1
|
Farahani H, Darvishvand R, Khademolhosseini A, Erfani N. Unwrapping the immunological alterations in testicular germ cell tumors: From immune homeostasis to malignancy and emerging immunotherapies. Andrology 2024. [PMID: 39253799 DOI: 10.1111/andr.13751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Testicular germ cell tumors (TGCTs), derived from primordial germ cells, are rare malignancies with high curative potential. However, the emergence of new evidence indicating that 15% of patients experience tumor progression, leading to death, underscores the need for innovative therapeutics. OBJECTIVES This review aimed to explore the immune status in maintaining testicular health and the immune-related aspects of malignancy. Furthermore, it presents an overview of current data on the use of immunotherapy for TGCT patients. RESULTS DISCUSSION Recent advances in immunology have opened a promising avenue for studying diseases and highlighted its role in treating diseases. While the immunopathological facets of TGCTs are not fully understood, investigations suggest a complex interplay among testis-resident immune cells, testis-specific cells (i.e., Sertoli cells (SCs) and Leydig cells (LCs)), and immune-regulating mediators (e.g., sex hormones) in the normal testicle that foster the testicular immune privilege (TIP). Although TIP plays a crucial role in sperm production, it also makes testis vulnerable to tumor development. In the context of cancer-related inflammation, disruption of TIP leads to an imbalanced immune response, resulting in chronic inflammation that can contribute to testicular tissue dysfunction or loss, potentially aiding in cancer invasion and progression. CONCLUSION Comparing the immune profiles of normal and malignant testes is valuable and may provide insights into different aspects of testicular immunity and immune-based treatment approaches. For patients resistant to chemotherapy and with a poor prognosis, immunotherapy has shown promising results. However, its effectiveness in treating resistant TGCTs or preventing tumor recurrence is still uncertain.
Collapse
Affiliation(s)
- Hadiseh Farahani
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Darvishvand
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Han X, Tian H, Yang L, Ji Y. Bidirectional Mendelian randomization to explore the causal relationships between the gut microbiota and male reproductive diseases. Sci Rep 2024; 14:18306. [PMID: 39112529 PMCID: PMC11306555 DOI: 10.1038/s41598-024-69179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Gut bacteria might play an important role in male reproductive disorders, such as male infertility and sperm abnormalities; however, their causal role is unclear. Herein, Mendelian randomization (MR)-Egger, weighted median, inverse variance weighting, Simple mode, and Weighted mode were used to test the causal relationship between gut microbes and male reproductive diseases. The MR results were validated using various metrics. The MR results were also consolidated using reverse causality speculation, conducted using two-way MR analysis and Steiger filtering. Biological function was analysed using enrichment analyses. The results suggested that eight intestinal microflorae were causally associated with male infertility. The Eubacterium oxidoreducens group was associated with an increased risk of male infertility, while the family Bacteroidaceae was negatively associated with male reproductive diseases. Eight intestinal microflorae were causally associated with abnormal spermatozoa. The family Streptococcaceae was associated with a high risk of abnormal spermatozoa, whereas the family Porphyromonadaceae was associated with a low risk of abnormal spermatozoa. No pleiotropy was observed, this study identified a high correlation between the gut flora and the likelihood of male reproductive diseases. Future research will attempt to advance microbial-focused treatments for such diseases.
Collapse
Affiliation(s)
- Xiaofang Han
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China.
| | - Hui Tian
- Core Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Liu Yang
- Core Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Yuanyuan Ji
- Core Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Wang P, Zeng Q, Liu JC, Yang C, Tong D, Li Y, Duan YG. Immunodeviation towards T cell-mediated immune response in the testes of LPS-induced mouse epididymo-orchitis. J Reprod Immunol 2024; 164:104272. [PMID: 38838578 DOI: 10.1016/j.jri.2024.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The testicular consequences of acute epididymo-orchitis remain largely unelucidated in long-term damage, which might be a neglected factor for male infertility. In this study, the differential phenotype of testicular immune cell subpopulations in lipopolysaccharide (LPS)-induced mouse epididymo-orchitis were analyzed by flow cytometry on day 1, day 7, and day 28. The number of macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs) steadily decreased in the testes with inoculation. Total F4/80-CD11c+ dendritic cells (DCs) maintained a relatively stable level, whereas conventional type 1 dendritic cells (cDC1) increased gradually from day 1 to day 28. There was a lower number of CD4+ and CD8+ T cells at day 1 and day 7, and they had similar results with a ceiling level at day 28. The testes displayed a higher level of CD3+ T cells but a lower frequency of macrophages, cDC2, and neutrophils at 28 days post-inoculation compared with the epididymis. In summary, our data indicates acute epididymo-orchitis could lead to long-term damage in the testes, which is characterized by CD3+ T cell (including CD4+ and CD8+ T cells)-mediated immune responses.
Collapse
Affiliation(s)
- Peng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qunxiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen 518053, China
| | - Jin-Chuan Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen 518053, China
| | - Chen Yang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen 518053, China
| | - Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yanfeng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen 518053, China.
| |
Collapse
|
4
|
Islam R, Heyer J, Figura M, Wang X, Nie X, Nathaniel B, Indumathy S, Hartmann K, Pleuger C, Fijak M, Kliesch S, Dittmar F, Pilatz A, Wagenlehner F, Hedger M, Loveland B, Hotaling JH, Guo J, Loveland KL, Schuppe HC, Fietz D. T cells in testicular germ cell tumors: new evidence of fundamental contributions by rare subsets. Br J Cancer 2024; 130:1893-1903. [PMID: 38649788 PMCID: PMC11183042 DOI: 10.1038/s41416-024-02669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Immune cell infiltration is heterogeneous but common in testicular germ cell tumors (TGCT) and pre-invasive germ cell neoplasia in situ (GCNIS). Tumor-infiltrating T cells including regulatory T (Treg) and follicular helper T (Tfh) cells are found in other cancer entities, but their contributions to TGCT are unknown. METHODS Human testis specimens from independent patient cohorts were analyzed using immunohistochemistry, flow cytometry and single-cell RNA sequencing (scRNA-seq) with special emphasis on delineating T cell subtypes. RESULTS Profound changes in immune cell composition within TGCT, shifting from macrophages in normal testes to T cells plus B and dendritic cells in TGCT, were documented. In most samples (96%), the CD4+ T cell frequency exceeded that of CD8+ cells, with decreasing numbers from central to peripheral tumor areas, and to tumor-free, contralateral testes. T cells including Treg and Tfh were most abundant in seminoma compared to mixed tumors and embryonal carcinoma. CONCLUSION Despite considerable heterogeneity between patients, T cell subtypes form a key part of the TGCT microenvironment. The novel finding of rare Treg and Tfh cells in human testis suggests their involvement in TGCT pathobiology, with implications for understanding tumor progression, to assess patients' prognosis, and as putative targets for personalized immunotherapy.
Collapse
Affiliation(s)
- Rashidul Islam
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Jannis Heyer
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Miriam Figura
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Xiaoyan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
| | - Xichen Nie
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Benedict Nathaniel
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sivanjah Indumathy
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Katja Hartmann
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Christiane Pleuger
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Monika Fijak
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
- Institute of Anatomy and Cell Biology, Justus Liebig University, Giessen, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University of Muenster, Muenster, Germany
| | - Florian Dittmar
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Adrian Pilatz
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Florian Wagenlehner
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Mark Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | | | - James H Hotaling
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jingtao Guo
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute of Stem Cell and Regenerative Medicine, Beijing, China
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Hans-Christian Schuppe
- Dept. of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany
| | - Daniela Fietz
- Dept. of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany.
- Hessian Centre of Reproductive Medicine, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
5
|
Amarilla MS, Glienke L, Munduruca Pires T, Sobarzo CM, Oxilia HG, Fulco MF, Rodríguez Peña M, Maio MB, Ferrer Viñals D, Lustig L, Jacobo PV, Theas MS. Impaired Spermatogenesis in Infertile Patients with Orchitis and Experimental Autoimmune Orchitis in Rats. BIOLOGY 2024; 13:278. [PMID: 38666890 PMCID: PMC11048156 DOI: 10.3390/biology13040278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Experimental autoimmune orchitis (EAO) is a well-established rodent model of organ-specific autoimmunity associated with infertility in which the testis immunohistopathology has been extensively studied. In contrast, analysis of testis biopsies from infertile patients associated with inflammation has been more limited. In this work, testicular biopsies from patients with idiopathic non-obstructive azoospermia diagnosed with hypospermatogenesis (HypoSp) [mild: n = 9, and severe: n = 11], with obstructive azoospermia and complete Sp (spermatogenesis) (control group, C, n = 9), and from Sertoli cell-only syndrome (SCOS, n = 9) were analyzed for the presence of immune cells, spermatogonia and Sertoli cell (SCs) alterations, and reproductive hormones levels. These parameters were compared with those obtained in rats with EAO. The presence of increased CD45+ cells in the seminiferous tubules (STs) wall and lumen in severe HypoSp is associated with increased numbers of apoptotic meiotic germ cells and decreased populations of undifferentiated and differentiated spermatogonia. The SCs showed an immature profile with the highest expression of AMH in patients with SCOS and severe HypoSp. In SCOS patients, the amount of SCs/ST and Ki67+ SCs/ST increased and correlated with high serum FSH levels and CD45+ cells. In the severe phase of EAO, immune cell infiltration and apoptosis of meiotic germ cells increased and the number of undifferentiated and differentiated spermatogonia was lowest, as previously reported. Here, we found that orchitis leads to reduced sperm number, viability, and motility. SCs were mature (AMH-) but increased in number, with Ki67+ observed in severely damaged STs and associated with the highest levels of FSH and inflammatory cells. Our findings demonstrate that in a scenario where a chronic inflammatory process is underway, FSH levels, immune cell infiltration, and immature phenotypes of SCs are associated with severe changes in spermatogenesis, leading to azoospermia. Furthermore, AMH and Ki67 expression in SCs is a distinctive marker of severe alterations of STs in human orchitis.
