1
|
HDAC3 Knockdown Dysregulates Juvenile Hormone and Apoptosis-Related Genes in Helicoverpa armigera. Int J Mol Sci 2022; 23:ijms232314820. [PMID: 36499148 PMCID: PMC9740019 DOI: 10.3390/ijms232314820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Insect development requires genes to be expressed in strict spatiotemporal order. The dynamic regulation of genes involved in insect development is partly orchestrated by the histone acetylation-deacetylation via histone acetyltransferases (HATs) and histone deacetylases (HDACs). Although histone deacetylase 3 (HDAC3) is required for mice during early embryonic development, its functions in Helicoverpa armigera (H. armigera) and its potential to be used as a target of insecticides remain unclear. We treated H. armigera with HDAC3 siRNA and RGFP966, a specific inhibitor, examining how the HDAC3 loss-of-function affects growth and development. HDAC3 siRNA and RGFP966 treatment increased mortality at each growth stage and altered metamorphosis, hampering pupation and causing abnormal wing development, reduced egg production, and reduced hatching rate. We believe that the misregulation of key hormone-related genes leads to abnormal pupa development in HDAC3 knockout insects. RNA-seq analysis identified 2788 differentially expressed genes (≥two-fold change; p ≤ 0.05) between siHDAC3- and siNC-treated larvae. Krüppel homolog 1 (Kr-h1), was differentially expressed in HDAC3 knockdown larvae. Pathway-enrichment analysis revealed the significant enrichment of genes involved in the Hippo, MAPK, and Wnt signaling pathways following HDAC3 knockdown. Histone H3K9 acetylation was increased in H. armigera after siHDAC3 treatment. In conclusion, HDAC3 knockdown dysregulated juvenile hormone (JH)-related and apoptosis-related genes in H. armigera. The results showed that the HDAC3 gene is a potential target for fighting H. armigera.
Collapse
|
2
|
Wang Z, Long GY, Jin DC, Yang H, Zhou C, Yang XB. Knockdown of Two Trehalase Genes by RNA Interference Is Lethal to the White-Backed Planthopper Sogatella furcifera (Horváth) (Hemiptera:Delphacidae). Biomolecules 2022; 12:biom12111699. [PMID: 36421713 PMCID: PMC9687761 DOI: 10.3390/biom12111699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Trehalase (Tre) is a crucial enzyme involved in trehalose metabolism, and it plays pivotal roles in insect development and metamorphosis. However, the biological function of Tre genes in Sogatella furcifera remains unclear. In the present study, two Tre genes—SfTre1 and SfTre2—were cloned and identified based on the S. furcifera transcriptome data. Bioinformatic analysis revealed that the full-length complementary DNA of SfTre1 and SfTre2 genes were 3700 and 2757 bp long, with 1728- and 1902-bp open reading frame encoding 575 and 633 amino acid residues, respectively. Expression analysis indicated that SfTre1 and SfTre2 were expressed at all developmental stages, with the highest expression in day two adults. Furthermore, the highest expression levels of SfTre1 and SfTre2 were observed in the ovary; enriched expression was also noted in head tissues. The knockdown of SfTre1 and SfTre2 via injecting double-stranded RNAs decreased the transcription levels of the corresponding mRNAs and led to various malformed phenotypes and high lethality rates. The results of our present study indicate that SfTre1 and SfTre2 play crucial roles in S. furcifera growth and development, which can provide referable information for Tre genes as a potential target for planthopper control.
Collapse
Affiliation(s)
- Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Gui-Yun Long
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- School of Ethnic Medicine, Guizhou Minzu University, Guiyang 550025, China
| | - Dao-Chao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Correspondence: (D.-C.J.); (H.Y.); Tel.: +86-139-8403-0739 (D.-C.J.); +86-139-8547-0482 (H.Y.)
| | - Hong Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- Correspondence: (D.-C.J.); (H.Y.); Tel.: +86-139-8403-0739 (D.-C.J.); +86-139-8547-0482 (H.Y.)
| | - Cao Zhou
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xi-Bin Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Entomology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Das J, Kumar R, Shah V, Sharma AK. Functional characterization of chitin synthesis pathway genes, HaAGM and HaUAP, reveal their crucial roles in ecdysis and survival of Helicoverpa armigera (Hübner). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105273. [PMID: 36464378 DOI: 10.1016/j.pestbp.2022.105273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
The chitin metabolic pathway is one of the most lucrative targets for designing pest management regimes. Inhibition of the chitin synthesis pathway causes detrimental effects on the normal growth and development of insects. Phospho-N-acetylglucosamine mutase (AGM) and UDP-N-acetylglucosamine pyrophosphorylase (UAP) are two key chitin biosynthesis enzymes in insects including Helicoverpa armigera, a pest of global significance. In the present study, we have identified, cloned and recombinantly expressed AGM and UAP from H. armigera (HaAGM and HaUAP). Biochemical characterization of recombinant HaAGM and HaUAP exhibited high affinities for their natural substrates N-acetyl glucosamine-6-phosphate (Km 38.72 ± 2.41) and N-acetyl glucosamine-1-phosphate (Km 3.66 ± 0.13), respectively. In the coupled enzyme-catalytic assay, HaAGM and HaUAP yielded the end-products, inorganic pyrophosphate and UDP-GlcNAc, confirming their active participation in the chitin synthesis pathway of H. armigera. Gene expression profiling revealed that HaAGM and HaUAP genes were expressed in all developmental stages and key tissues. These genes also showed substantial responses towards the moulting hormone 20-hydroxyecdysone and chitin biosynthesis inhibitor, novaluron. Remarkably, the RNAi-mediated knockdown of either HaAGM or HaUAP led to severe developmental deformities and significant mortality ranging from 65.61 to 72.54%. Overall findings suggest that HaAGM and HaUAP play crucial roles in the ecdysis and survival of H. armigera. Further, these genes could serve as potential targets for designing pest management strategies for H. armigera.
Collapse
Affiliation(s)
- Joy Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India; ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Vivek Shah
- ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
4
|
Gong X, Zhao G, Shan W, Guo H, Wang C, Liu Q, Xu B, Wang Y, Guo X. Identification and antioxidant capacity of 4-hydroxyphenylpyruvate dioxygenase (HPPD), a new favored herbicide target, in Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105110. [PMID: 35715049 DOI: 10.1016/j.pestbp.2022.105110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD), a nonheme oxygenase, catalyzes the second step of the tyrosine catabolic pathway, which is shared by almost all aerobic life forms. This demonstrates its importance in aerobic biology. We isolated an HPPD homolog from Apis cerana cerana and named it AccHPPD. AccHPPD has an open reading frame (ORF) length of 900 bp and encodes a 299 amino acid protein that has a predicted molecular weight of 34.67 kDa and an isoelectric point of 6.27. Amino acid analysis showed that AccHPPD contained three conserved metal ion active sites, H-101, H-184 and E-267. Real-time fluorescence quantitative PCR (RT-qPCR) analysis showed that AccHPPD mainly existed in specific tissue sites, mainly high in the legs and in the thorax and epidermis, and in specific developmental stages, mainly adults. Under temperature, pesticide, heavy metal and ultraviolet (UV) radiation treatments, the expression level was downregulated, but under H2O2 treatment, the expression level was upregulated. Exogenous expression of the recombinant AccHPPD plasmid in E. coli enhanced the resistance to HgCl2 and H2O2. Inhibition of AccHPPD activity was demonstrated by the upregulation of the tyrosine content after feeding with the inhibitor 2-(2-nitro-4-trifluoromethyl benzoyl)-1,3-cyclohexanedione (NTBC). After silencing of AccHPPD, the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) decreased, and the expression levels of AccBax- and AccCaspase8-related genes were upregulated. The antioxidant genes AccCAT, AccGSTZ1, AccGSTD, AccSOD2, AccTpx3, AccCYP4G11, AccGDTS4, AccGSTO2 and AccMSRA were all upregulated. These results suggest that AccHPPD may serve an integral function in the response of A. cerana cerana to oxidative stress.
Collapse
Affiliation(s)
- Xiangwei Gong
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wenlu Shan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Huijuan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
5
|
Guo Y, Fan Y, Teng Z, Wang L, Tan X, Wan F, Zhou H. Efficacy of RNA interference using nanocarrier-based transdermal dsRNA delivery system in the woolly apple aphid, Eriosoma lanigerum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21888. [PMID: 35388519 DOI: 10.1002/arch.21888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
RNA interference (RNAi) is an essential approach for studying gene function and has been considered as a promising strategy for pest control. However, RNAi method has not been conducted in Woolly apple aphid (Eriosoma lanigerum Hausmann), one of the most damaging apple pests in the world. In the study, we investigated the efficacy of RNAi of V-ATPase subunit D (ATPD), an efficacious target for RNAi in other insects, in E. lanigerum by a transdermal double-stranded RNA (dsRNA) delivery system with nanocarriers. Our results showed although topical application of dsATPD in E. lanigerum for 24 h produced 40.5% gene silencing, the additional help of nanocarriers extremely improved the interference efficiency with 98.5% gene silencing. Moreover, a 55.75% mortality was observed 5 days after topical application of nanocarriers and dsATPD, relative to the control (topical application of nanocarriers and double-stranded green fluorescent protein [dsGFP]). The nanocarrier-based transdermal dsRNA delivery system will promote the development of functional analysis of vital genes and also provide a potential target for RNAi-based management of E. lanigerum.
