1
|
Barreto C, Cardoso-Jaime V, Dimopoulos G. A novel broad-spectrum antibacterial and anti-malarial Anopheles gambiae Cecropin promotes microbial clearance during pupation. PLoS Pathog 2024; 20:e1012652. [PMID: 39441862 DOI: 10.1371/journal.ppat.1012652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Anophelinae mosquitoes are exposed to a variety of microbes including Plasmodium parasites that cause malaria. When infected, mosquitoes mount versatile immune responses, including the production of antimicrobial peptides. Cecropins are one of the most widely distributed families of antimicrobial peptides in insects and all previously studied Anopheles members are playing roles in adult mosquito immunity. We have identified and characterized a novel member of the Anopheles gambiae cecropin family, cecropin D (CecD), that is uniquely expressed and immune-responsive at late larval stages to promote microbial clearance through its broad-spectrum antibacterial activity during larval-pupal developmental transition. Interestingly, Cecropin D also exhibited highly potent activity against Plasmodium falciparum sporozoites, the malaria parasite stage that is transmitted from mosquitoes and infects humans and thereby holds promise as a malaria transmission-blocking agent. Finally, we have defined unequivocal cecropin-specific molecular signatures to systematically organize the diversity of the cecropin family in malaria vectors.
Collapse
Affiliation(s)
- Cairé Barreto
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Shi R, Lu W, Yang J, Ma S, Wang A, Sun L, Xia Q, Zhao P. Ectopic expression of BmeryCA in Bombyx mori increases silk yield and mechanical properties by altering the pH of posterior silk gland. Int J Biol Macromol 2024; 271:132695. [PMID: 38810858 DOI: 10.1016/j.ijbiomac.2024.132695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
The silk glands are the specialized tissue where silk protein synthesis, secretion, and conformational transitions take place, with pH playing a critical role in both silk protein synthesis and fiber formation. In the present study, we have identified erythrocyte carbonic anhydrase (BmeryCA) belonging to the α-CA class in the silk gland, which is a Zn2+ dependent metalloenzyme capable of efficiently and reversibly catalyzing the hydrated reaction of CO2 to HCO3-, thus participating in the regulation of acid-base balance. Multiple sequence alignments revealed that the active site of BmeryCA was highly conserved. Tissue expression profiling showed that BmeryCA had relatively high expression levels in hemolymph and epidermis but is barely expressed in the posterior silk gland (PSG). By specifically overexpressing BmeryCA in the PSG, we generated transgenic silkworms. Ion-selective microelectrode (ISM) measurements demonstrated that specifically overexpression of BmeryCA in the PSG led to a shift in pH from weakly alkaline to slightly neutral conditions. Moreover, the resultant PSG-specific BmeryCA overexpression mutant strain displayed a significant increase in both silk yield and silk fiber mechanical properties. Our research provided new insights into enhancing silk yield and improving the mechanical properties of silk fibers.
Collapse
Affiliation(s)
- Run Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Wei Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jie Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Aoming Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Le Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China.
| |
Collapse
|
3
|
Kuang J, Michel K, Scoglio C. GeCoNet-Tool: a software package for gene co-expression network construction and analysis. BMC Bioinformatics 2023; 24:281. [PMID: 37434115 DOI: 10.1186/s12859-023-05382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/09/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Network analysis is a powerful tool for studying gene regulation and identifying biological processes associated with gene function. However, constructing gene co-expression networks can be a challenging task, particularly when dealing with a large number of missing values. RESULTS We introduce GeCoNet-Tool, an integrated gene co-expression network construction and analysis tool. The tool comprises two main parts: network construction and network analysis. In the network construction part, GeCoNet-Tool offers users various options for processing gene co-expression data derived from diverse technologies. The output of the tool is an edge list with the option of weights associated with each link. In network analysis part, the user can produce a table that includes several network properties such as communities, cores, and centrality measures. With GeCoNet-Tool, users can explore and gain insights into the complex interactions between genes.
Collapse
Affiliation(s)
- Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA.
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
4
|
Godoy RSM, Barbosa RC, Huang W, Secundino NFC, Pimenta PFP, Jacobs-Lorena M, Martins GF. The larval midgut of Anopheles, Aedes, and Toxorhynchites mosquitoes (Diptera, Culicidae): a comparative approach in morphophysiology and evolution. Cell Tissue Res 2023:10.1007/s00441-023-03783-5. [PMID: 37272999 DOI: 10.1007/s00441-023-03783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/08/2023] [Indexed: 06/06/2023]
Abstract
The mosquito larval midgut is responsible for acquiring and storing most of the nutrients that will sustain the events of metamorphosis and the insect's adult life. Despite its importance, the basic biology of this larval organ is poorly understood. To help fill this gap, we carried out a comparative morphophysiological investigation of three larval midgut regions (gastric caeca, anterior midgut, and posterior midgut) of phylogenetically distant mosquitoes: Anopheles gambiae (Anopheles albimanus was occasionally used as an alternate), Aedes aegypti, and Toxorhynchites theobaldi. Larvae of Toxorhynchites mosquitoes are predacious, in contrast to the other two species, that are detritivorous. In this work, we show that the larval gut of the three species shares basic histological characteristics, but differ in other aspects. The lipid and carbohydrate metabolism of the An. gambiae larval midgut is different compared with that of Ae. aegypti and Tx. theobaldi. The gastric caecum is the most variable region, with differences probably related to the chemical composition of the diet. The peritrophic matrix is morphologically similar in the three species, and processes involved in the post-embryonic development of the organ, such as cell differentiation and proliferation, were also similar. FMRF-positive enteroendocrine cells are grouped in the posterior midgut of Tx. theobaldi, but individualized in An. gambiae and Ae. aegypti. We hypothesize that Tx. theobaldi larval predation is an ancestral condition in mosquito evolution.
Collapse
Affiliation(s)
- Raquel Soares Maia Godoy
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Current affiliation: Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais, 30190-002, Brazil.
| | - Renata Cristina Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wei Huang
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | | | | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
5
|
Kuang J, Buchon N, Michel K, Scoglio C. A global [Formula: see text] gene co-expression network constructed from hundreds of experimental conditions with missing values. BMC Bioinformatics 2022; 23:170. [PMID: 35534830 PMCID: PMC9082846 DOI: 10.1186/s12859-022-04697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Gene co-expression networks (GCNs) can be used to determine gene regulation and attribute gene function to biological processes. Different high throughput technologies, including one and two-channel microarrays and RNA-sequencing, allow evaluating thousands of gene expression data simultaneously, but these methodologies provide results that cannot be directly compared. Thus, it is complex to analyze co-expression relations between genes, especially when there are missing values arising for experimental reasons. Networks are a helpful tool for studying gene co-expression, where nodes represent genes and edges represent co-expression of pairs of genes. RESULTS In this paper, we establish a method for constructing a gene co-expression network for the Anopheles gambiae transcriptome from 257 unique studies obtained with different methodologies and experimental designs. We introduce the sliding threshold approach to select node pairs with high Pearson correlation coefficients. The resulting network, which we name AgGCN1.0, is robust to random removal of conditions and has similar characteristics to small-world and scale-free networks. Analysis of network sub-graphs revealed that the core is largely comprised of genes that encode components of the mitochondrial respiratory chain and the ribosome, while different communities are enriched for genes involved in distinct biological processes. CONCLUSION Analysis of the network reveals that both the architecture of the core sub-network and the network communities are based on gene function, supporting the power of the proposed method for GCN construction. Application of network science methodology reveals that the overall network structure is driven to maximize the integration of essential cellular functions, possibly allowing the flexibility to add novel functions.
Collapse
Affiliation(s)
- Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506 USA
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY 14853 USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
6
|
Ruzzante L, Feron R, Reijnders MJMF, Thiébaut A, Waterhouse RM. Functional constraints on insect immune system components govern their evolutionary trajectories. Mol Biol Evol 2021; 39:6459179. [PMID: 34893861 PMCID: PMC8788225 DOI: 10.1093/molbev/msab352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories.
Collapse
Affiliation(s)
- Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Antonin Thiébaut
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| |
Collapse
|
7
|
Chiu M, Trigg B, Taracena M, Wells M. Diverse cellular morphologies during lumen maturation in Anopheles gambiae larval salivary glands. INSECT MOLECULAR BIOLOGY 2021; 30:210-230. [PMID: 33305876 PMCID: PMC8142555 DOI: 10.1111/imb.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are the greatest animal threat to human health, causing hundreds of millions of infections and around 1 million deaths each year. All mosquito-borne pathogens must traverse the salivary glands (SGs) to be transmitted to the next host, making this organ an ideal target for interventions. The adult SG develops from precursor cells located in the larval SG duct bud. Characterization of the larval SG has been limited. We sought to better understand larval SG architecture, secretion and gene expression. We developed an optimized method for larval SG staining and surveyed hundreds of larval stage 4 (L4) SGs using fluorescence confocal microscopy. Remarkable variation in SG cell and chromatin organization differed among individuals and across the L4 stage. Lumen formation occurred during L4 stage through secretion likely involving a coincident cellular apical lipid enrichment and extracellular vesicle-like structures. Meta-analysis of microarray data showed that larval SG gene expression is divergent from adult SGs, more similar to larval gastric cecae, but different from other larval gut compartments. This work highlights the variable cell architecture of larval Anopheles gambiae SGs and provides candidate targets for genetic strategies aiming to disrupt SGs and transmission of mosquito-borne pathogens.