Collapse
Affiliation(s)
- María Sofía Amarilla
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Leilane Glienke
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Thaisy Munduruca Pires
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Cristian Marcelo Sobarzo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Hernán Gustavo Oxilia
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
- Anatomía Patológica, Hospital General de Agudos Parmenio Piñero, Varela 1301, Ciudad Autónoma de Buenos Aires C1406ELA, Argentina
| | - María Florencia Fulco
- Hospital de Clínicas General San Martín, Av. Córdoba 2351 (C1120AAR), Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (M.F.F.); (M.R.P.)
| | - Marcelo Rodríguez Peña
- Hospital de Clínicas General San Martín, Av. Córdoba 2351 (C1120AAR), Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (M.F.F.); (M.R.P.)
| | - María Belén Maio
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Denisse Ferrer Viñals
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
| | - Livia Lustig
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - Patricia Verónica Jacobo
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| | - María Susana Theas
- Instituto de Investigaciones Biomédicas (INBIOMED), CONICET-Universidad de Buenos Aires, Paraguay 2155, Piso 10, Laboratorio 10, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina; (L.G.); (T.M.P.); (C.M.S.); (M.B.M.); (D.F.V.); (L.L.)
- Departamento de Biología Celular, Facultad de Medicina, Universidad de Buenos Aires, Cátedra II de Histología, Paraguay 2155, Ciudad Autónoma de Buenos Aires C1421ABG, Argentina;
| |
Collapse
|
6
|
Wanjari UR, Gopalakrishnan AV. A review on immunological aspects in male reproduction: An immune cells and cytokines. J Reprod Immunol 2023; 158:103984. [PMID: 37390629 DOI: 10.1016/j.jri.2023.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
The male reproductive system, particularly the male gamete, offers a unique barrier to the immune system. The growing germ cells in the testis need to be shielded from autoimmune damage. Hence the testis has to establish and sustain an immune-privileged milieu. Sertoli cells create this safe space, protected by the blood-testis barrier. Cytokines are a type of immune reaction that can positively and negatively affect male reproductive health. Inflammation, disease, and obesity are just a few physiological conditions for which cytokines mediate signals. They interact with steroidogenesis, shaping the adrenals and testes to produce the hormones needed for survival. In particular pathological condition, including autoimmune disorders, contains high levels of the same cytokines in semen that play an essential role in the immunomodulation of the male gonad. This review focuses on understanding the immunological role of cytokines in the control and development of male reproduction. Also, in maintaining male reproductive health and diseases linked with their aberrant function in the testis.
Collapse
Affiliation(s)
- Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
7
|
Tian Y, Zeng Q, Cheng Y, Wang XH, Cao D, Yeung WSB, Liu Q, Duan YG, Yao YQ. Follicular helper T lymphocytes in the endometria of patients with reproductive failure: Association with pregnancy outcomes and inflammatory status of the endometria. Am J Reprod Immunol 2023:e13708. [PMID: 37095737 DOI: 10.1111/aji.13708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
PROBLEM The phenotypes and functions of B and CD4+ T-helper cell subsets during chronic inflammation of the endometria remain largely unexplored. This study aimed to investigate the characteristics and functions of follicular helper T (Tfh) cells to understand the pathological mechanisms of chronic endometritis (CE). METHOD OF STUDY Eighty patients who underwent hysteroscopic and histopathological examinations for CE were divided into three groups-those with positive results for hysteroscopy and CD138 staining (DP), negative results for hysteroscopy but positive CD138 staining (SP), and negative results for hysteroscopy and CD138 staining (DN). The phenotypes of B cells and CD4+ T-cell subsets were analyzed using flow cytometry. RESULTS CD38+ and CD138+ cells were mainly expressed in the non-leukocyte population of the endometria, and the endometrial CD19+ CD138+ B cells were fewer than the CD3+ CD138+ T cells. The percentage of Tfh cells increased with chronic inflammation in the endometria. Additionally, the elevated percentage of Tfh cells correlated with the number of miscarriages. CONCLUSIONS CD4+ T cells, particularly Tfh cells, may be critical in chronic endometrial inflammation and affect its microenvironment, thereby regulating endometrial receptivity, compared to B cells.
Collapse
Affiliation(s)
- Ye Tian
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Chinese PLA General Hospital, Beijing, China
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Qunxiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yanfei Cheng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Xiao-Hui Wang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - William Shu-Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Qingzhi Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yuan-Qing Yao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Chinese PLA General Hospital, Beijing, China
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, the University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
8
|
Zhong Y, Zhao J, Deng H, Wu Y, Zhu L, Yang M, Liu Q, Luo G, Ma W, Li H. Integrative bioinformatics analysis to identify novel biomarkers associated with non-obstructive azoospermia. Front Immunol 2023; 14:1088261. [PMID: 36969237 PMCID: PMC10031032 DOI: 10.3389/fimmu.2023.1088261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
AimThis study aimed to identify autophagy-related genes (ARGs) associated with non-obstructive azoospermia and explore the underlying molecular mechanisms.MethodsTwo datasets associated with azoospermia were downloaded from the Gene Expression Omnibus database, and ARGs were obtained from the Human Autophagy-dedicated Database. Autophagy-related differentially expressed genes were identified in the azoospermia and control groups. These genes were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, protein–protein interaction (PPI) network, and functional similarity analyses. After identifying the hub genes, immune infiltration and hub gene–RNA-binding protein (RBP)–transcription factor (TF)–miRNA–drug interactions were analyzed.ResultsA total 46 differentially expressed ARGs were identified between the azoospermia and control groups. These genes were enriched in autophagy-associated functions and pathways. Eight hub genes were selected from the PPI network. Functional similarity analysis revealed that HSPA5 may play a key role in azoospermia. Immune cell infiltration analysis revealed that activated dendritic cells were significantly decreased in the azoospermia group compared to those in the control groups. Hub genes, especially ATG3, KIAA0652, MAPK1, and EGFR were strongly correlated with immune cell infiltration. Finally, a hub gene–miRNA–TF–RBP–drug network was constructed.ConclusionThe eight hub genes, including EGFR, HSPA5, ATG3, KIAA0652, and MAPK1, may serve as biomarkers for the diagnosis and treatment of azoospermia. The study findings suggest potential targets and mechanisms for the occurrence and development of this disease.
Collapse
Affiliation(s)
- Yucheng Zhong
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Jun Zhao
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Hao Deng
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Yaqin Wu
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Li Zhu
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Meiqiong Yang
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Qianru Liu
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Guoqun Luo
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Wenmin Ma
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
- Assist Reproductive Medical Center, Zhaoqing West River Hospital, Zhaoqing, Guangdong, China
- *Correspondence: Wenmin Ma, ; Huan Li,
| | - Huan Li
- Assisted Reproductive Technology Center, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
- *Correspondence: Wenmin Ma, ; Huan Li,
| |
Collapse
|
9
|
Ferreiro ME, Méndez CS, Glienke L, Sobarzo CM, Ferraris MJ, Pisera DA, Lustig L, Jacobo PV, Theas MS. Unraveling the effect of the inflammatory microenvironment in spermatogenesis progression. Cell Tissue Res 2023; 392:581-604. [PMID: 36627392 DOI: 10.1007/s00441-022-03703-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/02/2022] [Indexed: 01/12/2023]
Abstract
Experimental autoimmune orchitis (EAO) is a chronic inflammatory disorder that causes progressive spermatogenic impairment. EAO is characterized by high intratesticular levels of nitric oxide (NO) and tumor necrosis factor alpha (TNFα) causing germ cell apoptosis and Sertoli cell dysfunction. However, the impact of this inflammatory milieu on the spermatogenic wave is unknown. Therefore, we studied the effect of inflammation on spermatogonia and preleptotene spermatocyte cell cycle progression in an EAO context and through the intratesticular DETA-NO and TNFα injection in the normal rat testes. In EAO, premeiotic germ cell proliferation is limited as a consequence of the undifferentiated spermatogonia (CD9+) cell cycle arrest in G2/M and the reduced number of differentiated spermatogonia (c-kit+) and preleptotene spermatocytes that enter in the meiotic S-phase. Although inflammation disrupts spermatogenesis in EAO, it is maintained in some seminiferous tubules at XIV and VII-VIII stages of the epithelial cell cycle, thereby guaranteeing sperm production. We found that DETA-NO (2 mM) injected in normal testes arrests spermatogonia and preleptotene spermatocyte cell cycle; this effect reduces the number of proliferative spermatogonia and the number of preleptotene spermatocytes in meiosis S-phase (36 h after). The temporal inhibition of spermatogonia clonal amplification delayed progression of the spermatogenic wave (5 days after) finally altering spermatogenesis. TNFα (0.5 and 1 µg) exposure did not affect premeiotic germ cell cycle or spermatogenic wave. Our results show that in EAO the inflammatory microenvironment altered spermatogenesis kinetics through premeiotic germ cell cycle arrest and that NO is a sufficient factor contributing to this phenomenon.
Collapse
Affiliation(s)
| | - Cinthia Soledad Méndez
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina
| | - Leilane Glienke
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina
| | - Cristian Marcelo Sobarzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina
| | - María Jimena Ferraris
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C SE-106 91, Stockholm, Sweden
| | - Daniel Alberto Pisera
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina
| | - Livia Lustig
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina
| | - Patricia Verónica Jacobo
- Laboratorio de Reproducción y Fisiología Materno-Placentaria (CONICET), Departamento de Biodiversidad y Biología Experimental (DBEE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón 2, Piso 4, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1428EGA, Argentina
| | - María Susana Theas
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina. .,CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Paraguay 2155, Piso 10, Laboratorio 7, Ciudad Autónoma de Buenos Aires, Buenos Aires, C1421ABG, Argentina.
| |
Collapse
|
10
|
The Role of Mononuclear Phagocytes in the Testes and Epididymis. Int J Mol Sci 2022; 24:ijms24010053. [PMID: 36613494 PMCID: PMC9820352 DOI: 10.3390/ijms24010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The mononuclear phagocytic system (MPS) is the primary innate immune cell group in male reproductive tissues, maintaining the balance of pro-inflammatory and immune tolerance. This article aims to outline the role of mononuclear macrophages in the immune balance of the testes and epididymis, and to understand the inner immune regulation mechanism. A review of pertinent publications was performed using the PubMed and Google Scholar databases on all articles published prior to January 2021. Search terms were based on the following keywords: 'MPS', 'mononuclear phagocytes', 'testes', 'epididymis', 'macrophage', 'Mφ', 'dendritic cell', 'DC', 'TLR', 'immune', 'inflammation', and 'polarization'. Additionally, reference lists of primary and review articles were reviewed for other publications of relevance. This review concluded that MPS exhibits a precise balance in the male reproductive system. In the testes, MPS cells are mainly suppressed subtypes (M2 and cDC2) under physiological conditions, which maintain the local immune tolerance. Under pathological conditions, MPS cells will transform into M1 and cDC1, producing various cytokines, and will activate T cell specific immunity as defense to foreign pathogens or self-antigens. In the epididymis, MPS cells vary in the different segments, which express immune tolerance in the caput and pro-inflammatory condition in the cauda. Collectively, MPS is the control point for maintaining the immune tolerance of the testes and epididymis as well as for eliminating pathogens.