Collapse
Affiliation(s)
- Yi Guo
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| | - Yinjun Fan
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| | - Ziwen Teng
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| | - Lingyun Wang
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| | - Xiumei Tan
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| | - Fanghao Wan
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| | - Hongxu Zhou
- College of Plant Health & Medicine, Qingdao Agricultural University, Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, China-Australia Joint Institute of Agricultural and Environmental Health, Qingdao, Shandong, China
| |
Collapse
|
6
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. RNA Interference for Improving Disease Resistance in Plants and Its Relevance in This Clustered Regularly Interspaced Short Palindromic Repeats-Dominated Era in Terms of dsRNA-Based Biopesticides. FRONTIERS IN PLANT SCIENCE 2022; 13:885128. [PMID: 35645997 PMCID: PMC9141053 DOI: 10.3389/fpls.2022.885128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
RNA interference (RNAi) has been exploited by scientists worldwide to make a significant contribution in the arena of sustainable agriculture and integrated pest management. These strategies are of an imperative need to guarantee food security for the teeming millions globally. The already established deleterious effects of chemical pesticides on human and livestock health have led researchers to exploit RNAi as a potential agri-biotechnology tool to solve the burning issue of agricultural wastage caused by pests and pathogens. On the other hand, CRISPR/Cas9, the latest genome-editing tool, also has a notable potential in this domain of biotic stress resistance, and a constant endeavor by various laboratories is in progress for making pathogen-resistant plants using this technique. Considerable outcry regarding the ill effects of genetically modified (GM) crops on the environment paved the way for the research of RNAi-induced double-stranded RNAs (dsRNA) and their application to biotic stresses. Here, we mainly focus on the application of RNAi technology to improve disease resistance in plants and its relevance in today's CRISPR-dominated world in terms of exogenous application of dsRNAs. We also focused on the ongoing research, public awareness, and subsequent commercialization of dsRNA-based biocontrol products.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, New Delhi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, New Delhi, India
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research, New Delhi, India
| | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
7
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
8
|
Santos-Ortega Y, Flynt A. Double-Strand RNA (dsRNA) Delivery Methods in Insects: Diaphorina citri. Methods Mol Biol 2022; 2360:253-277. [PMID: 34495520 PMCID: PMC8959005 DOI: 10.1007/978-1-0716-1633-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNAi is a gene-silencing mechanism conserved in the vast majority of eukaryotes. It is widely used to study gene function in animals due to the ease of eliciting gene knockdown. Beyond research applications, RNAi technology based on exogenous dsRNA is a promising candidate for next generation insect pest control. An advantage of using RNAi is that design of dsRNA essentially requires only the sequence of the target gene. The greatest challenge, however, is dsRNA delivery for large-scale insect control. Delivery methods that have widely been used are oral, injection, or via soaking. Unfortunately, each insect presents its own challenges owing to the differences in the presence of dsRNA degrading enzymes, cellular uptake efficiency, expression of core RNAi machinery, the nature of the target gene, the concentration and persistence of the dsRNA, as well as the particular way of feeding of each insect, which together cause variations in the efficiency of RNAi. In this chapter, a protocol for the synthetic production of dsRNA is described along with three methods for delivery that have been successful in one of the more problematic insects, Diaphorina citri.
Collapse
Affiliation(s)
- Yulica Santos-Ortega
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Alex Flynt
- Cellular and Molecular Biology, The University of Southern Mississippi, Hattiesburg, MS, USA.
| |
Collapse
|
9
|
Hou N, Zhou Z, Chen Y, Tian J, Zhang Y, Liu Z. RNA interference in Pardosa pseudoannulata, an important predatory enemy against several insect pests, through ingestion of dsRNA-expressing Escherichia coli. INSECT MOLECULAR BIOLOGY 2021; 30:624-631. [PMID: 34410024 DOI: 10.1111/imb.12731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
RNA interference is an important technology for gene functional research in many organisms. The pond wolf spider (Pardosa pseudoannulata) is an important natural enemy of rice field pests. To facilitate large-scale gene functional research in this spider species and others, we developed an RNA interference (RNAi) method via ingestion of bacteria expressing dsRNA. The dsRNA targeting a cytochrome P450 monooxygenase (cyp41g2) was expressed in Escherichia coli HT115 (DE3). And then the bacterial suspension was fed to 14-20 days old spiderlings. The mRNA abundance of the target gene was significantly reduced after 3-day's ingestion of bacteria expressing dsRNA, and between day 5 and 7, RNAi efficiency remained stable. Thus, we selected 5 days as the optimum interference time. Furthermore, the bacteria resuspension containing 20 ng/μl dsRNA was selected as the optimum concentration. To evaluate the applicability of this method, three other genes with different tissue expression pattern were also selected as targets. And the mRNA abundance of all the four target genes was significantly reduced with RNAi efficiency between 66.0% and up to 86.9%. The results demonstrated that the oral delivery of bacteria expressing dsRNA would be an effective RNAi method for the gene functional study in P. pseudoannulata.
Collapse
Affiliation(s)
- N Hou
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Z Zhou
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Chen
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | |
Collapse
|
10
|
Rasool KG, Mehmood K, Tufail M, Husain M, Alwaneen WS, Aldawood AS. Silencing of vitellogenin gene contributes to the promise of controlling red palm weevil, Rhynchophorus ferrugineus (Olivier). Sci Rep 2021; 11:21695. [PMID: 34737372 PMCID: PMC8568968 DOI: 10.1038/s41598-021-01159-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023] Open
Abstract
Red palm weevil [Rhynchophorus ferrugineus (Olivier)], is native to South Asia and expanding its distribution range globally. Recent invasions of red palm weevil around the world, including Saudi Arabia, has become a global constraint for the production of palm species. Although, several control measures have been tested, none of them seemed successful against this invasive species. Therefore, we focused on silencing the reproduction control gene vitellogenin (Vg) based on RNA interference (RNAi) strategy for its possible application in the management of R. ferrugineus. The Vg is a major yolk protein precursor critical for oogenesis. To do this, fat body transcriptome of R. ferrugineus female adults was sequenced, which provided partial Vg gene transcript (FPKM 5731.60). A complete RfVg gene transcript of 5504 bp encoding 1787 amino acids was then sequenced using RCAE-PCR strategy and characterized. Phylogenetic analysis suggested that RfVg has closer ancestry to the coleopteran insects. The RfVg-based RNAi significantly suppressed the expressions of Vg gene. The 15, 20 and 25 days post-injection periods suppressed Vg expressions by 95, 96.6 and 99%, respectively. The suppressed Vg expressions resulted in the dramatic failure of Vg protein expression, which caused atrophied ovaries or no oogenesis and ultimately eggs were not hatched. These results suggest that knockdown of Vg gene involved in R. ferrugineus reproduction is a promising target for RNAi-based management of R. ferrugineus.
Collapse
Affiliation(s)
- Khawaja G Rasool
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid Mehmood
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Institute of Plant Protection, Muhammad Nawaz Shareef (MNS) University of Agriculture, Multan, 60000, Punjab, Pakistan
| | - Muhammad Tufail
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
- Ghazi University, Dera Ghazi Khan, Punjab, Pakistan
| | - Mureed Husain
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Waleed S Alwaneen
- National Center for Agricultural Technology (NCAT), King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulrahman S Aldawood
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Taracena ML, Garcia Caffaro I, Paiva-Silva GO, Oliveira PL, Rendon PA, Dotson EM, Pennington PM. Delivery of Double-Stranded RNAs (dsRNAs) Produced by Escherichia coli HT115(DE3) for Nontransgenic RNAi-Based Insect Pest Management. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2360:279-294. [PMID: 34495521 DOI: 10.1007/978-1-0716-1633-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA interference (RNAi) is a powerful mechanism that can be exploited not only for physiology research but also for designing insect pest management approaches. Some insects cause harm by vectoring diseases dangerous to humans, livestock, or plants or by damaging crops. For at least a decade now, different insect control strategies that induce RNAi by delivering double stranded RNA (dsRNA) targeting essential genes have been proposed. Here, we focus on nontransgenic RNAi-based approaches that use oral delivery of dsRNA through feeding of inactivated bacteria to produce RNAi in disease vectors and in a crop pest. This potential pest management method could be easily adapted to target different genes or similar organisms.
Collapse
Affiliation(s)
- Mabel L Taracena
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), Center for Global Health, Atlanta, GA, USA.
- Entomology Department, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA.
| | - Isabella Garcia Caffaro
- Centro de Estudios en Biotecnología (CEB) Affiliated to the Centro de Estudios en Salud, Universidad del Valle de Guatemala (UVG), Guatemala, Guatemala
| | - Gabriela O Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro A Rendon
- International Atomic Energy Agency, Technical Cooperation Projects for the Region of Latin America and the Caribbean, IAEA/TC-LAC - USDA/APHIS - Moscamed Program, Guatemala, Guatemala
| | - Ellen M Dotson
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), Center for Global Health, Atlanta, GA, USA
| | - Pamela M Pennington
- Centro de Estudios en Biotecnología (CEB) Affiliated to the Centro de Estudios en Salud, Universidad del Valle de Guatemala (UVG), Guatemala, Guatemala
| |
Collapse
|
12
|
Ramos JE, Jain RG, Powell CA, Dawson WO, Gowda S, Borovsky D, Shatters RG. Crowdsourced Identification of Potential Target Genes for CTV Induced Gene Silencing for Controlling the Citrus Greening Vector Diaphorina citri. Front Physiol 2021; 12:571826. [PMID: 33897443 PMCID: PMC8063116 DOI: 10.3389/fphys.2021.571826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/19/2021] [Indexed: 11/25/2022] Open
Abstract
Citrus Greening or Huanglongbing (HLB) is a disease of citrus, causing high reduction in citrus production and is transmitted by the Asian citrus psyllid Diaphorina citri Kuwayama vectoring a phloem-limited bacterium Candidatus Liberibacter sp. We report research results using crowdsourcing challenge strategy identifying potential gene targets in D. citri to control the insect using RNA interference (RNAi). From 63 submitted sequences, 43 were selected and tested by feeding them to D. citri using artificial diet assays. After feeding on artificial diet, the three most effective dsRNAs causing 30% mortality above control silenced genes expressing iron-sulfur cluster subunit of the mitochondrial electron transport chain complex (Rieske), heme iron-binding terminal oxidase enzyme (Cytochrome P450) and tetrahydrobiopterin (BH4) pathway enzyme (Pterin 4α-Carbinolamine Dehydratase). These sequences were cloned into a citrus phloem-limited virus (Citrus tristeza virus, CTV T36) expressing dsRNA against these target genes in citrus. The use of a viral mediated “para-transgenic” citrus plant system caused higher mortality to adult D. citri than what was observed using artificial diet, reaching 100% when detached citrus leaves with the engineered CTV expressing dsRNA were fed to adult D. citri. Using this approach, a virus-induced gene silencing (VIGS) can be used to test future transgenic cultivars before genetically engineering citrus. RNA Seq analysis after feeding D. citri CTV-RIE on infected leaves identified transcriptionally modified genes located upstream and downstream of the targeted RIE gene. These genes were annotated showing that many are associated with the primary function of the Rieske gene that was targeted by VIGS.
Collapse
Affiliation(s)
- John E Ramos
- U.S. Horticultural Research Laboratory (USDA-ARS), Fort Pierce, FL, United States
| | - Ritesh G Jain
- Indian River Research and Education Center, UF/IFAS, Fort Pierce, FL, United States
| | - Charles A Powell
- Indian River Research and Education Center, UF/IFAS, Fort Pierce, FL, United States
| | - William O Dawson
- Citrus Research and Education Center, UF/IFAS, Lake Alfred, FL, United States
| | - Siddarame Gowda
- Citrus Research and Education Center, UF/IFAS, Lake Alfred, FL, United States
| | - Dov Borovsky
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Robert G Shatters
- U.S. Horticultural Research Laboratory (USDA-ARS), Fort Pierce, FL, United States
| |
Collapse
|
13
|
Diallo S, Shahbaaz M, Makwatta JO, Muema JM, Masiga D, Christofells A, Getahun MN. Antennal Enriched Odorant Binding Proteins Are Required for Odor Communication in Glossina f. fuscipes. Biomolecules 2021; 11:541. [PMID: 33917773 PMCID: PMC8068202 DOI: 10.3390/biom11040541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Olfaction is orchestrated at different stages and involves various proteins at each step. For example, odorant-binding proteins (OBPs) are soluble proteins found in sensillum lymph that might encounter odorants before reaching the odorant receptors. In tsetse flies, the function of OBPs in olfaction is less understood. Here, we investigated the role of OBPs in Glossina fuscipes fuscipes olfaction, the main vector of sleeping sickness, using multidisciplinary approaches. Our tissue expression study demonstrated that GffLush was conserved in legs and antenna in both sexes, whereas GffObp44 and GffObp69 were expressed in the legs but absent in the antenna. GffObp99 was absent in the female antenna but expressed in the male antenna. Short odorant exposure induced a fast alteration in the transcription of OBP genes. Furthermore, we successfully silenced a specific OBP expressed in the antenna via dsRNAi feeding to decipher its function. We found that silencing OBPs that interact with 1-octen-3-ol significantly abolished flies' attraction to 1-octen-3-ol, a known attractant for tsetse fly. However, OBPs that demonstrated a weak interaction with 1-octen-3-ol did not affect the behavioral response, even though it was successfully silenced. Thus, OBPs' selective interaction with ligands, their expression in the antenna and their significant impact on behavior when silenced demonstrated their direct involvement in olfaction.