Collapse
Affiliation(s)
- M Chiu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - B Trigg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Taracena
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - M Wells
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| |
Collapse
|
8
|
Volohonsky G, Paul-Gilloteaux P, Štáfková J, Soichot J, Salamero J, Levashina EA. Kinetics of Plasmodium midgut invasion in Anopheles mosquitoes. PLoS Pathog 2020; 16:e1008739. [PMID: 32946522 PMCID: PMC7526910 DOI: 10.1371/journal.ppat.1008739] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/30/2020] [Accepted: 06/23/2020] [Indexed: 01/06/2023] Open
Abstract
Malaria-causing Plasmodium parasites traverse the mosquito midgut cells to establish infection at the basal side of the midgut. This dynamic process is a determinant of mosquito vector competence, yet the kinetics of the parasite migration is not well understood. Here we used transgenic mosquitoes of two Anopheles species and a Plasmodium berghei fluorescence reporter line to track parasite passage through the mosquito tissues at high spatial resolution. We provide new quantitative insight into malaria parasite invasion in African and Indian Anopheles species and propose that the mosquito complement-like system contributes to the species-specific dynamics of Plasmodium invasion. The traversal of the mosquito midgut cells is one of the critical stages in the life cycle of malaria parasites. Motile parasite forms, called ookinetes, traverse the midgut epithelium in a dynamic process which is not fully understood. Here, we harnessed transgenic reporters to track invasion of Plasmodium parasites in African and Indian mosquito species. We found important differences in parasite dynamics between the two Anopheles species and demonstrated a role of the mosquito complement-like system in regulation of parasite invasion of the midgut cells.
Collapse
Affiliation(s)
- Gloria Volohonsky
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Perrine Paul-Gilloteaux
- SERPICO Inria Team/CNRS UMR 144, Institut Curie, Paris, France.,National Biology and Health Infrastructure "France Bioimaging", Institut Curie, Paris, France.,Cell and Tissue Imaging Facility, IBiSA, Institut Curie, Paris, France
| | - Jitka Štáfková
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Julien Soichot
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Jean Salamero
- SERPICO Inria Team/CNRS UMR 144, Institut Curie, Paris, France.,National Biology and Health Infrastructure "France Bioimaging", Institut Curie, Paris, France.,Cell and Tissue Imaging Facility, IBiSA, Institut Curie, Paris, France
| | - Elena A Levashina
- INSERM U963, CNRS UPR9022, University of Strasbourg, Strasbourg, France.,Vector Biology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
9
|
Terra WR, Ferreira C. Evolutionary trends of digestion and absorption in the major insect orders. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 56:100931. [PMID: 32203883 DOI: 10.1016/j.asd.2020.100931] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The spatial organization of digestion, which corresponds to the steps by which the ingested food is hydrolyzed in the different regions of the gut, was described in insects from the major insect orders. The pattern of digestion and absorption in the midgut shows a strong phylogenetic influence, modulated by adaptation to particular feeding habits. Based on this, basic digestive patterns were recognized and were proposed to represent the major ancestors from which the different orders evolved. The putative ancestors chosen to represent different points in the evolution from basal Neoptera to more derived orders were: Neoptera, Polyneoptera, Hemiptera, Hymenoptera-Panorpoidea (Diptera-Lepidoptera), Lepidoptera, and Cyclorrhapha. The basic plan of Neoptera was supposed to be alike that of Polyneoptera, which was hypothesized from studies performed in grasshoppers, crickets and from stick insects. For Holometabola, the basic plan was initially proposed from studies carried out in beetles, bees, nematocerous flies, common flies and also from moths. This review updates the physiological data supporting the putative midgut basic patterns by discussing available data on insects pertaining to different taxa and details the evolutionary trends of midgut function among the major insect orders. Furthermore, by using recent genomic and transcriptome data, this review discusses the few insects for which the spatial organization of midgut absorption is known.
Collapse
Affiliation(s)
- Walter R Terra
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| | - Clelia Ferreira
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| |
Collapse
|
10
|
Vuong HQ, McFrederick QS. Comparative Genomics of Wild Bee and Flower Isolated Lactobacillus Reveals Potential Adaptation to the Bee Host. Genome Biol Evol 2020; 11:2151-2161. [PMID: 31243442 PMCID: PMC6685495 DOI: 10.1093/gbe/evz136] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/18/2023] Open
Abstract
Symbiosis with bacteria is common across insects, resulting in adaptive host phenotypes. The recently described bacterial symbionts Lactobacillus micheneri, Lactobacillus timberlakei, and Lactobacillus quenuiae are found in wild bee pollen provisions, bee guts, and flowers but have small genomes in comparison to other lactobacilli. We sequenced, assembled, and analyzed 27 new L. micheneri clade genomes to identify their possible ecological functions in flower and bee hosts. We determined possible key functions for the L. micheneri clade by identifying genes under positive selection, balancing selection, genes gained or lost, and population structure. A host adherence factor shows signatures of positive selection, whereas other orthologous copies are variable within the L. micheneri clade. The host adherence factors serve as strong evidence that these lactobacilli are adapted to animal hosts as their targets are found in the digestive tract of insects. Next, the L. micheneri clade is adapted toward a nutrient-rich environment, corroborating observations of where L. micheneri is most abundant. Additionally, genes involved in osmotolerance, pH tolerance, temperature resistance, detoxification, and oxidative stress response show signatures of selection that allow these bacteria to thrive in pollen and nectar masses in bee nests and in the bee gut. Altogether, these findings not only suggest that the L. micheneri clade is primarily adapted to the wild bee gut but also exhibit genomic features that would be beneficial to survival in flowers.
Collapse
Affiliation(s)
- Hoang Q Vuong
- Department of Entomology, University California Riverside.,Department of Plant Pathology and Microbiology, University California Riverside
| | | |
Collapse
|
11
|
Senthil-Nathan S. A Review of Resistance Mechanisms of Synthetic Insecticides and Botanicals, Phytochemicals, and Essential Oils as Alternative Larvicidal Agents Against Mosquitoes. Front Physiol 2020; 10:1591. [PMID: 32158396 PMCID: PMC7052130 DOI: 10.3389/fphys.2019.01591] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mosquitoes are a serious threat to the society, acting as vector to several dreadful diseases. Mosquito management programes profoundly depend on the routine of chemical insecticides that subsequently lead to the expansion of resistance midst the vectors, along with other problems such as environmental pollution, bio magnification, and adversely affecting the quality of public and animal health, worldwide. The worldwide risk of insect vector transmitted diseases, with their associated illness and mortality, emphasizes the need for effective mosquitocides. Hence there is an immediate necessity to develop new eco-friendly pesticides. As a result, numerous investigators have worked on the development of eco-friendly effective mosquitocidal compounds of plant origin. These products have a cumulative advantage of being cost-effective, environmentally benign, biodegradable, and safe to non-target organisms. This review aims at describing the current state of research on behavioral, physiological, and biochemical effects of plant derived compounds with larvicidal effects on mosquitoes. The mode of physiological and biochemical action of known compounds derived from various plant families as well as the potential of plant secondary metabolites, plant extracts, and also the essential oils (EO), as mosquitocidal agents are discussed. This review clearly indicates that the application of vegetal-based compounds as mosquito control proxies can serve as alternative biocontrol methods in mosquito management programes.
Collapse
Affiliation(s)
- Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Tirunelveli, India
| |
Collapse
|
12
|
Souza RS, Gama MDVF, Schama R, Lima JBP, Diaz-Albiter HM, Genta FA. Biochemical and Functional Characterization of Glycoside Hydrolase Family 16 Genes in Aedes aegypti Larvae: Identification of the Major Digestive β-1,3-Glucanase. Front Physiol 2019; 10:122. [PMID: 30873040 PMCID: PMC6403176 DOI: 10.3389/fphys.2019.00122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Insect β-1,3-glucanases belong to Glycoside Hydrolase Family 16 (GHF16) and are involved in digestion of detritus and plant hemicellulose. In this work, we investigated the role of GHF16 genes in Aedes aegypti larvae, due to their detritivore diet. Aedes aegypti genome has six genes belonging to GHF16 (Aae GH16.1 – Aae GH16.6), containing two to six exons. Sequence analysis suggests that five of these GHF16 sequences (Aae GH16.1, 2, 3, 5, and 6) contain the conserved catalytic residues of this family and correspond to glucanases. All genomes of Nematocera analyzed showed putative gene duplications corresponding to these sequences. Aae GH16.4 has no conserved catalytic residues and is probably a β-1,3-glucan binding protein involved in the activation of innate immune responses. Additionally, Ae. aegypti larvae contain significant β-1,3-glucanase activities in the head, gut and rest of body. These activities have optimum pH about 5–6 and molecular masses between 41 and 150 kDa. All GHF16 genes above showed different levels of expression in the larval head, gut or rest of the body. Knock-down of AeGH16.5 resulted in survival and pupation rates lower than controls (dsGFP and water treated). However, under stress conditions, severe mortalities were observed in AeGH16.1 and AeGH16.6 knocked-down larvae. Enzymatic assays of β-1,3-glucanase in AeGH16.5 silenced larvae exhibited lower activity in the gut and no change in the rest of the body. Chromatographic activity profiles from gut samples after GH16.5 silencing showed suppression of enzymatic activity, suggesting that this gene codes for the digestive larval β-1,3-glucanase of Ae. aegypti. This gene and enzyme are attractive targets for new control strategies, based on the impairment of normal gut physiology.