Collapse
|
11
|
Santacroce L, Imbimbo C, Ballini A, Crocetto F, Scacco S, Cantore S, Di Zazzo E, Colella M, Jirillo E. Testicular Immunity and Its Connection with the Microbiota. Physiological and Clinical Implications in the Light of Personalized Medicine. J Pers Med 2022; 12:1335. [PMID: 36013286 PMCID: PMC9409709 DOI: 10.3390/jpm12081335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Reproduction is a complex process, which is based on the cooperation between the endocrine-immune system and the microbiota. Testicular immunity is characterized by the so-called immune privilege, a mechanism that avoids autoimmune attacks against proteins expressed by spermatozoa. Testicular microbiota is connected with the gut microbiota, the most prevalent site of commensals inthe body. Both microbiotas take part inthe development of the immune system and protection againstpathogen invasion. Dysbiosis is caused by concurrent pathologies, such as obesity, diabetes, infections and trauma. The substitution of beneficial bacteria with pathogens may lead to destruction of spermatozoa directly or indirectly and, ultimately, to male infertility. Novel therapeutic interventions, i.e., nutritional interventions and supplementation of natural products, such as, probiotics, prebiotics, antioxidants and polyphenols, may lead to the restoration of the otherwise-impaired male reproductive potential, even if experimental and clinical results are not always concordant. In this review, the structure and immune function of the testis will be described with special reference to the blood-testisbarrier. The regulatory role of both the gut and testicular microbiota will be illustrated in health and disease, also emphasizing therapeutic attempts with natural products for the correction of male infertility, in the era of personalized medicine.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ciro Imbimbo
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131Naples, Italy
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Felice Crocetto
- Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples “Federico II”, 80131Naples, Italy
| | - Salvatore Scacco
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Stefania Cantore
- Independent Researcher, Sorriso & Benessere—Ricerca e Clinica, 70129 Bari, Italy
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
12
|
Tang XJ, Xiao QH, Wang XL, He Y, Tian YN, Xia BT, Guo Y, Huang JL, Duan P, Tan Y. Single-Cell Transcriptomics-Based Study of Transcriptional Regulatory Features in the Non-Obstructive Azoospermia Testis. Front Genet 2022; 13:875762. [PMID: 35669193 PMCID: PMC9163961 DOI: 10.3389/fgene.2022.875762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is one of the most important causes of male infertility. Although many congenital factors have been identified, the aetiology in the majority of idiopathic NOA (iNOA) cases remains unknown. Herein, using single-cell RNA-Seq data sets (GSE149512) from the Gene Expression Omnibus (GEO) database, we constructed transcriptional regulatory networks (TRNs) to explain the mutual regulatory relationship and the causal relationship between transcription factors (TFs). We defined 10 testicular cell types by their marker genes and found that the proportion of Leydig cells (LCs) and macrophages (tMΦ) was significantly increased in iNOA testis. We identified specific TFs including LHX9, KLF8, KLF4, ARID5B and RXRG in iNOA LCs. In addition, we found specific TFs in iNOA tMΦ such as POU2F2, SPIB IRF5, CEBPA, ELK4 and KLF6. All these identified TFs are strongly engaged in cellular fate, function and homeostasis of the microenvironment. Changes in the activity of the above-mentioned TFs might affect the function of LCs and tMΦ and ultimately cause spermatogenesis failure. This study illustrate that these TFs play important regulatory roles in the occurrence and development of NOA.
Collapse
Affiliation(s)
- Xiao-juan Tang
- Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Qiao-hong Xiao
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xue-lin Wang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan He
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Training Basement of Jinzhou Medicical University, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Ya-nan Tian
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Postgraduate Training Basement of Jinzhou Medicical University, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Bin-tong Xia
- Department of Urology Surgery, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yang Guo
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jiao-long Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Peng Duan
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Xiangyang City, Department of Obstetrics and Gynaecology, Xiangyang No. 1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Yan Tan
- Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
13
|
Paira DA, Silvera-Ruiz S, Tissera A, Molina RI, Olmedo JJ, Rivero VE, Motrich RD. Interferon γ, IL-17, and IL-1β impair sperm motility and viability and induce sperm apoptosis. Cytokine 2022; 152:155834. [PMID: 35217429 DOI: 10.1016/j.cyto.2022.155834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
Abstract
Urogenital inflammation is a known cause of male infertility. Increased levels of inflammatory cytokines, leukocyte counts and oxidative stress are highly detrimental for sperm quality thus compromising male fertility. Although cytokines affect sperm by recruiting and activating leukocytes consequently inducing tissue inflammation and oxidative stress, scarce to absent data have been reported about the putative direct effects of inflammatory cytokines on spermatozoa. Herein, we analyzed whether IFNγ, IL-17A, IL-1β, and IL-8 can alter human sperm motility and viability per se. Fractions of viable and motile spermatozoa from normospermic healthy donors were in vitro incubated with recombinant human IFNγ, IL-17A, IL-1β or IL-8 and sperm ROS production, motility, viability and apoptosis were analyzed. Sperm exposed to different concentrations of IFNγ, IL-17A and IL-1β, or a combination of them, for either 1 or 3 h showed significantly increased levels of mitochondrial ROS production and reduced motility and viability with respect to sperm incubated with vehicle. Moreover, the exposure to IFNγ, IL-17A and IL-1β resulted in significantly higher levels of early and/or late apoptotic and/or necrotic spermatozoa. Interestingly, no significant differences in sperm motility, viability and apoptosis were observed in sperm incubated with the concentrations of IL-8 analyzed, for either 1 or 3 h, with respect to sperm incubated with vehicle. In conclusion, our results indicate that IFNγ, IL-17A and IL-1β per se impair sperm motility and decreases viability by triggering increased mitochondrial ROS production and inducing sperm apoptosis. Our results suggest that screening inflammatory cytokines in semen would be an additional helpful tool for the diagnostic workup of male infertility.
Collapse
Affiliation(s)
- Daniela Andrea Paira
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silene Silvera-Ruiz
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Tissera
- Laboratorio de Andrología y Reproducción (LAR), Córdoba, Argentina
| | | | - José Javier Olmedo
- Fundación Urológica Córdoba para la Docencia e Investigación Médica (FUCDIM), Córdoba, Argentina
| | - Virginia Elena Rivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ruben Dario Motrich
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
14
|
Bendarska-Czerwińska A, Zmarzły N, Morawiec E, Panfil A, Bryś K, Czarniecka J, Ostenda A, Dziobek K, Sagan D, Boroń D, Michalski P, Pallazo-Michalska V, Grabarek BO. Endocrine disorders and fertility and pregnancy: An update. Front Endocrinol (Lausanne) 2022; 13:970439. [PMID: 36733805 PMCID: PMC9887196 DOI: 10.3389/fendo.2022.970439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
It is estimated that more and more couples suffer from fertility and pregnancy maintenance disorders. It is associated with impaired androgen secretion, which is influenced by many factors, ranging from genetic to environmental. It is also important to remember that fertility disorders can also result from abnormal anatomy of the reproductive male and female organ (congenital uterine anomalies - septate, unicornuate, bicornuate uterus; acquired defects of the uterus structure - fibroids, polyps, hypertrophy), disturbed hormonal cycle and obstruction of the fallopian tubes resulting from the presence of adhesions due to inflammation, endometriosis, and surgery, abnormal rhythm of menstrual bleeding, the abnormal concentration of hormones. There are many relationships between the endocrine organs, leading to a chain reaction when one of them fails to function properly. Conditions in which the immune system is involved, including infections and autoimmune diseases, also affect fertility. The form of treatment depends on infertility duration and the patient's age. It includes ovulation stimulation with clomiphene citrate or gonadotropins, metformin use, and weight loss interventions. Since so many different factors affect fertility, it is important to correctly diagnose what is causing the problem and to modify the treatment regimen if necessary. This review describes disturbances in the hormone secretion of individual endocrine organs in the context of fertility and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anna Bendarska-Czerwińska
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- American Medical Clinic, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Emilia Morawiec
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Microbiology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Agata Panfil
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Justyna Czarniecka
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | | | | | - Dorota Sagan
- Medical Center Dormed Medical SPA, Busko-Zdroj, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
| | | | | | - Beniamin Oskar Grabarek
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| |
Collapse
|
15
|
Rajak P, Roy S, Dutta M, Podder S, Sarkar S, Ganguly A, Mandi M, Khatun S. Understanding the cross-talk between mediators of infertility and COVID-19. Reprod Biol 2021; 21:100559. [PMID: 34547545 PMCID: PMC8407955 DOI: 10.1016/j.repbio.2021.100559] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022]
Abstract
COVID-19 is the ongoing health emergency affecting individuals of all ages around the globe. Initially, the infection was reported to affect pulmonary structures. However, recent studies have delineated the impacts of COVID-19 on the reproductive system of both men and women. Hence, the present review aims to shed light on the distribution of SARS-CoV-2 entry factors in various reproductive organs. In addition, impacts of COVID-19 mediators like disrupted renin angiotensin system, oxidative stress, cytokine storm, fever, and the mental stress on reproductive physiology have also been discussed. For the present study, various keywords were used to search literature on PubMed, ScienceDirect, and Google Scholar databases. Articles were screened for relevancy and were studied in detail for qualitative synthesis of the review. Through our literature review, we found a multitude of effects of COVID-19 mediators on reproductive systems. Studies reported expression of receptors like ACE-2, TMPRSS2, and CD147 in the testes, epididymis, prostrate, seminal vesicles, and ovarian follicles. These proteins are known to serve as major SARS-CoV-2 entry factors. The expression of lysosomal cathepsins (CTSB/CTSL) and/ neuropilin-1 (NRP-1) are also evident in the testes, epididymis, seminal vesicles, fallopian tube, cervix, and endometrium. The binding of viral spike protein with ACE-2 was found to alter the renin-angiotensin cascade, which could invite additional infertility problems. Furthermore, COVID-19 mediated cytokine storm, oxidative stress, and elevated body temperature could be detrimental to gametogenesis, steroidogenesis, and reproductive cycles in patients. Finally, social isolation, confinement, and job insecurities have fueled mental stress and frustration that might promote glucocorticoid-mediated subnormal sperm quality in men and higher risk of miscarriage in women. Hence, the influence of COVID-19 on the alteration of reproductive health and fertility is quite apparent.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sumedha Roy
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sayanti Podder
- Post Graduate Department of Zoology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, Maharashtra, India
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya, Gushkara, Purba Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India
| |
Collapse
|
16
|
Ye L, Huang W, Liu S, Cai S, Hong L, Xiao W, Thiele K, Zeng Y, Song M, Diao L. Impacts of Immunometabolism on Male Reproduction. Front Immunol 2021; 12:658432. [PMID: 34367130 PMCID: PMC8334851 DOI: 10.3389/fimmu.2021.658432] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
The physiological process of male reproduction relies on the orchestration of neuroendocrine, immune, and energy metabolism. Spermatogenesis is controlled by the hypothalamic-pituitary-testicular (HPT) axis, which modulates the production of gonadal steroid hormones in the testes. The immune cells and cytokines in testes provide a protective microenvironment for the development and maturation of germ cells. The metabolic cellular responses and processes in testes provide energy production and biosynthetic precursors to regulate germ cell development and control testicular immunity and inflammation. The metabolism of immune cells is crucial for both inflammatory and anti-inflammatory responses, which supposes to affect the spermatogenesis in testes. In this review, the role of immunometabolism in male reproduction will be highlighted. Obesity, metabolic dysfunction, such as type 2 diabetes mellitus, are well documented to impact male fertility; thus, their impacts on the immune cells distributed in testes will also be discussed. Finally, the potential significance of the medicine targeting the specific metabolic intermediates or immune metabolism checkpoints to improve male reproduction will also be reassessed.
