1
|
Zhao B, Zhang S, Amin N, Pan J, Wu F, Shen G, Tan M, Shi Z, Geng Y. Thymoquinone regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the TLR4 signaling pathway. Neurotoxicology 2024; 101:54-67. [PMID: 38325603 DOI: 10.1016/j.neuro.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Acute ischemic stroke followed by microglia activation, and the regulation of neuroinflammatory responses after ischemic injury involves microglia polarization. microglia polarization is involved in the regulation of neuroinflammatory responses and ischemic stroke-related brain damage. Thymoquinone (TQ) is an anti-inflammatory agent following ischemic stroke onset. However, the significance of TQ in microglia polarization following acute ischemic stroke is still unclear. We predicted that TQ might have neuroprotective properties by modulating microglia polarization. In this work, we mimicked the clinical signs of acute ischemic stroke using a mouse middle cerebral artery ischemia-reperfusion (I/R) model. It was discovered that TQ treatment decreased I/R-induced infarct volume, cerebral oedema, and promoted neuronal survival, as well as improved the histopathological changes of brain tissue. The sensorimotor function was assessed by the Garica score, foot fault test, and corner test, and it was found that TQ could improve the motor deficits caused by I/R. Secondly, real-time fluorescence quantitative PCR, immuno-fluorescence, ELISA, and western blot were used to detect the expression of M1/M2-specific markers in microglia to explore the role of TQ in the modulation of microglial cell polarization after cerebral ischemia-reperfusion. We found that TQ was able to promote the polarization of microglia with extremely secreted inflammatory factors from M1 type to M2 type. Furthermore, TQ could block the TLR4/NF-κB signaling pathway via Hif-1α activation which subsequently may attenuate microglia differentiation following the cerebral ischemia, establishing a mechanism for the TQ's beneficial effects in the cerebral ischemia-reperfusion model.
Collapse
Affiliation(s)
- Bingxin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Zoology, Faculty of Science, Aswan University, Egypt
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanghong Shen
- Jinhua Maternal and Child Health Hospital, Jinhua, 321000, China
| | - Mingming Tan
- Department of Quality Management, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, Zhejiang 310014, P.R. China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Farahani E, Reinert LS, Narita R, Serrero MC, Skouboe MK, van der Horst D, Assil S, Zhang B, Iversen MB, Gutierrez E, Hazrati H, Johannsen M, Olagnier D, Kunze R, Denham M, Mogensen TH, Lappe M, Paludan SR. The HIF transcription network exerts innate antiviral activity in neurons and limits brain inflammation. Cell Rep 2024; 43:113792. [PMID: 38363679 PMCID: PMC10915869 DOI: 10.1016/j.celrep.2024.113792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
Pattern recognition receptors (PRRs) induce host defense but can also induce exacerbated inflammatory responses. This raises the question of whether other mechanisms are also involved in early host defense. Using transcriptome analysis of disrupted transcripts in herpes simplex virus (HSV)-infected cells, we find that HSV infection disrupts the hypoxia-inducible factor (HIF) transcription network in neurons and epithelial cells. Importantly, HIF activation leads to control of HSV replication. Mechanistically, HIF activation induces autophagy, which is essential for antiviral activity. HSV-2 infection in vivo leads to hypoxia in CNS neurons, and mice with neuron-specific HIF1/2α deficiency exhibit elevated viral load and augmented PRR signaling and inflammatory gene expression in the CNS after HSV-2 infection. Data from human stem cell-derived neuron and microglia cultures show that HIF also exerts antiviral and inflammation-restricting activity in human CNS cells. Collectively, the HIF transcription factor system senses virus-induced hypoxic stress to induce cell-intrinsic antiviral responses and limit inflammation.
Collapse
Affiliation(s)
- Ensieh Farahani
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Line S Reinert
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Ryo Narita
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Manutea C Serrero
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Morten Kelder Skouboe
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Demi van der Horst
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Sonia Assil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Baocun Zhang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Marie B Iversen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Eugenio Gutierrez
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Hossein Hazrati
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Forensic Science, Aarhus University, Aarhus, Denmark
| | - Mogens Johannsen
- Department of Forensic Science, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Mark Denham
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Lappe
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Aarhus, Denmark; CONNECT - Center for Clinical and Genomic Data, Aarhus University Hospital, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
3
|
Yang F, Smith MJ. Metal profiling in coronary ischemia-reperfusion injury: Implications for KEAP1/NRF2 regulated redox signaling. Free Radic Biol Med 2024; 210:158-171. [PMID: 37989446 DOI: 10.1016/j.freeradbiomed.2023.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/18/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Coronary ischemia-reperfusion (IR) injury results from a blockage of blood supply to the heart followed by restoration of perfusion, leading to oxidative stress induced pathological processes. Nuclear factor erythroid 2-related factor 2 (NRF2), a master antioxidant transcription factor, plays a key role in regulating redox signaling. Over the past decades, the field of metallomics has provided novel insights into the mechanism of pro-oxidant and antioxidant pathological processes. Both redox-active (e.g. Fe and Cu) and redox-inert (e.g. Zn and Mg) metals play unique roles in establishing redox balance under IR injury. Notably, Zn protects against oxidative stress in coronary IR injury by serving as a cofactor of antioxidant enzymes such as superoxide dismutase [Cu-Zn] (SOD1) and proteins such as metallothionein (MT) and KEAP1/NRF2 mediated antioxidant defenses. An increase in labile Zn2+ inhibits proteasomal degradation and ubiquitination of NRF2 by modifying KEAP1 and glycogen synthase kinase 3β (GSK3β) conformations. Fe and Cu catalyse the formation of reactive oxygen species via the Fenton reaction and also serve as cofactors of antioxidant enzymes and can activate NRF2 antioxidant signaling. We review the evidence that Zn and redox-active metals Fe and Cu affect redox signaling in coronary cells during IR and the mechanisms by which oxidative stress influences cellular metal content. In view of the unique double-edged characteristics of metals, we aim to bridge the role of metals and NRF2 regulated redox signaling to antioxidant defenses in IR injury, with a long-term aim of informing the design and application of novel therapeutics.
Collapse
Affiliation(s)
- Fan Yang
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom.
| | - Matthew J Smith
- MSD R&D Innovation Centre, 120 Moorgate, London EC2M 6UR, United Kingdom.
| |
Collapse
|
4
|
Sivagurunathan N, Calivarathan L. SARS-CoV-2 Infection to Premature Neuronal Aging and Neurodegenerative Diseases: Is there any Connection with Hypoxia? CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:431-448. [PMID: 37073650 DOI: 10.2174/1871527322666230418114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 04/20/2023]
Abstract
The pandemic of coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has become a global concern as it leads to a spectrum of mild to severe symptoms and increases death tolls around the world. Severe COVID-19 results in acute respiratory distress syndrome, hypoxia, and multi- organ dysfunction. However, the long-term effects of post-COVID-19 infection are still unknown. Based on the emerging evidence, there is a high possibility that COVID-19 infection accelerates premature neuronal aging and increases the risk of age-related neurodegenerative diseases in mild to severely infected patients during the post-COVID period. Several studies correlate COVID-19 infection with neuronal effects, though the mechanism through which they contribute to the aggravation of neuroinflammation and neurodegeneration is still under investigation. SARS-CoV-2 predominantly targets pulmonary tissues and interferes with gas exchange, leading to systemic hypoxia. The neurons in the brain require a constant supply of oxygen for their proper functioning, suggesting that they are more vulnerable to any alteration in oxygen saturation level that results in neuronal injury with or without neuroinflammation. We hypothesize that hypoxia is one of the major clinical manifestations of severe SARS-CoV-2 infection; it directly or indirectly contributes to premature neuronal aging, neuroinflammation, and neurodegeneration by altering the expression of various genes responsible for the survival of the cells. This review focuses on the interplay between COVID-19 infection, hypoxia, premature neuronal aging, and neurodegenerative diseases and provides a novel insight into the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur - 610005, Tamil Nadu, India
| |
Collapse
|
5
|
Ducharme JB, McKenna ZJ, Specht JW, Fennel ZJ, Berkemeier QN, Deyhle MR. Divergent mechanisms regulate TLR4 expression on peripheral blood mononuclear cells following workload-matched exercise in normoxic and hypoxic environments. J Appl Physiol (1985) 2024; 136:33-42. [PMID: 37994415 DOI: 10.1152/japplphysiol.00626.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Exercise in hypoxia increases immune responses compared with normoxic exercise, and while Toll-like receptor 4 (TLR4) is implicated in these responses, its regulation remains undefined. The purpose of this study was to 1) investigate TLR4 regulation during workload-matched endurance exercise in normoxic and hypoxic conditions in vivo and 2) determine the independent effects of hypoxia and muscle contractions on TLR4 expression in vitro. Eight recreationally active men cycled for 1 h at 65% of their V̇o2max in normoxia (630 mmHg) and in hypobaric hypoxia (440 mmHg). Exercise in normoxia decreased TLR4 expressed on peripheral blood mononuclear cells (PBMCs), had no effect on the expression of inhibitor of κBα (IκBα), and increased the concentration of soluble TLR4 (sTLR4) in circulation. In contrast, exercise in hypoxia decreased the expression of TLR4 and IκBα in PBMCs, and sTLR4 in circulation. Markers of physiological stress were higher during exercise in hypoxia, correlating with markers of intestinal barrier damage, circulating lipopolysaccharides (LPS), and a concurrent decrease in circulating sTLR4, suggesting heightened TLR4 activation, internalization, and degradation in response to escalating physiological strain. In vitro, both hypoxia and myotube contractions independently, and in combination, reduced TLR4 expressed on C2C12 myotubes, and these effects were dependent on hypoxia-inducible factor 1 (HIF-1). In summary, the regulation of TLR4 varies depending on the physiological stress during exercise. To our knowledge, our study provides the first evidence of exercise-induced effects on sTLR4 in vivo and highlights the essential role of HIF-1 in the reduction of TLR4 during contraction and hypoxia in vitro.NEW & NOTEWORTHY We provide the first evidence of exercise affecting soluble Toll-like receptor 4 (sTLR4), a TLR4 ligand decoy receptor. We found that the degree of exercise-induced physiological stress influences TLR4 regulation on peripheral blood mononuclear cells (PBMCs). Moderate-intensity exercise reduces PBMC TLR4 and increases circulating sTLR4. Conversely, workload-matched exercise in hypoxia induces greater physiological stress, intestinal barrier damage, circulating lipopolysaccharides, and reduces both TLR4 and sTLR4, suggesting heightened TLR4 activation, internalization, and degradation under increased strain.
