust, versatile adjuvant that, unlike commonly used adjuvants that primarily enhance humoral immunity, enhances both humoral and cellular immunity. These results support the continued development of anti-GITR for such indications as haematological and solid tumours, chronic viral infections, and as a vaccine adjuvant.
Collapse
Affiliation(s)
- Jose F Ponte
- Tolerx, Inc., 300 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
TNFR/TNF superfamily members can control diverse aspects of immune function. Research over the past 10 years has shown that one of the most important and prominent interactions in this family is that between OX40 (CD134) and its partner OX40L (CD252). These molecules strongly regulate conventional CD4 and CD8 T cells, and more recent data are highlighting their ability to modulate NKT cell and NK cell function as well as to mediate cross-talk with professional antigen-presenting cells and diverse cell types such as mast cells, smooth muscle cells, and endothelial cells. Additionally, OX40-OX40L interactions alter the differentiation and activity of regulatory T cells. Blocking OX40L has produced strong therapeutic effects in multiple animal models of autoimmune and inflammatory disease, and, in line with a prospective clinical future, reagents that stimulate OX40 signaling are showing promise as adjuvants for vaccination as well as for treatment of cancer.
Collapse
Affiliation(s)
- Michael Croft
- La Jolla Institute for Allergy and Immunology, California 92037, USA.
| |
Collapse
|
39
|
Adjuvantive effects of anti-4-1BB agonist Ab and 4-1BBL DNA for a HIV-1 Gag DNA vaccine: different effects on cellular and humoral immunity. Vaccine 2009; 28:1300-9. [PMID: 19944789 DOI: 10.1016/j.vaccine.2009.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 12/21/2022]
Abstract
Plasmid DNA immunizations induce low levels but a broad spectrum of cellular and humoral immune responses. Here, we investigate the potential of co-stimulation through 4-1BB as an adjuvant for a HIV-1 DNA vaccine in mice. We designed plasmid DNAs expressing either the membrane bound or soluble form of 4-1BBL, and compared with the agonistic anti-4-1BB Ab for their ability to adjuvant the Gag DNA vaccine. Both, anti-4-1BB agonistic Ab as well as 4-1BBL DNA enhanced the Gag-specific cellular immune responses. However, in complete contrast to the agonistic Ab that suppressed humoral immunity to Gag, 4-1BBL DNA adjuvanted vaccines enhanced Gag-specific IgG responses. Importantly, the expression of Gag and 4-1BBL from the same plasmid was critical for the adjuvant activity. Collectively, our data suggest that for a HIV-1 vaccine where both antigen-specific cellular and humoral immunity are desirable, 4-1BBL expressed by a DNA vaccine is a superior adjuvant than anti-4-1BB agonistic Ab.
Collapse
|
40
|
Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 2009; 229:173-91. [PMID: 19426222 DOI: 10.1111/j.1600-065x.2009.00766.x] [Citation(s) in RCA: 429] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARY OX40 (CD134) and its binding partner, OX40L (CD252), are members of the tumor necrosis factor receptor/tumor necrosis factor superfamily and are expressed on activated CD4(+) and CD8(+) T cells as well as on a number of other lymphoid and non-lymphoid cells. Costimulatory signals from OX40 to a conventional T cell promote division and survival, augmenting the clonal expansion of effector and memory populations as they are being generated to antigen. OX40 additionally suppresses the differentiation and activity of T-regulatory cells, further amplifying this process. OX40 and OX40L also regulate cytokine production from T cells, antigen-presenting cells, natural killer cells, and natural killer T cells, and modulate cytokine receptor signaling. In line with these important modulatory functions, OX40-OX40L interactions have been found to play a central role in the development of multiple inflammatory and autoimmune diseases, making them attractive candidates for intervention in the clinic. Conversely, stimulating OX40 has shown it to be a candidate for therapeutic immunization strategies for cancer and infectious disease. This review provides a broad overview of the biology of OX40 including the intracellular signals from OX40 that impact many aspects of immune function and have promoted OX40 as one of the most prominent costimulatory molecules known to control T cells.