Collapse
Affiliation(s)
- Souleymane Diallo
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - JohnMark O Makwatta
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Jackson M Muema
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| | - Alan Christofells
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Merid N Getahun
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
| |
Collapse
|
14
|
Cloning, Characterization, and RNA Interference Effect of the UDP-N-Acetylglucosamine Pyrophosphorylase Gene in Cnaphalocrocis medinalis. Genes (Basel) 2021; 12:genes12040464. [PMID: 33805104 PMCID: PMC8064113 DOI: 10.3390/genes12040464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/23/2023] Open
Abstract
The rice leaf folder, Cnaphalocrocis medinalis is a major pest of rice and is difficult to control. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is a key enzyme in the chitin synthesis pathway in insects. In this study, the UAP gene from C. medinalis (CmUAP) was cloned and characterized. The cDNA of CmUAP is 1788 bp in length, containing an open reading frame of 1464 nucleotides that encodes 487 amino acids. Homology and phylogenetic analyses of the predicted protein indicated that CmUAP shared 91.79%, 87.89%, and 82.75% identities with UAPs of Glyphodes pyloalis, Ostrinia furnacalis, and Heortia vitessoides, respectively. Expression pattern analyses by droplet digital PCR demonstrated that CmUAP was expressed at all developmental stages and in 12 tissues of C. medinalis adults. Silencing of CmUAP by injection of double-stranded RNA specific to CmUAP caused death, slow growth, reduced feeding and excretion, and weight loss in C. medinalis larvae; meanwhile, severe developmental disorders were observed. The findings suggest that CmUAP is essential for the growth and development of C. medinalis, and that targeting the CmUAP gene through RNAi technology can be used for biological control of this insect.
Collapse
|
15
|
Husain M, Rasool KG, Tufail M, Alwaneen WS, Aldawood AS. RNAi-mediated silencing of vitellogenin gene curtails oogenesis in the almond moth Cadra cautella. PLoS One 2021; 16:e0245928. [PMID: 33571307 PMCID: PMC7877660 DOI: 10.1371/journal.pone.0245928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/08/2021] [Indexed: 01/09/2023] Open
Abstract
Vitellogenins, major yolk protein precursors, play an essential role in the reproduction and spread of all oviparous species, including insects. To investigate reproductive strategies of the warehouse moth Cadra cautella at the molecular level, a partial transcript of the C. cautella vitellogenin (CcVg) gene was extended through the rapid amplification of cDNA ends PCR and sequenced. The complete CcVg mRNA transcript was 5,334 bp long, which encoded a protein of 1,778 amino acids, including the first 14 amino acids of the signal peptide. The deduced CcVg protein contained a putative cleavage site (RTRR) at the amino-terminal side, similar to several other insect species. DGQR and GI/LCG motifs were present at the CcVg gene C-terminus, followed by nine cysteine residues. CcVg harbored 131 putative phosphorylation sites, numbering 84, 19, and 28 sites for serine, threonine, and tyrosine, respectively. The transcript showed a great resemblance with other lepidopteran Vgs. CcVg protein analysis revealed three conserved regions: 1) vitellogenin-N domain, 2) DUF 1943 (domain of unknown function), and 3) a von Willebrand factor type D domain. Additionally, sex, stage-specific, and developmental expression profiles of the CcVg gene were determined through RT-PCR. The Vg was first expressed in 22-day-old female larvae, and its expression increased with growth. The phylogenetic analysis based on different insect Vgs revealed that the CcVg exhibited close ancestry with lepidopterans. The CcVg-based RNAi experiments were performed, and the effects were critically evaluated. The qRT-PCR results showed that CcVg-based dsRNA suppressed the Vg gene expression up to 90% at 48 h post-injection. Moreover, CcVg-based RNAi effects resulted in low fecundity and egg hatchability in the CcVg-based dsRNA-treated females. The females laid eggs, but because of insufficient yolk protein availability the eggs could not succeed to hatch. The significant difference in the fecundity and hatchability unveils the importance of CcVg gene silencing and confirmed that the Vg gene plays a key role in C. cautella reproduction and it has the potential to be used as a target for RNAi-mediated control of this warehouse pest.
Collapse
Affiliation(s)
- Mureed Husain
- Plant Protection Department, Economic Entomology Research Unit, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khawaja Ghulam Rasool
- Plant Protection Department, Economic Entomology Research Unit, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Tufail
- Plant Protection Department, Economic Entomology Research Unit, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Ghazi University, Dera Ghazi Khan, Punjab, Pakistan
| | - Waleed Saleh Alwaneen
- National Center for Agricultural Technology (NCAT), King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Abdulrahman Saad Aldawood
- Plant Protection Department, Economic Entomology Research Unit, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Salvador R, Niz JM, Nakaya PA, Pedarros A, Hopp HE. Midgut Genes Knockdown by Oral dsRNA Administration Produces a Lethal Effect on Cotton Boll Weevil. NEOTROPICAL ENTOMOLOGY 2021; 50:121-128. [PMID: 33025569 DOI: 10.1007/s13744-020-00819-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
The "cotton boll weevil" (Anthonomus grandis Boheman) is a key pest in America whose larval stage develops within the cotton flower bud. During its development, the larva uses the flower bud as food and as a shelter from predators. This behavior limits the effective control through conventional insecticide applications and biocontrol techniques. Increasing genetic information from insects has allowed the development of new control technologies based on the use of RNA interference (RNAi) to design orally delivered double-stranded RNA (dsRNA) strategies. In this study, we evaluated the effect of continuous oral administration of six specific dsRNA in order to identify an effective target gene for RNAi-mediated control of cotton boll weevil. First, six selected A. grandis gene fragments were amplified and cloned to perform in vivo synthesis of the specific dsRNA, and subsequently, larvae and adults were fed with this dsRNA for 2 weeks. Larvae mortality ranged from 40 to 60% depending on the targeted gene sequence. Indeed, α-amylase and cytochrome p450 dsRNAs were the most effective. Oral administration in adults caused smaller but still significant death rates (15-30%). Thus, the results demonstrated RNAi responses depend on life stages and target genes. The dsRNA ingestion was capable of providing knockdown mRNA levels in cotton boll weevil midgut and this effect was significantly higher in the larval stage. In this study, we present a new report of silencing of midgut genes in A. grandis larva induced by continuously feeding with dsRNA. This potential new tool should be further evaluated in cotton boll weevil control strategies.
Collapse
Affiliation(s)
- Ricardo Salvador
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina.
| | - José M Niz
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Pablo A Nakaya
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Analía Pedarros
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Centro de investigaciones en Ciencias Agronómicas y Veterinarias (CICVyA), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - H Esteban Hopp
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Lab de Agrobiotecnología DFBMC, Facultad de Ciencias Exactas y Naturales, Univ de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Chang YW, Wang YC, Zhang XX, Iqbal J, Du YZ. RNA Interference of Genes Encoding the Vacuolar-ATPase in Liriomyza trifolii. INSECTS 2021; 12:insects12010041. [PMID: 33419201 PMCID: PMC7825530 DOI: 10.3390/insects12010041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 11/16/2022]
Abstract
The leafminer fly, Liriomyza trifolii, is an invasive pest of vegetable and horticultural crops in China. In this study, a microinjection method based on dsRNA was developed for RNA interference (RNAi) in L. trifolii using genes encoding vacuolar-ATPase (V-ATPase). Expression analysis indicated that V-ATPase B and V-ATPase D were more highly expressed in L. trifolii adults than in larvae or pupae. Microinjection experiments with dsV-ATPase B and dsV-ATPase D were conducted to evaluate the efficacy of RNAi in L. trifolii adults. Expression analysis indicated that microinjection with 100 ng dsV-ATPase B or dsV-ATPase led to a significant reduction in V-ATPase transcripts as compared to that of the dsGFP control (dsRNA specific to green fluorescent protein). Furthermore, lower dsRNA concentrations were also effective in reducing the expression of target genes when delivered by microinjection. Mortality was significantly higher in dsV-ATPase B- and dsV-ATPase D-treated insects than in controls injected with dsGFP. The successful deployment of RNAi in L. trifolii will facilitate functional analyses of vital genes in this economically-important pest and may ultimately result in new control strategies.
Collapse
Affiliation(s)
- Ya-Wen Chang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (Y.-W.C.); (Y.-C.W.); (X.-X.Z.); (J.I.)
| | - Yu-Cheng Wang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (Y.-W.C.); (Y.-C.W.); (X.-X.Z.); (J.I.)
| | - Xiao-Xiang Zhang
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (Y.-W.C.); (Y.-C.W.); (X.-X.Z.); (J.I.)
| | - Junaid Iqbal
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (Y.-W.C.); (Y.-C.W.); (X.-X.Z.); (J.I.)
| | - Yu-Zhou Du
- College of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (Y.-W.C.); (Y.-C.W.); (X.-X.Z.); (J.I.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
18
|
Sterkel M, Haines LR, Casas-Sánchez A, Owino Adung’a V, Vionette-Amaral RJ, Quek S, Rose C, Silva dos Santos M, García Escude N, Ismail HM, Paine MI, Barribeau SM, Wagstaff S, MacRae JI, Masiga D, Yakob L, Oliveira PL, Acosta-Serrano Á. Repurposing the orphan drug nitisinone to control the transmission of African trypanosomiasis. PLoS Biol 2021; 19:e3000796. [PMID: 33497373 PMCID: PMC7837477 DOI: 10.1371/journal.pbio.3000796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/30/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species. Here we present a promising, environment-friendly alternative to current insecticides that targets the insect tyrosine metabolism pathway. A bloodmeal contains high levels of tyrosine, which is toxic to haematophagous insects if it is not degraded and eliminated. RNA interference (RNAi) of either the first two enzymes in the tyrosine degradation pathway (tyrosine aminotransferase (TAT) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)) was lethal to tsetse. Furthermore, nitisinone (NTBC), an FDA-approved tyrosine catabolism inhibitor, killed tsetse regardless if the drug was orally or topically applied. However, oral administration of NTBC to bumblebees did not affect their survival. Using a novel mathematical model, we show that NTBC could reduce the transmission of African trypanosomiasis in sub-Saharan Africa, thus accelerating current disease elimination programmes.