Collapse
Affiliation(s)
- Raquel Santos Souza
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Maiara do Valle Faria Gama
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Renata Schama
- Laboratory of Systems and Computational Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - José Bento Pereira Lima
- Laboratory of Physiology and Control of Arthropod Vectors, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Fernando Ariel Genta
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Khamsehnejad MI, Djadid ND, Raz A. Identification, Molecular Characterization, and In Silico Structural Analysis of Carboxypeptidase B2 of Anopheles stephensi. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:72-85. [PMID: 30124910 DOI: 10.1093/jme/tjy127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 06/08/2023]
Abstract
Malaria is a vector-borne infectious disease that is considered a priority of the World Health Organization due to its enormous impacts on global health. Plasmodium spp. (Haemosporida: Plasmodiidae), Anopheles spp. (Diptera: Culicidae), and a suitable host are the key elements for malaria transmission. To disrupt the parasitic life cycle of malaria or prevent its transmission, these three key elements should be targeted by effective control strategies. Development of vaccines that interrupt malaria transmission is one of the solutions that has been recommended to the countries that aim to eliminate malaria. With respect to the important role of Anopheles stephensi in malaria transmission and involvement of Anopheles carboxypeptidase B1 in sexual parasite development, we characterized the second member of cpb gene family (cpbAs2) of An. Stephensi to provide some basic information and evaluate significance of cpbAs2's role in complementing sexual plasmodium development role of cpbAs1. The cpbAs2 mRNA sequence was characterized by 3' and 5' RACE and the structural features of its coded protein were studied by in silico modeling. The coding sequence and gene structure of cpbAs2 were determined empirically and compared with the in silico predictions from the An. stephensi genome sequencing project. Furthermore, homology modeling revealed that its structure is very similar to the structurally important domains of procarboxypeptidase B2 in humans. This study provides basic molecular and structural information about another member of the cpb gene family of An. stephensi. The reported results are informative and necessary for evaluation of the role of this gene in sexual parasite development by future studies.
Collapse
Affiliation(s)
- Mahdokht Ilbeigi Khamsehnejad
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Pasteur Avenue, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Pasteur Avenue, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran (PII), Pasteur Avenue, Tehran, Iran
| |
Collapse
|
14
|
Bensoussan N, Zhurov V, Yamakawa S, O'Neil CH, Suzuki T, Grbić M, Grbić V. The Digestive System of the Two-Spotted Spider Mite, Tetranychus urticae Koch, in the Context of the Mite-Plant Interaction. FRONTIERS IN PLANT SCIENCE 2018; 9:1206. [PMID: 30271412 PMCID: PMC6142783 DOI: 10.3389/fpls.2018.01206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 05/07/2023]
Abstract
The two-spotted spider mite (TSSM), Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most polyphagous herbivores, feeding on more than 1,100 plant species. Its wide host range suggests that TSSM has an extraordinary ability to modulate its digestive and xenobiotic physiology. The analysis of the TSSM genome revealed the expansion of gene families that encode proteins involved in digestion and detoxification, many of which were associated with mite responses to host shifts. The majority of plant defense compounds that directly impact mite fitness are ingested. They interface mite compounds aimed at counteracting their effect in the gut. Despite several detailed ultrastructural studies, our knowledge of the TSSM digestive tract that is needed to support the functional analysis of digestive and detoxification physiology is lacking. Here, using a variety of histological and microscopy techniques, and a diversity of tracer dyes, we describe the organization and properties of the TSSM alimentary system. We define the cellular nature of floating vesicles in the midgut lumen that are proposed to be the site of intracellular digestion of plant macromolecules. In addition, by following the TSSM's ability to intake compounds of defined sizes, we determine a cut off size for the ingestible particles. Moreover, we demonstrate the existence of a distinct filtering function between midgut compartments which enables separation of molecules by size. Furthermore, we broadly define the spatial distribution of the expression domains of genes involved in digestion and detoxification. Finally, we discuss the relative simplicity of the spider mite digestive system in the context of mite's digestive and xenobiotic physiology, and consequences it has on the effectiveness of plant defenses.
Collapse
Affiliation(s)
- Nicolas Bensoussan
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Vladimir Zhurov
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Sota Yamakawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Caroline H. O'Neil
- Robarts Research Institute, The University of Western Ontario, London, ON, Canada
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Miodrag Grbić
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | - Vojislava Grbić
- Department of Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
15
|
Bartholomay LC, Michel K. Mosquito Immunobiology: The Intersection of Vector Health and Vector Competence. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:145-167. [PMID: 29324042 DOI: 10.1146/annurev-ento-010715-023530] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As holometabolous insects that occupy distinct aquatic and terrestrial environments in larval and adult stages and utilize hematophagy for nutrient acquisition, mosquitoes are subjected to a wide variety of symbiotic interactions. Indeed, mosquitoes play host to endosymbiotic, entomopathogenic, and mosquito-borne organisms, including protozoa, viruses, bacteria, fungi, fungal-like organisms, and metazoans, all of which trigger and shape innate infection-response capacity. Depending on the infection or interaction, the mosquito may employ, for example, cellular and humoral immune effectors for septic infections in the hemocoel, humoral infection responses in the midgut lumen, and RNA interference and programmed cell death for intracellular pathogens. These responses often function in concert, regardless of the infection type, and provide a robust front to combat infection. Mosquito-borne pathogens and entomopathogens overcome these immune responses, employing avoidance or suppression strategies. Burgeoning methodologies are capitalizing on this concerted deployment of immune responses to control mosquito-borne disease.
Collapse
Affiliation(s)
- Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin 53706;
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, Kansas 66506;
| |
Collapse
|
16
|
Gandara ACP, Torres A, Bahia AC, Oliveira PL, Schama R. Evolutionary origin and function of NOX4-art, an arthropod specific NADPH oxidase. BMC Evol Biol 2017; 17:92. [PMID: 28356077 PMCID: PMC5372347 DOI: 10.1186/s12862-017-0940-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/16/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND NADPH oxidases (NOX) are ROS producing enzymes that perform essential roles in cell physiology, including cell signaling and antimicrobial defense. This gene family is present in most eukaryotes, suggesting a common ancestor. To date, only a limited number of phylogenetic studies of metazoan NOXes have been performed, with few arthropod genes. In arthropods, only NOX5 and DUOX genes have been found and a gene called NOXm was found in mosquitoes but its origin and function has not been examined. In this study, we analyzed the evolution of this gene family in arthropods. A thorough search of genomes and transcriptomes was performed enabling us to browse most branches of arthropod phylogeny. RESULTS We have found that the subfamilies NOX5 and DUOX are present in all arthropod groups. We also show that a NOX gene, closely related to NOX4 and previously found only in mosquitoes (NOXm), can also be found in other taxonomic groups, leading us to rename it as NOX4-art. Although the accessory protein p22-phox, essential for NOX1-4 activation, was not found in any of the arthropods studied, NOX4-art of Aedes aegypti encodes an active protein that produces H2O2. Although NOX4-art has been lost in a number of arthropod lineages, it has all the domains and many signature residues and motifs necessary for ROS production and, when silenced, H2O2 production is considerably diminished in A. aegypti cells. CONCLUSIONS Combining all bioinformatic analyses and laboratory work we have reached interesting conclusions regarding arthropod NOX gene family evolution. NOX5 and DUOX are present in all arthropod lineages but it seems that a NOX2-like gene was lost in the ancestral lineage leading to Ecdysozoa. The NOX4-art gene originated from a NOX4-like ancestor and is functional. Although no p22-phox was observed in arthropods, there was no evidence of neo-functionalization and this gene probably produces H2O2 as in other metazoan NOX4 genes. Although functional and present in the genomes of many species, NOX4-art was lost in a number of arthropod lineages.
Collapse
Affiliation(s)
- Ana Caroline Paiva Gandara
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - André Torres
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Cristina Bahia
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil
| | - Renata Schama
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Volohonsky G, Hopp AK, Saenger M, Soichot J, Scholze H, Boch J, Blandin SA, Marois E. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae. PLoS Pathog 2017; 13:e1006113. [PMID: 28095489 PMCID: PMC5240933 DOI: 10.1371/journal.ppat.1006113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 12/06/2016] [Indexed: 12/18/2022] Open
Abstract
Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1) is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs) in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites.