Collapse
Affiliation(s)
- Lijun Ye
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Wensi Huang
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Su Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Ling Hong
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Weiqiang Xiao
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Kristin Thiele
- Division of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Mingzhe Song
- Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Clinical Research Center for Reproductive Medicine, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
17
|
Zheng W, Zhang S, Jiang S, Huang Z, Chen X, Guo H, Li M, Zheng S. Evaluation of immune status in testis and macrophage polarization associated with testicular damage in patients with nonobstructive azoospermia. Am J Reprod Immunol 2021; 86:e13481. [PMID: 34192390 DOI: 10.1111/aji.13481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Immune cells residing in the testicular interstitial space form the immunological microenvironment of the testis. They are assumed to play a role in maintaining testicular homeostasis and immune privilege. However, the immune status and related cell polarization in patients with nonobstructive azoospermia (NOA) remains poorly characterized. System evaluation of the testis immunological microenvironment in NOA patients may help to reveal the mechanisms of idiopathic azoospermia. STUDY DESIGN The gene expression patterns of immune cells in normal human testes were systematically analyzed by single-cell RNA sequencing (scRNA-seq) and preliminarily verification by the human protein atlas (HPA) online database. The immune cell infiltration profiles and immune status of patients with NOA was analyzed by single-sample gene set enrichment analysis (ssGSEA) and gene set variation analysis (GSVA) based on four independent public microarray datasets (GSE45885, GSE45887, GSE9210, and GSE145467), obtained from Gene Expression Omnibus (GEO) online database. The relationship between immune cells and spermatogenesis score was further analyzed by Spearman correlation analysis. Finally, immunohistochemistry (IHC) staining was performed to identify the main immune cell types and their polarization status in patients with NOA. RESULTS Both scRNA-seq and HPA analysis showed that testicular macrophages represent the largest pool of immune cells in the normal testis, and also exhibit an attenuated inflammatory response by expressing high levels of tolerance proteins (CD163, IL-10, TGF-β, and VEGF) and reduced expression of TLR signaling pathway-related genes. Correlation analysis revealed that the testicular immune score and macrophages including M1 and M2 macrophages were significantly negatively correlated with spermatogenesis score in patients with NOA (GSE45885 and GSE45887). In addition, the number of M1 and M2 macrophages was significantly higher in patients with NOA (GSE9210 and GSE145467) than in normal testis. GSVA analysis indicated that the immunological microenvironment in NOA tissues was manifested by activated immune system and pro-inflammatory status. IHC staining results showed that the number of M1 and M2 macrophages was significantly higher in NOA tissues than in normal testis and negatively correlated with the Johnson score. CONCLUSION Testicular macrophage polarization may play a vital role in NOA development and is a promising potential therapeutic target.
Collapse
Affiliation(s)
- Wenzhong Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shiqiang Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shaoqin Jiang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhangcheng Huang
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaobao Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huan Guo
- Department of Urology, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China
| | - Mengqiang Li
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Song Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
18
|
Mary AP, Nandeesha H, Papa D, Chitra T, Ganesh RN, Menon V. Matrix metalloproteinase-9 is elevated and related to interleukin-17 and psychological stress in male infertility: A cross-sectional study. Int J Reprod Biomed 2021; 19:333-338. [PMID: 33997592 PMCID: PMC8106818 DOI: 10.18502/ijrm.v19i4.9059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/15/2020] [Accepted: 09/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background Matrix metalloproteinase-9 (MMP-9), interleukin-17 (IL-17) and psychological stress are known to play a role in the pathogenesis of male infertility. Objective To assess the association of MMP-9 with IL-17 and psychological stress in infertile men. Materials and Methods In this cross-sectional study, 39 men with infertility diagnosed based on semen analysis and 39 subjects with normal semen analysis were included in the study. MMP-9 and IL-17 were estimated in both groups by ELISA. Perceived stress scale was used to assess psychological stress in controls and cases. Results In infertile cases, MMP-9 and IL-17 were significantly increased when compared with controls (p = 0.046, p = 0.041 respectively). A significant association of MMP-9 was observed with IL-17 (r = 0.335, p = 0.037) and perceived stress scale (r = 0.329, p = 0.041). Conclusion IL-17 and stress increase MMP- 9 levels in infertile men.
Collapse
Affiliation(s)
- Ann Prasad Mary
- Biochemistry Department, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Hanumanthappa Nandeesha
- Biochemistry Department, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Dasari Papa
- Department of Obstetrics and Gynecology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Thyagaraju Chitra
- Department of Obstetrics and Gynecology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Rajesh Nachiappa Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Vikas Menon
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
19
|
Cerván-Martín M, Bossini-Castillo L, Rivera-Egea R, Garrido N, Luján S, Romeu G, Santos-Ribeiro S, Castilla JA, Gonzalvo MDC, Clavero A, Vicente FJ, Guzmán-Jiménez A, Burgos M, Barrionuevo FJ, Jiménez R, Sánchez-Curbelo J, López-Rodrigo O, Peraza MF, Pereira-Caetano I, Marques PI, Carvalho F, Barros A, Bassas L, Seixas S, Gonçalves J, Larriba S, Lopes AM, Carmona FD, Palomino-Morales RJ. Effect and in silico characterization of genetic variants associated with severe spermatogenic disorders in a large Iberian cohort. Andrology 2021; 9:1151-1165. [PMID: 33784440 DOI: 10.1111/andr.13009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Severe spermatogenic failure (SpF) represents the most extreme manifestation of male infertility, as it decreases drastically the semen quality leading to either severe oligospermia (SO, <5 million spermatozoa/mL semen) or non-obstructive azoospermia (NOA, complete lack of spermatozoa in the ejaculate without obstructive causes). OBJECTIVES The main objective of the present study is to analyze in the Iberian population the effect of 6 single-nucleotide polymorphisms (SNPs) previously associated with NOA in Han Chinese through genome-wide association studies (GWAS) and to establish their possible functional relevance in the development of specific SpF patterns. MATERIALS AND METHODS We genotyped 674 Iberian infertile men (including 480 NOA and 194 SO patients) and 1058 matched unaffected controls for the GWAS-associated variants PRMT6-rs12097821, PEX10-rs2477686, CDC42BPA-rs3000811, IL17A-rs13206743, ABLIM1-rs7099208, and SOX5-rs10842262. Their association with SpF, SO, NOA, and different NOA phenotypes was evaluated by logistic regression models, and their functional relevance was defined by comprehensive interrogation of public resources. RESULTS ABLIM1-rs7099208 was associated with SpF under both additive (OR = 0.86, p = 0.036) and dominant models (OR = 0.78, p = 0.026). The CDC42BPA-rs3000811 minor allele frequency was significantly increased in the subgroup of NOA patients showing maturation arrest (MA) of germ cells compared to the remaining NOA cases under the recessive model (OR = 4.45, p = 0.044). The PEX10-rs2477686 SNP was associated with a negative testicular sperm extraction (TESE) outcome under the additive model (OR = 1.32, p = 0.034). The analysis of functional annotations suggested that these variants affect the testis-specific expression of nearby genes and that lincRNA may play a role in SpF. CONCLUSIONS Our data support the association of three previously reported NOA risk variants in Asians (ABLIM1-rs7099208, CDC42BPA-rs3000811, and PEX10-rs2477686) with different manifestations of SpF in Iberians of European descent, likely by influencing gene expression and lincRNA deregulation.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Lara Bossini-Castillo
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rocío Rivera-Egea
- Andrology Laboratory and Sperm Bank, IVIRMA Valencia, Valencia, Spain.,IVI Foundation, Health Research Institute La Fe, Valencia, Spain
| | - Nicolás Garrido
- IVI Foundation, Health Research Institute La Fe, Valencia, Spain.,Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Saturnino Luján
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Gema Romeu
- Servicio de Urología, Hospital Universitari i Politecnic La Fe e Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Samuel Santos-Ribeiro
- IVI-RMA Lisbon, Lisbon, Portugal.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | - José A Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain.,CEIFER Biobanco - NextClinics, Granada, Spain
| | - María Del Carmen Gonzalvo
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain
| | - Ana Clavero
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC Obstetricia y Ginecología, Unidad de Reproducción, HU Virgen de las Nieves, Granada, Spain
| | - Francisco Javier Vicente
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,UGC de Urología, HU Virgen de las Nieves, Granada, Spain
| | - Andrea Guzmán-Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Miguel Burgos
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | | | - Rafael Jiménez
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Josvany Sánchez-Curbelo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Olga López-Rodrigo
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - María Fernanda Peraza
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Iris Pereira-Caetano
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patrícia Isabel Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Filipa Carvalho
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Alberto Barros
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Lluís Bassas
- Laboratory of Seminology and Embryology, Andrology Service-Fundació Puigvert, Barcelona, Spain
| | - Susana Seixas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal.,Nova Medical School, ToxOmics - Centro de Toxicogenómica e Saúde Humana, Lisbon, Portugal
| | - Sara Larriba
- Human Molecular Genetics Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alexandra Manuel Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (I3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Francisco David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Rogelio Jesús Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.,Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Granada, Spain
| |
Collapse
|
20
|
Li Y, Zhao Y, Wang J, Cheng M, Wang J. Interleukin 17A deficiency alleviates fluoride-induced testicular injury by inhibiting the immune response and apoptosis. CHEMOSPHERE 2021; 263:128178. [PMID: 33297146 DOI: 10.1016/j.chemosphere.2020.128178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
The reproductive toxicity of fluoride (F) has been verified by various epidemiological and experimental studies. Our previous work suggested that the interleukin 17A (IL-17A) is involved in the testicular damage induced by excessive F exposure. In this study, we further investigated the role of IL-17A in F-induced testicular injury. Wild type (WT) and IL-17A knockout (IL-17A-/-) mice were exposed to 0, 25, 50, or 100 mg/L sodium fluoride (NaF) for 90 days. We found that exposure to excessive F levels caused testicular damage, decreased semen quality, negatively affected testicular morphology, and increased the inflammatory response. Specifically, excessive F intake increased the expression levels of IL-17A in the testis and increased the protein levels of Act1, NF-κB, IL-17R, C/EBP-α, and TRAF6 in the IL-17A signaling pathway. The increase in IL-17A expression corresponded to increases expression of IL-17R, IL-6, IL-23, IL-1β, TGF-β and TNF-α as assessed by RT-PCR and ELISA assays. Remarkably, IL-17A knockout in mice ameliorated the effects of F on testicular damage, semen quality, testicular morphology, and the immune response. Additionally, we found the in vitro exposure of Leydig cells to NaF and recombinant IL-17A led to abnormal apoptosis and a decrease in testosterone secretion. Our findings prove that IL-17A plays a key role in the exacerbation of testicular injuries in F-exposed mice, and that IL-17A deficiency can alleviate F-induced injury by inhibiting the immune response and apoptosis in the testis. These data suggest that targeting IL-17A may be a useful therapeutic strategy for treating F-mediated toxicity in the testis.