Collapse
Affiliation(s)
- Jeremy B Ducharme
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zachary J McKenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Institute for Exercise and Environmental Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jonathan W Specht
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Zachary J Fennel
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Quint N Berkemeier
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
| | - Michael R Deyhle
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, United States
- Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico, United States
| |
Collapse
|
6
|
Tran TAT, Iwata Y, Hoang LT, Kitajima S, Yoneda-Nakagawa S, Oshima M, Sakai N, Toyama T, Yamamura Y, Yamazaki H, Hara A, Shimizu M, Sako K, Minami T, Yuasa T, Horikoshi K, Hayashi D, Kajikawa S, Wada T. Protective Role of MAVS Signaling for Murine Lipopolysaccharide-Induced Acute Kidney Injury. Immunohorizons 2024; 8:1-18. [PMID: 38169549 PMCID: PMC10835654 DOI: 10.4049/immunohorizons.2300069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Despite treatment advances, acute kidney injury (AKI)-related mortality rates are still high in hospitalized adults, often due to sepsis. Sepsis and AKI could synergistically worsen the outcomes of critically ill patients. TLR4 signaling and mitochondrial antiviral signaling protein (MAVS) signaling are innate immune responses essential in kidney diseases, but their involvement in sepsis-associated AKI (SA-AKI) remains unclear. We studied the role of MAVS in kidney injury related to the TLR4 signaling pathway using a murine LPS-induced AKI model in wild-type and MAVS-knockout mice. We confirmed the importance of M1 macrophage in SA-AKI through in vivo assessment of inflammatory responses. The TLR4 signaling pathway was upregulated in activated bone marrow-derived macrophages, in which MAVS helped maintain the LPS-suppressed TLR4 mRNA level. MAVS regulated redox homeostasis via NADPH oxidase Nox2 and mitochondrial reverse electron transport in macrophages to alleviate the TLR4 signaling response to LPS. Hypoxia-inducible factor 1α (HIF-1α) and AP-1 were key regulators of TLR4 transcription and connected MAVS-dependent reactive oxygen species signaling with the TLR4 pathway. Inhibition of succinate dehydrogenase could partly reduce inflammation in LPS-treated bone marrow-derived macrophages without MAVS. These findings highlight the renoprotective role of MAVS in LPS-induced AKI by regulating reactive oxygen species generation-related genes and maintaining redox balance. Controlling redox homeostasis through MAVS signaling may be a promising therapy for SA-AKI.
Collapse
Affiliation(s)
- Trang Anh Thi Tran
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
- Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Linh Thuy Hoang
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan
| | | | - Megumi Oshima
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
- Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Hiroka Yamazaki
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Keisuke Sako
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Taichiro Minami
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Takahiro Yuasa
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Keisuke Horikoshi
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Daiki Hayashi
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Sho Kajikawa
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| | - Takashi Wada
- Department of Nephrology and Rheumatology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
7
|
Gonzalez-Avila G, Sommer B, Flores-Soto E, Aquino-Galvez A. Hypoxic Effects on Matrix Metalloproteinases' Expression in the Tumor Microenvironment and Therapeutic Perspectives. Int J Mol Sci 2023; 24:16887. [PMID: 38069210 PMCID: PMC10707261 DOI: 10.3390/ijms242316887] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
The tumor microenvironment (TME) is characterized by an acidic pH and low oxygen concentrations. Hypoxia induces neoplastic cell evasion of the immune surveillance, rapid DNA repair, metabolic reprogramming, and metastasis, mainly as a response to the hypoxic inducible factors (HIFs). Likewise, cancer cells increase matrix metalloproteinases' (MMPs) expression in response to TME conditions, allowing them to migrate from the primary tumor to different tissues. Since HIFs and MMPs are augmented in the hypoxic TME, it is easy to consider that HIFs participate directly in their expression regulation. However, not all MMPs have a hypoxia response element (HRE)-HIF binding site. Moreover, different transcription factors and signaling pathways activated in hypoxia conditions through HIFs or in a HIF-independent manner participate in MMPs' transcription. The present review focuses on MMPs' expression in normal and hypoxic conditions, considering HIFs and a HIF-independent transcription control. In addition, since the hypoxic TME causes resistance to anticancer conventional therapy, treatment approaches using MMPs as a target alone, or in combination with other therapies, are also discussed.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico;
| | - Arnoldo Aquino-Galvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| |
Collapse
|
8
|
Suresh MV, Balijepalli S, Solanki S, Aktay S, Choudhary K, Shah YM, Raghavendran K. Hypoxia-Inducible Factor 1α and Its Role in Lung Injury: Adaptive or Maladaptive. Inflammation 2023; 46:491-508. [PMID: 36596930 PMCID: PMC9811056 DOI: 10.1007/s10753-022-01769-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors critical for the adaptive response to hypoxia. There is also an essential link between hypoxia and inflammation, and HIFs have been implicated in the dysregulated immune response to various insults. Despite the prevalence of hypoxia in tissue trauma, especially involving the lungs, there remains a dearth of studies investigating the role of HIFs in clinically relevant injury models. Here, we summarize the effects of HIF-1α on the vasculature, metabolism, inflammation, and apoptosis in the lungs and review the role of HIFs in direct lung injuries, including lung contusion, acid aspiration, pneumonia, and COVID-19. We present data that implicates HIF-1α in the context of arguments both in favor and against its role as adaptive or injurious in the propagation of the acute inflammatory response in lung injuries. Finally, we discuss the potential for pharmacological modulation of HIFs as a new class of therapeutics in the modern intensive care unit.
Collapse
Affiliation(s)
| | | | - Sumeet Solanki
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Sinan Aktay
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | | | - Yatrik M Shah
- Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | | |
Collapse
|
9
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
10
|
Okazaki K, Nakamura S, Koyano K, Konishi Y, Kondo M, Kusaka T. Neonatal asphyxia as an inflammatory disease: Reactive oxygen species and cytokines. Front Pediatr 2023; 11:1070743. [PMID: 36776908 PMCID: PMC9911547 DOI: 10.3389/fped.2023.1070743] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Neonatologists resuscitate asphyxiated neonates by every available means, including positive ventilation, oxygen therapy, and drugs. Asphyxiated neonates sometimes present symptoms that mimic those of inflammation, such as fever and edema. The main pathophysiology of the asphyxia is inflammation caused by hypoxic-ischemic reperfusion. At birth or in the perinatal period, neonates may suffer several, hypoxic insults, which can activate inflammatory cells and inflammatory mediator production leading to the release of larger quantities of reactive oxygen species (ROS). This in turn triggers the production of oxygen stress-induced high mobility group box-1 (HMGB-1), an endogenous damage-associated molecular patterns (DAMPs) protein bound to toll-like receptor (TLR) -4, which activates nuclear factor-kappa B (NF-κB), resulting in the production of excess inflammatory mediators. ROS and inflammatory mediators are produced not only in activated inflammatory cells but also in non-immune cells, such as endothelial cells. Hypothermia inhibits pro-inflammatory mediators. A combination therapy of hypothermia and medications, such as erythropoietin and melatonin, is attracting attention now. These medications have both anti-oxidant and anti-inflammatory effects. As the inflammatory response and oxidative stress play a critical role in the pathophysiology of neonatal asphyxia, these drugs may contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Kaoru Okazaki
- Department of Neonatology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masatoshi Kondo
- Department of Neonatology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
11
|
Han Y, Jia R, Zhang J, Zhu Q, Wang X, Ji Q, Zhang W. Hypoxia Attenuates Colonic Innate Immune Response and Inhibits TLR4/NF-κB Signaling Pathway in Lipopolysaccharide-Induced Colonic Epithelial Injury Mice. J Interferon Cytokine Res 2023; 43:43-52. [PMID: 36603105 DOI: 10.1089/jir.2022.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
High altitude hypoxia can lead to a spectrum of gastrointestinal problems. As the first line of host immune defense, innate immune response in the intestinal mucosa plays a pivotal role in maintaining intestinal homeostasis and protecting against intestinal injury at high altitude. This study aimed to investigate the effect of hypoxia on the colonic mucosal barrier and toll-like receptor 4 (TLR4)-mediated innate immune responses in the colon. The mice were exposed to a hypobaric chamber to simulate a 5,000 m plateau environment for 7 days, and the colonic mucosa changes were recorded. At the same time, the inflammation model was established by lipopolysaccharide (LPS) to explore the effects of hypoxia on the TLR4/nuclear factor kappa B (NF-κB) signaling pathway and its downstream inflammatory factors [tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and interferon (IFN)-γ] in the colon. We found that hypoxic exposure caused weight loss and structural disturbance of the colonic mucosa in mice. Compared with the control group, the protein levels of TLR4 [fold change (FC) = 0.75 versus FC = 0.23], MyD88 (FC = 0.80 versus FC = 0.30), TIR-domain-containing adaptor protein inducing interferon-β (TRIF: FC = 0.89 versus FC = 0.38), and NF-κB p65 (FC = 0.75 versus FC = 0.24) in the colon of mice in the hypobaric hypoxia group were significantly decreased. LPS-induced upregulation of the TLR4/NF-κB signaling and its downstream inflammatory factors was inhibited by hypoxia. Specifically, compared with the LPS group, the protein levels of TLR4 (FC = 1.18, FC = 0.86), MyD88 (FC = 1.20, FC = 0.80), TRIF (FC = 1.20, FC = 0.86), and NF-κB p65 (FC = 1.29, FC = 0.62) and the mRNA levels of IL-1β (FC = 7.38, FC = 5.06), IL-6 (FC = 16.06, FC = 9.22), and IFN-γ (FC = 2.01, FC = 1.16) were reduced in the hypobaric hypoxia plus LPS group. Our findings imply that hypoxia could lead to marked damage of the colonic mucosa and a reduction of TLR4-mediated colonic innate immune responses, potentially reducing host defense responses to colonic pathogens.
Collapse
Affiliation(s)
- Ying Han
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Ruhan Jia
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Jingxuan Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qinfang Zhu
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Xiaozhou Wang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| | - Qiaorong Ji
- Department of Pathophysiology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Wei Zhang
- Research Center for High Altitude Medicine, Key Laboratory of High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, China
| |
Collapse
|
12
|
Winning S, Fandrey J. Oxygen Sensing in Innate Immune Cells: How Inflammation Broadens Classical Hypoxia-Inducible Factor Regulation in Myeloid Cells. Antioxid Redox Signal 2022; 37:956-971. [PMID: 35088604 DOI: 10.1089/ars.2022.0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Significance: Oxygen deprivation (hypoxia) is a common feature at sites of inflammation. Immune cells and all other cells present at the inflamed site have to adapt to these conditions. They do so by stabilization and activation of hypoxia-inducible factor subunit α (HIF-1α and HIF-2α, respectively), enabling constant generation of adenosine triphosphate (ATP) under these austere conditions by the induction of, for example, glycolytic pathways. Recent Advances: During recent years, it has become evident that HIFs play a far more important role than initially believed because they shape the inflammatory phenotype of immune cells. They are indispensable for migration, phagocytosis, and the induction of inflammatory cytokines by innate immune cells and thereby enable a crosstalk between innate and adaptive immunity. In short, they ensure the survival and function of immune cells under critical conditions. Critical Issues: Up to now, there are still open questions regarding the individual roles of HIF-1 and HIF-2 for the different cell types. In particular, the loss of both HIF-1 and HIF-2 in myeloid cells led to unexpected and contradictory results in the mouse models analyzed so far. Similarly, the role of HIF-1 in dendritic cell maturation is unclear due to inconsistent results from in vitro experiments. Future Directions: The HIFs are indispensable for immune cell survival and action under inflammatory conditions, but they might also trigger over-activation of immune cells. Therefore, they might be excellent setscrews to adjust the inflammatory response by pharmaceuticals. China and Japan and very recently (August 2021) Europe have approved prolyl hydroxylase inhibitors (PHIs) to stabilize HIF such as roxadustat for clinical use to treat anemia by increasing the production of erythropoietin, the classical HIF target gene. Nonetheless, we need further work regarding the use of PHIs under inflammatory conditions, because HIFs show specific activation and distinct expression patterns in innate immune cells. The extent to which HIF-1 or HIF-2 as a transcription factor regulates the adaptation of immune cells to inflammatory hypoxia differs not only by the cell type but also with the inflammatory challenge and the surrounding tissue. Therefore, we urgently need isoform- and cell type-specific modulators of the HIF pathway. Antioxid. Redox Signal. 37, 956-971.