Collapse
Affiliation(s)
- Gloria Volohonsky
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- * E-mail: (GV); (EM)
| | - Ann-Katrin Hopp
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Mélanie Saenger
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Julien Soichot
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Heidi Scholze
- Martin-Luther Universität Halle-Wittenberg, Institut für Genetik, Halle (Saale), Germany
| | - Jens Boch
- Martin-Luther Universität Halle-Wittenberg, Institut für Genetik, Halle (Saale), Germany
| | - Stéphanie A. Blandin
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Eric Marois
- Université de Strasbourg, CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- * E-mail: (GV); (EM)
| |
Collapse
|
18
|
KAUR RIAT A, KOCHER D. Study of histoarchitectural changes in Anopheles stephensi larvae following exposure to Eucalyptus globulus and Aloe vera oils. TURK J ZOOL 2017. [DOI: 10.3906/zoo-1701-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Souza RS, Diaz-Albiter HM, Dillon VM, Dillon RJ, Genta FA. Digestion of Yeasts and Beta-1,3-Glucanases in Mosquito Larvae: Physiological and Biochemical Considerations. PLoS One 2016; 11:e0151403. [PMID: 27007411 PMCID: PMC4805253 DOI: 10.1371/journal.pone.0151403] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/26/2016] [Indexed: 01/24/2023] Open
Abstract
Aedes aegypti larvae ingest several kinds of microorganisms. In spite of studies regarding mosquito digestion, little is known about the nutritional utilization of ingested cells by larvae. We investigated the effects of using yeasts as the sole nutrient source for A. aegypti larvae. We also assessed the role of beta-1,3-glucanases in digestion of live yeast cells. Beta-1,3-glucanases are enzymes which hydrolyze the cell wall beta-1,3-glucan polyssacharide. Larvae were fed with cat food (controls), live or autoclaved Saccharomyces cerevisiae cells and larval weight, time for pupation and adult emergence, larval and pupal mortality were measured. The presence of S. cerevisiae cells inside the larval gut was demonstrated by light microscopy. Beta-1,3-glucanase was measured in dissected larval samples. Viability assays were performed with live yeast cells and larval gut homogenates, with or without addition of competing beta-1,3-glucan. A. aegypti larvae fed with yeast cells were heavier at the 4th instar and showed complete development with normal mortality rates. Yeast cells were efficiently ingested by larvae and quickly killed (10% death in 2h, 100% in 48h). Larvae showed beta-1,3-glucanase in head, gut and rest of body. Gut beta-1,3-glucanase was not derived from ingested yeast cells. Gut and rest of body activity was not affected by the yeast diet, but head homogenates showed a lower activity in animals fed with autoclaved S. cerevisiae cells. The enzymatic lysis of live S. cerevisiae cells was demonstrated using gut homogenates, and this activity was abolished when excess beta-1,3-glucan was added to assays. These results show that live yeast cells are efficiently ingested and hydrolyzed by A. aegypti larvae, which are able to fully-develop on a diet based exclusively on these organisms. Beta-1,3-glucanase seems to be essential for yeast lytic activity of A. aegypti larvae, which possess significant amounts of these enzyme in all parts investigated.
Collapse
Affiliation(s)
- Raquel Santos Souza
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, FIOCRUZ, 4365 Brasil Av, Leonidas Deane Building, room 207, Manguinhos, Rio de Janeiro, Brazil, 21040–360
| | - Hector Manuel Diaz-Albiter
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, FIOCRUZ, 4365 Brasil Av, Leonidas Deane Building, room 207, Manguinhos, Rio de Janeiro, Brazil, 21040–360
| | - Vivian Maureen Dillon
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Rod J. Dillon
- Division of Biomedical and Life Sciences, Furness Building, Lancaster University, Bailrigg, Lancaster, LA1 4YG, United Kingdom
- National Institute of Science and Technology for Molecular Entomology, 373 Carlos Chagas Filho Av., Center for Health Science, Building D, Basement, room 5, Cidade Universitária, Rio de Janeiro, Brazil, 21941–590
| | - Fernando Ariel Genta
- Laboratory of Insect Biochemistry and Physiology, Oswaldo Cruz Institute, FIOCRUZ, 4365 Brasil Av, Leonidas Deane Building, room 207, Manguinhos, Rio de Janeiro, Brazil, 21040–360
- National Institute of Science and Technology for Molecular Entomology, 373 Carlos Chagas Filho Av., Center for Health Science, Building D, Basement, room 5, Cidade Universitária, Rio de Janeiro, Brazil, 21941–590
- * E-mail:
| |
Collapse
|
20
|
Overend G, Cabrero P, Halberg KA, Ranford-Cartwright LC, Woods DJ, Davies SA, Dow JAT. A comprehensive transcriptomic view of renal function in the malaria vector, Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:47-58. [PMID: 26003916 DOI: 10.1016/j.ibmb.2015.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Renal function is essential to maintain homeostasis. This is particularly significant for insects that undergo complete metamorphosis; larval mosquitoes must survive a freshwater habitat whereas adults are terrestrial, and mature females must maintain ion and fluid homeostasis after blood feeding. To investigate the physiological adaptations required for successful development to adulthood, we studied the Malpighian tubule transcriptome of Anopheles gambiae using Affymetrix arrays. We assessed transcription under several conditions; as third instar larvae, as adult males fed on sugar, as adult females fed on sugar, and adult females after a blood meal. In addition to providing the most detailed transcriptomic data to date on the Anopheles Malpighian tubules, the data provide unique information on the renal adaptations required for the switch from freshwater to terrestrial habitats, on gender differences, and on the contrast between nectar-feeding and haematophagy. We found clear differences associated with ontogenetic change in lifestyle, gender and diet, particularly in the neuropeptide receptors that control fluid secretion, and the water and ion transporters that impact volume and composition. These data were also combined with transcriptomics from the Drosophila melanogaster tubule, allowing meta-analysis of the genes which underpin tubule function across Diptera. To further investigate renal conservation across species we selected four D. melanogaster genes with orthologues highly enriched in the Anopheles tubules, and generated RNAi knockdown flies. Three of these genes proved essential, showing conservation of critical functions across 150 million years of phylogenetic separation. This extensive data-set is available as an online resource, MozTubules.org, and could potentially be mined for novel insecticide targets that can impact this critical organ in this pest species.
Collapse
Affiliation(s)
- Gayle Overend
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Pablo Cabrero
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kenneth A Halberg
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK; August Krogh Centre, Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | | | - Debra J Woods
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK; Zoetis Inc., Kalamazoo, USA
| | - Shireen A Davies
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Julian A T Dow
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
21
|
Ingham VA, Jones CM, Pignatelli P, Balabanidou V, Vontas J, Wagstaff SC, Moore JD, Ranson H. Dissecting the organ specificity of insecticide resistance candidate genes in Anopheles gambiae: known and novel candidate genes. BMC Genomics 2014; 15:1018. [PMID: 25421852 PMCID: PMC4256904 DOI: 10.1186/1471-2164-15-1018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/14/2014] [Indexed: 01/17/2023] Open
Abstract
Background The elevated expression of enzymes with insecticide metabolism activity can lead to high levels of insecticide resistance in the malaria vector, Anopheles gambiae. In this study, adult female mosquitoes from an insecticide susceptible and resistant strain were dissected into four different body parts. RNA from each of these samples was used in microarray analysis to determine the enrichment patterns of the key detoxification gene families within the mosquito and to identify additional candidate insecticide resistance genes that may have been overlooked in previous experiments on whole organisms. Results A general enrichment in the transcription of genes from the four major detoxification gene families (carboxylesterases, glutathione transferases, UDP glucornyltransferases and cytochrome P450s) was observed in the midgut and malpighian tubules. Yet the subset of P450 genes that have previously been implicated in insecticide resistance in An gambiae, show a surprisingly varied profile of tissue enrichment, confirmed by qPCR and, for three candidates, by immunostaining. A stringent selection process was used to define a list of 105 genes that are significantly (p ≤0.001) over expressed in body parts from the resistant versus susceptible strain. Over half of these, including all the cytochrome P450s on this list, were identified in previous whole organism comparisons between the strains, but several new candidates were detected, notably from comparisons of the transcriptomes from dissected abdomen integuments. Conclusions The use of RNA extracted from the whole organism to identify candidate insecticide resistance genes has a risk of missing candidates if key genes responsible for the phenotype have restricted expression within the body and/or are over expression only in certain tissues. However, as transcription of genes implicated in metabolic resistance to insecticides is not enriched in any one single organ, comparison of the transcriptome of individual dissected body parts cannot be recommended as a preferred means to identify new candidate insecticide resistant genes. Instead the rich data set on in vivo sites of transcription should be consulted when designing follow up qPCR validation steps, or for screening known candidates in field populations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1018) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Victoria A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L35QA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Marusalin J, Matier BJ, Rheault MR, Donini A. Aquaporin homologs and water transport in the anal papillae of the larval mosquito, Aedes aegypti. J Comp Physiol B 2012; 182:1047-56. [DOI: 10.1007/s00360-012-0679-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 05/17/2012] [Accepted: 05/24/2012] [Indexed: 10/27/2022]
|
23
|
Martínez-Barnetche J, Gómez-Barreto RE, Ovilla-Muñoz M, Téllez-Sosa J, López DEG, Dinglasan RR, Mohien CU, MacCallum RM, Redmond SN, Gibbons JG, Rokas A, Machado CA, Cazares-Raga FE, González-Cerón L, Hernández-Martínez S, López MHR. Transcriptome of the adult female malaria mosquito vector Anopheles albimanus. BMC Genomics 2012; 13:207. [PMID: 22646700 PMCID: PMC3442982 DOI: 10.1186/1471-2164-13-207] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/30/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Human Malaria is transmitted by mosquitoes of the genus Anopheles. Transmission is a complex phenomenon involving biological and environmental factors of humans, parasites and mosquitoes. Among more than 500 anopheline species, only a few species from different branches of the mosquito evolutionary tree transmit malaria, suggesting that their vectorial capacity has evolved independently. Anopheles albimanus (subgenus Nyssorhynchus) is an important malaria vector in the Americas. The divergence time between Anopheles gambiae, the main malaria vector in Africa, and the Neotropical vectors has been estimated to be 100 My. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to explore the mosquito biology beyond the An. gambiae complex. RESULTS We sequenced the transcriptome of the An. albimanus adult female. By combining Sanger, 454 and Illumina sequences from cDNA libraries derived from the midgut, cuticular fat body, dorsal vessel, salivary gland and whole body, we generated a single, high-quality assembly containing 16,669 transcripts, 92% of which mapped to the An. darlingi genome and covered 90% of the core eukaryotic genome. Bidirectional comparisons between the An. gambiae, An. darlingi and An. albimanus predicted proteomes allowed the identification of 3,772 putative orthologs. More than half of the transcripts had a match to proteins in other insect vectors and had an InterPro annotation. We identified several protein families that may be relevant to the study of Plasmodium-mosquito interaction. An open source transcript annotation browser called GDAV (Genome-Delinked Annotation Viewer) was developed to facilitate public access to the data generated by this and future transcriptome projects. CONCLUSIONS We have explored the adult female transcriptome of one important New World malaria vector, An. albimanus. We identified protein-coding transcripts involved in biological processes that may be relevant to the Plasmodium lifecycle and can serve as the starting point for searching targets for novel control strategies. Our data increase the available genomic information regarding An. albimanus several hundred-fold, and will facilitate molecular research in medical entomology, evolutionary biology, genomics and proteomics of anopheline mosquito vectors. The data reported in this manuscript is accessible to the community via the VectorBase website (http://www.vectorbase.org/Other/AdditionalOrganisms/).