Collapse
Affiliation(s)
- Marcos Sterkel
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Lee R. Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Aitor Casas-Sánchez
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Vincent Owino Adung’a
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, Kenya
| | | | - Shannon Quek
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | | | - Hanafy M. Ismail
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Mark I. Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Seth M. Barribeau
- Department of Ecology Evolution & Behaviour, Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Simon Wagstaff
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| | | | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Laith Yakob
- Department of Disease Control, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, United Kingdom
| |
Collapse
|
19
|
Ullah F, Gul H, Wang X, Ding Q, Said F, Gao X, Desneux N, Song D. RNAi-Mediated Knockdown of Chitin Synthase 1 ( CHS1) Gene Causes Mortality and Decreased Longevity and Fecundity in Aphis gossypii. INSECTS 2019; 11:insects11010022. [PMID: 31888020 PMCID: PMC7023125 DOI: 10.3390/insects11010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/26/2022]
Abstract
Chitin is a vital part of the insect exoskeleton and peritrophic membrane, synthesized by chitin synthase (CHS) enzymes. Chitin synthase 1 (CHS1) is a crucial enzyme in the final step of chitin biosynthetic pathway and consequently plays essential role towards insect growth and molting. RNA interference (RNAi) is an agent that could be used as an extremely target-specific and ecologically innocuous tactic to control different insect pests associated with economically important crops. The sole purpose of the current study is to use CHS1 as the key target gene against the cotton-melon aphid, Aphis gossypii, via oral feeding on artificial diets mixed with dsRNA-CHS1. Results revealed that the expression level of CHS1 gene significantly decreased after the oral delivery of dsRNA-CHS1. The knockdown of CHS1 gene caused up to 43%, 47%, and 59% mortality in third-instar nymph after feeding of dsCHS1 for 24, 48, and 72 h, respectively, as compared to the control. Consistent with this, significantly lower longevity (approximately 38%) and fecundity (approximately 48%) were also found in adult stage of cotton-melon aphids that were fed with dsCHS1 for 72 h at nymphal stage. The qRT-PCR analysis of gene expression demonstrated that the increased mortality rates and lowered longevity and fecundity of A. gossypii were attributed to the downregulation of CHS1 gene via oral-delivery-mediated RNAi. The results of current study confirm that CHS1 could be an appropriate candidate target gene for the RNAi-based control of cotton-melon aphids.
Collapse
Affiliation(s)
- Farman Ullah
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Hina Gul
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Xiu Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Qian Ding
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Fazal Said
- Department of Agriculture, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Xiwu Gao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
| | - Nicolas Desneux
- Université Côte d’Azur, INRA, CNRS, UMR ISA, 06000 Nice, France;
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (F.U.); (H.G.); (X.W.); (Q.D.); (X.G.)
- Correspondence:
| |
Collapse
|
20
|
Koosha M, Vatandoost H, Karimian F, Choubdar N, Oshaghi MA. Delivery of a Genetically Marked Serratia AS1 to Medically Important Arthropods for Use in RNAi and Paratransgenic Control Strategies. MICROBIAL ECOLOGY 2019; 78:185-194. [PMID: 30460544 DOI: 10.1007/s00248-018-1289-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Understanding how arthropod vectors acquire their bacteria is essential for implementation of paratransgenic and RNAi strategies using genetically modified bacteria to control vector-borne diseases. In this study, a genetically marked Serratia AS1 strain expressing the mCherry fluorescent protein (mCherry-Serratia) was used to test various acquisition routes in six arthropod vectors including Anopheles stephensi, Culex pipiens, Cx. quinquefaciatus, Cx. theileri, Phlebotomus papatasi, and Hyalomma dromedarii. Depending on the species, the bacteria were delivered to (i) mosquito larval breeding water, (ii) host skin, (iii) sugar bait, and (iv) males (paratransgenic). The arthropods were screened for the bacteria in their guts or other tissues. All the hematophagous arthropods were able to take the bacteria from the skin of their hosts while taking blood meal. The mosquitoes were able to take up the bacteria from the water at larval stages and to transfer them transstadially to adults and finally to transfer them to the water they laid eggs in. The mosquitoes were also able to acquire the bacteria from male sperm. The level of bacterial acquisition was influenced by blood feeding time and strategies (pool or vessel feeding), dipping in water and resting time of newly emerged adult mosquitoes, and the disseminated tissue/organ. Transstadial, vertical, and venereal bacterial acquisition would increase the sustainability of the modified bacteria in vector populations and decrease the need for supplementary release experiments whereas release of paratransgenic males that do not bite has fewer ethical issues. Furthermore, this study is required to determine if the modified bacteria can be introduced to arthropods in the same routes in nature.
Collapse
Affiliation(s)
- Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Nayyereh Choubdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran.
| |
Collapse
|
21
|
Cayla M, Rojas F, Silvester E, Venter F, Matthews KR. African trypanosomes. Parasit Vectors 2019; 12:190. [PMID: 31036044 PMCID: PMC6489224 DOI: 10.1186/s13071-019-3355-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
African trypanosomes cause human African trypanosomiasis and animal African trypanosomiasis. They are transmitted by tsetse flies in sub-Saharan Africa. Although most famous for their mechanisms of immune evasion by antigenic variation, there have been recent important studies that illuminate important aspects of the biology of these parasites both in their mammalian host and during passage through their tsetse fly vector. This Primer overviews current research themes focused on these parasites and discusses how these biological insights and the development of new technologies to interrogate gene function are being used in the search for new approaches to control the parasite. The new insights into the biology of trypanosomes in their host and vector highlight that we are in a ‘golden age’ of discovery for these fascinating parasites.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Federico Rojas
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Frank Venter
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
22
|
Grover S, Jindal V, Banta G, Taning CNT, Smagghe G, Christiaens O. Potential of RNA interference in the study and management of the whitefly, Bemisia tabaci. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21522. [PMID: 30484903 DOI: 10.1002/arch.21522] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Whiteflies cause considerable losses to crops, directly by feeding, and indirectly by transmission of viruses. The current control methods consist of a combination of different control tactics, mainly still relying on unsafe and non-ecofriendly chemical control. RNA interference (RNAi) is a post-transcriptional gene-silencing strategy in which double-stranded RNA (dsRNA), corresponding specifically to a target gene, is introduced in a target organism. Research on RNAi in the previous decade has shown its success as a potential insect control strategy, which can be highly species-specific and environment friendly. In whiteflies, the success of dsRNA delivery through the oral route opened possibilities for its management through plant-mediated RNAi. To date, several genes have been targeted in whiteflies through RNAi and these assays demonstrated its potential to manage whiteflies at lab level. However, further research and investments are needed to move toward an application at field level. In this review, for the first time, we collected the literature on genes targeted for silencing via RNAi in whiteflies and discuss the potential of RNAi in whitefly pest control. We also discuss likely delivery methods, including transgenic in planta delivery and symbiont-mediated delivery, and its potential for studying and interfering with insecticide resistance mechanisms and virus transmission by whiteflies.
Collapse
Affiliation(s)
- Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Vikas Jindal
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | - Geetika Banta
- Department of Entomology, Punjab Agricultural University, Ludhiana, India
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Olivier Christiaens
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Wu W, Gu D, Yan S, Li Z. RNA interference of endoglucanases in the formosan subterranean termite Coptotermes formosanus shiraki (Blattodea: Rhinotermitidae) by dsRNA injection or ingestion. JOURNAL OF INSECT PHYSIOLOGY 2019; 112:15-22. [PMID: 30472007 DOI: 10.1016/j.jinsphys.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Termites obtain energy and nutrition from wood and wood-related materials by utilizing endogenous and symbiotic cellulases. Endoglucanase is one of the key cellulases in cellulose digestion. Previous studies have shown that the inhibition of the cellulase enzyme system would be a plausible approach for termite control. In the present study, we studied the effect of RNAi on termites by targeting a conserved region of five endoglucanase genes from Coptotermes formosanus (CfEGs). Both dsRNA injection and oral delivery resulted in significant gene silencing of CfEGs and consequently led to mortality, reduced enzyme activity, and reduced weight compared to control worker termites. An injection dose of 150 ng and a feeding dose of 2 μg/cm2 provided for the best RNAi efficiency. dsCfEG was further combined with flufenoxuron, an insect growth regulator used to manage/suppress subterranean termites, and when fed to workers, caused a lower enzyme activity compared to the dsCfEG- or flufenoxuron-only treatment. The weight loss (∼0.598 mg) and mortality (∼28%) observed in the combined dsCfEG and flufenoxuron treatment differed significantly from those observed in the flufenoxuron-only treatment (∼0.208 mg and ∼16%, respectively). Although the effects of these dsCfEG treatments on mortality were insufficient to serve as termiticides, dsCfEGs could be used in combination with other treatments to increase efficacy. This study provides a research basis for the use of RNAi in termiticides.
Collapse
Affiliation(s)
- Wenjing Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 105 Xingang Road West, Guangzhou 510260, PR China
| | - Daifei Gu
- College of Forestry, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, PR China
| | - Shanchun Yan
- College of Forestry, Northeast Forestry University, No. 26, Hexing Road, Harbin 150040, PR China
| | - Zhiqiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, 105 Xingang Road West, Guangzhou 510260, PR China.
| |
Collapse
|
24
|
Procházka E, Michalková V, Daubnerová I, Roller L, Klepsatel P, Žitňan D, Tsiamis G, Takáč P. Gene expression in reproductive organs of tsetse females - initial data in an approach to reduce fecundity. BMC Microbiol 2018; 18:144. [PMID: 30470199 PMCID: PMC6251150 DOI: 10.1186/s12866-018-1294-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tsetse flies are vectors of African trypanosomes, and their vectorial capacity results in a major public health emergency and vast economic losses in sub-Saharan Africa. Given the limited ability of trypanosome prevention and eradication, tsetse vectors remain major targets of control efforts. Larvae of all three instars are developed in mothers' uteri, nourished through milk, and 'larviposited' shortly before pupation. The past few years have witnessed the emergence of approaches based on knockdown of genes involved in milk production, resulting in a significant reduction of fecundity. RESULTS In order to identify further genes applicable in the control of tsetse flies, we determined the expression of protein-coding genes in ovaries and uteri from both virgin and heavily pregnant Glossina morsitans morsitans females. Comparison of expression profiles allowed us to identify candidate genes with increased expression in pregnant individuals. Lists with the highest increases include genes involved in oocyte and embryonic development, or nourishment. Maximum ovarian fold change does not exceed 700, while the highest uterine fold change reaches to more than 4000. Relatively high fold changes of two neuropeptide receptors (for corazonin and myosuppressin) propose the corresponding genes alternative targets. CONCLUSIONS Given the higher fold changes in the uterus, targeting gene expression in this tissue may result in a more evident reduction of fecundity. However, ovaries should not be neglected, as manifested by several genes with top fold changes involved in early developmental stages. Apart from focusing on the highest fold changes, neuropeptide receptors with moderate increases in expression should be also verified as targets, given their roles in mediating the tissue control. However, this data needs to be considered initial, and the potential of these genes in affecting female fecundity needs to be verified experimentally.
