1
|
Friedrich AD, Zwirner NW. What immunology has to say about pesticide safety. Front Immunol 2024; 15:1487805. [PMID: 39717784 PMCID: PMC11663841 DOI: 10.3389/fimmu.2024.1487805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/22/2024] [Indexed: 12/25/2024] Open
Abstract
The use of pesticides has enabled the development of contemporary industrial agriculture and significantly increased crop yields. However, they are also considered a source of environmental pollution and a potential hazard to human health. Despite national agencies and the scientific community analyzing pesticide safety, immunotoxicity assays are often not required, poorly designed, or underestimated. Epidemiological evidence indicates that pesticide exposure increases the risk of developing cancer. Therefore, pesticides may not only act as carcinogens per se but also as immunosuppressive agents that create a permissive context for tumor development. Given recent evidence demonstrating the critical role of the immune response in cancer progression, we will highlight the necessity of assessing the potential impacts of pesticides on the immune response, particularly on tumor immunosurveillance. In this Perspective article, we will focus on the need to critically review fundamental aspects of toxicological studies conducted on pesticides to provide a clearer understanding of the risks associated with exposure to these compounds to human health.
Collapse
Affiliation(s)
- Adrián David Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata (IBYME-CONICET), Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Ahmed HA, Shaaban AA, Ibrahim TM, Makled MN. G protein-coupled estrogen receptor activation attenuates cisplatin-induced CKD in C57BL/6 mice: An insight into sex-related differences. Food Chem Toxicol 2024; 194:115079. [PMID: 39491767 DOI: 10.1016/j.fct.2024.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Gender contributes to differences in incidence and progression of chronic kidney disease (CKD) post-cisplatin therapy. This study aims at investigating the potential effect of G1 compound, a GPER agonist, on attenuating cisplatin-induced CKD. To induce CKD in male, intact female, and ovariectomized (OVX) mice, CKD was induced by injecting two cycles of 2.5 mg/kg cisplatin with a 16-day recovery period between cycles). G1 (50 or 100 μg/kg was administered daily for 6 weeks. Severity of renal damage was more pronounced in males than females. Interestingly, OVX resulted in renal damage that is non-significant compared to males and significantly higher than females. G1 improved renal function and blood flow as evidenced by reduction of serum creatinine and elevation of creatinine clearance, NO production, and reduction of ET1. This renoprotective effect could be attributed to its immunomodulatory effect regulated by TGF-β that shifted the balance to favor anti-inflammatory cytokine production (increased IL-10) rather than pro-inflammatory cytokines (decreased Th17 expression). Reduction of TGF-β activation also inhibited epithelial-to-mesenchymal transition that eventually ameliorated CKD development. Antioxidant potential of G1 has been demonstrated by upregulation of Nrf2 and subsequent antioxidant enzymes. These data suggest that G1 could be a promising therapeutic tool to attenuate CP-induced CKD.
Collapse
Affiliation(s)
- Hala A Ahmed
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ahmed A Shaaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Tarek M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mirhan N Makled
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
3
|
Kusewitt DF, Sharma G, Woods CD, Rosas E, Hathaway HJ, Prossnitz ER. GPER expression prevents estrogen-induced urinary retention in obese mice. J Steroid Biochem Mol Biol 2024; 244:106607. [PMID: 39197539 PMCID: PMC11444091 DOI: 10.1016/j.jsbmb.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Long-term administration of exogenous estrogen is known to cause urinary retention and marked, often fatal, bladder distention in both male and female mice. Estrogen-treated mice have increased bladder pressure and decreased urine flow, suggesting that urinary retention in estrogen-treated mice is due to infravesicular obstruction to urine outflow. Thus, the condition is commonly referred to as bladder outlet obstruction (BOO). Obesity can also lead to urinary retention. As the effects of estrogen are mediated by multiple receptors, including estrogen receptors ERα and ERβ and the G protein-coupled estrogen receptor (GPER), we sought to determine whether GPER plays a role in estrogen-induced BOO, particularly in the context of obesity. Wild type and GPER knockout (KO) mice fed a high-fat diet were ovariectomized or left ovary-intact (sham surgery) and supplemented with slow-release estrogen or vehicle-only pellets. Supplementing both GPER KO and wild type obese mice with estrogen for 8 weeks resulted in weight loss, splenic enlargement, and thymic atrophy, as expected. However, estrogen-treated obese GPER KO mice developed abdominal distension, debilitation, and ulceration of the skin surrounding the urogenital opening. At necropsy, these mice had prominently distended bladders and hydronephrosis. In contrast, estrogen-treated obese wild type mice only rarely displayed these signs. Our results suggest that, under conditions of obesity, estrogen induces BOO as a result of ERα-driven pathways and that GPER expression is protective against BOO.
Collapse
Affiliation(s)
- Donna F Kusewitt
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| | - Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Christine D Woods
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Emmanuel Rosas
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA; Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| |
Collapse
|
4
|
Kuş MM, Düzenli ZB, Öztürk P, Kurutas EB. Evaluation of the relationship between serum G protein-coupled estrogen receptors (GPER-1) levels and the severity and duration of the disease in patients with androgenetic alopecia: A case-control study. Arch Dermatol Res 2024; 316:658. [PMID: 39369050 DOI: 10.1007/s00403-024-03380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024]
Abstract
There are studies revealing the effects of estrogen receptors alpha (α) and beta (β) on hair follicles. However, the effects of G protein-coupled estrogen receptors (GPER-1) on hair follicles have not been elucidated. This study aims to evaluate the relationship between serum GPER-1 levels and the severity and duration of the disease in patients with androgenetic alopecia (AGA). The study included 81 patients with AGA aged 18 to 50 years (22 men and 19 women with an onset of AGA more than 5 years, and 20 men and 20 women with an onset of AGA less than 5 years) and 40 healthy controls (20 men, 20 women). The mean age of participants with AGA was 29.12 ± 8.15 (18-50), and the mean age of the control group was 25.21± 4.71 (19-42). Serum GPER-1 levels were measured, and the relationship between GPER-1 levels and duration of the disease, severity of the disease, and sex was statistically evaluated. The serum level of GPER-1 was significantly higher in patients with AGA as compared to the control group (p < 0.001). A negative correlation was found between serum GPER-1 levels and the duration of the disease in both men and women (p < 0.001, r = 0.793; p < 0.001, r = 0.711, respectively). There was a significant relationship between serum GPER-1 levels and the severity of the disease in both men and women (p = 0.003; p = 0.002, respectively). Additionally, a significant difference in GPER-1 levels was noted between male and female patients with AGA (p = 0.001). However, no statistically significant relationship was identified between GPER-1 levels and estrogen levels (p = 0.097). The higher levels of GPER-1 in patients with AGA compared to the control group, and the significant relationship between GPER-1 levels and both the duration and severity of the disease, suggest an estrogen-independent role of GPER-1 in the pathogenesis of AGA. The fact that GPER-1 levels are high in the early stages of AGA when inflammation is prominent suggests that treatments targeting these receptors may be effective at this stage.
Collapse
Affiliation(s)
- Mine Müjde Kuş
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey.
| | - Zahide Beril Düzenli
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey
| | - Perihan Öztürk
- Kahramanmaraş Sütçü İmam University Faculty of Medicine, Department of Dermatology, Kahramanmaraş, 46100, Turkey
| | - Ergul Belge Kurutas
- Kahramanmaraş Sütçü İmam University School of Medicine, Department of Biochemistry, Kahramanmaras, 46100, Turkey
| |
Collapse
|
5
|
Borlak J, Ciribilli Y, Bisio A, Selvaraj S, Inga A, Oh JH, Spanel R. The Abl1 tyrosine kinase is a key player in doxorubicin-induced cardiomyopathy and its p53/p73 cell death mediated signaling differs in atrial and ventricular cardiomyocytes. J Transl Med 2024; 22:845. [PMID: 39285385 PMCID: PMC11403941 DOI: 10.1186/s12967-024-05623-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Doxorubicin is an important anticancer drug, however, elicits dose-dependently cardiomyopathy. Given its mode of action, i.e. topoisomerase inhibition and DNA damage, we investigated genetic events associated with cardiomyopathy and searched for mechanism-based possibilities to alleviate cardiotoxicity. We treated rats at clinically relevant doses of doxorubicin. Histopathology and transmission electron microscopy (TEM) defined cardiac lesions, and transcriptomics unveiled cardiomyopathy-associated gene regulations. Genomic-footprints revealed critical components of Abl1-p53-signaling, and EMSA-assays evidenced Abl1 DNA-binding activity. Gene reporter assays confirmed Abl1 activity on p53-targets while immunohistochemistry/immunofluorescence microscopy demonstrated Abl1, p53&p73 signaling. RESULTS Doxorubicin treatment caused dose-dependently toxic cardiomyopathy, and TEM evidenced damaged mitochondria and myofibrillar disarray. Surviving cardiomyocytes repressed Parkin-1 and Bnip3-mediated mitophagy, stimulated dynamin-1-like dependent mitochondrial fission and induced anti-apoptotic Bag1 signaling. Thus, we observed induced mitochondrial biogenesis. Transcriptomics discovered heterogeneity in cellular responses with minimal overlap between treatments, and the data are highly suggestive for distinct cardiomyocyte (sub)populations which differed in their resilience and reparative capacity. Genome-wide footprints revealed Abl1 and p53 enriched binding sites in doxorubicin-regulated genes, and we confirmed Abl1 DNA-binding activity in EMSA-assays. Extraordinarily, Abl1 signaling differed in the heart with highly significant regulations of Abl1, p53 and p73 in atrial cardiomyocytes. Conversely, in ventricular cardiomyocytes, Abl1 solely-modulated p53-signaling that was BAX transcription-independent. Gene reporter assays established Abl1 cofactor activity for the p53-reporter PG13-luc, and ectopic Abl1 expression stimulated p53-mediated apoptosis. CONCLUSIONS The tyrosine kinase Abl1 is of critical importance in doxorubicin induced cardiomyopathy, and we propose its inhibition as means to diminish risk of cardiotoxicity.