Collapse
Affiliation(s)
- Jesús Martínez-Barnetche
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Rosa E Gómez-Barreto
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Marbella Ovilla-Muñoz
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Juan Téllez-Sosa
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - David E García López
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Rhoel R Dinglasan
- Johns Hopkins Bloomberg School of Public Health. Department of Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
| | - Ceereena Ubaida Mohien
- Johns Hopkins Bloomberg School of Public Health. Department of Molecular Microbiology & Immunology, Johns Hopkins Malaria Research Institute, Baltimore, MD, 21205, USA
- Department of Molecular & Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert M MacCallum
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Seth N Redmond
- Pasteur Institut, 28 Rue Du Docteur Roux, Paris, 75015, France
| | - John G Gibbons
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Carlos A Machado
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Febe E Cazares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Cinvestav-IPN, México, DF, México
| | - Lilia González-Cerón
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, México
| | - Salvador Hernández-Martínez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Mario H Rodríguez López
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| |
Collapse
|
24
|
Hirata T, Czapar A, Brin LR, Haritonova A, Bondeson DP, Linser PJ, Cabrero P, Dow JAT, Romero MF. Ion and solute transport by Prestin in Drosophila and Anopheles. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:563-569. [PMID: 22321763 PMCID: PMC3482613 DOI: 10.1016/j.jinsphys.2012.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/11/2012] [Accepted: 01/14/2012] [Indexed: 05/31/2023]
Abstract
The gut and Malpighian tubules of insects are the primary sites of active solute and water transport for controlling hemolymph and urine composition, pH, and osmolarity. These processes depend on ATPase (pumps), channels and solute carriers (Slc proteins). Maturation of genomic databases enables us to identify the putative molecular players for these processes. Anion transporters of the Slc4 family, AE1 and NDAE1, have been reported as HCO(3)(-) transporters, but are only part of the story. Here we report Dipteran (Drosophila melanogaster (d) and Anopheles gambiae (Ag)) anion exchangers, belonging to the Slc26 family, which are multi-functional anion exchangers. One Drosophila and two Ag homologues of mammalian Slc26a5 (Prestin) and Slc26a6 (aka, PAT1, CFEX) were identified and designated dPrestin, AgPrestinA and AgPrestinB. dPrestin and AgPrestinB show electrogenic anion exchange (Cl(-)/nHCO(3)(-), Cl(-)/SO(4)(2-) and Cl(-)/oxalate(2-)) in an oocyte expression system. Since these transporters are the only Dipteran Slc26 proteins whose transport is similar to mammalian Slc26a6, we submit that Dipteran Prestin are functional and even molecular orthologues of mammalian Slc26a6. OSR1 kinase increases dPrestin ion transport, implying another set of physiological processes controlled by WNK/SPAK signaling in epithelia. All of these mRNAs are highly expressed in the gut and Malpighian tubules. Dipteran Prestin proteins appear suited for central roles in bicarbonate, sulfate and oxalate metabolism including generating the high pH conditions measured in the Dipteran midgut lumen. Finally, we present and discuss Drosophila genetic models that integrate these processes.
Collapse
Affiliation(s)
- Taku Hirata
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Mayo Clinic O’Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Anna Czapar
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Lauren R. Brin
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Alyona Haritonova
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Daniel P. Bondeson
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Mayo Clinic O’Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Paul J. Linser
- University of Florida Whitney Laboratory, 9505 Ocean Shore Blvd., St. Augustine FL, 32086
| | - Pablo Cabrero
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Julian A. T. Dow
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, KSA
| | - Michael F. Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
- Mayo Clinic O’Brien Urology Research Center, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| |
Collapse
|
25
|
Linser PJ, Neira Oviedo M, Hirata T, Seron TJ, Smith KE, Piermarini PM, Romero MF. Slc4-like anion transporters of the larval mosquito alimentary canal. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:551-562. [PMID: 22251674 PMCID: PMC3322255 DOI: 10.1016/j.jinsphys.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
Mosquito larvae exhibit luminal pH extremes along the axial length of their alimentary canal that range from very alkaline (pH>10) in the anterior midgut to slightly acid in the hindgut. The principal buffer in the system is thought to be bicarbonate and/or carbonate, because the lumen is known to contain high levels of bicarbonate/carbonate and is surrounded by various epithelial cell types which express a variety of carbonic anhydrases. However, the precise mechanisms responsible for the transport of bicarbonate/carbonate into and out of the lumen are unclear. In the present study, we test the hypothesis that SLC4-like anion transporters play a role in bicarbonate/carbonate accumulation in the larval mosquito alimentary canal. Molecular, physiological and immnuohistochemical characterizations of Slc4-like transporters in the gut of larval mosquitoes (Aedes aegypti and Anopheles gambiae) demonstrate the presence of both a Na(+)-independent chloride/bicarbonate anion exchanger (AE) as well as a Na(+)-dependent anion exchanger (NDAE). Notably, immunolocalization experiments in Malpighian tubules show that the two proteins can be located in the same tissue, but to different cell types. Immunolabeling experiments in the gastric caecae show that the two proteins can be found in the same cells, but on opposite sides (basal vs. apical). In summary, our results indicate that the alimentary canal of larval mosquitoes exhibits robust expression of two SLC4-like transporters in locations that are consistent with a role in the regulation of luminal pH. The precise physiological contributions of each transporter remain to be determined.
Collapse
Affiliation(s)
- Paul J Linser
- University of Florida, Whitney Laboratory, St. Augustine, FL 32086, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Maccallum RM, Redmond SN, Christophides GK. An expression map for Anopheles gambiae. BMC Genomics 2011; 12:620. [PMID: 22185628 PMCID: PMC3341590 DOI: 10.1186/1471-2164-12-620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 12/20/2011] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Quantitative transcriptome data for the malaria-transmitting mosquito Anopheles gambiae covers a broad range of biological and experimental conditions, including development, blood feeding and infection. Web-based summaries of differential expression for individual genes with respect to these conditions are a useful tool for the biologist, but they lack the context that a visualisation of all genes with respect to all conditions would give. For most organisms, including A. gambiae, such a systems-level view of gene expression is not yet available. RESULTS We have clustered microarray-based gene-averaged expression values, available from VectorBase, for 10194 genes over 93 experimental conditions using a self-organizing map. Map regions corresponding to known biological events, such as egg production, are revealed. Many individual gene clusters (nodes) on the map are highly enriched in biological and molecular functions, such as protein synthesis, protein degradation and DNA replication. Gene families, such as odorant binding proteins, can be classified into distinct functional groups based on their expression and evolutionary history. Immunity-related genes are non-randomly distributed in several distinct regions on the map, and are generally distant from genes with house-keeping roles. Each immunity-rich region appears to represent a distinct biological context for pathogen recognition and clearance (e.g. the humoral and gut epithelial responses). Several immunity gene families, such as peptidoglycan recognition proteins (PGRPs) and defensins, appear to be specialised for these distinct roles, while three genes with physically interacting protein products (LRIM1/APL1C/TEP1) are found in close proximity. CONCLUSIONS The map provides the first genome-scale, multi-experiment overview of gene expression in A. gambiae and should also be useful at the gene-level for investigating potential interactions. A web interface is available through the VectorBase website http://www.vectorbase.org/. It is regularly updated as new experimental data becomes available.