Collapse
Affiliation(s)
- Yanyan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Yangfei Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jinming Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Min Cheng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
21
|
Lardone MC, Reyes IN, Ortiz E, Piottante A, Palma C, Ebensperger M, Castro A. Testicular steroid sulfatase overexpression is associated with Leydig cell dysfunction in primary spermatogenic failure. Andrology 2020; 9:657-664. [PMID: 33290605 DOI: 10.1111/andr.12950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/24/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Decreased testosterone (T) to LH ratio and increased 17β-estradiol (E2) serum concentrations represent a common finding among patients with severe spermatogenic failure, suggesting a concurrent Leydig cell steroidogenic dysfunction. Aromatase overexpression has been associated with increased serum and intratesticular E2 in these patients. However, it is unknown whether the sulfatase pathway contributes to the increased availability of active estrogens in patients with primary spermatogenic failure. OBJECTIVES To assess estrogen sulfotransferase (SULT1E1) and steroid sulfatase (STS) mRNA abundance in testicular tissue of patients with Sertoli cell-only syndrome (SCOS) and normal tissues, its association with serum and intratesticular hormone levels, and to explore the mRNA and protein testicular localization of both enzymes. MATERIALS AND METHODS Testicular tissues of 23 subjects with SCOS (cases) and 22 patients with obstructive azoospermia and normal spermatogenesis (controls) were obtained after biopsy. SULT1E1 and STS transcripts accumulation was quantified by RT-qPCR. For mRNA and protein localization, we performed RT-qPCR in Leydig cell clusters and seminiferous tubules isolated by laser-capture microdissection and immunofluorescence in testicular tissues. Serum and intratesticular hormones were measured by immunoradiometric assays. RESULTS SULT1E1 mRNA accumulation was similar in both groups. The amount of STS mRNA was higher in cases (p = 0.007) and inversely correlated with T/LH ratio (r = -0.402; p = 0.02). Also, a near significant correlation was observed with intratesticular E2 (r = 0.329, p = 0.057), in agreement with higher intratesticular E2 in cases (p < 0.001). Strong STS immunoreaction was localized in the wall of small blood vessels but not in Leydig cells. Both SULT1E1 and STS mRNA abundance was similar in Leydig cell clusters and the tubular compartment, except for lower SUTL1E1 mRNA in the seminiferous tubules of SCOS patients (p = 0.001). CONCLUSIONS Our results suggest that an unbalance of the STS/SULT1E1 pathway contributes to the testicular hyperestrogenic microenvironment in patients with primary spermatogenic failure and Leydig cell dysfunction.
Collapse
Affiliation(s)
- Maria C Lardone
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Ian N Reyes
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | - Eliana Ortiz
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| | | | - Cristián Palma
- Urology Department, José Joaquín Aguirre Clinical Hospital, School of Medicine, University of Chile, Santiago, Chile.,Urology Department, Clínica Las Condes, Santiago, Chile
| | - Mauricio Ebensperger
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile.,Urology Department, San Borja Arriarán Clinical Hospital, Santiago, Chile
| | - Andrea Castro
- Institute of Maternal and Child Research, School of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
22
|
Gong J, Zeng Q, Yu D, Duan YG. T Lymphocytes and Testicular Immunity: A New Insight into Immune Regulation in Testes. Int J Mol Sci 2020; 22:ijms22010057. [PMID: 33374605 PMCID: PMC7793097 DOI: 10.3390/ijms22010057] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The immune privilege of the testes is necessary to prevent immune attacks to gamete-specific antigens and paternal major histocompatibility complex (MHC) antigens, allowing for normal spermatogenesis. However, infection and inflammation of the male genital tract can break the immune tolerance and represent a significant cause of male infertility. Different T cell subsets have been identified in mammalian testes, which may be involved in the maintenance of immune tolerance and pathogenic immune responses in testicular infection and inflammation. We reviewed the evidence in the published literature on different T subtypes (regulatory T cells, helper T cells, cytotoxic T cells, γδ T cells, and natural killer T cells) in human and animal testes that support their regulatory roles in infertility and the orchitis pathology. While many in vitro studies have indicated the regulation potential of functional T cell subsets and their possible interaction with Sertoli cells, Leydig cells, and spermatogenesis, both under physiological and pathological processes, there have been no in situ studies to date. Nevertheless, the normal distribution and function of T cell subsets are essential for the immune privilege of the testes and intact spermatogenesis, and T cell-mediated immune response drives testicular inflammation. The distinct function of different T cell subsets in testicular homeostasis and the orchitis pathology suggests a considerable potential of targeting specific T cell subsets for therapies targeting chronic orchitis and immune infertility.
Collapse
Affiliation(s)
- Jialei Gong
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Qunxiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
23
|
Zhao H, Yu C, He C, Mei C, Liao A, Huang D. The Immune Characteristics of the Epididymis and the Immune Pathway of the Epididymitis Caused by Different Pathogens. Front Immunol 2020; 11:2115. [PMID: 33117332 PMCID: PMC7561410 DOI: 10.3389/fimmu.2020.02115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2020] [Indexed: 01/26/2023] Open
Abstract
The epididymis is an important male accessory sex organ where sperm motility and fertilization ability develop. When spermatozoa carrying foreign antigens enter the epididymis, the epididymis shows "immune privilege" to tolerate them. It is well-known that a tolerogenic environment exists in the caput epididymis, while pro-inflammatory circumstances prefer the cauda epididymis. This meticulously regulated immune environment not only protects spermatozoa from autoimmunity but also defends spermatozoa against pathogenic damage. Epididymitis is one of the common causes of male infertility. Up to 40% of patients suffer from permanent oligospermia or azoospermia. This is related to the immune characteristics of the epididymis itself. Moreover, epididymitis induced by different pathogenic microbial infections has different characteristics. This article elaborates on the distribution and immune response characteristics of epididymis immune cells, the role of epididymis epithelial cells (EECs), and the epididymis defense against different pathogenic infections (such as uropathogenic Escherichia coli, Chlamydia trachomatis, and viruses to provide therapeutic approaches for epididymitis and its subsequent fertility problems.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqian Yu
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu He
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlei Mei
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aihua Liao
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Bhushan S, Theas MS, Guazzone VA, Jacobo P, Wang M, Fijak M, Meinhardt A, Lustig L. Immune Cell Subtypes and Their Function in the Testis. Front Immunol 2020; 11:583304. [PMID: 33101311 PMCID: PMC7554629 DOI: 10.3389/fimmu.2020.583304] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Immunoregulation in the testis is characterized by a balance between immuno-suppression (or immune privilege) and the ability to react to infections and inflammation. In this review, we analyze the phenotypes of the various immune cell subtypes present in the testis, and how their functions change between homeostatic and inflammatory conditions. Starting with testicular macrophages, we explore how this heterogeneous population is shaped by the testicular microenvironment to ensure immune privilege. We then describe how dendritic cells exhibit a tolerogenic status under normal conditions, but proliferate, mature and then stimulate effector T-cell expansion under inflammatory conditions. Finally, we outline the two T-cell populations in the testis: CD4+/CD8+ αβ T cells and CD4+/CD8+ Foxp3+ regulatory T cells and describe the distribution and function of mast cells. All these cells help modulate innate immunity and regulate the immune response. By improving our understanding of immune cell behavior in the testis under normal and inflammatory conditions, we will be better placed to evaluate testis impairment due to immune mechanisms in affected patients.