Collapse
Affiliation(s)
- Jürgen Borlak
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Yari Ciribilli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Saravanakumar Selvaraj
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Alberto Inga
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Reinhard Spanel
- Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
6
|
Son SE, Im DS. Activation of G Protein-Coupled Estrogen Receptor 1 (GPER) Attenuates Obesity-Induced Asthma by Switching M1 Macrophages to M2 Macrophages. Int J Mol Sci 2024; 25:9532. [PMID: 39273478 PMCID: PMC11395149 DOI: 10.3390/ijms25179532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
The prevalence of obesity-induced asthma increases in women after menopause. We hypothesized that the increase in obese asthma in middle-aged women results from estrogen loss. In particular, we focused on the acute action of estrogen through the G protein-coupled estrogen receptor 1 (GPER), previously known as GPR30. We investigated whether GPER activation ameliorates obesity-induced asthma with a high-fat diet (HFD) using G-1, the GPER agonist, and G-36, the GPER antagonist. Administration of G-1 (0.5 mg/kg) suppressed HFD-induced airway hypersensitivity (AHR), and increased immune cell infiltration, whereas G-36 co-treatment blocked it. Histological analysis showed that G-1 treatment inhibited HFD-induced inflammation, fibrosis, and mucus hypersecretion in a GPER-dependent manner. G-1 inhibited the HFD-induced rise in the mRNA levels of pro-inflammatory cytokines in the gonadal white adipose tissue and lungs, whereas G-36 co-treatment reversed this effect. G-1 increased anti-inflammatory M2 macrophages and inhibited the HFD-induced rise in pro-inflammatory M1 macrophages in the lungs. In addition, G-1 treatment reversed the HFD-induced increase in leptin expression and decrease in adiponectin expression in the lungs and gonadal white adipose tissue. The results suggest that activation of GPER could be a therapeutic option for obesity-induced asthma.
Collapse
Affiliation(s)
- So-Eun Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Çakır U, Balogh P, Ferenczik A, Brodszky V, Krenács T, Kárpáti S, Sárdy M, Holló P, Fábián M. G protein-coupled estrogen receptor 1 and collagen XVII endodomain expression in human cutaneous melanomas: can they serve as prognostic factors? Pathol Oncol Res 2024; 30:1611809. [PMID: 39252786 PMCID: PMC11381273 DOI: 10.3389/pore.2024.1611809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
Melanoma incidence is increasing globally. Although novel therapies have improved the survival of primary melanoma patients over the past decade, the overall survival rate for metastatic melanoma remains low. In addition to traditional prognostic factors such as Breslow thickness, ulceration, and mitotic rate, novel genetic and molecular markers have been investigated. In our study, we analyzed the expression of G-protein coupled estrogen receptor 1 (GPER1) and the endodomain of collagen XVII (COL17) in relation to clinicopathological factors in primary cutaneous melanomas with known lymph node status in both sexes, using immunohistochemistry. We found, that GPER1 expression correlated with favorable clinicopathological factors, including lower Breslow thickness, lower mitotic rate and absence of ulceration. In contrast, COL17 expression was associated with poor prognostic features, such as higher tumor thickness, higher mitotic rate, presence of ulceration and presence of regression. Melanomas positive for both GPER1 and COL17 had significantly lower mean Breslow thickness and mitotic rate compared to cases positive for COL17 only. Our data indicate that GPER1 and COL17 proteins may be of potential prognostic value in primary cutaneous melanomas.
Collapse
Affiliation(s)
- Uğur Çakır
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Petra Balogh
- Queen Elizabeth Hospital, Cellular Pathology Department, University Hospitals Birmingham, Birmingham, United Kingdom
| | - Anikó Ferenczik
- Doctoral School of Economics, Business and Informatics, Corvinus University of Budapest, Budapest, Hungary
- Department of Health Policy, Institute of Social and Political Sciences, Corvinus University of Budapest, Budapest, Hungary
| | - Valentin Brodszky
- Department of Health Policy, Institute of Social and Political Sciences, Corvinus University of Budapest, Budapest, Hungary
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Miklós Sárdy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Péter Holló
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Melinda Fábián
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
8
|
Ko RF, Davidson OQC, Ahmed MA, Clark RM, Brandenburg JS, Pankratz VS, Sharma G, Hathaway HJ, Prossnitz ER, Howdieshell TR. GPER deficiency impedes murine myocutaneous revascularization and wound healing. Sci Rep 2024; 14:18400. [PMID: 39117675 PMCID: PMC11310200 DOI: 10.1038/s41598-024-68620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Estrogens regulate numerous physiological and pathological processes, including wide-ranging effects in wound healing. The effects of estrogens are mediated through multiple estrogen receptors (ERs), including the classical nuclear ERs (ERα and ER β ), that typically regulate gene expression, and the 7-transmembrane G protein-coupled estrogen receptor (GPER), that predominantly mediates rapid "non-genomic" signaling. Estrogen modulates the expression of various genes involved in epidermal function and regeneration, inflammation, matrix production, and protease inhibition, all critical to wound healing. Our previous work demonstrated improved myocutaneous wound healing in female mice compared to male mice. In the current study, we employed male and female GPER knockout mice to investigate the role of this estrogen receptor in wound revascularization and tissue viability. Using a murine myocutaneous flap model of graded ischemia, we measured real-time flap perfusion via laser speckle perfusion imaging. We conducted histologic and immunohistochemical analyses to assess skin and muscle viability, microvascular density and vessel morphology. Our results demonstrate that GPER is crucial in wound healing, mediating effects that are both dependent and independent of sex. Lack of GPER expression is associated with increased skin necrosis, reduced flap perfusion and altered vessel morphology. These findings contribute to understanding GPER signaling in wound healing and suggest possible therapeutic opportunities by targeting GPER.
Collapse
Affiliation(s)
- Randy F Ko
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA
| | - Oliver Q C Davidson
- Department of Surgery, Augusta University/University of Georgia Medical Partnership, Athens, GA, 30602, USA
| | - Michael A Ahmed
- Department of Surgery, Augusta University/University of Georgia Medical Partnership, Athens, GA, 30602, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA
| | - Jacquelyn S Brandenburg
- Department of Surgery, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA
| | - Vernon S Pankratz
- Division of Epidemiology, Biostatistics, and Preventive Medicine Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA
| | - Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA
| | - Helen J Hathaway
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM, 87131, USA.
| | - Thomas R Howdieshell
- Department of Surgery, Augusta University/University of Georgia Medical Partnership, Athens, GA, 30602, USA.
| |
Collapse
|
9
|
Ahmed HA, Shaaban AA, Makled MN, Ibrahim TM. G protein-coupled estrogen receptor selective agonist, G1, improves the molecular and biochemical markers in a cisplatin mouse model of CKD. Chem Biol Interact 2024; 398:111065. [PMID: 38795875 DOI: 10.1016/j.cbi.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Multiple cycles of cisplatin result in a permanent loss of kidney function with severe and life-limited chronic kidney disease (CKD) after successful cisplatin therapy. Recently, studies have showed that the activation of G-protein coupled estrogen receptor (GPER) could protect against kidney disease. This study aimed to test the potential of the G1 compound, a GPER selective agonist, to prevent CKD development after cisplatin therapy. Male C57BL/6 mice were exposed to 2 cycles of 2.5 mg/kg cisplatin in a regimen miming clinical exposure (1 injection daily for 5 days, followed by a 16-day recovery period between cycles). G1 (50 or 100 μg/kg) was administered daily for 6 weeks. G1 dose-dependently improved kidney function biomarkers (serum creatinine, creatinine clearance, and protein excretion) and histopathological changes compared to the cisplatin-treated group. Collagen 3 expression was dose-dependently decreased in G1-treated groups that was parallel to the reduction of fibrosis in Masson's trichrome-stained sections. G1 administration also increased total antioxidant capacity (TAC) and nuclear factor erythroid 2-related factor 2 (Nrf2) and reduced the level of malondialdehyde and the proinflammatory cytokine, tumor necrosis factor-α. In addition, G1 downregulated the expression of inflammasome NLRP3 and nuclear factor kappa B p65 (NF-κB p65) in a dose-dependent manner. In conclusion, these data suggest that G1 could be a new therapeutic tool for CKD prevention post cisplatin therapy. These effects might be mediated through the activation of Nrf2 and the inhibition of NF-κB/NLRP3 signaling.
Collapse
MESH Headings
- Animals
- Cisplatin/pharmacology
- Male
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Mice, Inbred C57BL
- Mice
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/chemically induced
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Disease Models, Animal
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Biomarkers/metabolism
- Receptors, Estrogen/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/agonists
- NF-kappa B/metabolism
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Hala A Ahmed
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ahmed A Shaaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt; Faculty of Pharmacy, Jerash University, Jerash, 26150, Jordan
| | - Mirhan N Makled
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt.
| | - Tarek M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
10
|
Dong H, Zeng X, Xu J, He C, Sun Z, Liu L, Huang Y, Sun Z, Cao Y, Peng Z, Qiu YA, Yu T. Advances in immune regulation of the G protein-coupled estrogen receptor. Int Immunopharmacol 2024; 136:112369. [PMID: 38824903 DOI: 10.1016/j.intimp.2024.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Estrogen and related receptors have been shown to have a significant impact on human development, reproduction, metabolism and immune regulation and to play a critical role in tumor development and treatment. Traditionally, the nuclear estrogen receptors (nERs) ERα and ERβ have been thought to be involved in mediating the estrogenic effects. However, our group and others have previously demonstrated that the G protein-coupled estrogen receptor (GPER) is the third independent ER, and estrogen signaling mediated by GPER is known to play an important role in normal physiology and a variety of abnormal diseases. Interestingly, recent studies have progressively revealed GPER involvement in the maintenance of the normal immune system, abnormal immune diseases, and inflammatory lesions, which may be of significant clinical value primarily in the immunotherapy of tumors. In this article, we review current advances in GPER-related immunomodulators and provide a theoretical basis and potential clinical targets to ameliorate immune-related diseases and immunotherapy for tumors.