Collapse
Affiliation(s)
- Robert M Maccallum
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, UK.
| | | | | |
Collapse
|
27
|
Improving the population genetics toolbox for the study of the African malaria vector Anopheles nili: microsatellite mapping to chromosomes. Parasit Vectors 2011; 4:202. [PMID: 22011455 PMCID: PMC3222614 DOI: 10.1186/1756-3305-4-202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/19/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Anopheles nili is a major vector of malaria in the humid savannas and forested areas of sub-Saharan Africa. Understanding the population genetic structure and evolutionary dynamics of this species is important for the development of an adequate and targeted malaria control strategy in Africa. Chromosomal inversions and microsatellite markers are commonly used for studying the population structure of malaria mosquitoes. Physical mapping of these markers onto the chromosomes further improves the toolbox, and allows inference on the demographic and evolutionary history of the target species. RESULTS Availability of polytene chromosomes allowed us to develop a map of microsatellite markers and to study polymorphism of chromosomal inversions. Nine microsatellite markers were mapped to unique locations on all five chromosomal arms of An. nili using fluorescent in situ hybridization (FISH). Probes were obtained from 300-483 bp-long inserts of plasmid clones and from 506-559 bp-long fragments amplified with primers designed using the An. nili genome assembly generated on an Illumina platform. Two additional loci were assigned to specific chromosome arms of An. nili based on in silico sequence similarity and chromosome synteny with Anopheles gambiae. Three microsatellites were mapped inside or in the vicinity of the polymorphic chromosomal inversions 2Rb and 2Rc. A statistically significant departure from Hardy-Weinberg equilibrium, due to a deficit in heterozygotes at the 2Rb inversion, and highly significant linkage disequilibrium between the two inversions, were detected in natural An. nili populations collected from Burkina Faso. CONCLUSIONS Our study demonstrated that next-generation sequencing can be used to improve FISH for microsatellite mapping in species with no reference genome sequence. Physical mapping of microsatellite markers in An. nili showed that their cytological locations spanned the entire five-arm complement, allowing genome-wide inferences. The knowledge about polymorphic inversions and chromosomal locations of microsatellite markers has been useful for explaining differences in genetic variability across loci and significant differentiation observed among natural populations of An. nili.
Collapse
|
28
|
Liu S, Zhou S, Tian L, Guo E, Luan Y, Zhang J, Li S. Genome-wide identification and characterization of ATP-binding cassette transporters in the silkworm, Bombyx mori. BMC Genomics 2011; 12:491. [PMID: 21981826 PMCID: PMC3224256 DOI: 10.1186/1471-2164-12-491] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/07/2011] [Indexed: 01/15/2023] Open
Abstract
Background The ATP-binding cassette (ABC) transporter superfamily is the largest transporter gene family responsible for transporting specific molecules across lipid membranes in all living organisms. In insects, ABC transporters not only have important functions in molecule transport, but also play roles in insecticide resistance, metabolism and development. Results From the genome of the silkworm, Bombyx mori, we have identified 51 putative ABC genes which are classified into eight subfamilies (A-H) by phylogenetic analysis. Gene duplication is very evident in the ABCC and ABCG subfamilies, whereas gene numbers and structures are well conserved in the ABCD, ABCE, ABCF, and ABCH subfamilies. Microarray analysis revealed that expression of 32 silkworm ABC genes can be detected in at least one tissue during different developmental stages, and the expression patterns of some of them were confirmed by quantitative real-time PCR. A large number of ABC genes were highly expressed in the testis compared to other tissues. One of the ABCG genes, BmABC002712, was exclusively and abundantly expressed in the Malpighian tubule implying that BmABC002712 plays a tissue-specific role. At least 5 ABCG genes, including BmABC005226, BmABC005203, BmABC005202, BmABC010555, and BmABC010557, were preferentially expressed in the midgut, showing similar developmental expression profiles to those of 20-hydroxyecdysone (20E)-response genes. 20E treatment induced the expression of these ABCG genes in the midgut and RNA interference-mediated knockdown of USP, a component of the 20E receptor, decreased their expression, indicating that these midgut-specific ABCG genes are 20E-responsive. Conclusion In this study, a genome-wide analysis of the silkworm ABC transporters has been conducted. A comparison of ABC transporters from 5 insect species provides an overview of this vital gene superfamily in insects. Moreover, tissue- and stage-specific expression data of the silkworm ABCG genes lay a foundation for future analysis of their physiological function and hormonal regulation.
Collapse
Affiliation(s)
- Shumin Liu
- Key Laboratory of Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations.
Collapse
Affiliation(s)
- David W Severson
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
30
|
Félix RC, Silveira H. The interplay between tubulins and P450 cytochromes during Plasmodium berghei invasion of Anopheles gambiae midgut. PLoS One 2011; 6:e24181. [PMID: 21912622 PMCID: PMC3166158 DOI: 10.1371/journal.pone.0024181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/01/2011] [Indexed: 11/21/2022] Open
Abstract
Background Plasmodium infection increases the oxidative stress inside the mosquito, leading to a significant alteration on transcription of Anopheles gambiae detoxification genes. Among these detoxification genes several P450 cytochromes and tubulins were differently expressed, suggesting their involvement in the mosquito's response to parasite invasion. P450 cytochromes are usually involved in the metabolism and detoxification of several compounds, but are also regulated by several pathogens, including malaria parasite. Tubulins are extremely important as components of the cytoskeleton, which rearrangement functions as a response to malaria parasite invasion. Methodology/Principal Findings Gene silencing methods were used to uncover the effects of cytochrome P450 reductase, tubulinA and tubulinB silencing on the A. gambiae response to Plasmodium berghei invasion. The role of tubulins in counter infection processes was also investigated by inhibiting their effect. Colchicine, vinblastine and paclitaxel, three different tubulin inhibitors were injected into A. gambiae mosquitoes. Twenty-four hours post injection these mosquitoes were infected with P. berghei through a blood meal from infected CD1 mice. Cytochrome P450 gene expression was measured using RT-qPCR to detect differences in cytochrome expression between silenced, inhibited and control mosquitoes. Results showed that cytochrome P450 reductase silencing, as well as tubulin (A and B) silencing and inhibition affected the efficiency of Plasmodium infection. Silencing and inhibition also affected the expression levels of cytochromes P450. Conclusions Our results suggest the existence of a relationship between tubulins and P450 cytochromes during A. gambiae immune response to P. berghei invasion. One of the P450 cytochromes in this study, CYP6Z2, stands out as the potential link in this association. Further work is needed to fully understand the role of tubulin genes in the response to Plasmodium infection.
Collapse
Affiliation(s)
- Rute C. Félix
- UEI Parasitologia Médica, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail: (RCF); (HS)
| | - Henrique Silveira
- UEI Parasitologia Médica, Centro de Malária e Outras Doenças Tropicais, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail: (RCF); (HS)
| |
Collapse
|
31
|
Perry T, Batterham P, Daborn PJ. The biology of insecticidal activity and resistance. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:411-22. [PMID: 21426939 DOI: 10.1016/j.ibmb.2011.03.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/01/2011] [Accepted: 03/11/2011] [Indexed: 05/12/2023]
Abstract
Identifying insecticide resistance mechanisms is paramount for pest insect control, as the understandings that underpin insect control strategies must provide ways of detecting and managing resistance. Insecticide resistance studies rely heavily on detailed biochemical and genetic analyses. Although there have been many successes, there are also many examples of resistance that still challenge us. As a precursor to rational pest insect control, the biology of the insect, within the contexts of insecticide modes of action and insecticide metabolism, must be well understood. It makes sense to initiate this research in the best model insect system, Drosophila melanogaster, and translate these findings and methodologies to other insects. Here we explore the usefulness of the D. melanogaster model in studying metabolic-based insecticide resistances, target-site mediated resistances and identifying novel insecticide targets, whilst highlighting the importance of having a more complete understanding of insect biology for insecticide studies.
Collapse
Affiliation(s)
- Trent Perry
- Department of Genetics, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
32
|
Bragatto I, Genta FA, Ribeiro AF, Terra WR, Ferreira C. Characterization of a β-1,3-glucanase active in the alkaline midgut of Spodoptera frugiperda larvae and its relation to β-glucan-binding proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:861-872. [PMID: 20816775 DOI: 10.1016/j.ibmb.2010.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
Spodoptera frugiperda β-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against β-1,3-glucan (laminarin), but cannot hydrolyze yeast β-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive β-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of β-1,3-glucanases and β-glucan-binding protein supports the assumption that the β-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived β-1,3-glucanases by the loss of an extended N-terminal region and the β-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells.