Collapse
Affiliation(s)
- Sandra Winning
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| |
Collapse
|
13
|
Yang C, Zhou Y, Liu H, Xu P. The Role of Inflammation in Cognitive Impairment of Obstructive Sleep Apnea Syndrome. Brain Sci 2022; 12:brainsci12101303. [PMID: 36291237 PMCID: PMC9599901 DOI: 10.3390/brainsci12101303] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) has become a major worldwide public health concern, given its global prevalence. It has clear links with multiple comorbidities and mortality. Cognitive impairment is one related comorbidity causing great pressure on individuals and society. The clinical manifestations of cognitive impairment in OSAS include decline in attention/vigilance, verbal–visual memory loss, visuospatial/structural ability impairment, and executive dysfunction. It has been proven that chronic intermittent hypoxia (CIH) may be a main cause of cognitive impairment in OSAS. Inflammation plays important roles in CIH-induced cognitive dysfunction. Furthermore, the nuclear factor kappa B and hypoxia-inducible factor 1 alpha pathways play significant roles in this inflammatory mechanism. Continuous positive airway pressure is an effective therapy for OSAS; however, its effect on cognitive impairment is suboptimal. Therefore, in this review, we address the role inflammation plays in the development of neuro-impairment in OSAS and the association between OSAS and cognitive impairment to provide an overview of its pathophysiology. We believe that furthering the understanding of the inflammatory mechanisms involved in OSAS-associated cognitive impairment could lead to the development of appropriate and effective therapy.
Collapse
|
14
|
Pham K, Frost S, Parikh K, Puvvula N, Oeung B, Heinrich EC. Inflammatory gene expression during acute high‐altitude exposure. J Physiol 2022; 600:4169-4186. [PMID: 35875936 PMCID: PMC9481729 DOI: 10.1113/jp282772] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract The molecular signalling pathways that regulate inflammation and the response to hypoxia share significant crosstalk and appear to play major roles in high‐altitude acclimatization and adaptation. Several studies demonstrate increases in circulating candidate inflammatory markers during acute high‐altitude exposure, but significant gaps remain in our understanding of how inflammation and immune function change at high altitude and whether these responses contribute to high‐altitude pathologies, such as acute mountain sickness. To address this, we took an unbiased transcriptomic approach, including RNA sequencing and direct digital mRNA detection with NanoString, to identify changes in the inflammatory profile of peripheral blood throughout 3 days of high‐altitude acclimatization in healthy sea‐level residents (n = 15; five women). Several inflammation‐related genes were upregulated on the first day of high‐altitude exposure, including a large increase in HMGB1 (high mobility group box 1), a damage‐associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury. Differentially expressed genes on the first and third days of acclimatization were enriched for several inflammatory pathways, including nuclear factor‐κB and Toll‐like receptor (TLR) signalling. Indeed, both TLR4 and LY96, which encodes the lipopolysaccharide binding protein (MD‐2), were upregulated at high altitude. Finally, FASLG and SMAD7 were associated with acute mountain sickness scores and peripheral oxygen saturation levels on the first day at high altitude, suggesting a potential role of immune regulation in response to high‐altitude hypoxia. These results indicate that acute high‐altitude exposure upregulates inflammatory signalling pathways and might sensitize the TLR4 signalling pathway to subsequent inflammatory stimuli.
![]() Key points Inflammation plays a crucial role in the physiological response to hypoxia. High‐altitude hypoxia exposure causes alterations in the inflammatory profile that might play an adaptive or maladaptive role in acclimatization. In this study, we characterized changes in the inflammatory profile following acute high‐altitude exposure. We report upregulation of novel inflammation‐related genes in the first 3 days of high‐altitude exposure, which might play a role in immune system sensitization. These results provide insight into how hypoxia‐induced inflammation might contribute to high‐altitude pathologies and exacerbate inflammatory responses in critical illnesses associated with hypoxaemia.
Collapse
Affiliation(s)
- Kathy Pham
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Shyleen Frost
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Keval Parikh
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Nikhil Puvvula
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Britney Oeung
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| | - Erica C. Heinrich
- Division of Biomedical Sciences School of Medicine University of California Riverside Riverside CA USA
| |
Collapse
|
15
|
Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 2022; 18:588-603. [PMID: 35798902 DOI: 10.1038/s41581-022-00592-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
Abstract
Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.
Collapse
|
16
|
Roberts R, Wall MJ, Braren I, Dhillon K, Evans A, Dunne J, Nyakupinda S, Huckstepp RTR. An Improved Model of Moderate Sleep Apnoea for Investigating Its Effect as a Comorbidity on Neurodegenerative Disease. Front Aging Neurosci 2022; 14:861344. [PMID: 35847678 PMCID: PMC9278434 DOI: 10.3389/fnagi.2022.861344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Sleep apnoea is a highly prevalent disease that often goes undetected and is associated with poor clinical prognosis, especially as it exacerbates many different disease states. However, most animal models of sleep apnoea (e.g., intermittent hypoxia) have recently been dispelled as physiologically unrealistic and are often unduly severe. Owing to a lack of appropriate models, little is known about the causative link between sleep apnoea and its comorbidities. To overcome these problems, we have created a more realistic animal model of moderate sleep apnoea by reducing the excitability of the respiratory network. This has been achieved through controlled genetically mediated lesions of the preBötzinger complex (preBötC), the inspiratory oscillator. This novel model shows increases in sleep disordered breathing with alterations in breathing during wakefulness (decreased frequency and increased tidal volume) as observed clinically. The increase in dyspnoeic episodes leads to reduction in REM sleep, with all lost active sleep being spent in the awake state. The increase in hypoxic and hypercapnic insults induces both systemic and neural inflammation. Alterations in neurophysiology, an inhibition of hippocampal long-term potentiation (LTP), is reflected in deficits in both long- and short-term spatial memory. This improved model of moderate sleep apnoea may be the key to understanding why this disorder has such far-reaching and often fatal effects on end-organ function.
Collapse
Affiliation(s)
- Reno Roberts
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Mark J. Wall
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ingke Braren
- University Medical Center Eppendorf, Vector Facility, Institute for Experimental Pharmacology and Toxikology, Hamburg, Germany
| | - Karendeep Dhillon
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Amy Evans
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jack Dunne
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Robert T. R. Huckstepp
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Robert T. R. Huckstepp
| |
Collapse
|
17
|
Yang XF, Wang H, Huang Y, Huang JH, Ren HL, Xu Q, Su XM, Wang AM, Ren F, Zhou MS. Myeloid Angiotensin II Type 1 Receptor Mediates Macrophage Polarization and Promotes Vascular Injury in DOCA/Salt Hypertensive Mice. Front Pharmacol 2022; 13:879693. [PMID: 35721173 PMCID: PMC9204513 DOI: 10.3389/fphar.2022.879693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Activation of the renin–angiotensin system has been implicated in hypertension. Angiotensin (Ang) II is a potent proinflammatory mediator. The present study investigated the role of myeloid angiotensin type 1 receptor (AT1R) in control of macrophage phenotype in vitro and vascular injury in deoxycorticosterone acetate (DOCA)/salt hypertension. In human THP-1/macrophages, Ang II increased mRNA expressions of M1 cytokines and decreased M2 cytokine expressions. Overexpression of AT1R further increased Ang II-induced expressions of M1 cytokines and decreased M2 cytokines. Silenced AT1R reversed Ang II-induced changes in M1 and M2 cytokines. Ang II upregulated hypoxia-inducible factor (HIF)1α, toll-like receptor (TLR)4, and the ratio of pIκB/IκB, which were prevented by silenced AT1R. Silenced HIF1α prevented Ang II activation of the TLR4/NFκB pathway. Furthermore, Ang II increased HIF1α via reactive oxygen species-dependent reduction in prolyl hydroxylase domain protein 2 (PHD2) expression. The expressions of AT1R and HIF1α and the ratio of pIκB/IκB were upregulated in the peritoneal macrophages of DOCA hypertensive mice, and the specific deletion of myeloid AT1R attenuated cardiac and vascular injury and vascular oxidative stress, reduced the recruitment of macrophages and M1 cytokine expressions, and improved endothelial function without significant reduction in blood pressure. Our results demonstrate that Ang II/AT1R controls the macrophage phenotype via stimulating the HIF1α/NFκB pathway, and specific myeloid AT1R KO improves endothelial function, vascular inflammation, and injury in salt-sensitive hypertension. The results support the notion that myeloid AT1R plays an important role in the regulation of the macrophage phenotype, and dysfunction of this receptor may promote vascular dysfunction and injury in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Xue-Feng Yang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Huan Wang
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yue Huang
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Jian-Hua Huang
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, China
| | - Hao-Lin Ren
- Radiology Department of the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qian Xu
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Xiao-Min Su
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Ai-Mei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, China
- *Correspondence: Ming-Sheng Zhou, ; Fu Ren,
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical College, Shenyang, China
- *Correspondence: Ming-Sheng Zhou, ; Fu Ren,
| |
Collapse
|
18
|
Hackam DJ. Anemia, blood transfusions, and necrotizing enterocolitis in premature infants. Pediatr Res 2022; 91:1317-1319. [PMID: 35292729 DOI: 10.1038/s41390-022-02007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/03/2023]
Affiliation(s)
- David J Hackam
- Professor and Chief of Pediatric Surgery, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
19
|
TLR4 Agonist and Hypoxia Synergistically Promote the Formation of TLR4/NF-κB/HIF-1α Loop in Human Epithelial Ovarian Cancer. Anal Cell Pathol (Amst) 2022; 2022:4201262. [PMID: 35464826 PMCID: PMC9023210 DOI: 10.1155/2022/4201262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammation and hypoxia are involved in numerous cancer progressions. Reportedly, the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathway and hypoxia-inducible factor-1α (HIF-1α) are activated and closely related to the chemoresistance and poor prognosis of epithelial ovarian cancer (EOC). However, the potential correlation between TLR4/NF-κB and HIF-1α remains largely unknown in EOC. In our study, the possible positive correlation among TLR4, NF-κB, and HIF-1α proteins was investigated in the EOC tissues. Our in vitro results demonstrated that LPS can induce and activate HIF-1α through the TLR4/NF-κB signaling in A2780 and SKOV3 cells. Moreover, hypoxia-induced TLR4 expression and the downstream transcriptional activity of NF-κB were HIF-1α-dependent. The cross talk between the TLR4/NF-κB signaling pathway and HIF-1α was also confirmed in the nude mice xenograft model. Therefore, we first proposed the formation of a TLR4/NF-κB/HIF-1α loop in EOC. The positive feedback loop enhanced the susceptibility and responsiveness to inflammation and hypoxia, which synergistically promote the initiation and progression of EOC. The novel mechanism may act as a future therapeutic candidate for the treatment of EOC.
Collapse
|
20
|
Sauter M, Langer HF. Targeting Cell-Specific Molecular Mechanisms of Innate Immunity in Atherosclerosis. Front Physiol 2022; 13:802990. [PMID: 35432000 PMCID: PMC9010538 DOI: 10.3389/fphys.2022.802990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms of innate immunity contribute to inflammation, one of the major underlying causes of atherogenesis and progression of atherosclerotic vessel disease. How immune cells exactly contribute to atherosclerosis and interact with molecules of cholesterol homeostasis is still a matter of intense research. Recent evidence has proposed a potential role of previously underappreciated cell types in this chronic disease including platelets and dendritic cells (DCs). The pathophysiology of atherosclerosis is studied in models with dysfunctional lipid homeostasis and several druggable molecular targets are derived from these models. Specific therapeutic approaches focussing on these immune mechanisms, however, have not been successfully introduced into everyday clinical practice, yet. This review highlights molecular insights into immune processes related to atherosclerosis and potential future translational approaches targeting these molecular mechanisms.