Collapse
Affiliation(s)
- Hanzhi Dong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaoqiang Zeng
- Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Jiawei Xu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Liyan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Yanxiao Huang
- Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhe Sun
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhiqiang Peng
- Department of Lymphohematology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| | - Yu-An Qiu
- Department of Critical Care Medicine, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| |
Collapse
|
11
|
Zhang D, Chen H, Wang J, Ji J, Imam M, Zhang Z, Yan S. Current progress and prospects for G protein-coupled estrogen receptor in triple-negative breast cancer. Front Cell Dev Biol 2024; 12:1338448. [PMID: 38476263 PMCID: PMC10928007 DOI: 10.3389/fcell.2024.1338448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a biologically and clinically heterogeneous disease. The G protein-coupled estrogen receptor (GPER) plays a crucial role in mediating the effect of estrogen and estrogen-like compounds in TNBC cells. Compared with other subtypes, GPER has a higher expression in TNBC. The GPER mechanisms have been thoroughly characterized and analyzed in estrogen receptor α (ERα) positive breast cancer, but not in TNBC. Our previous work revealed that a higher expression of GPER mRNA indicates a better prognosis for ERα-positive breast cancer; however, its effects in TNBC differ. Whether GPER could serve as a predictive prognostic marker or therapeutic target for TNBC remains unclear. In this review, we provide a detailed introduction to the subcellular localization of GPER, the different effects of various ligands, and the interactions between GPER and closely associated factors in TNBC. We focused on the internal molecular mechanisms specific to TNBC and thoroughly explored the role of GPER in promoting tumor development. We also discussed the interaction of GPER with specific cytokines and chemokines, and the relationship between GPER and immune evasion. Additionally, we discussed the feasibility of using GPER as a therapeutic target in the context of existing studies. This comprehensive review highlights the effects of GPER on TNBC, providing a framework and directions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Itoga M, Ishioka Y, Makiguchi T, Tanaka H, Taima K, Saito N, Tomita H, Tasaka S. Role of G-protein-coupled estrogen receptor in the pathogenesis of chronic asthma. Immunol Lett 2024; 265:16-22. [PMID: 38142780 DOI: 10.1016/j.imlet.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/26/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND AND AIM G protein-coupled estrogen receptor (GPER) is an estrogen receptor located on the plasma membrane. We previously reported that the administration of G-1, a GPER-specific agonist, suppressed development of acute ovalbumin (OVA)-induced asthma in a mouse model. Herein, we evaluate the involvement of GPER in a mouse model of chronic OVA asthma. METHODS G-1 or saline was administered subcutaneously to BALB/c mice with chronic OVA asthma, and pathological and immunological evaluation was performed. In addition, Foxp3-expressing CD4-positive T-cells in the spleen and ILC2 in the lungs were measured using flow cytometry. RESULTS We observed a significant decrease in the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) in the G-1 treated group. In the airways, inflammatory cell accumulation, Th2 cytokines (IL-4, IL-5, IL-13, and eotaxin) and epithelial cytokine TSLP were suppressed, while in the BALF, anti-inflammatory cytokines (IL-10 and TGF-β) were increased. Furthermore, in splenic mononuclear cells, Foxp3-expressing CD4-positive T-cells were increased in the G-1 group, whereas treatment with G-1 did not change the percentage of ILC2 in the lungs. CONCLUSION G-1 administration suppressed allergic airway inflammation in mice with chronic OVA asthma. GPER may be a potential therapeutic target for chronic allergic asthma.
Collapse
Affiliation(s)
- Masamichi Itoga
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Division of Infection Control and Prevention, Hirosaki University Hospital, 53 Honcho, Hirosaki, 036-8563, Japan.
| | - Yoshiko Ishioka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Tomonori Makiguchi
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Hisashi Tanaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kageaki Taima
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Norihiro Saito
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Division of Infection Control and Prevention, Hirosaki University Hospital, 53 Honcho, Hirosaki, 036-8563, Japan
| | - Hirofumi Tomita
- Department of Clinical Laboratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan; Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Sadatomo Tasaka
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
13
|
Jouffre B, Acramel A, Jacquot Y, Daulhac L, Mallet C. GPER involvement in inflammatory pain. Steroids 2023; 200:109311. [PMID: 37734514 DOI: 10.1016/j.steroids.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a worldwide refractory health disease that causes major financial and emotional burdens and that is devastating for individuals and society. One primary source of pain is inflammation. Current treatments for inflammatory pain are weakly effective, although they usually replace analgesics, such as opioids and non-steroidal anti-inflammatory drugs, which display serious side effects. Emerging evidence indicates that the membrane G protein-coupled estrogen receptor (GPER) may play an important role in the regulation of inflammation and pain. Herein, we focus on the consequences of pharmacological and genetic GPER modulation in different animal models of inflammatory pain. We also provide a brief overview of the putative mechanisms including the direct action of GPER on pain transmission and inflammation.
Collapse
Affiliation(s)
- Baptiste Jouffre
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France
| | - Alexandre Acramel
- CiTCoM, CNRS - UMR 8038, INSERM U1268, Faculty of Pharmacy of Paris, University Paris Cité, 75270 Paris Cedex 06, France; Department of Pharmacy, Institut Curie, 75248 Paris Cedex 06, France
| | - Yves Jacquot
- CiTCoM, CNRS - UMR 8038, INSERM U1268, Faculty of Pharmacy of Paris, University Paris Cité, 75270 Paris Cedex 06, France
| | - Laurence Daulhac
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France
| | - Christophe Mallet
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France.
| |
Collapse
|
14
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
15
|
Sommer B, González-Ávila G, Flores-Soto E, Montaño LM, Solís-Chagoyán H, Romero-Martínez BS. Phytoestrogen-Based Hormonal Replacement Therapy Could Benefit Women Suffering Late-Onset Asthma. Int J Mol Sci 2023; 24:15335. [PMID: 37895016 PMCID: PMC10607548 DOI: 10.3390/ijms242015335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
It has been observed that plasmatic concentrations of estrogens, progesterone, or both correlate with symptoms in asthmatic women. Fluctuations in female sex steroid concentrations during menstrual periods are closely related to asthma symptoms, while menopause induces severe physiological changes that might require hormonal replacement therapy (HRT), that could influence asthma symptoms in these women. Late-onset asthma (LOA) has been categorized as a specific asthmatic phenotype that includes menopausal women and novel research regarding therapeutic alternatives that might provide relief to asthmatic women suffering LOA warrants more thorough and comprehensive analysis. Therefore, the present review proposes phytoestrogens as a promising HRT that might provide these females with relief for both their menopause and asthma symptoms. Besides their well-recognized anti-inflammatory and antioxidant capacities, phytoestrogens activate estrogen receptors and promote mild hormone-like responses that benefit postmenopausal women, particularly asthmatics, constituting therefore a very attractive potential therapy largely due to their low toxicity and scarce side effects.
Collapse
Affiliation(s)
- Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosio Villegas’, Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City CP 14080, Mexico
| | - Georgina González-Ávila
- Laboratorio de Oncología Biomédica, Departamento de Enfermedades Crónico Degenerativas, Instituto Nacional de Enfermedades Respiratorias ‘Ismael Cosio Villegas’, Mexico City CP 14080, Mexico;
| | - Edgar Flores-Soto
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| | - Luis M. Montaño
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca CP 62209, Morelos, Mexico;
| | - Bianca S. Romero-Martínez
- Departmento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico; (E.F.-S.); (L.M.M.); (B.S.R.-M.)
| |
Collapse
|
16
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
17
|
Arterburn JB, Prossnitz ER. G Protein-Coupled Estrogen Receptor GPER: Molecular Pharmacology and Therapeutic Applications. Annu Rev Pharmacol Toxicol 2023; 63:295-320. [PMID: 36662583 PMCID: PMC10153636 DOI: 10.1146/annurev-pharmtox-031122-121944] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The actions of estrogens and related estrogenic molecules are complex and multifaceted in both sexes. A wide array of natural, synthetic, and therapeutic molecules target pathways that produce and respond to estrogens. Multiple receptors promulgate these responses, including the classical estrogen receptors of the nuclear hormone receptor family (estrogen receptors α and β), which function largely as ligand-activated transcription factors, and the 7-transmembrane G protein-coupled estrogen receptor, GPER, which activates a diverse array of signaling pathways. The pharmacology and functional roles of GPER in physiology and disease reveal important roles in responses to both natural and synthetic estrogenic compounds in numerous physiological systems. These functions have implications in the treatment of myriad disease states, including cancer, cardiovascular diseases, and metabolic disorders. This review focuses on the complex pharmacology of GPER and summarizes major physiological functions of GPER and the therapeutic implications and ongoing applications of GPER-targeted compounds.
Collapse
Affiliation(s)
- Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
| | - Eric R Prossnitz
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
18
|
Zhang S, Ma J, Wang X, Zhao D, Zhang J, Jiang L, Duan W, Wang X, Hong Z, Li Z, Liu J. GPR30 Alleviates Pressure Overload-Induced Myocardial Hypertrophy in Ovariectomized Mice by Regulating Autophagy. Int J Mol Sci 2023; 24:ijms24020904. [PMID: 36674423 PMCID: PMC9867279 DOI: 10.3390/ijms24020904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
The incidence of heart failure mainly resulting from cardiac hypertrophy and fibrosis increases sharply in post-menopausal women compared with men at the same age, which indicates a cardioprotective role of estrogen. Previous studies in our group have shown that the novel estrogen receptor G Protein Coupled Receptor 30 (GPR30) could attenuate myocardial fibrosis caused by ischemic heart disease. However, the role of GPR30 in myocardial hypertrophy in ovariectomized mice has not been investigated yet. In this study, female mice with bilateral ovariectomy or sham surgery underwent transverse aortic constriction (TAC) surgery. After 8 weeks, mice in the OVX + TAC group exhibited more severe myocardial hypertrophy and fibrosis than mice in the TAC group. G1, the specific agonist of GPR30, could attenuate myocardial hypertrophy and fibrosis of mice in the OVX + TAC group. Furthermore, the expression of LC3II was significantly higher in the OVX + TAC group than in the OVX + TAC + G1 group, which indicates that autophagy might play an important role in this process. An in vitro study showed that G1 alleviated AngiotensionII (AngII)-induced hypertrophy and reduced the autophagy level of H9c2 cells, as revealed by LC3II expression and tandem mRFP-GFP-LC3 fluorescence analysis. Additionally, Western blot results showed that the AKT/mTOR pathway was inhibited in the AngII group, whereas it was restored in the AngII + G1 group. To further verify the mechanism, PI3K inhibitor LY294002 or autophagy activator rapamycin was added in the AngII + G1 group, and the antihypertrophy effect of G1 on H9c2 cells was blocked by LY294002 or rapamycin. In summary, our results demonstrate that G1 can attenuate cardiac hypertrophy and fibrosis and improve the cardiac function of mice in the OVX + TAC group through AKT/mTOR mediated inhibition of autophagy. Thus, this study demonstrates a potential option for the drug treatment of pressure overload-induced cardiac hypertrophy in postmenopausal women.