Collapse
Affiliation(s)
- Emanuel Procházka
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Veronika Michalková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, 2 Georgiou Seferi St, Agrinio, Greece
| | - Peter Takáč
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia. .,Scientica, Ltd., Hybešova 33, 831 06, Bratislava, Slovakia.
| |
Collapse
|
25
|
Meki IK, Kariithi HM, Parker AG, Vreysen MJB, Ros VID, Vlak JM, van Oers MM, Abd-Alla AMM. RNA interference-based antiviral immune response against the salivary gland hypertrophy virus in Glossina pallidipes. BMC Microbiol 2018; 18:170. [PMID: 30470195 PMCID: PMC6251114 DOI: 10.1186/s12866-018-1298-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; Hytrosaviridae) is a non-occluded dsDNA virus that specifically infects the adult stages of the hematophagous tsetse flies (Glossina species, Diptera: Glossinidae). GpSGHV infections are usually asymptomatic, but unknown factors can result to a switch to acute symptomatic infection, which is characterized by the salivary gland hypertrophy (SGH) syndrome associated with decreased fecundity that can ultimately lead to a colony collapse. It is uncertain how GpSGHV is maintained amongst Glossina spp. populations but RNA interference (RNAi) machinery, a conserved antiviral defense in insects, is hypothesized to be amongst the host’s mechanisms to maintain the GpSGHV in asymptomatic (persistent or latent) infection state. Here, we investigated the involvement of RNAi during GpSGHV infections by comparing the expression of three key RNAi machinery genes, Dicer (DCR), Argonaute (AGO) and Drosha, in artificially virus injected, asymptomatic and symptomatic infected G. pallidipes flies compared to PBS injected (controls) individuals. We further assessed the impact of AGO2 knockdown on virus infection by RT-qPCR quantification of four selected GpSGHV genes, i.e. odv-e66, dnapol, maltodextrin glycosyltransferase (a tegument gene) and SGHV091 (a capsid gene). Results We show that in response to hemocoelic injections of GpSGHV into G. pallidipes flies, increased virus replication was accompanied by significant upregulation of the expression of three RNAi key genes; AGO1, AGO2 and DCR2, and a moderate increase in the expression of Drosha post injection compared to the PBS-injected controls. Furthermore, compared to asymptomatically infected individuals, symptomatic flies showed significant downregulation of AGO1, AGO2 and Drosha, but a moderate increase in the expression of DCR2. Compared to the controls, knockdown of AGO2 did not have a significant impact on virus infection in the flies as evidenced by unaltered transcript levels of the selected GpSGHV genes. Conclusion The upregulation of the expression of the RNAi genes implicate involvement of this machinery in controlling GpSGHV infections and the establishment of symptomatic GpSGHV infections in Glossina. These findings provide a strategic foundation to understand GpSGHV infections and to control latent (asymptomatic) infections in Glossina spp. and thereby control SGHVs in insect production facilities. Electronic supplementary material The online version of this article (10.1186/s12866-018-1298-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Henry M Kariithi
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O Box 57811, Loresho, Nairobi, Kenya
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Just M Vlak
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University, 6708, PB, Wageningen, The Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
26
|
Edwards CH, Baird J, Zinser E, Woods DJ, Shaw S, Campbell EM, Bowman AS. RNA interference in the cat flea, Ctenocephalides felis: Approaches for sustained gene knockdown and evidence of involvement of Dicer-2 and Argonaute2. Int J Parasitol 2018; 48:993-1002. [PMID: 30261185 PMCID: PMC6237673 DOI: 10.1016/j.ijpara.2018.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 02/02/2023]
Abstract
Effective RNA interference (RNAi) methods have been developed in many pest species, enabling exploration of gene function. Until now RNAi had not been attempted in the cat flea, Ctenocephalides felis, although the development of RNAi approaches would open up potential avenues for control of this important pest. This study aimed to establish if an RNAi response occurs in adult C. felis upon exposure to double-stranded RNA (dsRNA), which administration methods for dsRNA delivery could bring about effective gene knockdown and to investigate dynamics of any RNAi response. Knockdown of 80% of GSTσ was achieved by intrahaemoceolic microinjection of dsGSTσ but this invasive technique was associated with relatively high mortality rates. Immersing C. felis in dsGSTσ or dsDicer-2 overnight resulted in 65% knockdown of GSTσ or 60% of Dicer-2, respectively, and the degree of knockdown was not improved by increasing the dsRNA concentration in the bathing solution. Unexpectedly, the greatest degree of knockdown was achieved with the continuous administration of dsRNA in whole blood via a membrane feeding system, resulting in 96% knockdown of GSTσ within 2 days and sustained up to, at least, 7 days. Thus, unlike in many other species, the gut nucleases do not impair the RNAi response to ingested dsRNA in C. felis. A modest, but significant, upregulation of Dicer-2 and Argonaute2 was detectable 3 h after exposure to exogenous dsRNA, implicating the short-interfering RNA pathway. To our knowledge this study represents the first demonstration of experimentally induced RNAi in the cat flea as well as giving insight into how the gene knockdown response progresses.
Collapse
Affiliation(s)
- Catriona H Edwards
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - John Baird
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Erich Zinser
- Zoetis Inc, 333 Portage Street, Kalamazoo, Michigan 49007, USA
| | - Debra J Woods
- Zoetis Inc, 333 Portage Street, Kalamazoo, Michigan 49007, USA
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, 23 St. Machar Drive, Old Aberdeen AB24 3RY, UK
| | - Ewan M Campbell
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Alan S Bowman
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
27
|
Gosal SS, Wani SH. RNAi for Resistance Against Biotic Stresses in Crop Plants. BIOTECHNOLOGIES OF CROP IMPROVEMENT, VOLUME 2 2018. [PMCID: PMC7123769 DOI: 10.1007/978-3-319-90650-8_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA interference (RNAi)-based gene silencing has become one of the most successful strategies in not only identifying gene function but also in improving agronomical traits of crops by silencing genes of different pathogens/pests and also plant genes for improvement of desired trait. The conserved nature of RNAi pathway across different organisms increases its applicability in various basic and applied fields. Here we attempt to summarize the knowledge generated on the fundamental mechanisms of RNAi over the years, with emphasis on insects and plant-parasitic nematodes (PPNs). This chapter also reviews the rich history of RNAi research, gene regulation by small RNAs across different organisms, and application potential of RNAi for generating transgenic plants resistant to major pests. But, there are some limitations too which restrict wider applications of this technology to its full potential. Further refinement of this technology in terms of resolving these shortcomings constitutes one of the thrust areas in present RNAi research. Nevertheless, its application especially in breeding agricultural crops resistant against biotic stresses will certainly offer the possible solutions for some of the breeding objectives which are otherwise unattainable.
Collapse
Affiliation(s)
- Satbir Singh Gosal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir India
| |
Collapse
|
28
|
Ghosh SKB, Hunter WB, Park AL, Gundersen-Rindal DE. Double-stranded RNA Oral Delivery Methods to Induce RNA Interference in Phloem and Plant-sap-feeding Hemipteran Insects. J Vis Exp 2018:57390. [PMID: 29782023 PMCID: PMC6101104 DOI: 10.3791/57390] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Phloem and plant sap feeding insects invade the integrity of crops and fruits to retrieve nutrients, in the process damaging food crops. Hemipteran insects account for a number of economically substantial pests of plants that cause damage to crops by feeding on phloem sap. The brown marmorated stink bug (BMSB), Halyomorpha halys (Heteroptera: Pentatomidae) and the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae) are hemipteran insect pests introduced in North America, where they are an invasive agricultural pest of high-value specialty, row, and staple crops and citrus fruits, as well as a nuisance pest when they aggregate indoors. Insecticide resistance in many species has led to the development of alternate methods of pest management strategies. Double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) is a gene silencing mechanism for functional genomic studies that has potential applications as a tool for the management of insect pests. Exogenously synthesized dsRNA or small interfering RNA (siRNA) can trigger highly efficient gene silencing through the degradation of endogenous RNA, which is homologous to that presented. Effective and environmental use of RNAi as molecular biopesticides for biocontrol of hemipteran insects requires the in vivo delivery of dsRNAs through feeding. Here we demonstrate methods for delivery of dsRNA to insects: loading of dsRNA into green beans by immersion, and absorbing of gene-specific dsRNA with oral delivery through ingestion. We have also outlined non-transgenic plant delivery approaches using foliar sprays, root drench, trunk injections as well as clay granules, all of which may be essential for sustained release of dsRNA. Efficient delivery by orally ingested dsRNA was confirmed as an effective dosage to induce a significant decrease in expression of targeted genes, such as juvenile hormone acid O-methyltransferase (JHAMT) and vitellogenin (Vg). These innovative methods represent strategies for delivery of dsRNA to use in crop protection and overcome environmental challenges for pest management.
Collapse
Affiliation(s)
- Saikat Kumar B Ghosh
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, United States Department of Agriculture
| | - Wayne B Hunter
- Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture
| | - Alexis L Park
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, United States Department of Agriculture
| | - Dawn E Gundersen-Rindal
- Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, United States Department of Agriculture;
| |
Collapse
|
29
|
Reduction in Musca domestica fecundity by dsRNA-mediated gene knockdown. PLoS One 2018; 13:e0187353. [PMID: 29342168 PMCID: PMC5771563 DOI: 10.1371/journal.pone.0187353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/18/2017] [Indexed: 11/20/2022] Open
Abstract
House flies (Musca domestica) are worldwide agricultural pests with estimated control costs at $375 million annually in the U.S. Non-target effects and widespread resistance challenge the efficacy of traditional chemical control. Double stranded RNA (dsRNA) has been suggested as a biopesticide for M. domestica but a phenotypic response due to the induction of the RNAi pathway has not been demonstrated in adults. In this study female house flies were injected with dsRNA targeting actin-5C or ribosomal protein (RP) transcripts RPL26 and RPS6. Ovaries showed highly reduced provisioning and clutch reductions of 94-99% in RP dsRNA treated flies but not in actin-5C or GFP treated flies. Gene expression levels were significantly and specifically reduced in dsRNA injected groups but remained unchanged in the control dsGFP treated group. Furthermore, injections with an Aedes aegypti conspecific dsRNA designed against RPS6 did not impact fecundity, demonstrating species specificity of the RNAi response. Analysis of M. domestica tissues following RPS6 dsRNA injection showed significant reduction of transcript levels in the head, thorax, and abdomen but increased expression in ovarian tissues. This study demonstrates that exogenous dsRNA is specifically effective and has potential efficacy as a highly specific biocontrol intervention in adult house flies. Further work is required to develop effective methods for delivery of dsRNA to adult flies.