Collapse
Affiliation(s)
- M. Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - H. F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- Department of Cardiology, University Heart Center Luebeck, University Hospital, Luebeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- *Correspondence: H. F. Langer,
| |
Collapse
|
21
|
Xu Z, Zhang F, Xu H, Yang F, Zhou G, Tong M, Li Y, Yang S. Melatonin affects hypoxia-inducible factor 1α and ameliorates delayed brain injury following subarachnoid hemorrhage via H19/miR-675/HIF1A/TLR4. Bioengineered 2022; 13:4235-4247. [PMID: 35170388 PMCID: PMC8974079 DOI: 10.1080/21655979.2022.2027175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the molecular mechanism of how melatonin (MT) interferes with hypoxia-inducible factor 1α (HIF1A) and toll-like receptor 4 (TLR4) expression, which is implicated in the management of delayed brain injury (DBI) after subarachnoid hemorrhage (SAH). Luciferase assay, real-time PCR, Western-blot analysis and immunohistochemistry (IHC) assays were utilized to explore the interaction among H19, miR-675, HIF1A and TLR4, and to evaluate the effect of MT on the expression of above transcripts in different groups. MT enhanced H19 expression by promoting the transcription efficiency of H19 promoter, and HIF1A was identified as a target of miR-675. HIF1A enhanced TLR4 expression via promoting the transcription efficiency of TLR4 promoter. Furthermore, administration of MT up-regulated miR-675 but suppressed the expressions of HIF1A and TLR4. Treatment with MT alleviated neurobehavioral deficits and apoptosis induced by SAH. According to the result of IHC, HIF1A and TLR4 protein levels in the SAH group were much higher than those in the SAH+MT group. Therefore, the administration of MT increased the levels of H19 and miR-675 which have been inhibited by SAH. In a similar way, treatment with MT decreased the levels of HIF1A and TLR4 which have been enhanced by SAH. MT could down-regulate the expression of HIF1A and TLR4 via the H19/miR-675/HIF1A/TLR4 signaling pathway, while TLR4 is crucial to the release of pro-inflammatory cytokines. Therefore, the treatment with MT could ameliorate post-SAH DBI.Running title: Melatonin ameliorates post-SAH DBI via H19/miR-675/HIF1A/TLR4 signaling pathways
Collapse
Affiliation(s)
- Zhijian Xu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fengduo Zhang
- Department of Emergency, Chinese People's Army 971 Hospital, Qingdao, Shandong, China
| | - Hu Xu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fan Yang
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Gezhi Zhou
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Minfeng Tong
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yaqing Li
- Department of Neurosurgery, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Song Yang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Neurosurgery, Jiaozhou Branch, Shanghai East Hospital, School of Medicine, Tongji University, Qingdao, Shandong, China
| |
Collapse
|
22
|
Chen X, Luo C, Bai Y, Yao L, Shanzhou Q, Xie Y, Wang S, Xu L, Guo X, Zhong X, Wu Q. Analysis of Hypoxia Inducible Factor-1a Expression and its Effects on Glycolysis of Esophageal carcinoma. Crit Rev Eukaryot Gene Expr 2022; 32:47-66. [DOI: 10.1615/critreveukaryotgeneexpr.2022043444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Harjacek M. Immunopathophysiology of Juvenile Spondyloarthritis (jSpA): The "Out of the Box" View on Epigenetics, Neuroendocrine Pathways and Role of the Macrophage Migration Inhibitory Factor (MIF). Front Med (Lausanne) 2021; 8:700982. [PMID: 34692718 PMCID: PMC8526544 DOI: 10.3389/fmed.2021.700982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Juvenile spondyloarthritis (jSpA) is a an umbrella term for heterogeneous group of related seronegative inflammatory disorders sharing common symptoms. Although it mainly affects children and adolescents, it often remains active during adulthood. Genetic and environmental factors are involved in its occurrence, although the exact underlying immunopathophysiology remains incompletely elucidated. Accumulated evidence suggests that, in affected patients, subclinical gut inflammation caused by intestinal dysbiosis, is pivotal to the future development of synovial-entheseal complex inflammation. While the predominant role of IL17/23 axis, TNF-α, and IL-7 in the pathophysiology of SpA, including jSpA, is firmly established, the role of the cytokine macrophage migration inhibitory factor (MIF) is generally overlooked. The purpose of this review is to discuss and emphasize the role of epigenetics, neuroendocrine pathways and the hypothalamic-pituitary (HPA) axis, and to propose a novel hypothesis of the role of decreased NLRP3 gene expression and possibly MIF in the early phases of jSpA development. The decreased NLRP3 gene expression in the latter, due to hypomethylation of promotor site, is (one of) the cause for inflammasome malfunction leading to gut dysbiosis observed in patients with early jSpA. In addition, we highlight the role of MIF in the complex innate, adaptive cellular and main effector cytokine network, Finally, since treatment of advanced bone pathology in SpA remains an unmet clinical need, I suggest possible new drug targets with the aim to ultimately improve treatment efficacy and long-term outcome of jSpA patients.
Collapse
Affiliation(s)
- Miroslav Harjacek
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
24
|
Li Y, Tan J, Miao Y, Zhang Q. MicroRNA in extracellular vesicles regulates inflammation through macrophages under hypoxia. Cell Death Dis 2021; 7:285. [PMID: 34635652 PMCID: PMC8505641 DOI: 10.1038/s41420-021-00670-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/25/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Extracellular vesicle (EV), critical mediators of cell-cell communication, allow cells to exchange proteins, lipids, and genetic material and therefore profoundly affect the general homeostasis. A hypoxic environment can affect the biogenesis and secrete of EVs, and the cargoes carried can participate in a variety of physiological and pathological processes. In hypoxia-induced inflammation, microRNA(miRNA) in EV participates in transcriptional regulation through various pathways to promote or reduce the inflammatory response. Meanwhile, as an important factor of immune response, the polarization of macrophages is closely linked to miRNAs, which will eventually affect the inflammatory state. In this review, we outline the possible molecular mechanism of EV changes under hypoxia, focusing on the signaling pathways of several microRNAs involved in inflammation regulation and describing the process and mechanism of EV-miRNAs regulating macrophage polarization in hypoxic diseases.
Collapse
Affiliation(s)
- Ye Li
- grid.412645.00000 0004 1757 9434Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Jin Tan
- grid.412645.00000 0004 1757 9434Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| | - Yuyang Miao
- grid.265021.20000 0000 9792 1228Tianjin Medical University, 300052 Tianjin, China
| | - Qiang Zhang
- grid.412645.00000 0004 1757 9434Department of Geriatrics, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, 300052 Tianjin, China
| |
Collapse
|
25
|
Xin JW, Chai ZX, Zhang CF, Zhang Q, Zhu Y, Cao HW, YangJi C, Chen XY, Jiang H, Zhong JC, Ji QM. Differences in proteomic profiles between yak and three cattle strains provide insights into molecular mechanisms underlying high-altitude adaptation. J Anim Physiol Anim Nutr (Berl) 2021; 106:485-493. [PMID: 34494310 DOI: 10.1111/jpn.13629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 01/22/2023]
Abstract
Yaks display unique properties of the lung and heart, enabling their adaptation to high-altitude environments, but the underlying molecular mechanisms are still largely unknown. In the present study, the proteome differences in lung and heart tissues were compared between yak (Bos grunniens) and three cattle strains (Bos taurus, Holstein, Sanjiang and Tibetan cattle) using the sequential window acquisition of all theoretical mass spectra/data-independent acquisition (SWATH/DIA) proteomic method. In total, 51,755 peptides and 7215 proteins were identified. In the lung tissue, there were 162, 310 and 118 differential abundance proteins (DAPs) in Tibetan, Holstein and Sanjiang cattle compared to yak respectively. In the heart tissue, there were 71, 57 and 78 DAPs in Tibetan, Holstein and Sanjiang cattle compared to yak respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DAPs were enriched for the retinol metabolism and toll-like receptor categories in lung tissue. The changes in these two pathways may regulate hypoxia-induced factor and immune function in yaks. Moreover, DAPs in heart tissues were enriched for cardiac muscle contraction, Huntington's disease, chemical carcinogenesis and drug metabolism-cytochrome P450. Further exploration indicated that yaks may alter cardiac function through regulation of type 2 ryanodine receptor (RyR2) and Ca2+ -release channels. The present results are useful to further develop an understanding of the mechanisms underlying adaptation of animals to high-altitude conditions.
Collapse
Affiliation(s)
- Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Zhi-Xin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Cidan YangJi
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiao-Ying Chen
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Jin-Cheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Qiu-Mei Ji
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China.,Institute of Animal Science and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
26
|
Inflammation in Metabolic and Cardiovascular Disorders-Role of Oxidative Stress. Life (Basel) 2021; 11:life11070672. [PMID: 34357044 PMCID: PMC8308054 DOI: 10.3390/life11070672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute the main cause of death worldwide. Both inflammation and oxidative stress have been reported to be involved in the progress of CVD. It is well known that generation of oxidative stress during the course of CVD is involved in tissue damage and inflammation, causing deleterious effects such as hypertension, dysfunctional metabolism, endothelial dysfunction, stroke, and myocardial infarction. Remarkably, natural antioxidant strategies have been increasingly discovered and are subject to current scientific investigations. Here, we addressed the activation of immune cells in the context of ROS production, as well as how their interaction with other cellular players and further (immune) mediators contribute to metabolic and cardiovascular disorders. We also highlight how a dysregulated complement system contributes to immune imbalance and tissue damage in the context of increases oxidative stress. Additionally, modulation of hypothalamic oxidative stress is discussed, which may offer novel treatment strategies for type-2 diabetes and obesity. Together, we provide new perspectives on therapy strategies for CVD caused by oxidative stress, with a focus on oxidative stress.
Collapse
|
27
|
Sha W, Liu M, Sun D, Qiu J, Xu B, Chen L, Shen T, Chen C, Wang H, Zhang C, Lei T. Resveratrol ameliorated endothelial injury of thoracic aorta in diabetic mice and Gly-LDL-induced HUVECs through inhibiting TLR4/HIF-1α. J Cell Mol Med 2021; 25:6258-6270. [PMID: 34114347 PMCID: PMC8256346 DOI: 10.1111/jcmm.16584] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
To explore the effects of resveratrol on the levels of inflammatory cytokines and Toll-like receptor-4/ hypoxia-inducible transcription factors-1α (TLR4/HIF-1α) signalling pathway in diabetes mellitus. C57BL/6 mice received intraperitoneal injection of streptozocin for constructing diabetic mice models. Human umbilical vein endothelial cells (HUVECs) were treated with 50 µg/mL Gly-LDL for inducing injury models. 10, 100 and 1000 mmol/L resveratrol were obtained and added into each group. Haematoxylin-eosin (H&E) staining was used for histological evaluation. CCK8 assay was performed for determination of cell viability, and Transwell assay was implemented for detecting cell migration ability. Cell apoptosis was analysed using flow cytometry. The content of inflammatory factors including interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), vascular adhesion molecule-1 (VCAM-1) and vascular endothelial growth factor (VEGF) were measured by ELISA. GST pull-down assay was employed for determining interactions between TLR4 and HIF-1α. The protein expression of TLR4 and HIF-1α was detected using Western blotting and immunohistochemistry, while relative mRNA expression was measured by RT-qRCR. Resveratrol could reduce bodyweight and ameliorate endothelial injury of thoracic aorta in diabetic mice. Both in vivo and in vitro results revealed that the level of IL-6, TNF-α, VCAM-1 and VEGF was significantly down-regulated after being treated with resveratrol. Resveratrol inhibited the increase of MDA and ROS and increased the level of SOD in diabetic mice. Western blotting, IHC and RT-qPCR results showed that the levels of TLR4 and HIF-1α were significantly down-regulated in resveratrol group. Overexpression of TLR4 or HIF-1α could reverse the effect of resveratrol. GST pull-down elucidated that there might be a close interaction between TLR4 and HIF-1α. Resveratrol ameliorated endothelial injury of thoracic aorta in diabetic mice and Gly-LDL-induced HUVECs through inhibiting TLR4/HIF-1α signalling pathway.