Collapse
|
19
|
Nowak K, Jabłońska E, Garley M, Iwaniuk A, Radziwon P, Wołczyński S, Ratajczak-Wrona W. Investigation of estrogen-like effects of parabens on human neutrophils. ENVIRONMENTAL RESEARCH 2022; 214:113893. [PMID: 35839909 DOI: 10.1016/j.envres.2022.113893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the estrogen-like effects and mechanism of action most commonly used parabens: methyl- (MeP), ethyl- (EtP), propyl- (PrP) and butylparaben (BuP) in human neutrophils. Neutrophils were isolated from 50 blood donors, pre-incubated with antagonists of estrogen receptor α (ERα), ERβ and G-protein coupled estrogen receptor 1 (GPER), then incubated with MeP, EtP, PrP, BuP and 17β-estradiol (E2; 10 nM). Cytotoxic effect was evaluated by MTT test. Neutrophils apoptosis, necrosis and NETs formation were assessed in flow cytometry and confocal microscopy. The ability of the neutrophils for chemotaxis, phagocytosis, NADPH oxidase activity and generation of superoxide anion was assessed in Boyden's chamber, Park's method with latex, the NBT test, and reduction of cytochrome C, respectively. The total nitric oxide concentration was measured in neutrophils supernatants by the Griess reaction. The expression of cathepsin G, neutrophil elastase, proteinase 3, ERα, ERβ and GPER was assessed in Western blot method. In our research, parabens did not cause a cytotoxic effect on human neutrophils nor affect their lifespan. Parabens exposure did not change neutrophils functions (chemotaxis, phagocytosis, NETs formation and oxygen-dependent killing mechanism) and expression of estrogen receptors. Our results suggest that parabens do not cause estrogen receptor-mediated neutrophils-related effects at concentrations measured in the plasma of individuals using products preserved with parabens.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | - Marzena Garley
- Department of Immunology, Medical University of Bialystok, Poland
| | | | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | |
Collapse
|
20
|
Schafer JM, Xiao T, Kwon H, Collier K, Chang Y, Abdel-Hafiz H, Bolyard C, Chung D, Yang Y, Sundi D, Ma Q, Theodorescu D, Li X, Li Z. Sex-biased adaptive immune regulation in cancer development and therapy. iScience 2022; 25:104717. [PMID: 35880048 PMCID: PMC9307950 DOI: 10.1016/j.isci.2022.104717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cancer research field is finally starting to unravel the mystery behind why males have a higher incidence and mortality rate than females for nearly all cancer types of the non-reproductive systems. Here, we explain how sex - specifically sex chromosomes and sex hormones - drives differential adaptive immunity across immune-related disease states including cancer, and why males are consequently more predisposed to tumor development. We highlight emerging data on the roles of cell-intrinsic androgen receptors in driving CD8+ T cell dysfunction or exhaustion in the tumor microenvironment and summarize ongoing clinical efforts to determine the impact of androgen blockade on cancer immunotherapy. Finally, we outline a framework for future research in cancer biology and immuno-oncology, underscoring the importance of a holistic research approach to understanding the mechanisms of sex dimorphisms in cancer, so sex will be considered as an imperative factor for guiding treatment decisions in the future.
Collapse
Affiliation(s)
- Johanna M. Schafer
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Hyunwoo Kwon
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
- Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Katharine Collier
- Division of Medical Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Yuzhou Chang
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Hany Abdel-Hafiz
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chelsea Bolyard
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Dongjun Chung
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Yuanquan Yang
- Division of Medical Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| | - Debasish Sundi
- Department of Urology, the Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, the Ohio State University, Columbus, OH 43210, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xue Li
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, the Ohio State University Comprehensive Cancer Center – the James, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Wang Y, Cao Z, Zhao H, Gu Z. Bisphenol A attenuates the therapeutic effect of the selective G protein-coupled estrogen receptor agonist G-1 on allergic rhinitis inflammation in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113607. [PMID: 35533451 DOI: 10.1016/j.ecoenv.2022.113607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is found in many plastics widely used in everyday life and affects the immune system. Previous studies found that the selective G protein coupled estrogen receptor (GPER) agonist G-1 can reduce the inflammation associated with asthma and allergic rhinitis (AR). BPA also interferes with the protective effect of estradiol against myocardial ischemia-reperfusion injury. OBJECTIVE We explored whether BPA attenuates the effect of G-1 on inflammation in a mouse AR model. METHODS The AR model was established by sensitizing and stimulating female BALB/c mice with ovalbumin (OVA) and G-1/BPA. Eosinophils, neutrophils, and lymphocyte subsets (including T and B cells) in nasal mucosa and Th2 and Treg cells in the spleen were detected by flow cytometry. Cytokines and transcription factors characteristic of Th2 and Treg cells in nasal mucosa were detected using cytometric bead arrays and quantitative PCR, respectively. RESULTS G-1 reduced OVA-induced nasal mucosal inflammation in mice. The proportions of eosinophils, neutrophils, Siglec-F+ neutrophils, lymphocytes, and T cell subsets were reduced by G-1, and this effect was attenuated by BPA. G-1 significantly decreased the Th2 population and levels of IL-4, IL-5, IL-13 and GATA-3; these effects were attenuated by BPA. The enhanced Treg response (as evidenced by an increased Treg population and higher IL-10 and Foxp3 levels) mediated by G-1 tended to be reduced by BPA. DISCUSSION We found that G-1 reduced OVA-induced nasal mucosal inflammation and significantly decreased the Th2 response, while increasing the Treg response. These effects were attenuated by BPA.
Collapse
Affiliation(s)
- Yunxiu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, China
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, China
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, China
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang City 110004, Liaoning Province, China.
| |
Collapse
|
22
|
Singh R, Nasci VL, Guthrie G, Ertuglu LA, Butt MK, Kirabo A, Gohar EY. Emerging Roles for G Protein-Coupled Estrogen Receptor 1 in Cardio-Renal Health: Implications for Aging. Biomolecules 2022; 12:412. [PMID: 35327604 PMCID: PMC8946600 DOI: 10.3390/biom12030412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.
Collapse
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Ginger Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Lale A. Ertuglu
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| |
Collapse
|
23
|
Schiffrin EL. Oestrogen receptors and T cells determine how sex affects aldosterone-induced hypertension. Cardiovasc Res 2021; 117:655-657. [PMID: 32533825 DOI: 10.1093/cvr/cvaa170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ernesto L Schiffrin
- Department of Medicine, Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
24
|
Zhou L, Yu T, Yang F, Han J, Zuo B, Huang L, Bai X, Jiang M, Wu D, Chen S, Xia L, Ruan J, Ruan C. G Protein-Coupled Estrogen Receptor Agonist G-1 Inhibits Mantle Cell Lymphoma Growth in Preclinical Models. Front Oncol 2021; 11:668617. [PMID: 34211844 PMCID: PMC8239310 DOI: 10.3389/fonc.2021.668617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/25/2021] [Indexed: 12/27/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive form of non-Hodgkin’s B-cell lymphoma with poor prognosis. Despite recent advances, resistance to therapy and relapse remain significant clinical problems. G-protein-coupled estrogen receptor (GPER)-mediated estrogenic rapid signaling is implicated in the development of many cancers. However, its role in MCL is unknown. Here we report that GPER activation with selective agonist G-1 induced cell cycle arrest, DNA damage, mitochondria membrane potential abnormality, and eventually apoptosis of MCL cell lines. We found that G-1 induced DNA damage and apoptosis of MCL cells by promoting the expression of nicotinamide adenine dinucleotide phosphate oxidase and the generation of reactive oxygen species. In addition, G-1 inhibited MCL cell proliferation by inactivation of NF-κB signaling and exhibited anti-tumor functions in MCL xenografted mice. Most significantly, G-1 showed synergistic effect with ibrutinib making it a potential candidate for chemotherapy-free therapies against MCL.
Collapse
Affiliation(s)
- Lixia Zhou
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Fei Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zuo
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Huang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Bai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Miao Jiang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijun Xia
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Jia Ruan
- Division of Hematology and Medical Oncology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
25
|
Dinh QN, Vinh A, Arumugam TV, Drummond GR, Sobey CG. G protein-coupled estrogen receptor 1: a novel target to treat cardiovascular disease in a sex-specific manner? Br J Pharmacol 2021; 178:3849-3863. [PMID: 33948934 DOI: 10.1111/bph.15521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
As an agonist of the classical nuclear receptors, estrogen receptor-α and -β (NR3A1/2), estrogen has been assumed to inhibit the development of cardiovascular disease in premenopausal women. Indeed, reduced levels of estrogen after menopause are believed to contribute to accelerated morbidity and mortality rates in women. However, estrogen replacement therapy has variable effects on cardiovascular risk in postmenopausal women, including increased serious adverse events. Interestingly, preclinical studies have shown that selective activation of the novel membrane-associated G protein-coupled estrogen receptor, GPER, can promote cardiovascular protection. These benefits are more evident in ovariectomised than intact females or in males. It is therefore possible that selective targeting of the GPER in postmenopausal women could provide cardiovascular protection with fewer adverse effects that are caused by conventional 'receptor non-specific' estrogen replacement therapy. This review describes new data regarding the merits of targeting GPER to treat cardiovascular disease with a focus on sex differences.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
26
|
Pepermans RA, Sharma G, Prossnitz ER. G Protein-Coupled Estrogen Receptor in Cancer and Stromal Cells: Functions and Novel Therapeutic Perspectives. Cells 2021; 10:cells10030672. [PMID: 33802978 PMCID: PMC8002620 DOI: 10.3390/cells10030672] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023] Open
Abstract
Estrogen is involved in numerous physiological and pathophysiological systems. Its role in driving estrogen receptor-expressing breast cancers is well established, but it also has important roles in a number of other cancers, acting both on tumor cells directly as well as in the function of multiple cells of the tumor microenvironment, including fibroblasts, immune cells, and adipocytes, which can greatly impact carcinogenesis. One of its receptors, the G protein-coupled estrogen receptor (GPER), has gained much interest over the last decade in both health and disease. Increasing evidence shows that GPER contributes to clinically observed endocrine therapy resistance in breast cancer while also playing a complex role in a number of other cancers. Recent discoveries regarding the targeting of GPER in combination with immune checkpoint inhibition, particularly in melanoma, have led to the initiation of the first Phase I clinical trial for the GPER-selective agonist G-1. Furthermore, its functions in metabolism and corresponding pathophysiological states, such as obesity and diabetes, are becoming more evident and suggest additional therapeutic value in targeting GPER for both cancer and other diseases. Here, we highlight the roles of GPER in several cancers, as well as in metabolism and immune regulation, and discuss the therapeutic value of targeting this estrogen receptor as a potential treatment for cancer as well as contributing metabolic and inflammatory diseases and conditions.