Collapse
Affiliation(s)
- Sudhanshu Bhushan
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Center of Reproductive Medicine, Justus-Leibig-University Giessen, Giessen, Germany
| | - María S Theas
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Vanesa A Guazzone
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Patricia Jacobo
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Monika Fijak
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Center of Reproductive Medicine, Justus-Leibig-University Giessen, Giessen, Germany
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany.,Hessian Center of Reproductive Medicine, Justus-Leibig-University Giessen, Giessen, Germany
| | - Livia Lustig
- Departamento de Biología Celular e Histología/Unidad Académica II, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
25
|
Indumathy S, Pueschl D, Klein B, Fietz D, Bergmann M, Schuppe HC, Da Silva N, Loveland BE, Hickey MJ, Hedger MP, Loveland KL. Testicular immune cell populations and macrophage polarisation in adult male mice and the influence of altered activin A levels. J Reprod Immunol 2020; 142:103204. [PMID: 33130539 DOI: 10.1016/j.jri.2020.103204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Detailed morphological characterization of testicular leukocytes in the adult CX3CR1 gfp/+ transgenic mouse identified two distinct CX3CR1 + mononuclear phagocyte (macrophage and dendritic cell) populations: stellate/dendriform cells opposed to the seminiferous tubules (peritubular), and polygonal cells associated with Leydig cells (interstitial). Using confocal microscopy combined with stereological enumeration of CX3CR1gfp/+ cells established that there were twice as many interstitial cells (68%) as peritubular cells (32%). Flow cytometric analyses of interstitial cells from mechanically-dissociated testes identified multiple mononuclear phagocyte subsets based on surface marker expression (CX3CR1, F4/80, CD11c). These cells comprised 80% of total intratesticular leukocytes, as identified by CD45 expression. The remaining leukocytes were CD3+ (T lymphocytes) and NK1.1+ (natural killer cells). Functional phenotype assessment using CD206 (an anti-inflammatory/M2 marker) and MHC class II (an activation marker) identified a potentially tolerogenic CD206+MHCII+ sub-population (12% of total CD45+ cells). Rare testicular subsets of CX3CR1 +CD11c+F4/80+ (4.3%) mononuclear phagocytes and CD3+NK1.1+ (3.1%) lymphocytes were also identified for the first time. In order to examine the potential for the immunoregulatory cytokine, activin A to modulate testicular immune cell populations, testes from adult mice with reduced activin A (Inhba+/-) or elevated activin A (Inha+/-) were assessed using flow cytometry. Although the proportion of F4/80+CD11b+ leukocytes (macrophages) was not affected, the frequency of CD206+MHCII+cells was significantly lower and CD206+MHCII- correspondingly higher in Inha+/- testes. This shift in expression of MHCII in CD206+ macrophages indicates that changes in circulating and/or local activin A influence resident macrophage activation and phenotype and, therefore, the immunological environment of the testis.
Collapse
Affiliation(s)
- S Indumathy
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia.
| | - D Pueschl
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia
| | - B Klein
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany
| | - D Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany
| | - M Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University, Giessen, Germany
| | - H-C Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - N Da Silva
- Ohana Biosciences, Cambridge, Massachusetts, United States
| | | | - M J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Victoria, Australia
| | - M P Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia
| | - K L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
26
|
Duan YG, Wehry UP, Buhren BA, Schrumpf H, Oláh P, Bünemann E, Yu CF, Chen SJ, Müller A, Hirchenhain J, Lierop A, Novak N, Cai ZM, Krüssel JS, Schuppe HC, Haidl G, Gerber PA, Allam JP, Homey B. CCL20-CCR6 axis directs sperm-oocyte interaction and its dysregulation correlates/associates with male infertility‡. Biol Reprod 2020; 103:630-642. [PMID: 32412043 DOI: 10.1093/biolre/ioaa072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 11/12/2022] Open
Abstract
The interaction of sperm with the oocyte is pivotal during the process of mammalian fertilization. The limited numbers of sperm that reach the fallopian tube as well as anatomic restrictions indicate that human sperm-oocyte encounter is not a matter of chance but a directed process. Chemotaxis is the proposed mechanism for re-orientating sperm toward the source of a chemoattractant and hence to the oocyte. Chemokines represent a superfamily of small (8-11 kDa), cytokine-like proteins that have been shown to mediate chemotaxis and tissue-specific homing of leukocytes through binding to specific chemokine receptors such as CCRs. Here we show that CCR6 is abundantly expressed on human sperms and in human testes. Furthermore, radioligand-binding experiments showed that CCL20 bound human sperm in a specific manner. Conversely, granulosa cells of the oocyte-surrounding cumulus complex as well as human oocytes represent an abundant source of the CCR6-specific ligand CCL20. In human ovaries, CCL20 shows a cycle-dependent expression pattern with peak expression in the preovulatory phase and CCL20 protein induces chemotactic responses of human sperm. Neutralization of CCL20 in ovarian follicular fluid significantly impairs sperm migratory responses. Conversely, analyses in infertile men with inflammatory conditions of the reproductive organs demonstrate a significant increase of CCL20/CCR6 expression in testis and ejaculate. Taken together, findings of the present study suggest that CCR6-CCL20 interaction may represent an important factor in directing sperm-oocyte interaction.
Collapse
Affiliation(s)
- Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital
| | - U P Wehry
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - B A Buhren
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - H Schrumpf
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - P Oláh
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany.,Department of Dermatology, Venereology and Oncodermatology, Medical Faculty, University of Pécs, Pécs, Hungary
| | - E Bünemann
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - C-F Yu
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - S-J Chen
- Depatment of Minimally Invasive Gynecologic Surgery, Beijing Obstetrics and Gynaecology Hospital, Capital Medical University, 100006 Beijing, PR China
| | - A Müller
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - J Hirchenhain
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - A Lierop
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - N Novak
- Department of Dermatology and Allergy, Andrology Unit, University of Bonn, 53105 Bonn, Germany
| | - Zhi-Ming Cai
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital
| | - J S Krüssel
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - H-C Schuppe
- Department of Obstetrics and Gynecology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - G Haidl
- Department of Dermatology and Allergy, Andrology Unit, University of Bonn, 53105 Bonn, Germany
| | - P A Gerber
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - J-P Allam
- Department of Dermatology and Allergy, Andrology Unit, University of Bonn, 53105 Bonn, Germany
| | - B Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Ferreiro ME, Amarilla MS, Glienke L, Méndez CS, González C, Jacobo PV, Sobarzo CM, De Laurentiis A, Ferraris MJ, Theas MS. The inflammatory mediators TNFα and nitric oxide arrest spermatogonia GC-1 cell cycle. Reprod Biol 2019; 19:329-339. [PMID: 31757605 DOI: 10.1016/j.repbio.2019.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/08/2019] [Accepted: 11/02/2019] [Indexed: 01/01/2023]
Abstract
During an inflammatory process of the testis, the network of somatic, immune, and germ cell interactions is altered leading to organ dysfunction. In testicular biopsies of infertile men, spermatogenesis impairment is associated with reduced spermatogonia proliferation, increased number of immune cells, and content of pro-inflammatory cytokines. TNFα-TNFR and nitric oxide (NO)-NO synthase systems are up-regulated in models of testicular damage and in human testis with maturation arrest. The purpose of this study was to test the hypothesis that TNFα-TNFR system and NO alter the function of spermatogonia in the inflamed testis. We studied the effect of TNFα and NO on GC-1 spermatogonia cell cycle progression and death by flow cytometry. GC-1 cells expressed TNFR1 and TNFR2 (immunofluorescence). TNFα (10 and 50 ng/ml) and DETA-Nonoate (0.5 and 2 mM), a NO releaser, increased the percentage of cells in S-phase of the cell cycle and reduced the percentage in G1, inducing also cell apoptosis. TNFα effect was not mediated by oxidative stress unlike NO, since the presence of N-acetyl-l-cysteine (2.5 and 5.0 mM) prevented NO induced cell cycle arrest and death. GC-1 spermatogonia overpass NO induced cell cycle arrest but no TNFα, since after removal of NO, spermatogonia progressed through the cell cycle. We propose TNFα and NO might contribute to impairment of spermatogenesis by preventing adequate functioning of the spermatogonia population. Our results showed that TNFα and NO impaired spermatogonia cell cycle, inducing GC-1 arrest in the S phase.
Collapse
Affiliation(s)
- María Eugenia Ferreiro
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Sofía Amarilla
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Leilane Glienke
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cinthia Soledad Méndez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Candela González
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnósticos (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Patricia Verónica Jacobo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cristian Marcelo Sobarzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Andrea De Laurentiis
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Jimena Ferraris
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Susana Theas
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina.
| |
Collapse
|
28
|
Guazzone VA. Exploring the role of antigen presenting cells in male genital tract. Andrologia 2018; 50:e13120. [DOI: 10.1111/and.13120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/25/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Vanesa A. Guazzone
- Universidad de Buenos Aires; Facultad de Medicina, Departamento de Biología Celular e Histología/Unidad Académica II.; Buenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires; Instituto de Investigaciones Biomédicas (INBIOMED); Buenos Aires Argentina
| |
Collapse
|
29
|
Jacobo P. The role of regulatory T Cells in autoimmune orchitis. Andrologia 2018; 50:e13092. [DOI: 10.1111/and.13092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Patricia Jacobo
- Departmental and Institutional Affiliation, Instituto de Investigaciones Biomédicas, UBA-CONICET, Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
30
|
Fijak M, Pilatz A, Hedger MP, Nicolas N, Bhushan S, Michel V, Tung KSK, Schuppe HC, Meinhardt A. Infectious, inflammatory and 'autoimmune' male factor infertility: how do rodent models inform clinical practice? Hum Reprod Update 2018; 24:416-441. [PMID: 29648649 PMCID: PMC6016649 DOI: 10.1093/humupd/dmy009] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/02/2018] [Accepted: 03/10/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Infection and inflammation of the reproductive tract are significant causes of male factor infertility. Ascending infections caused by sexually transmitted bacteria or urinary tract pathogens represent the most frequent aetiology of epididymo-orchitis, but viral, haematogenous dissemination is also a contributory factor. Limitations in adequate diagnosis and therapy reflect an obvious need for further understanding of human epididymal and testicular immunopathologies and their contribution to infertility. A major obstacle for advancing our knowledge is the limited access to suitable tissue samples. Similarly, the key events in the inflammatory or autoimmune pathologies affecting human male fertility are poorly amenable to close examination. Moreover, the disease processes generally have occurred long before the patient attends the clinic for fertility assessment. In this regard, data obtained from experimental animal models and respective comparative analyses have shown promise to overcome these restrictions in humans. OBJECTIVE AND RATIONALE This narrative review will focus on male fertility disturbances caused by infection and inflammation, and the usefulness of the most frequently applied animal models to study these conditions. SEARCH METHODS An extensive search in Medline database was performed without restrictions until January 2018 using the following search terms: 'infection' and/or 'inflammation' and 'testis' and/or 'epididymis', 'infection' and/or 'inflammation' and 'male genital tract', 'male infertility', 'orchitis', 'epididymitis', 'experimental autoimmune' and 'orchitis' or 'epididymitis' or 'epididymo-orchitis', antisperm antibodies', 'vasectomy'. In addition to that, reference lists of primary and review articles were reviewed for additional publications independently by each author. Selected articles were verified by each two separate authors and discrepancies discussed within the team. OUTCOMES There is clear evidence that models mimicking testicular and/or epididymal inflammation and infection have been instructive in a better understanding of the mechanisms of disease initiation and progression. In this regard, rodent models of acute bacterial epididymitis best reflect the clinical situation in terms of mimicking the infection pathway, pathogens selected and the damage, such as fibrotic transformation, observed. Similarly, animal models of acute testicular and epididymal inflammation using lipopolysaccharides show impairment of reproduction, endocrine function and histological tissue architecture, also seen in men. Autoimmune responses can be studied in models of experimental autoimmune orchitis (EAO) and vasectomy. In particular, the early stages of EAO development showing inflammatory responses in the form of peritubular lymphocytic infiltrates, thickening of the lamina propria of affected tubules, production of autoantibodies against testicular antigens or secretion of pro-inflammatory mediators, replicate observations in testicular sperm extraction samples of patients with 'mixed atrophy' of spermatogenesis. Vasectomy, in the form of sperm antibodies and chronic inflammation, can also be studied in animal models, providing valuable insights into the human response. WIDER IMPLICATIONS This is the first comprehensive review of rodent models of both infectious and autoimmune disease of testis/epididymis, and their clinical implications, i.e. their importance in understanding male infertility related to infectious and non-infectious/autoimmune disease of the reproductive organs.