Collapse
Affiliation(s)
- Ivan Bragatto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
33
|
Das S, Radtke A, Choi YJ, Mendes AM, Valenzuela JG, Dimopoulos G. Transcriptomic and functional analysis of the Anopheles gambiae salivary gland in relation to blood feeding. BMC Genomics 2010; 11:566. [PMID: 20946652 PMCID: PMC3091715 DOI: 10.1186/1471-2164-11-566] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 10/14/2010] [Indexed: 02/05/2023] Open
Abstract
Background The Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host. Results We have performed a global transcriptome analysis of the A. gambiae salivary gland response to blood-feeding, to identify candidate genes that are involved in hematophagy. A total of 4,978 genes were found to be transcribed in this tissue. A comparison of salivary gland transcriptomes prior to and after blood-feeding identified 52 and 41 transcripts that were significantly up-regulated and down-regulated, respectively. Ten genes were further selected to assess their role in the blood-feeding process using RNAi-mediated gene silencing methodology. Depletion of the salivary gland genes encoding D7L2, anophelin, peroxidase, the SG2 precursor, and a 5'nucleotidase gene significantly increased probing time of A. gambiae mosquitoes and thereby their capacity to blood-feed. Conclusions The salivary gland transcriptome comprises approximately 38% of the total mosquito transcriptome and a small proportion of it is dynamically changing already at two hours in response to blood feeding. A better understanding of the salivary gland transcriptome and its function can contribute to the development of pathogen transmission control strategies and the identification of medically relevant bioactive compounds.
Collapse
Affiliation(s)
- Suchismita Das
- W Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe Street, Baltimore, MD 21205-2179, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zhang S, Shukle R, Mittapalli O, Zhu YC, Reese JC, Wang H, Hua BZ, Chen MS. The gut transcriptome of a gall midge, Mayetiola destructor. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1198-1206. [PMID: 20346948 DOI: 10.1016/j.jinsphys.2010.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 05/29/2023]
Abstract
The Hessian fly, Mayetiola destructor, is a serious pest of wheat and an experimental organism for the study of gall midge-plant interactions. In addition to food digestion and detoxification, the gut of Hessian fly larvae is also an important interface for insect-host interactions. Analysis of the genes expressed in the Hessian fly larval gut will enhance our understanding of the overall gut physiology and may also lead to the identification of critical molecules for Hessian fly-host plant interactions. Over 10,000 Expressed Sequence Tags (ESTs) were generated and assembled into 2007 clusters. The most striking feature of the Hessian fly larval transcriptome is the existence of a large number of transcripts coding for so-called small secretory proteins (SSP) with amino acids less than 250. Eleven of the 30 largest clusters were SSP transcripts with the largest cluster containing 11.3% of total ESTs. Transcripts coding for diverse digestive enzymes and detoxification proteins were also identified. Putative digestive enzymes included trypsins, chymotrypsins, cysteine proteases, aspartic protease, endo-oligopeptidase, aminopeptidases, carboxypeptidases, and alpha-amylases. Putative detoxification proteins included cytochrome P450s, glutathione S-transferases, peroxidases, ferritins, a catalase, peroxiredoxins, and others. This study represents the first global analysis of gut transcripts from a gall midge. The identification of a large number of transcripts coding for SSPs, digestive enzymes, detoxification proteins in the Hessian fly larval gut provides a foundation for future studies on the functions of these genes.
Collapse
Affiliation(s)
- Shize Zhang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Khajuria C, Buschman LL, Chen MS, Muthukrishnan S, Zhu KY. A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:621-629. [PMID: 20542114 DOI: 10.1016/j.ibmb.2010.06.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 05/29/2023]
Abstract
Chitinases belong to a large and diverse family of hydrolytic enzymes that break down glycosidic bonds of chitin. However, very little is known about the function of chitinase genes in regulating the chitin content in peritrophic matrix (PM) of the midgut in insects. We identified a cDNA putatively encoding a chitinase (OnCht) in European corn borer (ECB; Ostrinia nubilalis). The OnCht transcript was predominately found in larval midgut but undetectable in eggs, pupae, or adults. When the larvae were fed on an artificial diet, the OnCht transcript level increased by 4.4-fold but the transcript level of a gut-specific chitin synthase (OnCHS2) gene decreased by 2.5-fold as compared with those of unfed larvae. In contrast, when the larvae were fed with the food and then starved for 24h, the OnCht transcript level decreased by 1.8-fold but the transcript level of OnCHS2 increased by 1.8-fold. Furthermore, there was a negative relationship between OnCht transcript level and chitin content in the midgut. By using a feeding-based RNAi technique, we were able to reduce the OnCht transcript level by 63-64% in the larval midgut. Consequently, these larvae showed significantly increased chitin content (26%) in the PM but decreased larval body weight (54%) as compared with the control larvae fed on the diet containing GFP dsRNA. Therefore, for the first time, we provide strong evidence that OnCht plays an important role in regulating chitin content of the PM and subsequently affecting the growth and development of the ECB larvae.
Collapse
Affiliation(s)
- Chitvan Khajuria
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
36
|
Smith KE, Raymond SL, Valenti ML, Smith PJS, Linser PJ. Physiological and pharmacological characterizations of the larval Anopheles albimanus rectum support a change in protein distribution and/or function in varying salinities. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:55-62. [PMID: 20460167 DOI: 10.1016/j.cbpa.2010.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 04/29/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
Ion regulation is a biological process crucial to the survival of mosquito larvae and a major organ responsible for this regulation is the rectum. The recta of anopheline larvae are distinct from other subfamilies of mosquitoes in several ways, yet have not yet been characterized extensively. Here we characterize the two major cell types of the anopheline rectum, DAR and non-DAR cells, using histological, physiological, and pharmacological analyses. Proton flux was measured at the basal membrane of 2%- and 50%-artificial sea water-reared An. albimanus larvae using self-referencing ion-selective microelectrodes, and the two cell types were found to differ in basal membrane proton flux. Additionally, differences in the response of that flux to pharmacological inhibitors in larvae reared in 2% versus 50% ASW indicate changes in protein function between the two rearing conditions. Finally, histological analyses suggest that the non-DAR cells are structurally suited for mediating ion transport. These data support a model of rectal ion regulation in which the non-DAR cells have a resorptive function in freshwater-reared larvae and a secretive function in saline water-reared larvae. In this way, anopheline larvae may adapt to varying salinities.
Collapse
Affiliation(s)
- Kristin E Smith
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 OceanShore Boulevard, St. Augustine, FL 32080, USA
| | | | | | | | | |
Collapse
|
37
|
Poupardin R, Riaz MA, Vontas J, David JP, Reynaud S. Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti. INSECT MOLECULAR BIOLOGY 2010; 19:185-193. [PMID: 20041961 DOI: 10.1111/j.1365-2583.2009.00967.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Transcription profiles of 11 Aedes aegypti P450 genes from CYP6 and CYP9 subfamilies potentially involved in xenobiotic metabolism were investigated. Many genes were preferentially transcribed in tissues classically involved in xenobiotic metabolism including midgut and Malpighian tubules. Life-stage transcription profiling revealed important variations amongst larvae, pupae, and adult males and females. Exposure of mosquito larvae to sub-lethal doses of three xenobiotics induced the transcription of several genes with an induction peak after 48 to 72 h exposure. Several CYP genes were also induced by oxidative stress and one gene strongly responded to 20-hydroxyecdysone. Overall, this study revealed that these P450s show different transcription profiles according to xenobiotic exposures, life stages or sex. Their putative chemoprotective functions are discussed.
Collapse
Affiliation(s)
- R Poupardin
- Laboratoire d'Ecologie Alpine (LECA, UMR 5553 CNRS-Université) Grenoble, France
| | | | | | | | | |
Collapse
|
38
|
Beyenbach KW, Skaer H, Dow JAT. The developmental, molecular, and transport biology of Malpighian tubules. ANNUAL REVIEW OF ENTOMOLOGY 2010; 55:351-74. [PMID: 19961332 DOI: 10.1146/annurev-ento-112408-085512] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Molecular biology is reaching new depths in our understanding of the development and physiology of Malpighian tubules. In Diptera, Malpighian tubules derive from ectodermal cells that evaginate from the primitive hindgut and subsequently undergo a sequence of orderly events that culminates in an active excretory organ by the time the larva takes its first meal. Thereafter, the tubules enlarge by cell growth. Just as modern experimental strategies have illuminated the development of tubules, genomic, transcriptomic, and proteomic studies have uncovered new tubule functions that serve immune defenses and the breakdown and renal clearance of toxic substances. Moreover, genes associated with specific diseases in humans are also found in flies, some of which, astonishingly, express similar pathophenotypes. However, classical experimental approaches continue to show their worth by distinguishing between -omic possibilities and physiological reality while providing further detail about the rapid regulation of the transport pathway through septate junctions and the reversible assembly of proton pumps.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biomedical Sciences, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
39
|
Linser PJ, Smith KE, Seron TJ, Neira Oviedo M. Carbonic anhydrases and anion transport in mosquito midgut pH regulation. ACTA ACUST UNITED AC 2009; 212:1662-71. [PMID: 19448076 DOI: 10.1242/jeb.028084] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mosquito larvae use a digestive strategy that is relatively rare in nature. The anterior half of the larval mosquito midgut has a luminal pH that ranges between 10.5 and 11.5. Most other organisms, both large and small, initiate digestion in an acid medium. The relative uniqueness of the highly alkaline digestive strategy has been a long-standing research focus in larval lepidopterans. More recently, the disease vector potential of mosquitoes has fueled specific interest in larval mosquito biology and the alkaline digestive environment in the midgut. The probable principle anion influencing the highly alkaline gut lumen is bicarbonate/carbonate. Bicarbonate/carbonate is regulated at least in part by the activity of carbonic anhydrases. Hence, we have focused attention on the carbonic anhydrases of the mosquito larva. Anopheles gambiae, the major malaria mosquito of Africa, is an organism with a published genome which has facilitated molecular analyses of the 12 carbonic anhydrase genes annotated for this mosquito. Microarray expression analyses, tissue-specific quantitative RT-PCR, and antibody localization have been used to generate a picture of carbonic anhydrase distribution in the larval mosquito. Cytoplasmic, GPI-linked extracellular membrane-bound and soluble extracellular carbonic anhydrases have been located in the midgut and hindgut. The distribution of the enzymes is consistent with an anion regulatory system in which carbonic anhydrases provide a continuous source of bicarbonate/carbonate from the intracellular compartments of certain epithelial cells to the ectoperitrophic space between the epithelial cells and the acellular membrane separating the food bolus from the gut cells and finally into the gut lumen. Carbonic anhydrase in specialized cells of the hindgut (rectum) probably plays a final role in excretion of bicarbonate/carbonate into the aquatic environment of the larva. Detection and characterization of classic anion exchangers of the SLC4A family in the midgut has been problematic. The distribution of carbonic anhydrases in the system may obviate the requirement for such transporters, making the system more dependent on simple carbon dioxide diffusion and ionization via the activity of the enzyme.