Collapse
Affiliation(s)
- Richard A. Pepermans
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (R.A.P.); (G.S.)
| | - Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (R.A.P.); (G.S.)
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Eric R. Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (R.A.P.); (G.S.)
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Correspondence: ; Tel.: +1-505-272-5647
| |
Collapse
|
27
|
Sharma G, Prossnitz ER. Targeting the G protein-coupled estrogen receptor (GPER) in obesity and diabetes. ENDOCRINE AND METABOLIC SCIENCE 2021; 2. [PMID: 35321004 PMCID: PMC8936744 DOI: 10.1016/j.endmts.2021.100080] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity has become a global epidemic in the modern world with the numbers of obese individuals having risen at alarming rates in the last decades. Obesity represents a serious medical condition that can lead to multiple complications, such as diabetes, dyslipidemia, cardiovascular disease including hypertension and atherosclerosis, stroke and increases in the risk of many types of cancer. Very few effective options exist to treat obesity, with many removed from the market due to associated complications. Obesity and metabolic syndrome display a sexual dichotomy, with (premenopausal) females displaying protection from weight gain and metabolic dysfunction compared to men. These beneficial effects are generally attributed to a class of female ovarian hormone, estrogens, which exert pleiotropic effects in multiple metabolic tissues, such as adipose, skeletal muscle, liver and pancreas. Multiple receptors mediate the actions of estrogens, including the classical nuclear estrogen receptors (ER α and ER β) and the G protein-coupled estrogen receptor (GPER). While the roles of nuclear ERs are more established, evidence of GPER function in metabolic homeostasis is still emerging. In this review, we will discuss the latest advances concerning the contributions of GPER towards obesity and metabolism utilizing GPER-selective pharmacological (agonists or antagonists) or genetic (GPER knock out mice or cells) tools. We present evidence that GPER regulates body weight, fat distribution, inflammation and glucose and lipid homeostasis via effects on metabolic tissues. Selective agonism of GPER by its agonist G-1 can alleviate symptoms of obesity and metabolic dysfunction in multiple murine models, thereby limiting weight gain, reducing insulin resistance and inflammation and improving glucose and lipid homeostasis in vivo. Thus, GPER represents a novel therapeutic target, with G-1 a first-in-class therapeutic agent, to treat obesity and its associated comorbidities, including diabetes.
Collapse
|
28
|
Dinh QN, Vinh A, Kim HA, Saini N, Broughton BRS, Chrissobolis S, Diep H, Judkins CP, Drummond GR, Sobey CG. Aldosterone-induced hypertension is sex-dependent, mediated by T cells and sensitive to GPER activation. Cardiovasc Res 2021; 117:960-970. [PMID: 32215568 DOI: 10.1093/cvr/cvaa075] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/30/2020] [Accepted: 03/20/2020] [Indexed: 12/23/2022] Open
Abstract
AIMS The G protein-coupled estrogen receptor 1 (GPER) may modulate some effects of aldosterone. In addition, G-1 (a GPER agonist) can lower blood pressure (BP) and promote T cell-mediated anti-inflammatory responses. This study aimed to test the effects of G-1 and G-15 (a GPER antagonist) on aldosterone-induced hypertension in mice and to examine the cellular mechanisms involved. METHODS AND RESULTS C57Bl/6 (wild-type, WT), RAG1-deficient and GPER-deficient mice were infused with vehicle, aldosterone (0.72 mg/kg/day S.C. plus 0.9% NaCl for drinking) ± G-1 (0.03 mg/kg/day S.C.) ± G-15 (0.3 mg/kg/day S.C.) for 14 days. G-1 attenuated aldosterone-induced hypertension in male WT but not male GPER-deficient mice. G-15 alone did not alter hypertension but it prevented the anti-hypertensive effect of G-1. In intact female WT mice, aldosterone-induced hypertension was markedly delayed and suppressed compared with responses in males, with BP remaining unchanged until after Day 7. In contrast, co-administration of aldosterone and G-15 fully increased BP within 7 days in WT females. Similarly, aldosterone robustly increased BP by Day 7 in ovariectomized WT females, and in both sexes of GPER-deficient mice. Whereas aldosterone had virtually no effect on BP in RAG1-deficient mice, adoptive transfer of T cells from male WT or male GPER-deficient mice into male RAG1-deficient mice restored the pressor response to aldosterone. This pressor effect could be attenuated by G-1 in RAG1-deficient mice that were reconstituted with either WT or GPER-deficient T cells, suggesting that G-1 does not act via T cells to lower BP. CONCLUSION Our findings indicate that although aldosterone-induced hypertension is largely mediated by T cells, it can be attenuated by activation of GPER on non-T cells, which accounts for the sex difference in sensitivity to the pressor effect.
Collapse
MESH Headings
- Aldosterone
- Animals
- Antihypertensive Agents/pharmacology
- Benzodioxoles/pharmacology
- Blood Pressure/drug effects
- Cyclopentanes/pharmacology
- Disease Models, Animal
- Estrogen Antagonists/pharmacology
- Female
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Hypertension/chemically induced
- Hypertension/immunology
- Hypertension/metabolism
- Hypertension/prevention & control
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Ovariectomy
- Quinolines/pharmacology
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sex Factors
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Mice
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Hyun Ah Kim
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Narbada Saini
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brad R S Broughton
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sophocles Chrissobolis
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, OH, USA
| | - Henry Diep
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Courtney P Judkins
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
29
|
Sen A, Kaul A, Kaul R. Estrogen receptors in human bladder cells regulate innate cytokine responses to differentially modulate uropathogenic E. coli colonization. Immunobiology 2020; 226:152020. [PMID: 33246308 DOI: 10.1016/j.imbio.2020.152020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/19/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
The bladder epithelial cells elicit robust innate immune responses against urinary tract infections (UTIs) for preventing the bacterial colonization. Physiological fluctuations in circulating estrogen levels in women increase the susceptibility to UTI pathogenesis, often resulting in adverse health outcomes. Dr adhesin bearing Escherichia coli (Dr E. coli) cause recurrent UTIs in menopausal women and acute pyelonephritis in pregnant women. Dr E. coli bind to epithelial cells via host innate immune receptor CD55, under hormonal influence. The role of estrogens or estrogen receptors (ERs) in regulating the innate immune responses in the bladder are poorly understood. In the current study, we investigated the role of ERα, ERβ and GPR30 in modulating the innate immune responses against Dr E. coli induced UTI using human bladder epithelial carcinoma 5637 cells (HBEC). Both ERα and ERβ agonist treatment in bladder cells induced a protection against Dr E. coli invasion via upregulation of TNFα and downregulation of CD55 and IL10, and these effects were reversed by action of ERα and ERβ antagoinsts. In contrast, the agonist-mediated activation of GPR30 led to an increased bacterial colonization due to suppression of innate immune factors in the bladder cells, and these effects were reversed by the antagonist-mediated suppression of GPR30. Further, siRNA-mediated ERα knockdown in the bladder cells reversed the protection against bacterial invasion observed in the ERα positive bladder cells, by modulating the gene expression of TNFα, CD55 and IL10, thus confirming the protective role of ERα. We demonstrate for the first time a protective role of nuclear ERs, ERα and ERβ but not of membrane ER, GPR30 against Dr E. coli invasion in HBEC 5637 cells. These findings have many clinical implications and suggest that ERs may serve as potential drug targets towards developing novel therapeutics for regulating local innate immunity and treating UTIs.
Collapse
Affiliation(s)
- Ayantika Sen
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA; Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anil Kaul
- Health Care Administration, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA
| | - Rashmi Kaul
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, USA.
| |
Collapse
|
30
|
Sharma G, Hu C, Staquicini DI, Brigman JL, Liu M, Mauvais-Jarvis F, Pasqualini R, Arap W, Arterburn JB, Hathaway HJ, Prossnitz ER. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci Transl Med 2020; 12:12/528/eaau5956. [PMID: 31996464 DOI: 10.1126/scitranslmed.aau5956] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/23/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERβ, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Chelin Hu
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Daniela I Staquicini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Franck Mauvais-Jarvis
- Diabetes Discovery and Sex-Based Medicine Laboratory, Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.,Section of Endocrinology, Southeast Louisiana Veterans Administration Health Care System, New Orleans, LA 70112, USA
| | - Renata Pasqualini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Helen J Hathaway
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA. .,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
31
|
Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020; 11:572490. [PMID: 33071979 PMCID: PMC7531579 DOI: 10.3389/fendo.2020.572490] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Pan MX, Li J, Ma C, Fu K, Li ZQ, Wang ZF. Sex-dependent effects of GPER activation on neuroinflammation in a rat model of traumatic brain injury. Brain Behav Immun 2020; 88:421-431. [PMID: 32272225 DOI: 10.1016/j.bbi.2020.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
The G protein-coupled estrogen receptor (GPER) plays a role in estrogen-mediated neuroprotection and has been considered a potential therapeutic target for treating various neurological diseases. It is increasingly recognized that sex is a biological variable affecting treatment outcomes and efficacy, and that neuroinflammation is a key secondary injury mechanism following brain injury, though it is unknown whether the neuroprotective effects exerted by GPER involve modulation of inflammatory processes. The aim of this study was to investigate whether activation of GPER has a sex-dependent effect on neuroinflammation following traumatic brain injury (TBI), a sexually dimorphic disease. In male and ovariectomized (OVX) female rats, the GPER agonist, G1, inhibited the upregulated expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), increased the expression of the anti-inflammatory cytokine IL-4, and shifted microglia/macrophage polarization toward the M2 phenotype. In gonadally-intact females, G1 caused more pro-inflammatory (IL-6 and TNF-α) and less anti-inflammatory cytokine (IL-4) production, without altering microglia/macrophage polarization. Estradiol supplementation blocked the effects of G1 in OVX females. We also found that post-injury GPER expression was increased in males and OVX females but not in intact females. G1 administration increased Akt phosphorylation in males and OVX females, but had no significant effect in intact females, while Akt inhibition blocked the effects of G1 in males and OVX females. These results indicate that G1 exerts anti-inflammatory effects in males and OVX females but not in intact females; these sex-specific effects are dependent on circulating estrogen levels and are partially mediated through Akt signaling. Future studies are needed to elucidate the relevant molecular mechanisms, especially in females. A better understanding of the sex differences in treatment efficacy with GPER agonists may help improve personalized therapeutic strategies for males and pre- and postmenopausal females with TBI.