Collapse
Affiliation(s)
- Monika Fijak
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Adrian Pilatz
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig University of Giessen, Germany
| | - Mark P Hedger
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Nour Nicolas
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Vera Michel
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
| | - Kenneth S K Tung
- Departments of Pathology and Microbiology, Beirne Carter Center for Immunology Research, University of Virginia, 345 Crispell Drive, Charlottesville, VA, USA
| | - Hans-Christian Schuppe
- Clinic of Urology, Pediatric Urology and Andrology, Justus-Liebig University of Giessen, Germany
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Aulweg 123, Giessen, Germany
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria, Australia
| |
Collapse
|
31
|
Zhang T, Tian F, Huo R, Tang A, Zeng Y, Duan YG. Detection of dendritic cells and related cytokines in follicular fluid of patients with polycystic ovary syndrome. Am J Reprod Immunol 2017; 78. [PMID: 28585716 DOI: 10.1111/aji.12717] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
PROBLEM The presence of dendritic cells (DCs) and associated cytokines in follicular fluid (FF) from patients with polycystic ovary syndrome (PCOS) remains unknown. METHODS OF STUDY FF was collected from PCOS patients and patients with severe male factor infertility (control) at the day of transvaginal oocyte retrieval. Phenotypes of DC were detected by flow cytometry, and TNF-α, IL-6, IL-10, and IL-23 were assessed by ELISA. RESULTS A significant decrease in the percentage of DC was found in patients with PCOS (16.22±5.5%) compared with control (21.27±5.5%, P<.01). E2 on the day of hCG administration was correlated positively with the mean fluorescence intensity of HLA-DR (r=.75, P<.01) and reversely correlated with the concentration of TNF-α in FF (r=-.69, P<.01). The level of TNF-α, IL-6, and IL-10 increased significantly but IL-23 decreased in FF from patients with PCOS. CONCLUSION The decrease of DC and disturbance of associated cytokines in FF from PCOS patients indicates a disorder of immunological microenvironment of the ovarian follicle, which might be involved in the dysfunction of folliculogenesis.
Collapse
Affiliation(s)
- Tao Zhang
- Fertility Center, Shenzhen-Zhongshan Urology Hospital, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen-Zhongshan Institute for Reproduction and Genetics, Shenzhen, China
| | - Fuying Tian
- Centre of Reproductive Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ran Huo
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| | - Aifa Tang
- Centre of Reproductive Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yong Zeng
- Fertility Center, Shenzhen-Zhongshan Urology Hospital, Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen-Zhongshan Institute for Reproduction and Genetics, Shenzhen, China
| | - Yong-Gang Duan
- Centre of Reproductive Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
32
|
Duan YG, Chen S, Haidl G, Allam JP. Detection of invariant natural killer T cells in ejaculates from infertile patients with chronic inflammation of genital tract. Am J Reprod Immunol 2017; 78. [DOI: 10.1111/aji.12671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/22/2017] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation; Center of Assisted Reproduction and Embryology; The University of Hong Kong - Shenzhen Hospital; Shenzhen China
- Department of Dermatology / Andrology Unit; University of Bonn; Bonn Germany
| | - Shujian Chen
- Department of Dermatology / Andrology Unit; University of Bonn; Bonn Germany
| | - Gerhard Haidl
- Department of Dermatology / Andrology Unit; University of Bonn; Bonn Germany
| | - Jean-Pierre Allam
- Department of Dermatology / Andrology Unit; University of Bonn; Bonn Germany
| |
Collapse
|
33
|
Tung KSK, Harakal J, Qiao H, Rival C, Li JCH, Paul AGA, Wheeler K, Pramoonjago P, Grafer CM, Sun W, Sampson RD, Wong EWP, Reddi PP, Deshmukh US, Hardy DM, Tang H, Cheng CY, Goldberg E. Egress of sperm autoantigen from seminiferous tubules maintains systemic tolerance. J Clin Invest 2017; 127:1046-1060. [PMID: 28218625 DOI: 10.1172/jci89927] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022] Open
Abstract
Autoimmune responses to meiotic germ cell antigens (MGCA) that are expressed on sperm and testis occur in human infertility and after vasectomy. Many MGCA are also expressed as cancer/testis antigens (CTA) in human cancers, but the tolerance status of MGCA has not been investigated. MGCA are considered to be uniformly immunogenic and nontolerogenic, and the prevailing view posits that MGCA are sequestered behind the Sertoli cell barrier in seminiferous tubules. Here, we have shown that only some murine MGCA are sequestered. Nonsequestered MCGA (NS-MGCA) egressed from normal tubules, as evidenced by their ability to interact with systemically injected antibodies and form localized immune complexes outside the Sertoli cell barrier. NS-MGCA derived from cell fragments that were discarded by spermatids during spermiation. They egressed as cargo in residual bodies and maintained Treg-dependent physiological tolerance. In contrast, sequestered MGCA (S-MGCA) were undetectable in residual bodies and were nontolerogenic. Unlike postvasectomy autoantibodies, which have been shown to mainly target S-MGCA, autoantibodies produced by normal mice with transient Treg depletion that developed autoimmune orchitis exclusively targeted NS-MGCA. We conclude that spermiation, a physiological checkpoint in spermatogenesis, determines the egress and tolerogenicity of MGCA. Our findings will affect target antigen selection in testis and sperm autoimmunity and the immune responses to CTA in male cancer patients.
Collapse
|
34
|
Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice. Sci Rep 2017; 7:42391. [PMID: 28205525 PMCID: PMC5304336 DOI: 10.1038/srep42391] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Experimental autoimmune epididymo-orchitis (EAEO) is a model of chronic inflammation, induced by immunisation with testicular antigens, which reproduces the pathology of some types of human infertility. Activins A and B regulate spermatogenesis and steroidogenesis, but are also pro-inflammatory, pro-fibrotic cytokines. Expression of the activins and their endogenous antagonists, inhibin and follistatin, was examined in murine EAEO. Adult untreated and adjuvant-treated control mice showed no pathology. All mice immunised with testis antigens developed EAEO by 50 days, characterised by loss of germ cells, immune cell infiltration and fibrosis in the testis, similar to biopsies from human inflamed testis. An increase of total CD45+ leukocytes, comprising CD3+ T cells, CD4 + CD8− and CD4 + CD25+ T cells, and a novel population of CD4 + CD8+ double positive T cells was also detected in EAEO testes. This was accompanied by increased expression of TNF, MCP-1 and IL-10. Activin A and B and follistatin protein levels were elevated in EAEO testes, with peak activin expression during the active phase of the disease, whereas mRNA expression of the inhibin B subunits (Inha and Inhbb) and activin receptor subunits (Acvr1b and Acvr2b) were downregulated. These data suggest that activin–follistatin regulation may play a role during the development of EAEO.
Collapse
|
35
|
Loveland KL, Klein B, Pueschl D, Indumathy S, Bergmann M, Loveland BE, Hedger MP, Schuppe HC. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond. Front Endocrinol (Lausanne) 2017; 8:307. [PMID: 29250030 PMCID: PMC5715375 DOI: 10.3389/fendo.2017.00307] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Germline development in vivo is dependent on the environment formed by somatic cells and the differentiation cues they provide; hence, the impact of local factors is highly relevant to the production of sperm. Knowledge of how somatic and germline cells interact is central to achieving biomedical goals relating to restoring, preserving or restricting fertility in humans. This review discusses the growing understanding of how cytokines contribute to testicular function and maintenance of male reproductive health, and to the pathologies associated with their abnormal activity in this organ. Here we consider both cytokines that signal through JAKs and are regulated by SOCS, and those utilizing other pathways, such as the MAP kinases and SMADs. The importance of cytokines in the establishment and maintenance of the testis as an immune-privilege site are described. Current research relating to the involvement of immune cells in testis development and disease is highlighted. This includes new data relating to testicular cancer which reinforce the understanding that tumorigenic cells shape their microenvironment through cytokine actions. Clinical implications in pathologies relating to local inflammation and to immunotherapies are discussed.