Collapse
Affiliation(s)
- Paul J Linser
- The University of Florida Whitney Laboratory, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA.
| | | | | | | |
Collapse
|
40
|
Neira Oviedo M, Ribeiro JMC, Heyland A, VanEkeris L, Moroz T, Linser PJ. The salivary transcriptome of Anopheles gambiae (Diptera: Culicidae) larvae: A microarray-based analysis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:382-94. [PMID: 19328852 PMCID: PMC2766661 DOI: 10.1016/j.ibmb.2009.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 02/24/2009] [Accepted: 03/02/2009] [Indexed: 05/09/2023]
Abstract
In spite of the many recent developments in the field of vector sialomics, the salivary glands of larval mosquitoes have been largely unexplored. We used whole-transcriptome microarray analysis to create a gene-expression profile of the salivary gland tissue of fourth-instar Anopheles gambiae larvae, and compare it to the gene-expression profile of a matching group of whole larvae. We identified a total of 221 probes with expression values that were (a) significantly enriched in the salivary glands, and (b) sufficiently annotated as to allow the prediction of the presence/absence of signal peptides in their corresponding gene products. Based on available annotation of the protein sequences associated with these probes, we propose that the main roles of larval salivary secretions include: (a) immune response, (b) mouthpart lubrication, (c) nutrient metabolism, and (d) xenobiotic detoxification. Other highlights of the study include the cloning of a transcript encoding a previously unknown salivary defensin (AgDef5), the confirmation of mucus secretion by the larval salivary glands, and the first report of salivary lipocalins in the Culicidae.
Collapse
|
41
|
González-Lázaro M, Dinglasan RR, de la Cruz Hernández-Hernández F, Rodríguez MH, Laclaustra M, Jacobs-Lorena M, Flores-Romo L. Anopheles gambiae Croquemort SCRBQ2, expression profile in the mosquito and its potential interaction with the malaria parasite Plasmodium berghei. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:395-402. [PMID: 19366631 PMCID: PMC4138513 DOI: 10.1016/j.ibmb.2009.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 02/17/2009] [Accepted: 03/16/2009] [Indexed: 05/13/2023]
Abstract
The scavenger receptor family comprises transmembrane proteins involved in the recognition of polyanionic ligands. Several studies have established that members of this family are involved both in immunity and in developmental processes. In Drosophila melanogaster, one of the best characterized scavenger receptors is Croquemort, which participates in the recognition of apoptotic cells in the embryo. Although comparative genomic studies have revealed the presence of four orthologs of this receptor in the malaria vector Anopheles gambiae, little is known about their function. We have investigated the expression pattern of the four Croquemort orthologs during the mosquito life cycle. Croquemort transcripts SCRBQ2 and SCRBQ4 are expressed at all the developmental stages, while expression of Croquemort transcripts SCRBQ1 and SCRBQ3 is more restricted. We have also investigated the expression of the four Croquemort orthologs in the different organs of the adult female. Croquemort transcript SCRBQ2 is highly expressed in the A. gambiae female midgut. SCRBQ2 midgut gene expression was up-regulated after a non-infected or a Plasmodium berghei-infected blood meal, compared to its expression in midguts of sugar-fed females. Interestingly, knockdown of SCRBQ2 expression by dsRNA injection resulted in a 62.5% inhibition of oocyst formation, suggesting that SCRBQ2 plays a role in Plasmodium-mosquito interactions.
Collapse
Affiliation(s)
- Mónica González-Lázaro
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Sn. Pedro Zacatenco, Mexico City, Mexico
| | - Rhoel R. Dinglasan
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, John Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Fidel de la Cruz Hernández-Hernández
- Department of Infectomic and Molecular Pathogenesis, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco 07360, Mexico City, Mexico
- Corresponding author. Tel.: +52 55 57473341; fax: +52 55 57473398. (F. de la C. Hernández-Hernández)
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Av. Universidad 655, Cuernavaca, Morelos, Mexico
| | - Martin Laclaustra
- Department of Epidemiology and The Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Cardiovascular Epidemiology and Population Genetics, National Center for Cardiovascular Research (CNIC), Madrid, Spain
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, John Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Leopoldo Flores-Romo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, Sn. Pedro Zacatenco, Mexico City, Mexico
| |
Collapse
|
42
|
Abstract
Cytochrome P450s form a large and diverse family of heme-containing proteins capable of carrying out many different enzymatic reactions. In both mammals and plants, some P450s are known to carry out reactions essential for processes such as hormone synthesis, while other P450s are involved in the detoxification of environmental compounds. In general, functions of insect P450s are less well understood. We characterized Drosophila melanogaster P450 expression patterns in embryos and 2 stages of third instar larvae. We identified numerous P450s expressed in the fat body, Malpighian (renal) tubules, and in distinct regions of the midgut, consistent with hypothesized roles in detoxification processes, and other P450s expressed in organs such as the gonads, corpora allata, oenocytes, hindgut, and brain. Combining expression pattern data with an RNA interference lethality screen of individual P450s, we identify candidate P450s essential for developmental processes and distinguish them from P450s with potential functions in detoxification.
Collapse
|
43
|
Hegedus D, Erlandson M, Gillott C, Toprak U. New insights into peritrophic matrix synthesis, architecture, and function. ANNUAL REVIEW OF ENTOMOLOGY 2009; 54:285-302. [PMID: 19067633 DOI: 10.1146/annurev.ento.54.110807.090559] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The peritrophic matrix (PM) is a chitin and glycoprotein layer that lines the invertebrate midgut. Although structurally different, it is functionally similar to the mucous secretions of the vertebrate digestive tract. The PM is a physical barrier, protecting the midgut epithelium from abrasive food particles, digestive enzymes, and pathogens infectious per os. It is also a biochemical barrier, sequestering and, in some cases, inactivating ingested toxins. Finally, the PM compartmentalizes digestive processes, allowing for efficient nutrient acquisition and reuse of hydrolytic enzymes. The PM consists of an organized lattice of chitin fibrils held together by chitin binding proteins. Glycans fill the interstitial spaces, creating a molecular sieve, the properties of which are dependent on the immediate ion content and pH. In this review, we have integrated recent structural and functional information to create a holistic model for the PM. We also show how this information may generate novel technologies for use in insect pest management.
Collapse
Affiliation(s)
- Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada.
| | | | | | | |
Collapse
|
44
|
Zhang R, Hua G, Andacht TM, Adang MJ. A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae. Biochemistry 2008; 47:11263-72. [PMID: 18826260 DOI: 10.1021/bi801181g] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacillus thuringiensis (Bt) insecticidal toxins bind to receptors on midgut epithelial cells of susceptible insects, and binding triggers biochemical events that lead to insect mortality. Recently, a 100-kDa aminopeptidase N (APN) was isolated from brush border membrane vesicles (BBMV) of Anopheles quadrimaculatus and shown to bind Cry11Ba toxin with surface plasmon resonance (SPR) detection [Abdullah et al. (2006) BMC Biochem. 7, 16]. In our study, a 106-kDa APN, called AgAPN2, released by phosphatidylinositol-specific phospholipase C (PI-PLC) from Anopheles gambiae BBMV was extracted by Cry11Ba bound to beads. The AgAPN2 cDNA was cloned, and analysis of the predicted AgAPN2 protein revealed a zinc-binding motif (HEIAH), three potential N-glycosylation sites, and a predicted glycosylphosphatidylinositol (GPI) anchor site. Immunohistochemistry localized AgAPN2 to the microvilli of the posterior midgut. A 70-kDa fragment of the 106-kDa APN was expressed in Escherichia coli. When purified, it competitively displaced 125I-Cry11Ba binding to An. gambiae BBMV and bound Cry11Ba on dot blot and microtiter plate binding assays with a calculated K d of 6.4 nM. Notably, this truncated peptide inhibited Cry11Ba toxicity to An. gambiae larvae. These results are evidence that the 106-kDa GPI-anchored APN is a specific binding protein, and a putative midgut receptor, for Bt Cry11Ba toxin.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Entomology and Biochemistry, University of Georgia, Athens, Georgia 30602-2603, USA
| | | | | | | |
Collapse
|