Collapse
Affiliation(s)
- Michael Croft
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
41
|
Kassu A, D'Souza M, O'Connor BP, Kelly-McKnight E, Akkina R, Fontenot AP, Palmer BE. Decreased 4-1BB expression on HIV-specific CD4+ T cells is associated with sustained viral replication and reduced IL-2 production. Clin Immunol 2009; 132:234-45. [PMID: 19406689 DOI: 10.1016/j.clim.2009.03.531] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/09/2009] [Accepted: 03/30/2009] [Indexed: 11/29/2022]
Abstract
CD4+ T cell dysfunction in subjects with chronic HIV infection is in part due to an imbalance of costimulatory and coinhibitory receptors. We report that virus-specific CD4+ T cells expressing 4-1BB (CD137) or OX40 (CD134) produced more IL-2 than cells lacking these costimulatory receptors (P<0.05) and that 4-1BB was expressed at a lower level on HIV- than CMV-specific IFN-gamma and IL-2 producing CD4+ T cells (P<0.0001 and P<0.01, respectively). Suppression of viral replication with antiretroviral therapy was associated with increased 4-1BB expression on HIV- and CMV-specific IL-2 producing CD4+ T cells (P<0.05 and P<0.01, respectively) and the percentage of IL-2 producing HIV-specific CD4+ T cells that expressed 4-1BB was inversely correlated with HIV plasma viral load (r=-0.75, P=0.007). These findings indicate that the loss of 4-1BB on HIV-specific CD4+ T cells is associated with viral replication and that it may contribute to reduced IL-2 production observed during chronic infection.
Collapse
Affiliation(s)
- Afework Kassu
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Kimman TG, Banus S, Reijmerink N, Reimerink J, Stelma FF, Koppelman GH, Thijs C, Postma DS, Kerkhof M. Association of interacting genes in the toll-like receptor signaling pathway and the antibody response to pertussis vaccination. PLoS One 2008; 3:e3665. [PMID: 18987746 PMCID: PMC2573957 DOI: 10.1371/journal.pone.0003665] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/21/2008] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Activation of the Toll-like receptor (TLR) signaling pathway through TLR4 may be important in the induction of protective immunity against Bordetella pertussis with TLR4-mediated activation of dendritic and B cells, induction of cytokine expression, and reversal of tolerance as crucial steps. We examined whether single nucleotide polymorphisms (SNPs) in genes of the TLR4 pathway and their interaction are associated with the response to whole-cell vaccine (WCV) pertussis vaccination in 490 one-year-old children. METHODOLOGY/PRINCIPAL FINDINGS We analyzed associations of 75 haplotype-tagging SNPs in genes in the TLR4 signaling pathway with pertussis toxin (PT)-IgG titers. We found significant associations between the PT-IgG titer and SNPs in CD14, TLR4, TOLLIP, TIRAP, IRAK3, IRAK4, TICAM1, and TNFRSF4 in one or more of the analyses. The strongest evidence for association was found for two SNPs (rs5744034 and rs5743894) in TOLLIP that were almost completely in linkage disequilibrium, provided statistically significant associations in all tests with the lowest p-values, and displayed a dominant mode of inheritance. However, none of these single gene associations would withstand correction for multiple testing. In addition, Multifactor Dimensionality Reduction Analysis, an approach that does not need correction for multiple testing, showed significant and strong two and three locus interactions between SNPs in TOLLIP (rs4963060), TLR4 (rs6478317) and IRAK1 (rs1059703). CONCLUSIONS/SIGNIFICANCE We have identified significant interactions between genes in the TLR pathway in the induction of vaccine-induced immunity. These interactions underline that these genes are functionally related and together form a true biological relationship in a protein-protein interaction network. Practically all our findings may be explained by genetic variation in directly or indirectly interacting proteins at the extra- and intracytoplasmic sites of the cell membrane of antigen-presenting cells, B cells, or both. Fine tuning of interacting proteins in the TLR pathway appears important for the induction of an optimal vaccine response.
Collapse
Affiliation(s)
- Tjeerd G Kimman
- Center for Infectious Disease Control, National Institute of Public Health and Environment, Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wissinger EL, Saldana J, Didierlaurent A, Hussell T. Manipulation of acute inflammatory lung disease. Mucosal Immunol 2008; 1:265-78. [PMID: 19079188 PMCID: PMC7100270 DOI: 10.1038/mi.2008.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/26/2008] [Indexed: 02/04/2023]
Abstract
Inflammatory lung disease to innocuous antigens or infectious pathogens is a common occurrence and in some cases, life threatening. Often, the inflammatory infiltrate that accompanies these events contributes to pathology by deleterious effects on otherwise healthy tissue and by compromising lung function by consolidating (blocking) the airspaces. A fine balance, therefore, exists between a lung immune response and immune-mediated damage, and in some the "threshold of ignorance" may be set too low. In most cases, the contributing, potentially offending, cell population or immune pathway is known, as are factors that regulate them. Why then are targeted therapeutic strategies to manipulate them not more commonplace in clinical medicine? This review highlights immune homeostasis in the lung, how and why this is lost during acute lung infection, and strategies showing promise as future immune therapeutics.