Collapse
|
30
|
Powell M, Pyati P, Cao M, Bell H, Gatehouse JA, Fitches E. Insecticidal effects of dsRNA targeting the Diap1 gene in dipteran pests. Sci Rep 2017; 7:15147. [PMID: 29123201 PMCID: PMC5680328 DOI: 10.1038/s41598-017-15534-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
The Drosophila melanogaster (fruit fly) gene Diap1 encodes a protein referred to as DIAP1 (D rosophila Inhibitor of Apoptosis Protein 1) that acts to supress apoptosis in "normal" cells in the fly. In this study we investigate the use of RNA interference (RNAi) to control two dipteran pests, Musca domestica and Delia radicum, by disrupting the control of apoptosis. Larval injections of 125-500 ng of Diap1 dsRNA resulted in dose-dependent mortality which was shown to be attributable to down-regulation of target mRNA. Insects injected with Diap1 dsRNA have approx. 1.5-2-fold higher levels of caspase activity than controls 24 hours post injection, providing biochemical evidence that inhibition of apoptotic activity by the Diap1 gene product has been decreased. By contrast adults were insensitive to injected dsRNA. Oral delivery failed to induce RNAi effects and we suggest this is attributable to degradation of ingested dsRNA by intra and extracellular RNAses. Non-target effects were demonstrated via mortality and down-regulation of Diap1 mRNA levels in M. domestica larvae injected with D. radicum Diap1 dsRNA, despite the absence of 21 bp identical sequence regions in the dsRNA. Here we show that identical 15 bp regions in dsRNA are sufficient to trigger non-target RNAi effects.
Collapse
Affiliation(s)
- Michelle Powell
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, United Kingdom
| | - Prashant Pyati
- School of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Min Cao
- School of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Howard Bell
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, United Kingdom
| | - John A Gatehouse
- School of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom
| | - Elaine Fitches
- School of Biosciences, Durham University, South Road, Durham, DH1 3LE, United Kingdom.
- Fera Science Ltd., Sand Hutton, York, YO41 1LZ, United Kingdom.
| |
Collapse
|
31
|
Masood M, Herberstein ME, Raftos DA, Nair SV. Double stranded RNA is processed differently in two oyster species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:285-291. [PMID: 28687485 DOI: 10.1016/j.dci.2017.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/07/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Ostreid herpes virus causes serious disease in the Pacific oyster (Crassostrea gigas), but not in the Sydney Rock Oyster (Saccostrea glomerata). To investigate differences in disease progression, we injected oysters with double stranded RNA (dsRNA). dsRNA is known to mimic viral infection, and can evoke immune responses when Toll-like receptors detect the dsRNA, leading to the production of type 1 interferon and inflammation cytokines. The uptake and processing of dsRNA was tracked in gill and mantle tissue of Crassostrea gigas and Saccostrea glomerata after injection of fluorochrome labelled poly (I:C) dsRNA. The two species showed significant differences in tissue uptake and clearance, and differences in immune responses confirmed by real time PCR. These results showed that S. glomerata was more efficient in processing dsRNA than C. gigas, and that the gill tissue is an important site of dsRNA processing and response.
Collapse
Affiliation(s)
- Muhammad Masood
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia.
| | - Marie E Herberstein
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - David A Raftos
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Sham V Nair
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| |
Collapse
|
32
|
Characterization and RNAi-mediated knockdown of Chitin Synthase A in the potato tuber moth, Phthorimaea operculella. Sci Rep 2017; 7:9502. [PMID: 28842624 PMCID: PMC5573318 DOI: 10.1038/s41598-017-09858-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023] Open
Abstract
Chitin is a major component of insect exoskeleton, tracheal system and gut where it is synthesized by chitin synthase (CHS) enzymes. In this paper, we report the isolation and RNAi of chitin synthase A (PhoCHSA) from the potato tuber moth Phthorimaea operculella. The full-length cDNA of PhoCHSA is 5,627 bp with 4,689 bp open reading frame coding for 1,563 amino acids. Structural analysis of conceptual amino acid translation showed three distinct regions found in all known insect CHS proteins; N-terminus region having 9 transmembrane helices, middle catalytic region containing several conserved domains identified in insect CHS enzymes, and C-terminus region containing seven transmembrane spans. Phylogenetic analysis showed that PhoCHSA protein clustered with CHSA enzymes identified from insects from different insect orders. RNAi targeting three different regions of the gene showed different efficacy against potato tuber moth larvae and dsRNA targeting the 5′ region has the highest efficacy. Results were verified by qRT-PCR which showed that dsRNA targeting the 5′ region caused the highest reduction in PhoCHSA mRNA level. Our results show the importance of selecting the RNAi target region and that chitin synthase A can be a suitable RNAi target for the potato tuber moth control.
Collapse
|
33
|
Payton L, Perrigault M, Bourdineaud JP, Marcel A, Massabuau JC, Tran D. Trojan Horse Strategy for Non-invasive Interference of Clock Gene in the Oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:361-371. [PMID: 28674930 DOI: 10.1007/s10126-017-9761-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
RNA interference is a powerful method to inhibit specific gene expression. Recently, silencing target genes by feeding has been successfully carried out in nematodes, insects, and small aquatic organisms. A non-invasive feeding-based RNA interference is reported here for the first time in a mollusk bivalve, the pacific oyster Crassostrea gigas. In this Trojan horse strategy, the unicellular alga Heterocapsa triquetra is the food supply used as a vector to feed oysters with Escherichia coli strain HT115 engineered to express the double-stranded RNA targeting gene. To test the efficacy of the method, the Clock gene, a central gene of the circadian clock, was targeted for knockout. Results demonstrated specific and systemic efficiency of the Trojan horse strategy in reducing Clock mRNA abundance. Consequences of Clock disruption were observed in Clock-related genes (Bmal, Tim1, Per, Cry1, Cry2, Rev.-erb, and Ror) and triploid oysters were more sensitive than diploid to the interference. This non-invasive approach shows an involvement of the circadian clock in oyster bioaccumulation of toxins produced by the harmful alga Alexandrium minutum.
Collapse
Affiliation(s)
- Laura Payton
- EPOC, UMR 5805, University of Bordeaux, F-33120, Arcachon, France
- CNRS, EPOC, UMR 5805, Place du Dr Peyneau, 33120, Arcachon, France
| | - Mickael Perrigault
- EPOC, UMR 5805, University of Bordeaux, F-33120, Arcachon, France
- CNRS, EPOC, UMR 5805, Place du Dr Peyneau, 33120, Arcachon, France
| | - Jean-Paul Bourdineaud
- CNRS, UMR 5234, Fundamental Microbiology and Pathogenicity Laboratory, European Institute of Chemistry and Biology, University of Bordeaux, 2, rue Robert Escarpit, 33607, Pessac, France
| | - Anjara Marcel
- EPOC, UMR 5805, University of Bordeaux, F-33120, Arcachon, France
| | - Jean-Charles Massabuau
- EPOC, UMR 5805, University of Bordeaux, F-33120, Arcachon, France
- CNRS, EPOC, UMR 5805, Place du Dr Peyneau, 33120, Arcachon, France
| | - Damien Tran
- EPOC, UMR 5805, University of Bordeaux, F-33120, Arcachon, France.
- CNRS, EPOC, UMR 5805, Place du Dr Peyneau, 33120, Arcachon, France.
| |
Collapse
|
34
|
Mamta B, Rajam MV. RNAi technology: a new platform for crop pest control. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:487-501. [PMID: 28878489 PMCID: PMC5567704 DOI: 10.1007/s12298-017-0443-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/10/2017] [Accepted: 04/17/2017] [Indexed: 05/15/2023]
Abstract
The insect pests are big threat in meeting the food demands for future generation. The present pest control strategies, including the existing transgenic approaches show certain limitations and are not completely successful in limiting the insect pests. However, the sequence-specific gene silencing via RNA interference (RNAi) holds a great promise for effective management of agricultural pests. RNAi is naturally occurring conserved process responsible for gene regulation and defense against pathogens. The efficacy of RNAi varies among different insect orders and also depends upon various factors, including the target gene selection, method of dsRNAs delivery, expression of dsRNAs and presence of off-target effects. RNAi-mediated silencing of different insect genes involved in various physiological processes was found to be detrimental to insects growth, development and survival. In this article, we have reviewed the potential of RNAi-based strategies for effective management of insect pests. We have also discussed the various parameters, which are to be considered for host-induced RNAi-mediated control of insect pests without producing any effect on non-target organisms and environment.
Collapse
Affiliation(s)
- B. Mamta
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| | - M. V. Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021 India
| |
Collapse
|
35
|
Killiny N, Kishk A. Delivery of dsRNA through topical feeding for RNA interference in the citrus sap piercing-sucking hemipteran, Diaphorina citri. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 95. [PMID: 28585706 DOI: 10.1002/arch.21394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA interference (RNAi) is a powerful means to study functional genomics in insects. The delivery of dsRNA is a challenging step in the development of RNAi assay. Here, we describe a new delivery method to increase the effectiveness of RNAi in the Asian citrus psyllid Diaphorina citri. Bromophenol blue droplets were topically applied to fifth instar nymphs and adults on the ventral side of the thorax between the three pairs of legs. In addition to video recordings that showed sucking of the bromophenol blue by the stylets, dissected guts turned blue indicating that the uptake was through feeding. Thus, we called the method topical feeding. We targeted the abnormal wing disc gene (awd), also called nucleoside diphosphate kinase (NDPK), as a reporter gene to prove the uptake of dsRNA via this method of delivery. Our results showed that dsRNA-awd caused reduction of awd expression and nymph mortality. Survival and lifespan of adults emerged from treated nymphs and treated adults were affected. Silencing awd caused wing malformation in the adults emerged from treated nymphs. Topical feeding as a delivery of dsRNA is highly efficient for both nymphs and adults. The described method could be used to increase the efficiency of RNAi in D. citri and other sap piercing-sucking hemipterans.