Collapse
Affiliation(s)
- Meng-Xian Pan
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Chao Ma
- Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China
| | - Kai Fu
- Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan 430071, China.
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
33
|
Hernández-Silva CD, Villegas-Pineda JC, Pereira-Suárez AL. Expression and Role of the G Protein-Coupled Estrogen Receptor (GPR30/GPER) in the Development and Immune Response in Female Reproductive Cancers. Front Endocrinol (Lausanne) 2020; 11:544. [PMID: 32973677 PMCID: PMC7468389 DOI: 10.3389/fendo.2020.00544] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer is a major public health issue and represents the second leading cause of death in women worldwide, as female reproductive-related neoplasms are the main cause of incidence and mortality. Female reproductive cancers have a close relationship to estrogens, the principal female sex steroid hormones. Estrogens exert their actions by the nuclear estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). ERα, and ERβ act as transcription factors mediating genomic effects. Besides, the G protein-coupled estrogen receptor (GPER, formerly known as GPR30) was recently described as a seven-transmembrane receptor that mediates non-genomic estrogenic signaling, including calcium mobilization, cAMP synthesis, cleavage of matrix metalloproteinases, transactivation of epidermal growth factor receptor (EGFR), and the subsequent activation of PI3K and MAPK signaling pathways, which are the reasons why it is related to cellular processes, such as cell-cycle progression, cellular proliferation, differentiation, apoptosis, migration, and invasion. Since its discovery, selective agonists and antagonists have been found and developed. GPER has been implicated in a variety of hormone-responsiveness tumors, such as breast, endometrial, ovarian, cervical, prostate, and testicular cancer as well as lung, hepatic, thyroid, colorectal, and adrenocortical cancers. Nevertheless, GPER actions in cancer are still debatable due to the conflicting information that has been reported to date, since many reports indicate that activation of this receptor can modulate carcinogenesis. In contrast, many others show that its activation inhibits tumor activity. Besides, estrogens play an essential role in the regulation of the immune system, but little information exists about the role of GPER activation on its modulation within cancer context. This review focuses on the role that the stimulation of GPER plays in female reproductive neoplasms, specifically breast, endometrial, ovarian, and cervical cancers, in its tumor activity and immune response regulation.
Collapse
Affiliation(s)
- Christian David Hernández-Silva
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Julio César Villegas-Pineda
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Laboratorio de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- *Correspondence: Ana Laura Pereira-Suárez
| |
Collapse
|
34
|
Notas G, Kampa M, Castanas E. G Protein-Coupled Estrogen Receptor in Immune Cells and Its Role in Immune-Related Diseases. Front Endocrinol (Lausanne) 2020; 11:579420. [PMID: 33133022 PMCID: PMC7564022 DOI: 10.3389/fendo.2020.579420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
G protein-coupled estrogen receptor 1 (GPER1), is a functional estrogen receptor involved in estrogen related actions on several systems including processes of the nervous, reproductive, metabolic, cardiovascular, and immune system. Regarding the latter, GPER is expressed in peripheral B and T lymphocytes as well as in monocytes, eosinophils, and neutrophils. Several studies have implicated GPER in immune-mediated diseases like multiple sclerosis, Parkinson's disease, and atherosclerosis-related inflammation, while a recent report suggests that its deletion could be responsible for a form of familial immunodeficiency. It has also been suggested that it is a key regulator of immune-mediated events in breast, pancreatic, prostate, and hepatocellular cancer as well as in melanoma. GPER has been also reported to interact with classic ER-alpha or its splice variants in order to modify immune functions. This review aims to present current knowledge relating GPER to immune functions, the cellular and signaling pathways involved, as well as the potential clinical implications of GPER modulation in immune-related diseases.
Collapse
|
35
|
Fang D, Zhu J. Molecular switches for regulating the differentiation of inflammatory and IL-10-producing anti-inflammatory T-helper cells. Cell Mol Life Sci 2020; 77:289-303. [PMID: 31432236 PMCID: PMC11105075 DOI: 10.1007/s00018-019-03277-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
CD4 T-helper (Th) cells secret a variety of inflammatory cytokines and play critical roles in host defense against invading foreign pathogens. On the other hand, uncontrolled inflammatory responses mediated by Th cells may result in tissue damage and inflammatory disorders including autoimmune and allergic diseases. Thus, the induction of anti-inflammatory cytokine expression becomes an important "brake" to repress and/or terminate aberrant and/or unnecessary immune responses. Interleukin-10 (IL-10) is one of the most important anti-inflammatory cytokines to limit inflammatory Th cells and immunopathology and to maintain tissue homeostasis. Many studies have indicated that Th cells can be a major source of IL-10 under specific conditions both in mouse and human and that extracellular signals and cell intrinsic molecular switches are required to turn on and off Il10 expression in different Th cells. In this review, we will highlight the recent findings that have enhanced our understanding on the mechanisms of IL-10 induction in distinct Th-cell subsets, including Th1, Th2, and Th17 cells, as well as the importance of these IL-10-producing anti-inflammatory Th cells in immunity and inflammation.
Collapse
Affiliation(s)
- Difeng Fang
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
36
|
Jacenik D, Beswick EJ, Krajewska WM, Prossnitz ER. G protein-coupled estrogen receptor in colon function, immune regulation and carcinogenesis. World J Gastroenterol 2019; 25:4092-4104. [PMID: 31435166 PMCID: PMC6700692 DOI: 10.3748/wjg.v25.i30.4092] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
Estrogens play important roles in the development and progression of multiple tumor types. Accumulating evidence points to the significance of estrogen action not only in tumors of hormonally regulated tissues such as the breast, endometrium and ovary, but also in the development of colorectal cancer (CRC). The effects of estrogens in physiological and pathophysiological conditions are mediated by the nuclear estrogen receptors α and β, as well as the membrane-bound G protein-coupled estrogen receptor (GPER). The roles of GPER in CRC development and progression, however, remain poorly understood. Studies on the functions of GPER in the colon have shown that this estrogen receptor regulates colonic motility as well as immune responses in CRC-associated diseases, such as Crohn’s disease and ulcerative colitis. GPER is also involved in cell cycle regulation, endoplasmic reticulum stress, proliferation, apoptosis, vascularization, cell migration, and the regulation of fatty acid and estrogen metabolism in CRC cells. Thus, multiple lines of evidence suggest that GPER may play an important role in colorectal carcinogenesis. In this review, we present the current state of knowledge regarding the contribution of GPER to colon function and CRC.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
- Department of Internal Medicine, School of Medicine, and UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Ellen J Beswick
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84132, United States
| | - Wanda M Krajewska
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Poland
| | - Eric R Prossnitz
- Department of Internal Medicine, School of Medicine, and UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| |
Collapse
|
37
|
Triplett KD, Pokhrel S, Castleman MJ, Daly SM, Elmore BO, Joyner JA, Sharma G, Herbert G, Campen MJ, Hathaway HJ, Prossnitz ER, Hall PR. GPER activation protects against epithelial barrier disruption by Staphylococcus aureus α-toxin. Sci Rep 2019; 9:1343. [PMID: 30718654 PMCID: PMC6362070 DOI: 10.1038/s41598-018-37951-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Sex bias in innate defense against Staphylococcus aureus skin and soft tissue infection (SSTI) is dependent on both estrogen production by the host and S. aureus secretion of the virulence factor, α-hemolysin (Hla). The impact of estrogen signaling on the immune system is most often studied in terms of the nuclear estrogen receptors ERα and ERβ. However, the potential contribution of the G protein-coupled estrogen receptor (GPER) to innate defense against infectious disease, particularly with respect to skin infection, has not been addressed. Using a murine model of SSTI, we found that GPER activation with the highly selective agonist G-1 limits S. aureus SSTI and Hla-mediated pathogenesis, effects that were absent in GPER knockout mice. Specifically, G-1 reduced Hla-mediated skin lesion formation and pro-inflammatory cytokine production, while increasing bacterial clearance. In vitro, G-1 reduced surface expression of the Hla receptor, ADAM10, in a human keratinocyte cell line and increased resistance to Hla-mediated permeability barrier disruption. This novel role for GPER activation in skin innate defense against infectious disease suggests that G-1 may have clinical utility in patients with epithelial permeability barrier dysfunction or who are otherwise at increased risk of S. aureus infection, including those with atopic dermatitis or cancer.
Collapse
Affiliation(s)
- Kathleen D Triplett
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Srijana Pokhrel
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Moriah J Castleman
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Seth M Daly
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Bradley O Elmore
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Jason A Joyner
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Geetanjali Sharma
- University of New Mexico School of Medicine, Department of Internal Medicine, Albuquerque, NM, 87131, USA
| | - Guy Herbert
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Matthew J Campen
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA
| | - Helen J Hathaway
- University of New Mexico School of Medicine, Department of Cell Biology & Physiology, Albuquerque, NM, 87131, USA
| | - Eric R Prossnitz
- University of New Mexico School of Medicine, Department of Internal Medicine, Albuquerque, NM, 87131, USA
| | - Pamela R Hall
- University of New Mexico College of Pharmacy, Department of Pharmaceutical Sciences, Albuquerque, NM, 87131, USA.
| |
Collapse
|
38
|
Pabbidi MR, Kuppusamy M, Didion SP, Sanapureddy P, Reed JT, Sontakke SP. Sex differences in the vascular function and related mechanisms: role of 17β-estradiol. Am J Physiol Heart Circ Physiol 2018; 315:H1499-H1518. [PMID: 30192631 DOI: 10.1152/ajpheart.00194.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The incidence of cardiovascular disease (CVD) is lower in premenopausal women but increases with age and menopause compared with similarly aged men. Based on the prevalence of CVD in postmenopausal women, sex hormone-dependent mechanisms have been postulated to be the primary factors responsible for the protection from CVD in premenopausal women. Recent Women’s Health Initiative studies, Cochrane Review studies, the Early Versus Late Intervention Trial with Estradiol Study, and the Kronos Early Estrogen Prevention Study have suggested that beneficial effects of hormone replacement therapy (HRT) are seen in women of <60 yr of age and if initiated within <10 yr of menopause. In contrast, the beneficial effects of HRT are not seen in women of >60 yr of age and if commenced after 10 yr of menopause. The higher incidence of CVD and the failure of HRT in postmenopausal aged women could be partly associated with fundamental differences in the vascular structure and function between men and women and in between pre- and postmenopausal women, respectively. In this regard, previous studies from human and animal studies have identified several sex differences in vascular function and associated mechanisms. The female sex hormone 17β-estradiol regulates the majority of these mechanisms. In this review, we summarize the sex differences in vascular structure, myogenic properties, endothelium-dependent and -independent mechanisms, and the role of 17β-estradiol in the regulation of vascular function.