Collapse
Affiliation(s)
- E L Wissinger
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
| | - J Saldana
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
| | - A Didierlaurent
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
- Present Address: Present address: GlaxoSmithKline Biologicals, Rue de l'Institut 89, Rixensart B-1330, Belgium,
| | - T Hussell
- Imperial College London, Kennedy Institute of Rheumatology, London, UK
| |
Collapse
|
44
|
Augmentation of SIV DNA vaccine-induced cellular immunity by targeting the 4-1BB costimulatory molecule. Vaccine 2008; 26:3121-34. [PMID: 18336959 DOI: 10.1016/j.vaccine.2008.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA vaccines are effective at inducing antigen-specific cellular immune responses. Approaches to improve these responses, however, are needed. We examined the effect of stimulating 4-1BB, an activation-inducible T-cell costimulatory receptor, by intravenously co-administering anti-human 4-1BB monoclonal antibody (mAb) in DNA-immunized cynomolgus macaques. Three groups of six cynomolgus macaques were immunized intramuscularly with a DNA vaccine encoding SIV Gag antigen (pSIVgag) at weeks 0, 4 and 8. At days 12, 15, and 19, six macaques received anti-4-1BB 4E9 mAb and six macaques received anti-4-1BB 10C7 mAb. Treatment with 10C7 mAb led to a significant augmentation of SIV Gag-specific IFN-gamma, granzyme B and perforin responses. Treatment with humanized 4E9 mAb also resulted in an enhancement of SIV Gag-specific cellular responses but the magnitude was lower compared to animals receiving 10C7 mAb. These responses persisted up to week 40 and were mostly mediated by CD8(+) T cells. Treatment with anti-4-1BB mAb was more effective in driving the CD8(+) T cells toward a more differentiated CCR7(-)/CD45RA(+) effector state. This study demonstrates that targeting the 4-1BB molecule in vivo results in an enhanced and long-lasting cellular immune response. 4-1BB stimulation may be a promising approach to enhance the effectiveness of DNA vaccines.
Collapse
|
45
|
Weinberg AD, Thalhofer C, Morris N, Walker JM, Seiss D, Wong S, Axthelm MK, Picker LJ, Urba WJ. Anti-OX40 (CD134) administration to nonhuman primates: immunostimulatory effects and toxicokinetic study. J Immunother 2007; 29:575-85. [PMID: 17063120 DOI: 10.1097/01.cji.0000211319.00031.fc] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The immune-stimulatory properties of anti-CD134 (OX40) antibodies have been well documented in rodents, including their ability to enhance antitumor immunity. In this study, an anti-OX40 antibody (Ab) known to costimulate monkey T cells in vitro, was infused into rhesus macaque monkeys during immunization with the simian immunodeficiency virus protein, gp130. The draining lymph nodes from immunized monkeys treated with anti-OX40 were enlarged compared with immunized monkeys injected with mouse Ig. Anti-OX40-treated monkeys had increased gp130-specific Ab titers, and increased long-lived T-cell responses, compared with controls. There were no overt signs of toxicity in the anti-OX40-treated monkeys. The encouraging immune-stimulatory effects led to the good manufacturing practice production of an anti-OX40 Ab for clinical trials in cancer patients. A detailed toxicology study was performed with anti-OX40 in nonhuman primates. Three groups of 8 monkeys received anti-OX40 at 1 of 3 dose levels (0.4, 2.0, and 10 mg/kg) and a control group received saline. No clinical toxicity was observed, but acute splenomegaly and enlarged gut-associated lymph nodes were observed in the anti-OX40-treated animals; splenomegaly and lymphadenopathy resolved by day 28. These studies demonstrate the immune-stimulatory properties and safety of anti-OX40 in primates and provide a strong scientific rationale to pursue clinical trials in humans.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/pharmacokinetics
- Adjuvants, Immunologic/toxicity
- Animals
- Antibodies/blood
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/toxicity
- Antigens, CD/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Count
- Female
- Gene Products, env/immunology
- Humans
- Hyperplasia
- Immunotherapy, Active/methods
- Lymph Nodes/cytology
- Lymph Nodes/drug effects
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Macaca fascicularis
- Macaca mulatta
- Male
- Organ Size/drug effects
- Receptors, OX40/immunology
- Receptors, OX40/metabolism
- Spleen/drug effects
- Spleen/immunology
- Spleen/pathology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Andrew D Weinberg
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, 5F40, Portland, OR 97213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Harrison JM, Bertram EM, Ramshaw IA. Exploiting 4-1BB Costimulation for Enhancing Antiviral Vaccination. Viral Immunol 2006; 19:593-601. [PMID: 17201654 DOI: 10.1089/vim.2006.19.593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
4-1BB, a member of the tumor necrosis factor receptor (TNFR) superfamily, is emerging as an important costimulatory molecule, particularly in the regulation of CD8(+) T cell responses. Costimulation through 4-1BB, such as by utilizing agonistic anti-4-1BB monoclonal antibodies, has been well studied in various tumor models. However, 4-1BB is also an important regulator of antiviral CD8(+) T cell responses. This review summarizes these findings and describes how 4-1BB is beginning to be exploited in terms of boosting antiviral vaccine responses.