Collapse
Affiliation(s)
- Nabil Killiny
- Department of Plant Pathology, IFAS, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Abdelaziz Kishk
- Department of Plant Pathology, IFAS, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
36
|
Ghosh SKB, Hunter WB, Park AL, Gundersen-Rindal DE. Double strand RNA delivery system for plant-sap-feeding insects. PLoS One 2017; 12:e0171861. [PMID: 28182760 PMCID: PMC5300277 DOI: 10.1371/journal.pone.0171861] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/26/2017] [Indexed: 11/19/2022] Open
Abstract
Double-stranded RNA (dsRNA)-mediated gene silencing, also known as RNA interference (RNAi), has been a breakthrough technology for functional genomic studies and represents a potential tool for the management of insect pests. Since the inception of RNAi numerous studies documented successful introduction of exogenously synthesized dsRNA or siRNA into an organism triggering highly efficient gene silencing through the degradation of endogenous RNA homologous to the presented siRNA. Managing hemipteran insect pests, especially Halyomorpha halys (Stål) (Heteroptera: Pentatomidae), the brown marmorated stink bug (BMSB), is critical to food productivity. BMSB was recently introduced into North America where it is both an invasive agricultural pest of high value specialty, row, and staple crops, as well as an indoor nuisance pest. RNAi technology may serve as a viable tool to manage this voracious pest, but delivery of dsRNA to piercing-sucking insects has posed a tremendous challenge. Effective and practical use of RNAi as molecular biopesticides for biocontrol of insects like BMSB in the environment requires that dsRNAs be delivered in vivo through ingestion. Therefore, the key challenge for molecular biologists in developing insect-specific molecular biopesticides is to find effective and reliable methods for practical delivery of stable dsRNAs such as through oral ingestion. Here demonstrated is a reliable delivery system of effective insect-specific dsRNAs through oral feeding through a new delivery system to induce a significant decrease in expression of targeted genes such as JHAMT and Vg. This state-of-the-art delivery method overcomes environmental delivery challenges so that RNAi is induced through insect-specific dsRNAs orally delivered to hemipteran and other insect pests.
Collapse
Affiliation(s)
- Saikat Kumar B. Ghosh
- United States Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
| | - Wayne B. Hunter
- United States Department of Agriculture, Agricultural Research Service, Horticultural Research Laboratory, Fort Pierce, Florida, United States of America
| | - Alexis L. Park
- United States Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
| | - Dawn E. Gundersen-Rindal
- United States Department of Agriculture, Agricultural Research Service, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
37
|
Joga MR, Zotti MJ, Smagghe G, Christiaens O. RNAi Efficiency, Systemic Properties, and Novel Delivery Methods for Pest Insect Control: What We Know So Far. Front Physiol 2016; 7:553. [PMID: 27909411 PMCID: PMC5112363 DOI: 10.3389/fphys.2016.00553] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023] Open
Abstract
In recent years, the research on the potential of using RNA interference (RNAi) to suppress crop pests has made an outstanding growth. However, given the variability of RNAi efficiency that is observed in many insects, the development of novel approaches toward insect pest management using RNAi requires first to unravel factors behind the efficiency of dsRNA-mediated gene silencing. In this review, we explore essential implications and possibilities to increase RNAi efficiency by delivery of dsRNA through non-transformative methods. We discuss factors influencing the RNAi mechanism in insects and systemic properties of dsRNA. Finally, novel strategies to deliver dsRNA are discussed, including delivery by symbionts, plant viruses, trunk injections, root soaking, and transplastomic plants.
Collapse
Affiliation(s)
- Mallikarjuna R Joga
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| | - Moises J Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas Pelotas, Brazil
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University Gent, Belgium
| |
Collapse
|
38
|
Chikate YR, Dawkar VV, Barbole RS, Tilak PV, Gupta VS, Giri AP. RNAi of selected candidate genes interrupts growth and development of Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 133:44-51. [PMID: 27742360 DOI: 10.1016/j.pestbp.2016.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/10/2016] [Accepted: 03/16/2016] [Indexed: 06/06/2023]
Abstract
Helicoverpa armigera is one of the major crop pests and is less amenable to current pest control approaches. RNA interference (RNAi) is emerging as a potent arsenal for the insect pest control over current methods. Here, we examined the effect on growth and development in H. armigera by targeting various enzymes/proteins such as proteases like trypsins (HaTry2, 3, 4 and 6), chymotrypsin (HaChy4) and cysteine protease like cathepsin (HaCATHL); glutathione S-transferases (HaGST1a, 6 and 8); esterases (HaAce4, HaJHE); catalase (HaCAT); super-oxide-dismutase (HaCu/ZnSOD); fatty acid binding protein (HaFabp) and chitin deacetylase (HaCda5b) through dsRNA approach. Significant downregulation of cognate mRNA expression and reduced activity of trypsin and GST-like enzyme were evident upon feeding candidate dsRNAs to the larvae. Among these, the highest mortality was observed in HaAce4 dsRNA fed larvae followed by HaJHE; HaCAT; HaCuZnSOD; HaFabp and HaTry3 whereas remaining ones showed relatively lower mortality. Furthermore, the dsRNA fed larvae showed significant reduction in the larval mass and abnormalities at the different stages of H. armigera development compared to their control diets. For example, malformed larvae, pupae and moth at a dose of 60μg/day were evident in high number of individual insects fed on dsRNA containing diets. Moreover, the growth and development of insects and moths were retarded in dsRNA fed larvae. These findings might provide potential new candidates for designing effective dsRNA as pesticide in crop protection.
Collapse
Affiliation(s)
- Yojana R Chikate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India
| | - Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India
| | - Ranjit S Barbole
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India
| | - Priyadarshini V Tilak
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, (MS), India.
| |
Collapse
|
39
|
Zhang YY, Guo XL, Liu YL, Liu F, Wang HF, Guo XQ, Xu BH. Functional and mutational analyses of an omega-class glutathione S-transferase (GSTO2) that is required for reducing oxidative damage in Apis cerana cerana. INSECT MOLECULAR BIOLOGY 2016; 25:470-486. [PMID: 27170478 DOI: 10.1111/imb.12236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Glutathione S-transferases perform a variety of vital functions, particularly in reducing oxidative damage. Here, we investigated the expression patterns of Apis cerana cerana omega-class glutathione S-transferase 2 (AccGSTO2) under various stresses and explored its connection with antioxidant defences. We found that AccGSTO2 knockdown by RNA interference triggered increased mortality in Ap. cerana cerana, and immunohistochemistry revealed significantly decreased AccGSTO2 expression, particularly in the midgut and fat body. Further analyses indicated that AccGSTO2 knockdown resulted in decreases in catalase and glutathione reductase activities, ascorbate content and the ratio of reduced to oxidized glutathione, and increases in H2 O2 , malondialdehyde and carbonyl contents. We also analysed the transcripts of other antioxidant genes and found that many genes were down-regulated in the AccGSTO2 knockdown samples, revealing that AccGSTO2 may be indispensable for attaining a normal lifespan by enhancing cellular oxidative resistance. In addition, the roles of cysteine residues in AccGSTO2 were explored using site-directed mutagenesis. Mutants of Cys(28) and Cys(124) significantly affected the enzyme and antioxidant activities of AccGSTO2, which may be attributed to the changes in the spatial structures of mutants as determined by homology modelling. In summary, these observations provide novel insight into the structural and functional characteristics of GSTOs.
Collapse
Affiliation(s)
- Y-Y Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong, China
| | - X-L Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Y-L Liu
- School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong, China
| | - F Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - H-F Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - X-Q Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - B-H Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
40
|
Estep AS, Sanscrainte ND, Becnel JJ. DsRNA-mediated targeting of ribosomal transcripts RPS6 and RPL26 induces long-lasting and significant reductions in fecundity of the vector Aedes aegypti. JOURNAL OF INSECT PHYSIOLOGY 2016; 90:17-26. [PMID: 27180677 DOI: 10.1016/j.jinsphys.2016.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Ribosomal transcripts produce critical proteins that are involved in most cellular production processes. Targeting ribosomal transcripts has produced mortality in mites and ticks but the effect of ribosomal transcript knockdown has not been thoroughly examined in mosquitoes. We examine the effects of triggers targeting four ribosomal proteins (RP) transcripts. Although no significant mortality was observed after dsRNA microinjection and subsequent blood feeding, significant contrasts were observed on fecundity. Triggers targeting RPS6 and RPL26 effectively reduced gene expression but more importantly, reduced reproductive output by more than 96% and 91% at the first oviposition while triggers targeting RPL1 and RPS2 did not cause a reduction although gene expression was reduced. Significantly reduced fecundity continued through a second oviposition cycle in dsRPS6 and dsRPL26 cohorts, although the effect was not as strong. Relative gene expression levels confirmed specific transcript knockdown up to 20days post-injection in mosquitoes that did not oviposit or produced reduced clutch sizes. Dissections at 36h post-blood meal indicated defects in oocyte provisioning. The strong phenotype produced by dsRPS6 allowed us to examine the effects in various tissues as well as the dose response, trigger format, delivery method and trigger specificity in Aedes aegypti. Strong knockdown was observed in the abdomen and the ovaries. Greater than 50ng of dsRPS6 significantly reduced fecundity but not when delivered in a sugar meal or as an siRNA. Similar bioassays with mutated dsRPS6 triggers indicates that up to three mismatches per possible siRNA are still effective in reducing fecundity. These studies indicate that while active and effective triggers can be developed for vector species, the lack of an efficient delivery method is the biggest barrier to use as a potential control method.
Collapse
Affiliation(s)
- A S Estep
- Navy Entomology Center of Excellence, Testing & Evaluation Department, CMAVE Detachment, Naval Air Station, Jacksonville, Jacksonville, FL 32211, United States; Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Drive, Gainesville, FL 32608, United States.
| | - N D Sanscrainte
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Drive, Gainesville, FL 32608, United States
| | - J J Becnel
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, 1700 SW 23rd Drive, Gainesville, FL 32608, United States
| |
Collapse
|
41
|
San Miguel K, Scott JG. The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. PEST MANAGEMENT SCIENCE 2016; 72:801-9. [PMID: 26097110 DOI: 10.1002/ps.4056] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND RNAi is a powerful tool used to study gene function. It also has been hypothesized to be a promising new method for control of insect pests on crops, although the perceived instability of dsRNA in the environment has constrained thinking about the options for this new type of pest control. RESULTS We confirmed that foliar application of Colorado potato beetle dsRNA actin is highly effective for control, demonstrated that treatment with actin-dsRNA protects potato plants for at least 28 days under greenhouse conditions and found that the dsRNA is not readily removed by water once dried on the leaves. CONCLUSION These new results suggest that foliar application of dsRNA could be a valuable control strategy for some pests. Technological aspects of spraying dsRNA that need to be considered in the future are discussed.
Collapse
Affiliation(s)
- Keri San Miguel
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Jeffrey G Scott
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
42
|
Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference. Sci Rep 2016; 6:22587. [PMID: 26931800 PMCID: PMC4773866 DOI: 10.1038/srep22587] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/17/2016] [Indexed: 11/08/2022] Open
Abstract
RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest.