Collapse
Affiliation(s)
- Wenjun Sha
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Meizhi Liu
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dusang Sun
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Junhui Qiu
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Bilin Xu
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lin Chen
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tian Shen
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Cheng Chen
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongping Wang
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Cuiping Zhang
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tao Lei
- Department of EndocrinologyPutuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
28
|
Studies of molecular pathways associated with blood neutrophil corticosteroid insensitivity in equine asthma. Vet Immunol Immunopathol 2021; 237:110265. [PMID: 33989854 DOI: 10.1016/j.vetimm.2021.110265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
Severe equine asthma is characterized by airway hyperresponsiveness, neutrophilic inflammation and structural alterations of the lower airways. In asthmatic horses with neutrophilic inflammation, there is insensitivity to corticosteroids characterized by the persistence of neutrophils within the airways with therapy. We hypothesized that hypoxia or oxidative stress in the microenvironment of the lung contributes to this insensitivity of neutrophils to corticosteroids in asthmatic horses. Blood neutrophils isolated from horses with severe asthma (N = 8) and from healthy controls (N = 8) were incubated under different cell culture conditions simulating hypoxia and oxidative stress and, in the presence, or absence of dexamethasone. The pro-inflammatory gene and protein expression of neutrophils were studied. In both groups, pyocyanin-induced oxidative stress increased the mRNA expression of IL-8, IL-1β, and TNF-α. While IL-1β and TNF-α were downregulated by dexamethasone under these conditions, IL-8 was not. Simulated hypoxic conditions did not enhance pro-inflammatory gene expression in neutrophils from either group of horses. In conclusion, oxidative stress but not hypoxia may contribute to corticosteroid insensitivity via a selective gene regulation pathway. Equine neutrophil responses were similar in both heathy and asthmatic horses, indicating that it is not specific to asthmatic inflammation.
Collapse
|
29
|
Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2021; 289:3024-3057. [PMID: 33860630 PMCID: PMC9290065 DOI: 10.1111/febs.15877] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, being a common comorbidity of type 2 diabetes and with important links to inflammation and insulin resistance. NAFLD represents a spectrum of liver conditions ranging from steatosis in the form of ectopic lipid storage, to inflammation and fibrosis in nonalcoholic steatohepatitis (NASH). Macrophages that populate the liver play important roles in maintaining liver homeostasis under normal physiology and in promoting inflammation and mediating fibrosis in the progression of NAFLD toward to NASH. Liver macrophages are a heterogenous group of innate immune cells, originating from the yolk sac or from circulating monocytes, that are required to maintain immune tolerance while being exposed portal and pancreatic blood flow rich in nutrients and hormones. Yet, liver macrophages retain a limited capacity to raise the alarm in response to danger signals. We now know that macrophages in the liver play both inflammatory and noninflammatory roles throughout the progression of NAFLD. Macrophage responses are mediated first at the level of cell surface receptors that integrate environmental stimuli, signals are transduced through multiple levels of regulation in the cell, and specific transcriptional programmes dictate effector functions. These effector functions play paramount roles in determining the course of disease in NAFLD and even more so in the progression towards NASH. The current review covers recent reports in the physiological and pathophysiological roles of liver macrophages in NAFLD. We emphasise the responses of liver macrophages to insulin resistance and the transcriptional machinery that dictates liver macrophage function.
Collapse
Affiliation(s)
- Ronan Thibaut
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Matthew C Gage
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Inès Pineda-Torra
- Department of Medicine, Centre for Cardiometabolic and Vascular Science, University College London, UK
| | - Gwladys Chabrier
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Nicolas Venteclef
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| | - Fawaz Alzaid
- Cordeliers Research Centre, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, France
| |
Collapse
|
30
|
Page LK, Staples KJ, Spalluto CM, Watson A, Wilkinson TMA. Influence of Hypoxia on the Epithelial-Pathogen Interactions in the Lung: Implications for Respiratory Disease. Front Immunol 2021; 12:653969. [PMID: 33868294 PMCID: PMC8044850 DOI: 10.3389/fimmu.2021.653969] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Under normal physiological conditions, the lung remains an oxygen rich environment. However, prominent regions of hypoxia are a common feature of infected and inflamed tissues and many chronic inflammatory respiratory diseases are associated with mucosal and systemic hypoxia. The airway epithelium represents a key interface with the external environment and is the first line of defense against potentially harmful agents including respiratory pathogens. The protective arsenal of the airway epithelium is provided in the form of physical barriers, and the production of an array of antimicrobial host defense molecules, proinflammatory cytokines and chemokines, in response to activation by receptors. Dysregulation of the airway epithelial innate immune response is associated with a compromised immunity and chronic inflammation of the lung. An increasing body of evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium and in the responses of both innate immunity and of respiratory pathogens. Here we review the current evidence around the role of tissue hypoxia in modulating the host-pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in addition to novel respiratory diseases such as COVID-19. Elucidating the molecular mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will enable better understanding of persistent infections and complex disease processes in chronic inflammatory lung diseases and may aid the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Lee K. Page
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
| | - Karl J. Staples
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - C. Mirella Spalluto
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| | - Alastair Watson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
- Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Tom M. A. Wilkinson
- Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
31
|
Yang F, Li Y, Sheng X, Liu Y. Paeoniflorin treatment regulates TLR4/NF-κB signaling, reduces cerebral oxidative stress and improves white matter integrity in neonatal hypoxic brain injury. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:97-109. [PMID: 33602880 PMCID: PMC7893490 DOI: 10.4196/kjpp.2021.25.2.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 02/04/2023]
Abstract
Neonatal hypoxia/ischemia (H/I), injures white matter, results in neuronal loss, disturbs myelin formation, and neural network development. Neuroinflammation and oxidative stress have been reported in neonatal hypoxic brain injuries. We investigated whether Paeoniflorin treatment reduced H/I-induced inflammation and oxidative stress and improved white matter integrity in a neonatal rodent model. Seven-day old Sprague–Dawley pups were exposed to H/I. Paeoniflorin (6.25, 12.5, or 25 mg/kg body weight) was administered every day via oral gavage from postpartum day 3 (P3) to P14, and an hour before induction of H/I. Pups were sacrificed 24 h (P8) and 72 h (P10) following H/I. Paeoniflorin reduced the apoptosis of neurons and attenuated cerebral infarct volume. Elevated expression of cleaved caspase-3 and Bad were regulated. Paeoniflorin decreased oxidative stress by lowering levels of malondialdehyde and reactive oxygen species generation and while, and it enhanced glutathione content. Microglial activation and the TLR4/NF-κB signaling were significantly down-regulated. The degree of inflammatory mediators (interleukin 1β and tumor necrosis factor-α) were reduced. Paeoniflorin markedly prevented white matter injury via improving expression of myelin binding protein and increasing O1-positive olidgodendrocyte and O4-positive oligodendrocyte counts. The present investigation demonstrates the potent protective efficiency of paeoniflorin supplementation against H/I-induced brain injury by effectually preventing neuronal loss, microglial activation, and white matter injury via reducing oxidative stress and inflammatory pathways.
Collapse
Affiliation(s)
- Fan Yang
- Department of Clinical Nutrition, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| | - Ya Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.,Yunnan Institute of Laboratory Diagnosis, Kunming 650032, Yunnan, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming 650032, Yunnan, China
| | - Xun Sheng
- School of Stomatology, Kunming Medical University, Kunming 650032, Yunnan, China
| | - Yu Liu
- Department of Pharmacy, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan, China
| |
Collapse
|
32
|
The Endothelial Glycocalyx as a Target of Ischemia and Reperfusion Injury in Kidney Transplantation-Where Have We Gone So Far? Int J Mol Sci 2021; 22:ijms22042157. [PMID: 33671524 PMCID: PMC7926299 DOI: 10.3390/ijms22042157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
The damage of the endothelial glycocalyx as a consequence of ischemia and/or reperfusion injury (IRI) following kidney transplantation has come at the spotlight of research due to potential associations with delayed graft function, acute rejection as well as long-term allograft dysfunction. The disintegration of the endothelial glycocalyx induced by IRI is the crucial event which exposes the denuded endothelial cells to further inflammatory and oxidative damage. The aim of our review is to present the currently available data regarding complex links between shedding of the glycocalyx components, like syndecan-1, hyaluronan, heparan sulphate, and CD44 with the activation of intricate immune system responses, including toll-like receptors, cytokines and pro-inflammatory transcription factors. Evidence on modes of protection of the endothelial glycocalyx and subsequently maintenance of endothelial permeability as well as novel nephroprotective molecules such as sphingosine-1 phosphate (S1P), are also depicted. Although advances in technology are making the visualization and the analysis of the endothelial glycocalyx possible, currently available evidence is mostly experimental. Ongoing progress in understanding the complex impact of IRI on the endothelial glycocalyx, opens up a new era of research in the field of organ transplantation and clinical studies are of utmost importance for the future.
Collapse
|
33
|
Zhong B, Du J, Liu F, Liu Y, Liu S, Zhang J, Lin P, Zhou J, Liu J, Ong HH, Tan KS, Wang D, Ba L. Hypoxia-induced factor-1α induces NLRP3 expression by M1 macrophages in noneosinophilic chronic rhinosinusitis with nasal polyps. Allergy 2021; 76:582-586. [PMID: 32854144 DOI: 10.1111/all.14571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Bing Zhong
- Upper Airway Research Laboratory Department of Otolaryngology‐Head and Neck Surgery West China Hospital Sichuan University Chengdu China
- Department of Otolaryngology Yong Loo Lin School of Medicine, National University of Singapore, National University Health System Singapore Singapore
| | - Jintao Du
- Upper Airway Research Laboratory Department of Otolaryngology‐Head and Neck Surgery West China Hospital Sichuan University Chengdu China
| | - Feng Liu
- Upper Airway Research Laboratory Department of Otolaryngology‐Head and Neck Surgery West China Hospital Sichuan University Chengdu China
| | - Yafeng Liu
- Upper Airway Research Laboratory Department of Otolaryngology‐Head and Neck Surgery West China Hospital Sichuan University Chengdu China
| | - Shixi Liu
- Upper Airway Research Laboratory Department of Otolaryngology‐Head and Neck Surgery West China Hospital Sichuan University Chengdu China
| | - Jie Zhang
- Upper Airway Research Laboratory Department of Otolaryngology‐Head and Neck Surgery West China Hospital Sichuan University Chengdu China
| | - Ping Lin
- Upper Airway Research Laboratory Department of Otolaryngology‐Head and Neck Surgery West China Hospital Sichuan University Chengdu China
| | - Jiao Zhou
- State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu China
| | - Jing Liu
- Department of Otolaryngology Yong Loo Lin School of Medicine, National University of Singapore, National University Health System Singapore Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology Yong Loo Lin School of Medicine, National University of Singapore, National University Health System Singapore Singapore
| | - Kai Sen Tan
- Department of Otolaryngology Yong Loo Lin School of Medicine, National University of Singapore, National University Health System Singapore Singapore
| | - Deyun Wang
- Department of Otolaryngology Yong Loo Lin School of Medicine, National University of Singapore, National University Health System Singapore Singapore
| | - Luo Ba
- Department of Otolaryngology People's Hospital of Tibet Autonomous Region Lhasa China
| |
Collapse
|
34
|
Wang SS, Gu Q, Liu N, Li J, Liu X. Aerobic exercise attenuates ectopic renal sinus adipose tissue accumulation-related renal hypoxia injury in obese mice. Life Sci 2021; 279:119106. [PMID: 33497740 DOI: 10.1016/j.lfs.2021.119106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/20/2022]
Abstract
AIMS We explored the effect of aerobic exercise on renal sinus adipose (RSA) accumulation and RSA accumulation-related renal injury in obese mice. MAIN METHODS C57BL/6J male mice (n = 30) were evenly divided into three groups: control group (CON, n = 10), obese group (OB, n = 10; given high-fat diet) and obese + aerobic exercise group (OB + E, n = 10; given HFD and 8 weeks of moderate-intensity exercise training). The body weight and kidney weight were measured after sacrificing. Morphological alterations of adipose and renal tissues were measured on hematoxylin-eosin (HE) stained slides. The macrophages surface markers (F4/80, CD68, CD206, CD163), monocyte chemotactic protein 1 (MCP-1) and hypoxia inducible factor-1α (HIF-1α) were examined by immunohistochemistry assay. Inflammation-related factors (FGF-21, KIM-1, IL-6) were analyzed via serum enzyme-linked immunosorbent assay. KEY FINDINGS We found that aerobic exercise significantly reduced body weight, kidney weight, serum FGF-21 and KIM-1 levels, and ameliorated glomerular hypertrophy and RSA size accumulation in OB + E group compared with OB group. Furthermore, HIF-1α in the RSA and renal tissues was significantly increased in the OB group (P < 0.05), but exercise effectively reduced the expression of HIF-1α and ameliorated renal inflammation by reducing MCP-1 and CD68 expression (both P < 0.05), improving the conversion from M1 (CD68) to M2 (CD206, CD163) macrophages (P < 0.05), and finally alleviating the level of IL-6 (P < 0.01). SIGNIFICANCE Aerobic exercise could reduce RSA accumulation-related adipose hypoxia and macrophage infiltration, and subsequently attenuate the progress of renal injury.