Collapse
Affiliation(s)
- Mallikarjuna R. Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Maniselvan Kuppusamy
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sean P. Didion
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Padmaja Sanapureddy
- Department of Primary Care and Medicine, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi
| | - Joey T. Reed
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sumit P. Sontakke
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
39
|
Cabas I, Chaves-Pozo E, Mulero V, García-Ayala A. Role of estrogens in fish immunity with special emphasis on GPER1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:102-110. [PMID: 30092317 DOI: 10.1016/j.dci.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
It is well accepted that estrogens, the primary female sex hormones, play a key role in modulating different aspects of the immune response. Moreover, estrogens have been linked with the sexual dimorphism observed in some immune disorders, such as chronic inflammatory and autoimmune diseases. Nevertheless, their effects are often controversial and depend on several factors, such as the pool of estrogen receptors (ERs) involved in the response. Their classical mode of action is through nuclear ERs, which act as transcription factors, promoting the regulation of target genes. However, it has long been noted that some of the estrogen-mediated effects cannot be explained by these classical receptors, since they are rapid and mediated by non-genomic signaling pathways. Hence, the interest in membrane ERs, especially in G protein-coupled estrogen receptor 1 (GPER1), has grown in recent years. Although the presence of nuclear ERs, and ER signaling, in immune cells in mammals and fish has been well documented, information on membrane ERs is much scarcer. In this context, the present manuscript aims to review our knowledge concerning the effect of estrogens on fish immunity, with special emphasis on GPER1. For example, the numerous tools developed over recent years allowed us to report for the first time that the regulation of fish granulocyte functions by estrogens through GPER1 predates the split of fish and tetrapods more than 450 million years ago, pointing to the relevance of estrogens as modulators of the immune responses, and the pivotal role of GPER1 in immunity.
Collapse
Affiliation(s)
- Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Alfonsa García-Ayala
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
40
|
Azizian H, Khaksari M, Asadi karam G, Esmailidehaj M, Farhadi Z. Cardioprotective and anti-inflammatory effects of G-protein coupled receptor 30 (GPR30) on postmenopausal type 2 diabetic rats. Biomed Pharmacother 2018; 108:153-164. [PMID: 30218860 DOI: 10.1016/j.biopha.2018.09.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 02/07/2023] Open
|
41
|
Sheikhpour E, Noorbakhsh P, Foroughi E, Farahnak S, Nasiri R, Neamatzadeh H. A Survey on the Role of Interleukin-10 in Breast Cancer: A Narrative. Rep Biochem Mol Biol 2018; 7:30-37. [PMID: 30324115 PMCID: PMC6175593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/22/2017] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-10, a multifunctional immune-regulatory cytokine with both immunosuppressive and anti-angiogenic functions, is produced by immune cells including macrophages, T lymphocytes, and natural killer cells. Among other effects, IL-10 promotes tumor cell proliferation and metastasis via immunosuppression. Interleukin-10-mediated immunosuppression is aided by synthesis of tumor necrosis factor, IL-1, IL-12, and chemokines, and down regulation of the surface co-stimulatory molecules CD80 and CD86 on tumors. Interleukin-10 also promotes IL-6 expression and synthesis, which causes cell proliferation via B cell lymphoma-2 (Bcl-2) upregulation and changes the proliferation/apoptosis equivalence toward neoplastic cell proliferation. Moreover, IL-10 inhibits tumorigenesis via down-regulation of VEGF, IL-1b, TNF-α, IL-6, and MMP-9. Interleukin-10 also inhibits nuclear factor-KB (NF-KB) translocation. Interleukin-10 has been reported to have both tumor-promoting and -inhibiting properties. It seems that IL-10 agonists and antagonists may have therapeutic effects via different mechanisms. Moreover, IL-10 gene polymorphisms may determine breast cancer susceptibility.
Collapse
Affiliation(s)
- Elnaz Sheikhpour
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Science, Yazd, Iran.
| | - Parisa Noorbakhsh
- Department of Immunology, School of Medicine, Arak university of Medical Sciences, Arak, Iran.
| | - Elnaz Foroughi
- Department of Pediatric Dentistry, Arak university of Medical Sciences, Arak, Iran.
| | - Soudabeh Farahnak
- Department of Endodontic, Arak university of Medical Sciences, Arak, Iran.
| | - Rezvan Nasiri
- Department of Restorative and Esthetic, Arak University of Medical Sciences, Arak, Iran.
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
42
|
Sharma G, Prossnitz ER. G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1043:427-453. [PMID: 29224106 DOI: 10.1007/978-3-319-70178-3_20] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity and metabolic syndrome display disparate prevalence and regulation between males and females. Human, as well as rodent, females with regular menstrual/estrous cycles exhibit protection from weight gain and associated chronic diseases. These beneficial effects are predominantly attributed to the female hormone estrogen, specifically 17β-estradiol (E2). E2 exerts its actions via multiple receptors, nuclear and extranuclear estrogen receptor (ER) α and ERβ, and the G-protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in metabolic homeostasis are beginning to emerge but are complex and remain unclear. The discovery of GPER-selective pharmacological agents (agonists and antagonists) and the availability of GPER knockout mice have significantly enhanced our understanding of the functions of GPER in normal physiology and disease. GPER action manifests pleiotropic effects in metabolically active tissues such as the pancreas, adipose, liver, and skeletal muscle. Cellular and animal studies have established that GPER is involved in the regulation of body weight, feeding behavior, inflammation, as well as glucose and lipid homeostasis. GPER deficiency leads to increased adiposity, insulin resistance, and metabolic dysfunction in mice. In contrast, pharmacologic stimulation of GPER in vivo limits weight gain and improves metabolic output, revealing a promising novel therapeutic potential for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, and Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
43
|
Kotula-Balak M, Milon A, Pawlicki P, Opydo-Chanek M, Pacwa A, Lesniak K, Sekula M, Zarzycka M, Bubka M, Tworzydlo W, Bilinska B, Hejmej A. Insights into the role of estrogen-related receptors α, β and γ in tumor Leydig cells. Tissue Cell 2018; 52:78-91. [DOI: 10.1016/j.tice.2018.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 01/05/2023]
|
44
|
Wu X, Tian J, Wang S. Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Front Immunol 2018; 9:1112. [PMID: 29892286 PMCID: PMC5985293 DOI: 10.3389/fimmu.2018.01112] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022] Open
Abstract
Th17 cells are generally considered to be positive regulators of immune responses because they produce pro-inflammatory cytokines, including IL-17A, IL-17F, and IL-22. Cytokine production not only promotes accumulation of immune cells, such as macrophages, neutrophils and lymphocytes, at inflammatory sites but can also cause tissue pathologies. Conversely, certain Th17 cells can also negatively regulate immune responses by secreting immunosuppressive factors, such as IL-10; these cells are termed non-pathogenic Th17 cells. In this review, we summarize recent advances in the development and regulatory functions of non-pathogenic Th17 cells in autoimmune diseases.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
45
|
Wu X, Tong B, Yang Y, Luo J, Yuan X, Wei Z, Yue M, Xia Y, Dai Y. Arctigenin functions as a selective agonist of estrogen receptor β to restrict mTORC1 activation and consequent Th17 differentiation. Oncotarget 2018; 7:83893-83906. [PMID: 27863380 PMCID: PMC5356633 DOI: 10.18632/oncotarget.13338] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/08/2016] [Indexed: 12/13/2022] Open
Abstract
Arctigenin was previously proven to inhibit Th17 cell differentiation and thereby attenuate colitis in mice by down-regulating the activation of mechanistic target of rapamycin complex 1 (mTORC1). The present study was performed to address its underlying mechanism in view of estrogen receptor (ER). The specific antagonist PHTPP or siRNA of ERβ largely diminished the inhibitory effect of arctigenin on the mTORC1 activation in T cell lines and primary CD4+ T cells under Th17-polarization condition, suggesting that arctigenin functioned in an ERβ-dependent manner. Moreover, arctigenin was recognized to be an agonist of ERβ, which could bind to ERβ with a moderate affinity, promote dissociation of ERβ/HSP90 complex and nuclear translocation and phosphorylation of ERβ, and increase the transcription activity. Following activation of ERβ, arctigenin inhibited the activity of mTORC1 by disruption of ERβ-raptor-mTOR complex assembly. Deficiency of ERβ markedly abolished arctigenin-mediated inhibition of Th17 cell differentiation. In colitis mice, the activation of ERβ, inhibition of mTORC1 activation and Th17 response by arctigenin were abolished by PHTPP treatment. In conclusion, ERβ might be the target protein of arctigenin responsible for inhibition of mTORC1 activation and resultant prevention of Th17 cell differentiation and colitis development.