Collapse
|
43
|
Rebijith KB, Asokan R, Hande HR, Kumar NKK, Krishna V, Vinutha J, Bakthavatsalam N. RNA Interference of Odorant-Binding Protein 2 (OBP2) of the Cotton Aphid, Aphis gossypii (Glover), Resulted in Altered Electrophysiological Responses. Appl Biochem Biotechnol 2015; 178:251-66. [DOI: 10.1007/s12010-015-1869-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/23/2015] [Indexed: 01/18/2023]
|
44
|
Badillo-Vargas IE, Rotenberg D, Schneweis BA, Whitfield AE. RNA interference tools for the western flower thrips, Frankliniella occidentalis. JOURNAL OF INSECT PHYSIOLOGY 2015; 76:36-46. [PMID: 25796097 DOI: 10.1016/j.jinsphys.2015.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 05/12/2023]
Abstract
The insect order Thysanoptera is exclusively comprised of small insects commonly known as thrips. The western flower thrips, Frankliniella occidentalis, is an economically important pest amongst thysanopterans due to extensive feeding damage and tospovirus transmission to hundreds of plant species worldwide. Geographically-distinct populations of F. occidentalis have developed resistance against many types of traditional chemical insecticides, and as such, management of thrips and tospoviruses are a persistent challenge in agriculture. Molecular methods for defining the role(s) of specific genes in thrips-tospovirus interactions and for assessing their potential as gene targets in thrips management strategies is currently lacking. The goal of this work was to develop an RNA interference (RNAi) tool that enables functional genomic assays and to evaluate RNAi for its potential as a biologically-based approach for controlling F. occidentalis. Using a microinjection system, we delivered double-stranded RNA (dsRNA) directly to the hemocoel of female thrips to target the vacuolar ATP synthase subunit B (V-ATPase-B) gene of F. occidentalis. Gene expression analysis using real-time quantitative reverse transcriptase-PCR (qRT-PCR) revealed significant reductions of V-ATPase-B transcripts at 2 and 3 days post-injection (dpi) with dsRNA of V-ATPase-B compared to injection with dsRNA of GFP. Furthermore, the effect of knockdown of the V-ATPase-B gene in females at these two time points was mirrored by the decreased abundance of V-ATPase-B protein as determined by quantitative analysis of Western blots. Reduction in V-ATPase-B expression in thrips resulted in increased female mortality and reduced fertility, i.e., number of viable offspring produced. Survivorship decreased significantly by six dpi compared to the dsRNA-GFP control group, which continued decreasing significantly until the end of the bioassay. Surviving female thrips injected with dsRNA-V-ATPase-B produced significantly fewer offspring compared to those in the dsRNA-GFP control group. Our findings indicate that an RNAi-based strategy to study gene function in thrips is feasible, can result in quantifiable phenotypes, and provides a much-needed tool for investigating the molecular mechanisms of thrips-tospovirus interactions. To our knowledge, this represents the first report of RNAi for any member of the insect order Thysanoptera and demonstrates the potential for translational research in the area of thrips pest control.
Collapse
Affiliation(s)
| | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| | - Brandi A Schneweis
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Anna E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
45
|
Facilitation of rice stripe virus accumulation in the insect vector by Himetobi P virus VP1. Viruses 2015; 7:1492-504. [PMID: 25807055 PMCID: PMC4379582 DOI: 10.3390/v7031492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 03/03/2015] [Accepted: 03/17/2015] [Indexed: 11/17/2022] Open
Abstract
The small brown planthopper (SBPH) is the main vector for rice stripe virus (RSV), which causes serious rice stripe disease in East Asia. To characterize the virus-vector interactions, the SBPH cDNA library was screened with RSV ribonucleoprotein (RNP) as bait using a GAL4-based yeast two-hybrid system. The interaction between RSV-RNP and the Himetobi P virus (HiPV, an insect picorna-like virus) VP1 protein was identified. The relationships between HiPV and RSV in SBPH were further investigated, and the results showed that the titer of RSV was commonly higher in single insect that exhibited more VP1 expression. After the VP1 gene was repressed by RNA silencing, the accumulation of RSV decreased significantly in the insect, whereas the virus acquisition ability of SBPH was unaffected, which suggests that HiPV VP1 potentially facilitates the accumulation of RSV in SBPH.
Collapse
|
46
|
Taracena ML, Oliveira PL, Almendares O, Umaña C, Lowenberger C, Dotson EM, Paiva-Silva GO, Pennington PM. Genetically modifying the insect gut microbiota to control Chagas disease vectors through systemic RNAi. PLoS Negl Trop Dis 2015; 9:e0003358. [PMID: 25675102 PMCID: PMC4326462 DOI: 10.1371/journal.pntd.0003358] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022] Open
Abstract
Technologies based on RNA interference may be used for insect control. Sustainable strategies are needed to control vectors of Chagas disease such as Rhodnius prolixus. The insect microbiota can be modified to deliver molecules to the gut. Here, Escherichia coli HT115(DE3) expressing dsRNA for the Rhodnius heme-binding protein (RHBP) and for catalase (CAT) were fed to nymphs and adult triatomine stages. RHBP is an egg protein and CAT is an antioxidant enzyme expressed in all tissues by all developmental stages. The RNA interference effect was systemic and temporal. Concentrations of E. coli HT115(DE3) above 3.35 × 107 CFU/mL produced a significant RHBP and CAT gene knockdown in nymphs and adults. RHBP expression in the fat body was reduced by 99% three days after feeding, returning to normal levels 10 days after feeding. CAT expression was reduced by 99% and 96% in the ovary and the posterior midgut, respectively, five days after ingestion. Mortality rates increased by 24-30% in first instars fed RHBP and CAT bacteria. Molting rates were reduced by 100% in first instars and 80% in third instars fed bacteria producing RHBP or CAT dsRNA. Oviposition was reduced by 43% (RHBP) and 84% (CAT). Embryogenesis was arrested in 16% (RHBP) and 20% (CAT) of laid eggs. Feeding females 105 CFU/mL of the natural symbiont, Rhodococcus rhodnii, transformed to express RHBP-specific hairpin RNA reduced RHBP expression by 89% and reduced oviposition. Modifying the insect microbiota to induce systemic RNAi in R. prolixus may result in a paratransgenic strategy for sustainable vector control. Rhodnius prolixus is an important vector of Chagas disease. The development of insecticide resistance in triatomines has raised the need for new control methods. We propose, as a proof-of-concept, the use of symbiotic bacteria expressing dsRNA in a paratransgenic approach to control vector-borne disease. We first show that ingestion of E. coli, producing long dsRNA specific for R. prolixus genes, can produce systemic RNAi in this insect. By targeting genes with antioxidant function (RHBP and catalase), we show that RNAi effects on nymphs and adult females are systemic and temporal, affecting development and fecundity. Finally, we show that the natural vector symbiont, R. rhodnii, also can be modified to induce systemic RNA interference. The E. coli system can serve to screen potential targets for development of a symbiont-based vector control product that then can be transferred to R. rhodnii.
Collapse
Affiliation(s)
- Mabel L. Taracena
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brasil
- eCentro de Estudios en Salud. Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brasil
| | - Olivia Almendares
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, Georgia, United States of America
| | - Claudia Umaña
- eCentro de Estudios en Salud. Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ellen M. Dotson
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, Georgia, United States of America
| | - Gabriela O. Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brasil
- * E-mail: (GOPS); (PMP)
| | - Pamela M. Pennington
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (GOPS); (PMP)
| |
Collapse
|
47
|
Wan PJ, Jia S, Li N, Fan JM, Li GQ. A Halloween gene shadow is a potential target for RNA-interference-based pest management in the small brown planthopper Laodelphax striatellus. PEST MANAGEMENT SCIENCE 2015; 71:199-206. [PMID: 24648012 DOI: 10.1002/ps.3780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/05/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Laodelphax striatellus is an economically important rice pest in China. Ecdysteroid hormone 20-hydroxyecdysone regulates insect development and reproduction. The cytochrome P450 monooxygenase Shadow (Sad) plays a critical role in ecdysteroidogenesis. Here, tests were conducted to establish whether Lssad was a potential target gene for RNA-interference-based management of L. striatellus. RESULTS Lssad was cloned and characterised. LsSad had Helix-C, Helix-I, Helix-K, PERF and haem-binding motifs. Lssad is expressed at a higher level in the thorax, where prothoracic glands are located, compared with the level in the head or abdomen. It showed two expression peaks in day 2 and day 4-5 fourth-instar nymphs, and two troughs in day 1 fourth and fifth instars. Oral delivery of double-stranded RNA (dsRNA) of Lssad at the nymph stage successfully knocked down the expression of the target gene, reduced the expression level of ecdysone receptor (LsEcR) gene, caused nymphal lethality and delayed development in a dose-dependent manner. Ingestion of 20-hydroxyecdysone in Lssad-dsRNA-exposed nymphs did not increase Lssad expression level, but almost completely rescued the LsEcR mRNA level and relieved the negative effects on survival and development. CONCLUSIONS The ecdysteroidogenic pathway is conserved in L. striatellus. Lssad can serve as a possible target for dsRNA-based pesticides for planthopper control.
Collapse
Affiliation(s)
- Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
48
|
Tsetse GmmSRPN10 has anti-complement activity and is important for successful establishment of trypanosome infections in the fly midgut. PLoS Negl Trop Dis 2015; 9:e3448. [PMID: 25569180 PMCID: PMC4287558 DOI: 10.1371/journal.pntd.0003448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/01/2014] [Indexed: 11/19/2022] Open
Abstract
The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2–4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission. Blood feeding arthropods are exploited by blood borne parasites as vectors of transmission. Trypanosoma brucei, a salivarian trypanosome species, must survive, migrate and differentiate in the tsetse until they become mature, mammalian-infective forms within the fly salivary glands. This constitutes a significant challenge to trypanosomes as the major parasite form colonising the tsetse midgut is sensitive to lysis by blood complement, which is introduced into the tsetse gut whenever the fly feeds. In this study, we show that T. brucei may avoid being eliminated by bloodmeal complement by benefitting from a complement-inhibiting enzyme secreted by the fly itself. We showed that this serine protease inhibitor (serpin) enzyme, Serpin10, can inactivate triggers of the complement cascade, protect tsetse-infective trypanosomes from complement lysis, and is important for trypanosome establishment in the tsetse midgut. Taken together, we propose that GmmSRPN10 may be part of a repertoire of complement-inhibiting proteins secreted by tsetse that are utilized by T. brucei to evade complement lysis in the tsetse midgut.
Collapse
|
49
|
Nandety RS, Kuo YW, Nouri S, Falk BW. Emerging strategies for RNA interference (RNAi) applications in insects. Bioengineered 2014; 6:8-19. [PMID: 25424593 PMCID: PMC4601220 DOI: 10.4161/21655979.2014.979701] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/29/2014] [Accepted: 10/14/2014] [Indexed: 11/19/2022] Open
Abstract
RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.
Collapse
Affiliation(s)
| | - Yen-Wen Kuo
- Department of Plant Pathology; University of California; Davis, CA USA
| | - Shahideh Nouri
- Department of Plant Pathology; University of California; Davis, CA USA
| | - Bryce W Falk
- Department of Plant Pathology; University of California; Davis, CA USA
| |
Collapse
|
50
|
Asokan R, Rebijith KB, Roopa HK, Kumar NKK. Non-Invasive Delivery of dsGST Is Lethal to the Sweet Potato Whitefly, Bemisia tabaci (G.) (Hemiptera: Aleyrodidae). Appl Biochem Biotechnol 2014; 175:2288-99. [DOI: 10.1007/s12010-014-1437-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 11/28/2014] [Indexed: 11/24/2022]
|