Collapse
Affiliation(s)
- Sha-Sha Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Qing Gu
- Department of Endocrinology, Shidong Hospital, Shanghai, China
| | - Nian Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jingyuan Li
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiangyun Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
35
|
Zhang H, Wang M, Jia J, Zhao J, Radebe SM, Yu Q. The Protective Effect of E. faecium on S. typhimurium Infection Induced Damage to Intestinal Mucosa. Front Vet Sci 2021; 8:740424. [PMID: 34722703 PMCID: PMC8554125 DOI: 10.3389/fvets.2021.740424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/08/2021] [Indexed: 01/17/2023] Open
Abstract
Intensive farming is prone to induce large-scale outbreaks of infectious diseases, with increasing use of antibiotics, which deviate from the demand of organic farming. The high mortality rate of chickens infected with Salmonella caused huge economic losses; therefore, the promising safe prevention and treatment measures of Salmonella are in urgent need, such as probiotics. Probiotics are becoming an ideal alternative treatment option besides antibiotics, but the effective chicken probiotic strains with clear protective mechanism against Salmonella remain unclear. In this study, we found Enterococcus faecium YQH2 was effective in preventing Salmonella typhimurium infection in chickens. Salmonella typhimurium induced the loss of body weight, and liver and intestinal morphology damage. The inflammatory factor levels increased and intestinal proliferation inhibited. However, after treatment with Enterococcus faecium YQH2, broilers grew normally, the pathological changes of liver and intestine were reduced, and the colonization of Salmonella in the intestine was improved. Not only that, the length of villi and the depth of crypts were relatively normal, and the levels of inflammatory factors such as IL-1β, TNF-α, and IL-8 were reduced. The number of PCNA cells of Enterococcus faecium YQH2 returned to normal under the action of Salmonella typhimurium infection, which was conducive to the normal proliferation of intestinal epithelial cells. The protective effect of Enterococcus faecium YQH2 may be due to the attribution to the activation of hypoxia and then induced the proliferation of intestinal stem cells to repair the damage of intestinal mucosa under Salmonella typhimurium infection. This study demonstrated that Enterococcus faecium YQH2 was effective in preventing Salmonella typhimurium infection, which could be further used in the chicken health breeding.
Collapse
|
36
|
Expression of Toll-Like Receptors in the Animal Model of Bladder Outlet Obstruction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6632359. [PMID: 33381567 PMCID: PMC7749780 DOI: 10.1155/2020/6632359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022]
Abstract
Introduction Bladder outlet obstruction (BOO) occurs in more than 20 percent of the adult population and may lead to changes in the structure and function of the bladder. The main objective of the study was to evaluate the expression of Toll-like receptor 4 (TLR 4) and Toll-like receptor 9 (TLR 9) in the animal model of BOO as potential triggers of the inflammation phase in the bladder. In addition, the modulating effect of alpha-1 adrenergic antagonist (tamsulosin) on TLR 4 and TLR 9 expression and inflammatory markers was assessed. Material and Methods. Thirty-two male, 9-week-old Sprague Dawley rats were randomly divided into 4 groups: SOP—sham-operated rats with a placebo (water); SOB—sham-operated rats with an alpha-1 adrenergic antagonist; BOOP—rats with BOO and a placebo; and BOOB—rats with BOO and an alpha-1 adrenergic antagonist. The rats were given a placebo or alpha-1 adrenergic antagonist for 15 days. Next, urine and the bladder were collected from the rats for histopathological and biochemical study. Results Histopathological analysis showed chronic inflammation without acute inflammation in the bladder. TLR 4 showed positive cytoplasmic reactivity in the urothelium and the smooth muscles of the bladder. TLR 9 showed positive cytoplasmic reactivity only in the urothelium. BOO caused an increase in TLR 4 and TLR 9 expression. Furthermore, treatment with an alpha-1 adrenergic antagonist had no significant effect on TLR 4 and TLR 9 expression in rats with BOO. BOO caused a significant increase in urine concentration of interleukin 6 (IL-6), while alpha-1 antagonist reduced the urine concentration of IL-6 and the concentration of interleukin 18 (IL-18). Conclusions The results suggest the participation of TLR 4 and TLR 9 receptors in the induction of inflammation in the bladder, which is the first phase in the development of pathophysiological changes in BOO.
Collapse
|
37
|
Park JW, Kim KH, Choi JK, Park TS, Song KD, Cho BW. Regulation of Toll-like receptors Expression in Muscle cells by Exercise-induced Stress. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 34:1590-1599. [PMID: 33332945 PMCID: PMC8495349 DOI: 10.5713/ab.20.0484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/01/2020] [Indexed: 11/27/2022]
Abstract
Objective This study investigates the expression patterns of toll-like receptors (TLRs) and intracellular mediators in horse muscle cells after exercise, and the relationship between TLRS expression in stressed horse muscle cells and immune cell migration toward them. Methods The expression patterns of the TLRs (TLR2, TLR4, and TLR8) and downstream signaling pathway-related genes (myeloid differentiation primary response 88 [MYD88]; activating transcription factor 3 [ATF3]) are examined in horse tissues, and horse peripheral blood mononuclear cells (PBMCs), polymorphonuclear cells (PMNs) and muscles in response to exercise, using the quantitative reverse transcription-polymerase chain reaction (qPCR). Expressions of chemokine receptor genes, i.e., C-X-C motif chemokine receptor 2 (CXCR2) and C-C motif chemokine receptor 5 (CCR5), are studied in PBMCs and PMNs. A horse muscle cell line is developed by transfecting SV-T antigen into fetal muscle cells, followed by examination of muscle-specific genes. Horse muscle cells are treated with stressors, i.e., cortisol, hydrogen peroxide (H2O2), and heat, to mimic stress conditions in vitro, and the expression of TLR4 and TLR8 are examined in stressed muscle cells, in addition to migration activity of PBMCs toward stressed muscle cells. Results The qPCR revealed that TLR4 message was expressed in cerebrum, cerebellum, thymus, lung, liver, kidney, and muscle, whereas TLR8 expressed in thymus, lung, and kidney, while TLR2 expressed in thymus, lung, and kidney. Expressions of TLRs, i.e., TLR4 and TLR8, and mediators, i.e., MYD88 and ATF3, were upregulated in muscle, PBMCs and PMNs in response to exercise. Expressions of CXCR2 and CCR5 were also upregulated in PBMCs and PMNs after exercise. In the muscle cell line, TLR4 and TLR8 expressions were upregulated when cells were treated with stressors such as cortisol, H2O2, and heat. Migration of PBMCs toward stressed muscle cells was increased by exercise and oxidative stresses, and combinations of these. Treatment with methylsulfonylmethane (MSM), an antioxidant on stressed muscle cells, reduced migration of PBMCs toward stressed muscle cells. Conclusion In this study, we have successfully cultured horse skeletal muscle cells, isolated horse PBMCs, and established an in vitro system for studying stress-related gene expressions and function. Expression of TLR4, TLR8, CXCR2, and CCR5 in horse muscle cells was higher in response to stressors such as cortisol, H2O2, and heat, or combinations of these. In addition, migration of PBMCs toward muscle cells was increased when muscle cells were under stress, but inhibition of reactive oxygen species by MSM modulated migratory activity of PBMCs to stressed muscle cells. Further study is necessary to investigate the biological function(s) of the TLR gene family in horse muscle cells.
Collapse
Affiliation(s)
- Jeong-Woong Park
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyung-Hwan Kim
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| | - Joong-Kook Choi
- Division of Biochemistry, College of Medicine, Chungbuk National Univ., City of Cheong-Ju, Republic of Korea
| | - Tae Sub Park
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.,Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
38
|
Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions. Cell Mol Life Sci 2020; 78:1887-1907. [PMID: 33125509 PMCID: PMC7966188 DOI: 10.1007/s00018-020-03684-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Various factors of the tissue microenvironment such as the oxygen concentration influence the host-pathogen interaction. During the past decade, hypoxia-driven signaling via hypoxia-inducible factors (HIF) has emerged as an important factor that affects both the pathogen and the host. In this chapter, we will review the current knowledge of this complex interplay, with a particular emphasis given to the impact of hypoxia and HIF on the inflammatory and antimicrobial activity of myeloid cells, the bacterial responses to hypoxia and the containment of bacterial infections under oxygen-limited conditions. We will also summarize how low oxygen concentrations influence the metabolism of neutrophils, macrophages and dendritic cells. Finally, we will discuss the consequences of hypoxia and HIFα activation for the invading pathogen, with a focus on Pseudomonas aeruginosa, Mycobacterium tuberculosis, Coxiella burnetii, Salmonella enterica and Staphylococcus aureus. This includes a description of the mechanisms and microbial factors, which the pathogens use to sense and react to hypoxic conditions.