Collapse
Affiliation(s)
- Jodie M Harrison
- Department of Immunology and Genetics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
47
|
Zaunders JJ, Dyer WB, Munier ML, Ip S, Liu J, Amyes E, Rawlinson W, De Rose R, Kent SJ, Sullivan JS, Cooper DA, Kelleher AD. CD127+CCR5+CD38+++ CD4+ Th1 effector cells are an early component of the primary immune response to vaccinia virus and precede development of interleukin-2+ memory CD4+ T cells. J Virol 2006; 80:10151-61. [PMID: 17005692 PMCID: PMC1617315 DOI: 10.1128/jvi.02670-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The stages of development of human antigen-specific CD4+ T cells responding to viral infection and their differentiation into long-term memory cells are not well understood. The inoculation of healthy adults with vaccinia virus presents an opportunity to study these events intensively. Between days 11 and 14 postinoculation, there was a peak of proliferating CCR5+CD38+++ CD4+ effector cells which contained the cytotoxic granule marker T-cell intracellular antigen 1 and included gamma interferon (IFN-gamma)-producing vaccinia virus-specific CD4+ T cells. The majority of these initial vaccinia virus-specific CD4+ T cells were CD127+ and produced interleukin-2 (IL-2) but not CTLA-4 in response to restimulation in vitro. Between days 14 and 21, there was a switch from IFN-gamma and IL-2 coexpression to IL-2 production only, coinciding with a resting phenotype and an increased in vitro proliferation response. The early CCR5+CD38+++ vaccinia virus-specific CD4+ T cells were similar to our previous observations of human immunodeficiency virus (HIV)-specific CD4+ T cells in primary HIV type 1 (HIV-1) infection, but the vaccinia virus-specific cells expressed much more CD127 and IL-2 than we previously found in their HIV-specific counterparts. The current study provides important information on the differentiation of IL-2+ vaccinia virus-specific memory cells, allowing further study of antiviral effector CD4+ T cells in healthy adults and their dysfunction in HIV-1 infection.
Collapse
Affiliation(s)
- John J Zaunders
- Centre for Immunology, St. Vincent's Hospital, Victoria Street, Darlinghurst, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Harrison JM, Bertram EM, Boyle DB, Coupar BEH, Ranasinghe C, Ramshaw IA. 4-1BBL coexpression enhances HIV-specific CD8 T cell memory in a poxvirus prime-boost vaccine. Vaccine 2006; 24:6867-74. [PMID: 17050052 DOI: 10.1016/j.vaccine.2006.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 02/02/2023]
Abstract
We have constructed a recombinant fowlpox virus expressing HIV antigens and the costimulatory molecule 4-1BBL. When included in the boost, but not the prime of a poxvirus prime-boost strategy, 4-1BBL significantly enhanced the anti-HIV T cell response generated to this vaccination in BALB/c mice, as detected by ex vivo IFNgamma ELISPOT responses, intracellular cytokine staining to HIV Gag antigens, and enumeration of Gag-reactive CD8 T cells. 4-1BBL however, is not capable of modulating the CD4 T cell response, nor the antibody response to this vaccination strategy. Enhancement of the T cell response by 4-1BBL continues into the memory phase, as detected 2 months post vaccination. This data is the first to show modulation of the immune response to a viral vaccine by coexpression of 4-1BBL and supports this strategy as an exciting approach for enhancement of T cell memory in prime-boost vaccines.