Collapse
Affiliation(s)
- Xin Wu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Bei Tong
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Yan Yang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Jinque Luo
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Xusheng Yuan
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Mengfan Yue
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Tong Jia Xiang, Nanjing, China
| |
Collapse
|
46
|
Sharma G, Mauvais-Jarvis F, Prossnitz ER. Roles of G protein-coupled estrogen receptor GPER in metabolic regulation. J Steroid Biochem Mol Biol 2018; 176:31-37. [PMID: 28223150 PMCID: PMC5563497 DOI: 10.1016/j.jsbmb.2017.02.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 12/19/2022]
Abstract
Metabolic homeostasis is differentially regulated in males and females. The lower incidence of obesity and associated diseases in pre-menopausal females points towards the beneficial role of the predominant estrogen, 17β-estradiol (E2). The actions of E2 are elicited by nuclear and extra-nuclear estrogen receptor (ER) α and ERβ, as well as the G protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in the regulation of metabolism are only beginning to emerge and much remains unclear. The present review highlights recent advances implicating the importance of GPER in metabolic regulation. Assessment of the specific metabolic roles of GPER employing GPER-deficient mice and highly selective GPER-targeted pharmacological agents, agonist G-1 and antagonists G-15 and G36, is also presented. Evidence from in vitro and in vivo studies involving either GPER deficiency or selective activation suggests that GPER is involved in body weight regulation, glucose and lipid homeostasis as well as inflammation. The therapeutic potential of activating GPER signaling through selective ligands for the treatment of obesity and diabetes is also discussed.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, United States
| | - Franck Mauvais-Jarvis
- Diabetes Discovery and Gender Medicine Laboratory, Section of Endocrinology and Metabolism, Department of Medicine,Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, United States
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, United States; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
47
|
Prossnitz ER. GPER modulators: Opportunity Nox on the heels of a class Akt. J Steroid Biochem Mol Biol 2018; 176:73-81. [PMID: 28285016 PMCID: PMC5591048 DOI: 10.1016/j.jsbmb.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
Abstract
The (patho)physiology of estrogen and its receptors is complex. It is therefore not surprising that therapeutic approaches targeting this hormone include stimulation of its activity through supplementation with either the hormone itself or natural or synthetic agonists, inhibition of its activity through the use of antagonists or inhibitors of its synthesis, and tissue-selective modulation of its activity with biased ligands. The physiology of this hormone is further complicated by the existence of at least three receptors, the classical nuclear estrogen receptors α and β (ERα and ERβ), and the 7-transmembrane G protein-coupled estrogen receptor (GPER/GPR30), with overlapping but distinct pharmacologic profiles, particularly of anti-estrogenic ligands. GPER-selective ligands, as well as GPER knockout mice, have greatly aided our understanding of the physiological roles of GPER. Such ligands have revealed that GPER activation mediates many of the rapid cellular signaling events (including Ca2+ mobilization, ERK and PI3K/Akt activation) associated with estrogen activity, as opposed to the nuclear ERs that are traditionally described to function as ligand-induced transcriptional factors. Many of the salutary effects of estrogen throughout the body are reproduced by the GPER-selective agonist G-1, which, owing to its minimal effects on reproductive tissues, can be considered a non-feminizing estrogenic compound, and thus of potential therapeutic use in both women and men. On the contrary, until recently GPER-selective antagonists had predominantly found preclinical application in cancer models where estrogen stimulates cell growth and survival. This viewpoint changed recently with the discovery that GPER is associated with aging, particularly that of the cardiovascular system, where the GPER antagonist G36 reduced hypertension and GPER deficiency prevented cardiac fibrosis and vascular dysfunction with age, through the downregulation of Nox1 and as a consequence superoxide production. Thus, similar to the classical ERs, both agonists and antagonists of GPER may be of therapeutic benefit depending on the disease or condition to be treated.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
48
|
Jing Y, Cai D, Chen Q, Xiong Q, Hu T, Yao Y, Lin C, Sun X, Lu Y, Kong X, Wu X, Li Y, Bian H. Liuwei Dihuang soft capsules attenuates endothelial cell apoptosis to prevent atherosclerosis through GPR30-mediated regulation in ovariectomized ApoE-deficient mice. JOURNAL OF ETHNOPHARMACOLOGY 2017; 208:185-198. [PMID: 28709892 DOI: 10.1016/j.jep.2017.06.052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/12/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liuwei Dihuang (LWDH), a classical traditional Chinese medicine prescription, has been widely used to prevent and to treat various diseases with symptoms of 'Kidney-Yin' deficiency syndrome for over 1000 years in China. It is commonly used to treat functional decline associated with senile disease and menopausal syndrome, especially memory decline, insomnia, diabetes and osteoporosis. Modern experimental pharmacological studies indicated that the mechanism of LWDH treatment of menopausal syndrome may be associated with enhanced estrogenic effects. However, little attention has been paid to the potential impact of LWDH on atherosclerosis (AS) associated with female menopause. The aim of this study was to evaluate the preventive effects of LWDH intake on an animal model of female menopause AS and to explore the underlying molecular mechanism. MATERIALS AND METHODS ApoE-/- mice were randomly divided into 4 groups, with C57BN/L6 mice as the control group. All ApoE-/- mice were ovariectomized (Ovx) one week prior to oral administration and initiation of high-fat diet. C57BL/6 mice were given sham operation and maintained on normal diet. The three administered groups were given simvastatin (4mg/kg via i.g.) and LWDH (4.5, 9.0g/kg via i.g.) every day for 14 weeks. Atherosclerotic lesions in the aortic root were determined by oil red O staining and hematoxylin-eosin staining. α-Actin and CD68 in atherosclerotic lesions were detected by immunohistological assay. Serum lipids and homocysteine (Hcy) levels were measured in the 14th week. The cleaved caspase-3, C/EBP homologous protein (CHOP) and G protein coupled estrogen receptor 30 (GPR30) expressions in the aortic arch endothelium were determined by immunohistochemistry and Western blot. The inhibitory effect of LWDH-medicated (20%, 12h) on Hcy (20%, 24h)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) was examined by flow cytometry and Hoechst 33258 staining. Intracellular ROS production, nitric oxide release, and endothelial NO synthase (eNOS) activity were measured with or without LWDH-medicated serum pretreatment. In addition, CHOP, glucose-regulated protein GPR30, 78 (Grp78), Bcl-2, Bax and cleaved caspase-3 were analyzed by Western blot. Finally, the influence of G15, a specific antagonist of GPR30, on the protective effect of LWDH on endothelial cells was investigated. RESULTS In vivo administration of LWDH prevented plaque formation and reduced plasma lipid and Hcy levels. LWDH inhibited CHOP and cleaved caspase-3 expression in vivo and in vitro while maintaining GPR30 expression. In vitro study showed that Hcy-induced HUVECs apoptosis was weakened by LWDH-medicated serum pretreatment. Treatment with LWDH-medicated serum significantly upregulated NO release and eNOS activity in HUVECs. In addition, LWDH-medicated serum treatment optimized the balance between Bax and Bcl-2, and attenuated intracellular ROS production. G15 reversed the protective effect of LWDH on endothelial cells and the changes of apoptosis-related proteins. CONCLUSIONS LWDH treatment can significantly reduce plaque formation in an animal model of menopausal AS. The mechanism may be inhibition of Hcy-induced endothelial cell apoptosis by modulating GPR30. Hence, LWDH can potentially be used to prevent AS-related vascular disease in menopausal women.
Collapse
Affiliation(s)
- Yi Jing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Chemical Engineering and Life Science, Huaiyin Institute of Technology, Huai'an 2230003, China.
| | - Danfeng Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qingping Xiong
- College of Chemical Engineering and Life Science, Huaiyin Institute of Technology, Huai'an 2230003, China
| | - Tianhui Hu
- Department of Gynaecology and Health, Huai'an Maternal and Child Health-Care Center, Huai'an 2230003, China
| | - Yuan Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xueyun Kong
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiang Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
49
|
Boese AC, Kim SC, Yin KJ, Lee JP, Hamblin MH. Sex differences in vascular physiology and pathophysiology: estrogen and androgen signaling in health and disease. Am J Physiol Heart Circ Physiol 2017. [PMID: 28626075 DOI: 10.1152/ajpheart.00217.2016] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences between women and men are often overlooked and underappreciated when studying the cardiovascular system. It has been long assumed that men and women are physiologically similar, and this notion has resulted in women being clinically evaluated and treated for cardiovascular pathophysiological complications as men. Currently, there is increased recognition of fundamental sex differences in cardiovascular function, anatomy, cell signaling, and pathophysiology. The National Institutes of Health have enacted guidelines expressly to gain knowledge about ways the sexes differ in both normal function and diseases at the various research levels (molecular, cellular, tissue, and organ system). Greater understanding of these sex differences will be used to steer future directions in the biomedical sciences and translational and clinical research. This review describes sex-based differences in the physiology and pathophysiology of the vasculature, with a special emphasis on sex steroid receptor (estrogen and androgen receptor) signaling and their potential impact on vascular function in health and diseases (e.g., atherosclerosis, hypertension, peripheral artery disease, abdominal aortic aneurysms, cerebral aneurysms, and stroke).
Collapse
Affiliation(s)
- Austin C Boese
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Seong C Kim
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Ke-Jie Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jean-Pyo Lee
- Department of Neurology, Tulane University School of Medicine, New Orleans, Louisiana; and.,Center for Stem Cell Research and Regenerative Medicine, New Orleans, Louisiana
| | - Milton H Hamblin
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana;
| |
Collapse
|
50
|
IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORγt/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis 2017; 8:e2666. [PMID: 28300844 PMCID: PMC5386585 DOI: 10.1038/cddis.2017.95] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
Endometriosis is an estrogen-dependent inflammatory disease. The anti-inflammatory cytokine IL-10 is also increased in endometriosis. IL-10 production by Th17 cells is critical for limiting autoimmunity and inflammatory responses. However, the mechanism of inducing IL-10-producing Th17 cells is still largely unknown. The present study investigated the differentiation mechanism and role of IL-10-producing Th17 cells in endometriosis. Here, we report that IL-10+Th17 cells are significantly increased in the peritoneal fluid of women with endometriosis, along with an elevation of IL-27, IL-6 and TGF-β. Compared with peripheral CD4+ T cells, endometrial CD4+ T cells highly expressed IL-27 receptors, especially the ectopic endometrium. Under external (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) and local (estrogen, IL-6 and TGF-β) environmental regulation, IL-27 from macrophages and endometrial stromal cells (ESCs) induces IL-10 production in Th17 cells in vitro and in vivo. This process may be mediated through the interaction between c-musculoaponeurotic fibrosarconna (c-Maf) and retinoic acid-related orphan receptor gamma t (RORγt), and associated with the upregulation of downstream B lymphocyte-induced maturation protein-1 (Blimp-1). IL-10+Th17 cells, in turn, stimulate the proliferation and implantation of ectopic lesions and accelerate the progression of endometriosis. These results suggest that IL-27 is a pivotal regulator in endometriotic immune tolerance by triggering Th17 cells to produce IL-10 and promoting the rapid growth and implantation of ectopic lesions. This finding provides a scientific basis for potential therapeutic strategies aimed at preventing the development of endometriosis, especially for patients with high levels of IL-10+Th17 cells.
Collapse
|