Collapse
|
39
|
Li YX, Long DL, Liu J, Qiu D, Wang J, Cheng X, Yang X, Li RM, Wang G. Gestational diabetes mellitus in women increased the risk of neonatal infection via inflammation and autophagy in the placenta. Medicine (Baltimore) 2020; 99:e22152. [PMID: 33019392 PMCID: PMC7535644 DOI: 10.1097/md.0000000000022152] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) produces numerous problems for maternal and fetal outcomes. However, the precise molecular mechanisms of GDM are not clear. METHODS In our study, we randomly assigned 22 pregnant women with fasting glucose concentrations, 1 hour oral glucose tolerance test (1H-OGTT) and 2 hour oral glucose tolerance test (2H-OGTT), different than 28 normal pregnant women from a sample of 107 pregnant women at the First Affiliated Hospital of Jinan University in China. Lipopolysaccharide (LPS), interleukin 1 alpha (IL-1α), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-α) were measured from blood plasma of pregnant women and umbilical arteries using ultraviolet spectrophotometry. Hematoxylin & Eosin (H&E), Periodic acid-Schiff (PAS) or Masson staining were performed to examine whether diabetes mellitus altered the morphology of placenta. Quantitative PCR (Q-PCR), western blotting and immunofluorescent staining were performed to examine whether diabetes mellitus and autophagy altered the gene expressions of the placental tissue. RESULTS We found that women with GDM exhibited increased placental weight and risk of neonatal infection. The concentrations of IL-6 protein and IL-8 protein in GDM were increased in both maternal and umbilical arterial blood. H&E, Masson and PAS staining results showed an increased number of placental villi and glycogen deposition in patients with GDM, but no placental sclerosis was found. Q-PCR results suggested that the expression levels of HIF-1α and the toll like receptor 4 (TLR4)/ myeloid differential protein-88 (MyD88)/ nuclear factor kappa-B (NF-κB) pathway were increased in the GDM placenta. Through Western Blotting, we found that the expression of NF-kappa-B inhibitor alpha (IKBα) and Nuclear factor-κB p65 (NF-κB p65) in GDM placenta was significantly enhanced. We also showed that the key autophagy-related genes, autophagy-related 7 (ATG7) and microtubule-associated protein 1A/1B-light chain 3 (LC3), were increased in GDM compared with normal pregnant women. CONCLUSIONS Our results suggest that women with GDM exhibit an increased risk of neonatal infection via inflammation and autophagy in the placenta.
Collapse
Affiliation(s)
- Yi-xiao Li
- The First Affiliate Hospital of Jinan University
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College
| | - Deng-lu Long
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College
| | - Jia Liu
- The First Affiliate Hospital of Jinan University
| | - Di Qiu
- The First Affiliate Hospital of Jinan University
| | - Jingyun Wang
- The First Affiliate Hospital of Jinan University
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Rui-man Li
- The First Affiliate Hospital of Jinan University
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, Medical College
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
George G, Shyni GL, Raghu KG. Current and novel therapeutic targets in the treatment of rheumatoid arthritis. Inflammopharmacology 2020; 28:1457-1476. [PMID: 32948901 DOI: 10.1007/s10787-020-00757-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis (RA), a multifactorial disease characterized by synovitis, cartilage destruction, bone erosion, and periarticular decalcification, finally results in impairment of joint function. Both genetic and environmental factors are risk factors in the development of RA. Unwanted side effects accompany most of the current treatment strategies, and around 20-40% of patients with RA do not clinically benefit from these treatments. The unmet need for new treatment options for RA has prompted research in the development of novel agents acting through physiologically and pharmacologically relevant targets. Here we discuss in detail three critical pathways, Janus kinase/signal transducer and activator of transcription (JAK/STAT), Th17, and hypoxia-inducible factor (HIF), and their roles as unique therapeutic targets in the field of RA. Some of the less developed but potential targets like nucleotide-binding and oligomerization domain-like receptor containing protein 3 (NLRP3) inflammasome and histone deacetylase 1 (HDAC1) are also discussed.
Collapse
Affiliation(s)
- Genu George
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - G L Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, 695019, Kerala, India.
| |
Collapse
|
41
|
Chen JK, Guo MK, Bai XH, Chen LQ, Su SM, Li L, Li JQ. Astragaloside IV ameliorates intermittent hypoxia-induced inflammatory dysfunction by suppressing MAPK/NF-κB signalling pathways in Beas-2B cells. Sleep Breath 2020; 24:1237-1245. [PMID: 31907823 DOI: 10.1007/s11325-019-01947-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 11/28/2022]
Abstract
PURPOSE Intermittent hypoxia is a characteristic pathological change in obstructive sleep apnoea (OSA) that can initiate oxidative stress reaction and pro-inflammatory cytokine release. The purpose of this study was to assess the effect and protective mechanism of Astragaloside IV (AS-IV) in intermittent hypoxia-induced human lung epithelial Beas-2B cells. METHODS Human lung epithelial Beas-2B cells were exposed to intermittent hypoxia or normoxia in the absence or presence of AS-IV. MTT assay was performed to determine the cell viability. The levels of reactive oxygen species (ROS), lactate dehydrogenase (LDH), malonaldehyde (MDA), and superoxide dismutase (SOD) were measured to evaluate oxidative stress. The levels of cytokines interleukin (IL)-8, IL-1β, and IL-6 were evaluated by enzyme-linked immunosorbent assay and real-time PCR. The expression of Toll-like receptor 4 (TLR4), mitogen-activated protein kinase (MAPK), and nuclear transcription factor-kappa B (NF-κB) signalling pathways was analysed by western blot. RESULTS The results showed that AS-IV significantly reduced the levels of ROS, LDH, MDA, IL-8, IL-1β, and IL-6, and increased the level of SOD in intermittent hypoxia-induced Beas-2B cells. It also suppressed the phosphorylation of MAPKs, including P38, c-Jun N-terminal kinase and extracellular signal-regulated kinase, and inhibited the activation of the NF-κB signalling pathway by reducing the phosphorylation of IκBα and p65. CONCLUSIONS AS-IV attenuates inflammation and oxidative stress by inhibiting TLR4-mediated MAPK/NF-κB signalling pathways in intermittent hypoxia-induced Beas-2B cells.
Collapse
Affiliation(s)
- Jian-Kun Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Ming-Kai Guo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Xiao-Hui Bai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Li-Qin Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Shun-Mei Su
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China
| | - Li Li
- The First Respiratory Department, The First People's Hospital of Kashi, Xinjiang, 844000, China.
| | - Ji-Qiang Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- The Third Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, 510120, China.
| |
Collapse
|
42
|
Repetitive Intermittent Hyperglycemia Drives the M1 Polarization and Inflammatory Responses in THP-1 Macrophages Through the Mechanism Involving the TLR4-IRF5 Pathway. Cells 2020; 9:cells9081892. [PMID: 32806763 PMCID: PMC7463685 DOI: 10.3390/cells9081892] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Repetitive intermittent hyperglycemia (RIH) is an independent risk factor for complications associated with type-2 diabetes (T2D). Glucose fluctuations commonly occur in T2D patients with poor glycemic control or following intensive therapy. Reducing blood glucose as well as glucose fluctuations is critical to the control of T2D and its macro-/microvascular complications. The interferon regulatory factor (IRF)-5 located downstream of the nutrient sensor toll-like receptor (TLR)-4, is emerging as a key metabolic regulator. It remains unclear how glucose fluctuations may alter the IRF5/TLR4 expression and inflammatory responses in monocytes/macrophages. To investigate this, first, we determined IRF5 gene expression by real-time qRT-PCR in the white adipose tissue samples from 39 T2D and 48 nondiabetic individuals. Next, we cultured THP-1 macrophages in hypo- and hyperglycemic conditions and compared, at the protein and transcription levels, the expressions of IRF5, TLR4, and M1/M2 polarization profile and inflammatory markers against control (normoglycemia). Protein expression was assessed using flow cytometry, ELISA, Western blotting, and/or confocal microscopy. IRF5 silencing was achieved by small interfering RNA (siRNA) transfection. The data show that adipose IRF5 gene expression was higher in T2D than nondiabetic counterparts (p = 0.006), which correlated with glycated hemoglobin (HbA1c) (r = 0.47/p < 0.001), homeostatic model assessment of insulin resistance (HOMA-IR) (r = 0.23/p = 0.03), tumor necrosis factor (TNF)-α (r = 0.56/p < 0.0001), interleukin (IL)-1β (r = 0.40/p = 0.0009), and C-C motif chemokine receptor (CCR)-2 (r = 0.49/p < 0.001) expression. IRF5 expression in macrophages was induced/upregulated (p < 0.05) by hypoglycemia (3 mM/L), persistent hyperglycemia (15 mM/L–25 mM/L), and RIH/glucose fluctuations (3–15 mM/L) as compared to normoglycemia (5 mM/L). RIH/glucose fluctuations also induced M1 polarization and an inflammatory profile (CD11c, IL-1β, TNF-α, IL-6, and monocyte chemoattractant protein (MCP)-1) in macrophages. RIH/glucose fluctuations also drove the expression of matrix metalloproteinase (MMP)-9 (p < 0.001), which is a known marker for cardiovascular complication in T2D patients. Notably, all these changes were counteracted by IRF5 silencing in macrophages. In conclusion, RIH/glucose fluctuations promote the M1 polarization and inflammatory responses in macrophages via the mechanism involving TLR4-IRF5 pathway, which may have significance for metabolic inflammation.
Collapse
|
43
|
Laumonier T, Ruffieux E, Paccaud J, Kindler V, Hannouche D. In vitro evaluation of human myoblast function after exposure to cobalt and chromium ions. J Orthop Res 2020; 38:1398-1406. [PMID: 31883135 DOI: 10.1002/jor.24579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/23/2019] [Indexed: 02/04/2023]
Abstract
The replacement of a native hip joint by a metal-on-metal prosthesis may induce deleterious inflammatory side effects that are associated with the release of wear particles and metal ions. These events are referred to the adverse reaction to metal debris (ARMD) and the adverse local tissue reaction (ALTR). While wear particles seem involved in ARMD, the role of metal ions in ALTR and their impact on myoblasts, located in the prosthesis vicinity, has not been fully identified. To clarify this issue we investigated, using an in vitro culture system, the effect of cobalt and/or chromium ions (Co2+ and/or Cr3+ ) on human myoblast proliferation, cellular differentiation, and inflammatory marker expression. Freshly isolated human myoblasts were cultured in media supplemented with graded concentrations of Co2+ and/or Cr3+ . Co2+ induced a concentration-dependent decrease of both myoblast viability and myogenic differentiation while Cr3+ did not. Co2+ or Co2+ /Cr3+ also induced the upregulation of ICAM-1, whereas HLA-DR expression was unaffected. Moreover, allogenic monocytes induced the synergistic increase of Co2+ -induced ICAM-1 expression. We also found that Co2+ stabilized HIF-1α and increased TLR4, tumor necrosis factor-alpha (TNF-α), and interleukin 1β (IL-1β) expression in a dose and time-dependent manner in human myoblasts. This study showed that Co2+ , but not Cr3+ , was toxic toward myoblasts and induced, in the surviving cells, expression of inflammatory markers such as ICAM-1, TLR4, TNF-α, and IL-1β. This suggests that Co2+ , most efficiently in the presence of monocytes, may be a key inducer of ALTR, which may, if severe and long-lasting, eventually result in prosthesis loosening.