Collapse
Affiliation(s)
- Jodie M Harrison
- Department of Immunology and Genetics, The John Curtin School of Medical Research, Canberra City, Australia
| | | | | | | | | | | |
Collapse
|
49
|
Onlamoon N, Hudson K, Bryan P, Mayne AE, Bonyhadi M, Berenson R, Sundstrom BJ, Bostik P, Ansari AA, Villinger F. Optimization of in vitro expansion of macaque CD4 T cells using anti-CD3 and co-stimulation for autotransfusion therapy. J Med Primatol 2006; 35:178-93. [PMID: 16872281 DOI: 10.1111/j.1600-0684.2006.00182.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Our laboratory has previously shown that adoptive transfer of in vitro-expanded autologous purified polyclonal CD4(+) T cells using anti-CD3/CD28-coated beads induced antiviral responses capable of controlling SIV replication in vivo. METHODS As CD4(+) T cells comprise several phenotypic and functional lineages, studies were carried out to optimize the in vitro culture conditions for maximal CD4(+) T-cell expansion, survival and delineate the phenotype of these expanded CD4(+) T cells to be linked to maximal clinical benefit. RESULTS AND CONCLUSIONS The results showed that whereas anti-monkey CD3gamma/epsilon was able to induce T-cell proliferation and expansion in combination with antibodies against multiple co-stimulatory molecules, monkey CD3epsilon cross reacting antibodies failed to induce proliferation of macaque CD4(+) T cells. Among co-stimulatory signals, anti-CD28 stimulation was consistently superior to anti-4-1BB, CD27 or ICOS while the use of anti-CD154 failed to deliver a detectable proliferation signal. Increasing the relative anti-CD28 co-stimulatory signal relative to anti-CD3 provided a modest enhancement of expansion. Additional strategies for optimization included attempts to neutralize free radicals, enhancement of glucose uptake by T cells or addition of T-cell stimulatory cytokines. However, none of these strategies provided any detectable proliferative advantage. Addition of 10 autologous irradiated feeder cells/expanding T cell provided some enhancement of expansion; however, given the high numbers of T cell needed, this approach was deemed impractical and costly, and lower ratios of feeder to expanding T cells failed to provide such benefit. The most critical parameter for efficient expansion of purified CD4(+) T cells from multiple monkeys was the optimization of space and culture conditions at culture inception. Finally, anti-CD3/28-expanded CD4(+) T cells uniformly exhibited a central memory phenotype, absence of CCR5 expression, marked CXCR4 expression in vitro, low levels of caspase 3 but also of Bcl-2 expression.
Collapse
Affiliation(s)
- Nattawat Onlamoon
- Department of Pathology and Lab Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Van den Bosch GA, Ponsaerts P, Vanham G, Van Bockstaele DR, Berneman ZN, Van Tendeloo VFI. Cellular immunotherapy for cytomegalovirus and HIV-1 infection. J Immunother 2006; 29:107-21. [PMID: 16531812 DOI: 10.1097/01.cji.0000184472.28832.d3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Current antiviral drugs do not fully reconstitute the specific antiviral immune control in chronically human immunodeficiency virus (HIV)-1-infected patients or in cytomegalovirus (CMV)-infected patients after hematopoietic stem cell transplantation. Therefore, immunotherapy in which the patient's immune system is manipulated to enhance antiviral immune responses has become a promising area of viral immunology research. In this review, an overview is provided on the cellular immunotherapy strategies that have been developed for HIV infection and CMV reactivation in immunocompromised patients. As an introduction, the mechanisms behind the cellular immune system and their importance for the development of a workable immunotherapy approach are discussed. Next, the focus is shifted to the immunopathogenesis of CMV and HIV-1 infections to correlate these findings with the concepts and ideas behind the viral-specific immunotherapies discussed. Current and future perspectives of active and passive cellular immunotherapy for the treatment of CMV and HIV-1 infections are reviewed. Finally, pitfalls and key issues with regard to the development of immunotherapy protocols that can be applied in a clinical setting are addressed.
Collapse
Affiliation(s)
- Glenn A Van den Bosch
- Laboratory of Experimental Hematology, Faculty of Medicine, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | | | | | | | | | | |
Collapse
|