Collapse
Affiliation(s)
- Thomas Laumonier
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Etienne Ruffieux
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Joris Paccaud
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Vincent Kindler
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Didier Hannouche
- Department of Orthopedic Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
44
|
Tomorou attenuates progression of rheumatoid arthritis through alteration in ULK-1 independent autophagy pathway in collagen induced arthritis mice model. Cell Death Discov 2019; 5:142. [PMID: 31728208 PMCID: PMC6838101 DOI: 10.1038/s41420-019-0222-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial disease which is complicated by apoptosis resistance. Autophagy is one of the key mechanisms which are involved in the development of resistance to apoptosis as well as to the standard therapies against RA. Aberration in autophagy and apoptosis homeostasis results in the development of oxidative stress thus complicates the pathogenesis of RA. In the given study, tomorou, an indigenous herb of Hunza-Nagar Valley, has been evaluated for its pro-apoptotic, anti-inflammatory, and anti-rheumatic activity. Several major classes of bioactive phytochemicals including steroids, terpenoids, phenols, flavonoids, and essential oils have been detected in the aqueous and ethyl acetate extracts of tomorou through phytochemical analysis. Plant extracts depicted enhanced free radical scavenging activity through di-phenyl-2-picryl hydrazyl hydrate (DPPH) assay and ameliorated the symptoms of arthritis in collagen induced arthritic (CIA) mice model. Moreover, the 6 week extract treatment resulted in the reduction of IL-6 serum levels thus making it an effective anti-inflammatory agent. Upregulation of microtubule-associated proteins light chain 3b (LC3b) and downregulation of UNC51-like kinase 1 (ULK-1) in arthritic mice proposed a ULK-1 independent non-canonical autophagy pathway. Treatment with extracts upregulated the expression of caspase 3 which in turn inhibited the activity of LC3b thus altering the autophagy pathway. However, ULK-1 expression was restored to normal in aqueous extract treated group whereas it was upregulated in ethyl acetate extract treated group. On the other hand, a novel LC3b-independent autophagy pathway was observed in mice treated with ethyl acetate extract due to ULK-1 upregulation. Despite of significantly high IL-6 levels, the arthritic symptoms waned off which suggested the participation of IL-6 in LC3b-independent autophagy pathway in the extract prepared in ethyl acetate. Conclusively, the study established pro-apoptotic, antioxidant, anti-inflammatory and anti-rheumatic activity of tomorou and suggested an intricate autophagy pathway shift.
Collapse
|
45
|
Gupta N, Zhao YY, Evans CE. The stimulation of thrombosis by hypoxia. Thromb Res 2019; 181:77-83. [DOI: 10.1016/j.thromres.2019.07.013] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/19/2019] [Accepted: 07/14/2019] [Indexed: 11/28/2022]
|
46
|
Monteiro L, Pereira JADS, Palhinha L, Moraes‐Vieira PMM. Leptin in the regulation of the immunometabolism of adipose tissue‐macrophages. J Leukoc Biol 2019; 106:703-716. [DOI: 10.1002/jlb.mr1218-478r] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lauar Monteiro
- Laboratory of ImmunometabolismDepartment of Genetics, Evolution, Microbiology and ImmunologyInstitute of BiologyUniversity of Campinas Sao Paulo Brazil
| | - Jéssica Aparecida da Silva Pereira
- Laboratory of ImmunometabolismDepartment of Genetics, Evolution, Microbiology and ImmunologyInstitute of BiologyUniversity of Campinas Sao Paulo Brazil
- Department of ImmunologyInstitute of Biomedical SciencesUniversity of Sao Paulo Sao Paulo Brazil
| | - Lohanna Palhinha
- Laboratory of ImmunopharmacologyOswaldo Cruz InstituteOswaldo Cruz Foundation (FIOCRUZ) Rio de Janeiro Rio de Janeiro Brazil
| | - Pedro Manoel M. Moraes‐Vieira
- Laboratory of ImmunometabolismDepartment of Genetics, Evolution, Microbiology and ImmunologyInstitute of BiologyUniversity of Campinas Sao Paulo Brazil
- Department of ImmunologyInstitute of Biomedical SciencesUniversity of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
47
|
Xu ZN, Zheng GD, Wu CB, Jiang XY, Zou SM. Identification of proteins differentially expressed in the gills of grass carp (Ctenopharyngodon idella) after hypoxic stress by two-dimensional gel electrophoresis analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:743-752. [PMID: 30758701 DOI: 10.1007/s10695-018-0599-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Two-dimensional gel electrophoresis (2-DE) was combined with liquid chromatography-mass spectrometry (LC-MS/MS) to identify the differential proteomics of grass carp gills after hypoxic stress to better understand the roles of proteins in the hypoxic response and to explore the possible molecular mechanisms. Protein spots were obtained from a hypoxia-stressed group (372 ± 11 individuals) and a control group (406 ± 14 individuals) using the lmage Master 2D Platinum 7.0 analysis software. Fifteen protein spots were expressed differentially in the hypoxia-stressed group and varied significantly after exposure to the hypoxic conditions. In addition, these differential proteins were identified by mass spectrometry and then searched in a database. We found the expression and upregulation of the toll-like receptor 4, ephx1 protein, isocitrate dehydrogenase, L-lactate dehydrogenase, GTP-binding nuclear protein Ran, and glyceraldehyde-3-phosphate dehydrogenase; however, the expression of the keratin type II cytoskeletal 8, type I cytokeratin, ARP3 actin-related protein 3 homolog, thyroid hormone receptor alpha-A, ATP synthase subunit beta, citrate synthase, tropomyosin 2, and tropomyosin 3 were downregulated. Six proteins were found in the hypoxia-inducible factor-1 (HIF-1) signaling pathway. We concluded that the grass carp gill is involved in response processes, including energy generation, metabolic processes, cellular structure, antioxidation, immunity, and signal transduction, to hypoxic stress. To our knowledge, this is the first study to conduct a proteomics analysis of expressed proteins in the gills of grass carp, and this study will help increase the understanding of the molecular mechanisms involved in hypoxic stress responses in fish at the protein level.
Collapse
Affiliation(s)
- Zhan-Ning Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Guo-Dong Zheng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Cheng-Bin Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Xia-Yun Jiang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| | - Shu-Ming Zou
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
48
|
Ren W, Xia Y, Chen S, Wu G, Bazer FW, Zhou B, Tan B, Zhu G, Deng J, Yin Y. Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Adv Nutr 2019; 10:321-330. [PMID: 30753258 PMCID: PMC6416106 DOI: 10.1093/advances/nmy084] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/04/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022] Open
Abstract
Obesity is a nutritional disorder resulting from a chronic imbalance between energy intake and expenditure. This disease is characterized by inflammation in multiple cell types, including macrophages. M1 macrophage responses are correlated with the progression of obesity or diabetes; therefore, strategies that induce repolarization of macrophages from an M1 to an M2 phenotype may be promising for the prevention of obesity- or diabetes-associated pathology. Glutamine (the most abundant amino acid in the plasma of humans and many other mammals including rats) is effective in inducing polarization of M2 macrophages through the glutamine-UDP-N-acetylglucosamine pathway and α-ketoglutarate produced via glutaminolysis, whereas succinate synthesized via glutamine-dependent anerplerosis or the γ-aminobutyric acid shunt promotes polarization of M1 macrophages. Interestingly, patients with obesity or diabetes show altered glutamine metabolism, including decreases in glutamine and α-ketoglutarate concentrations in serum but increases in succinate concentrations. Thus, manipulation of macrophage polarization through glutamine metabolism may provide a potential target for prevention of obesity- or diabetes-associated pathology.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yaoyao Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Siyuan Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, CT
| | - Bie Tan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Academics Working Station at The First Affiliated Hospital, Changsha Medical University, Changsha, China
| |
Collapse
|
49
|
Paardekooper LM, Vos W, van den Bogaart G. Oxygen in the tumor microenvironment: effects on dendritic cell function. Oncotarget 2019; 10:883-896. [PMID: 30783517 PMCID: PMC6368231 DOI: 10.18632/oncotarget.26608] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Solid tumors grow at a high speed leading to insufficient blood supply to tumor cells. This makes the tumor hypoxic, resulting in the Warburg effect and an increased generation of reactive oxygen species (ROS). Hypoxia and ROS affect immune cells in the tumor micro-environment, thereby affecting their immune function. Here, we review the known effects of hypoxia and ROS on the function and physiology of dendritic cells (DCs). DCs can (cross-)present tumor antigen to activate naive T cells, which play a pivotal role in anti-tumor immunity. ROS might enter DCs via aquaporins in the plasma membrane, diffusion across the plasma membrane or via extracellular vesicles (EVs) released by tumor cells. Hypoxia and ROS exert complex effects on DCs, and can both inhibit and activate maturation of immature DCs. Furthermore, ROS transferred by EVs and/or produced by the DC can both promote antigen (cross-)presentation through phagosomal alkalinization, which preserves antigens by inhibiting proteases, and by direct oxidative modification of proteases. Hypoxia leads to a more migratory and inflammatory DC phenotype. Lastly, hypoxia alters DCs to shift the T- cell response towards a tumor suppressive Th17 phenotype. From numerous studies, the concept is emerging that hypoxia and ROS are mutually dependent effectors on DC function in the tumor micro-environment. Understanding their precise roles and interplay is important given that an adaptive immune response is required to clear tumor cells.
Collapse
Affiliation(s)
- Laurent M Paardekooper
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn Vos
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
50
|
Jeong H, Kim S, Hong BJ, Lee CJ, Kim YE, Bok S, Oh JM, Gwak SH, Yoo MY, Lee MS, Chung SJ, Defrêne J, Tessier P, Pelletier M, Jeon H, Roh TY, Kim B, Kim KH, Ju JH, Kim S, Lee YJ, Kim DW, Kim IH, Kim HJ, Park JW, Lee YS, Lee JS, Cheon GJ, Weissman IL, Chung DH, Jeon YK, Ahn GO. Tumor-Associated Macrophages Enhance Tumor Hypoxia and Aerobic Glycolysis. Cancer Res 2019; 79:795-806. [PMID: 30610087 DOI: 10.1158/0008-5472.can-18-2545] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Tumor hypoxia and aerobic glycolysis are well-known resistance factors for anticancer therapies. Here, we demonstrate that tumor-associated macrophages (TAM) enhance tumor hypoxia and aerobic glycolysis in mice subcutaneous tumors and in patients with non-small cell lung cancer (NSCLC). We found a strong correlation between CD68 TAM immunostaining and PET 18fluoro-deoxyglucose (FDG) uptake in 98 matched tumors of patients with NSCLC. We also observed a significant correlation between CD68 and glycolytic gene signatures in 513 patients with NSCLC from The Cancer Genome Atlas database. TAM secreted TNFα to promote tumor cell glycolysis, whereas increased AMP-activated protein kinase and peroxisome proliferator-activated receptor gamma coactivator 1-alpha in TAM facilitated tumor hypoxia. Depletion of TAM by clodronate was sufficient to abrogate aerobic glycolysis and tumor hypoxia, thereby improving tumor response to anticancer therapies. TAM depletion led to a significant increase in programmed death-ligand 1 (PD-L1) expression in aerobic cancer cells as well as T-cell infiltration in tumors, resulting in antitumor efficacy by PD-L1 antibodies, which were otherwise completely ineffective. These data suggest that TAM can significantly alter tumor metabolism, further complicating tumor response to anticancer therapies, including immunotherapy. SIGNIFICANCE: These findings show that tumor-associated macrophages can significantly modulate tumor metabolism, hindering the efficacy of anticancer therapies, including anti-PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Hoibin Jeong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Sehui Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Beom-Ju Hong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Chan-Ju Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Young-Eun Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Seoyeon Bok
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Jung-Min Oh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Seung-Hee Gwak
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Min Young Yoo
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Min Sun Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seock-Jin Chung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Joan Defrêne
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Ville de Québec, Québec, Canada
| | - Philippe Tessier
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Ville de Québec, Québec, Canada
| | - Martin Pelletier
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Ville de Québec, Québec, Canada
| | - Hyeongrin Jeon
- Department of Life Sciences, POSTECH, Pohang, Gyeongbuk, Korea
| | - Tae-Young Roh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea.,Department of Life Sciences, POSTECH, Pohang, Gyeongbuk, Korea
| | - Bumju Kim
- Department of Mechanical Engineering, POSTECH, Pohang, Gyeongbuk, Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, POSTECH, Pohang, Gyeongbuk, Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Korea
| | - Sungjee Kim
- Department of Chemistry, POSTECH, Pohang, Gyeongbuk, Korea
| | - Yoon-Jin Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Dong-Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Wan Park
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Irving L Weissman
- Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea.
| | - G-One Ahn
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea. .,Department of Life Sciences, POSTECH, Pohang, Gyeongbuk, Korea
| |
Collapse
|