Collapse
Affiliation(s)
- Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- *Correspondence: Kate L. Loveland,
| | - Britta Klein
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Dana Pueschl
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Sivanjah Indumathy
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Mark P. Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
36
|
Klein B, Haggeney T, Fietz D, Indumathy S, Loveland KL, Hedger M, Kliesch S, Weidner W, Bergmann M, Schuppe HC. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia. Hum Reprod 2016; 31:2192-202. [PMID: 27609978 DOI: 10.1093/humrep/dew211] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Which immune cells and cytokine profiles are characteristic for testicular germ cell neoplasia and what consequences does this have for the understanding of the related testicular immunopathology? SUMMARY ANSWER The unique immune environment of testicular germ cell neoplasia comprises B cells and dendritic cells as well as high transcript levels of IL-6 and other B cell supporting or T helper cell type 1 (Th1)-driven cytokines and thus differs profoundly from normal testis or inflammatory lesions associated with hypospermatogenesis. WHAT IS KNOWN ALREADY T cells are known to be the major component of inflammatory infiltrates associated with either hypospermatogenesis or testicular cancer. It has previously been reported that B cells are only involved within infiltrates of seminoma samples, but this has not been investigated further. STUDY DESIGN, SIZE, DURATION Immunohistochemical characterisation (IHC) of infiltrating immune cells and RT-qPCR-based analysis of corresponding cytokine microenvironments was performed on different testicular pathologies. Testicular biopsies, obtained from men undergoing andrological work-up of infertility or taken during surgery for testicular cancer, were used in this study. Samples were grouped as follows: (i) normal spermatogenesis (n = 18), (ii) hypospermatogenesis associated with lymphocytic infiltrates (n = 10), (iii) samples showing neoplasia [germ cell neoplasia in situ (GCNIS, n = 26) and seminoma, n = 18]. PARTICIPANTS/MATERIALS, SETTING, METHODS IHC was performed using antibodies against T cells (CD3+), B cells (CD20cy+), dendritic cells (CD11c+), macrophages (CD68+) and mast cells (mast cell tryptase+). Degree and compartmental localisation of immune cells throughout all groups analysed was evaluated semi-quantitatively. RT-qPCR on RNA extracted from cryo-preserved tissue samples was performed to analyse mRNA cytokine expression, specifically levels of IL-1β, IL-6, IL-17a, tumour necrosis factor (TNF)-α (pro-inflammatory), IL-10, transforming growth factor (TGF)-β1 (anti-inflammatory), IL-2, IL-12a, IL-12b, interferon (IFN)-γ (Th1-driven), IL-4, IL-5, IL-13, IL-23a (Th2-driven), CXCL-13, CXCL-10 and CCL-5 (chemokines). MAIN RESULTS AND THE ROLE OF CHANCE This is the first study showing a direct linkage between the distribution pattern of immune cells in hypospermatogenesis versus testicular cancer and analysis of a wide range of 17 related cyto- and chemokines. A fundamental difference between testicular inflammation patterns associated with different testicular inflammatory conditions either containing or lacking neoplastic cells was demonstrated. In hypospermatogenesis, T cells were detected, whereas B cells and dendritic cells were almost absent. Within GCNIS and seminoma, in addition to T cells, high numbers of dendritic cells and B cells were found, the latter additionally organised in cell clusters, whereas mast cells were absent. Transcripts encoding pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α), anti-inflammatory cytokines (TGF-β1), Th1-driven cytokines (IL-2 and IFN-γ) as well as chemokines (CXCL-13, CXCL-10 and CCL-5) were all significantly increased in testicular germ cell neoplasia (P ≤ 0.01), suggesting the presence of a pro-tumorigenic environment. In contrast, Th2-related cytokines (IL-5, IL-13 and IL-23a) characterised the environment within samples showing normal spermatogenesis as well as hypospermatogenesis. One of the most important outcomes is the pivotal role of IL-6 in testicular cancer that opens potential novel diagnostic and/or immune-therapeutic perspective for testis cancer. LIMITATIONS, REASONS FOR CAUTION Testicular tissue composed of immune cells as well as other somatic cells and germ cells does not allow identification of specific cytokine sources or single cell types, being responsible for establishing the overall cytokine environment. In this study, laser-assisted microdissection did not reach the required efficiency for RT-qPCR analyses. Therefore, in vitro models would be suggested for addressing the above-mentioned issue. Conclusions about cytokine levels in testes with GCNIS are based on a small number of samples. WIDER IMPLICATIONS OF THE FINDINGS The unique B cell presence and the significantly increased expression level of IL-6 in testicular germ cell neoplasia (P < 0.001) strengthen its special role in this disease. In line with current knowledge on other types of cancer, these results underline the relevance of further investigating the potential of IL-6 as early biomarker and target for therapeutic intervention in testicular germ cell neoplasia. STUDY FUNDING/COMPETING INTERESTS This study (and B.K. in person) was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the International Research Training Group between Justus Liebig University of Giessen and Monash University, Melbourne (GRK 1871/1) on 'Molecular pathogenesis on male reproductive disorders'. T.H., H.-C.S. and M.B. were supported by the LOEWE focus group 'MIBIE' (male infertility during infection & inflammation)-an excellence initiative of the German state government of Hessen. From the Australian side, K.L. was supported by NHMRC grants (Fellowship, ID1079646 and Project, ID1081987); K.L., S.I. and M.H. received scholarship (S.I.) and research funding (K.L., M.H.) from Monash University. The project also drew support from the Victorian Government's Operational Infrastructure Support Program. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Britta Klein
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Frankfurter Strasse 98, 35392 Giessen, Germany Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Thomas Haggeney
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Frankfurter Strasse 98, 35392 Giessen, Germany
| | - Daniela Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Frankfurter Strasse 98, 35392 Giessen, Germany
| | - Sivanjah Indumathy
- Hudson Institute of Medical Research, Wright Street, Clayton, VIC 3168, Australia
| | - Kate L Loveland
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Hudson Institute of Medical Research, Wright Street, Clayton, VIC 3168, Australia School of Clinical Sciences, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Mark Hedger
- Hudson Institute of Medical Research, Wright Street, Clayton, VIC 3168, Australia
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University of Muenster, Domagkstrasse 11, 48129 Muenster, Germany
| | - Wolfgang Weidner
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Rudolf-Buchheim Str. 7, 35392 Giessen, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Frankfurter Strasse 98, 35392 Giessen, Germany
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Rudolf-Buchheim Str. 7, 35392 Giessen, Germany
| |
Collapse
|
37
|
Wang P, Duan YG. The role of dendritic cells in male reproductive tract. Am J Reprod Immunol 2016; 76:186-92. [PMID: 27353336 DOI: 10.1111/aji.12536] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/10/2016] [Indexed: 12/29/2022] Open
Affiliation(s)
- Peng Wang
- Department of Urology; Daping Hospital; Institute of Surgery Research; The Third Military Medical University; Chongqing China
| | - Yong-Gang Duan
- Centre of Reproductive Medicine and Andrology; The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Shenzhen China
| |
Collapse
|
38
|
Hassanin AM, Ayad E. The impact of chronic testicular inflammatory infiltration on spermatogenesis in azoospermic men, evidence-based pilot study. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2016. [DOI: 10.1016/j.mefs.2015.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Chen SJ, Duan YG, Haidl G, Allam JP. Predomination of IL-17-producing tryptase-positive/chymase-positive mast cells in azoospermic chronic testicular inflammation. Andrologia 2015; 48:617-25. [DOI: 10.1111/and.12487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- S.-J. Chen
- Department of Dermatology/Andrology Unit; Rheinische Friedrich Wilhelm University; Bonn Germany
| | - Y.-G. Duan
- Department of Dermatology/Andrology Unit; Rheinische Friedrich Wilhelm University; Bonn Germany
| | - G. Haidl
- Department of Dermatology/Andrology Unit; Rheinische Friedrich Wilhelm University; Bonn Germany
| | - J.-P. Allam
- Department of Dermatology/Andrology Unit; Rheinische Friedrich Wilhelm University; Bonn Germany
| |
Collapse
|
40
|
Duan YG, Wang P, Zheng W, Zhang Q, Huang W, Jin F, Cai Z. Characterisation of dendritic cell subsets in chronically inflamed human epididymis. Andrologia 2015; 48:431-40. [PMID: 26257153 DOI: 10.1111/and.12463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2015] [Indexed: 12/27/2022] Open
Affiliation(s)
- Y.-G. Duan
- Centre of Reproductive Medicine and Andrology; The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Shenzhen China
- Shenzhen PKU-HKUST Medical Center; Peking University Shenzhen Hospital; Shenzhen China
| | - P. Wang
- Department of Urology; Daping Hospital; Institute of Surgery Research; Third Military Medical University; Chongqing China
| | - W. Zheng
- Shenzhen PKU-HKUST Medical Center; Peking University Shenzhen Hospital; Shenzhen China
| | - Q. Zhang
- Centre of Reproductive Medicine and Andrology; The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Shenzhen China
| | - W. Huang
- Centre of Reproductive Medicine and Andrology; The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Shenzhen China
| | - F. Jin
- Department of Urology; Daping Hospital; Institute of Surgery Research; Third Military Medical University; Chongqing China
| | - Z. Cai
- Centre of Reproductive Medicine and Andrology; The First Affiliated Hospital of Shenzhen University; Shenzhen Second People's Hospital; Shenzhen China
- Shenzhen PKU-HKUST Medical Center; Peking University Shenzhen Hospital; Shenzhen China
| |
Collapse
|
41
|
Hirai S, Naito M, Kuramasu M, Ogawa Y, Terayama H, Qu N, Hatayama N, Hayashi S, Itoh M. Low-dose exposure to di-(2-ethylhexyl) phthalate (DEHP) increases susceptibility to testicular autoimmunity in mice. Reprod Biol 2015; 15:163-71. [PMID: 26370459 DOI: 10.1016/j.repbio.2015.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/01/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Exposure to di-(2-ethylhexyl) phthalate (DEHP) induces spermatogenic disturbance (SD) through oxidative stress, and affects the immune system by acting as an adjuvant. Recently, we reported that in mice, a low dose of DEHP, which did not affect spermatogenesis, was able to alter the testicular immune microenvironment. Experimental autoimmune orchitis (EAO) can be induced by repeated immunization with testicular antigens, and its pathology is characterized by production of autoantibodies and SD. In the present study, we investigated the effect of a low-dose DEHP on the susceptibility of mice to EAO. The exposure to DEHP-containing feed (0.01%) caused a modest functional damage to the blood-testis barrier (BTB) with an increase in testicular number of interferon gamma (IFN-γ)-positive cells and resulted in the production of autoantibodies targeting haploid cells, but did not affect spermatogenesis. While only single immunization with testicular antigens caused very mild EAO, the concurrent DEHP exposure induced severe EAO with significant increases in number of interferon gamma-positive cells and macrophages, as well as lymphocytic infiltration and serum autoantibody titer accompanied by severe SD. To summarize, the exposure of mice to the low-dose DEHP does not induce significant SD, but it may cause an increase in IFN-γ positive cells and modest functional damage to the BTB in the testis. These changes lead to an autoimmune response against haploid cell autoantigens, resulting in increased susceptibility to EAO.
Collapse
Affiliation(s)
- Shuichi Hirai
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan.
| | - Munekazu Naito
- Department of Anatomy, Aichi Medical University, Aichi, Japan
| | - Miyuki Kuramasu
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Yuki Ogawa
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Hayato Terayama
- Department of Anatomy, Tokai University School of Medicine, Kanagawa, Japan
| | - Ning Qu
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | | | - Shogo Hayashi
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Itoh
- Department of Anatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
42
|
Fijak M, Damm LJ, Wenzel JP, Aslani F, Walecki M, Wahle E, Eisel F, Bhushan S, Hackstein H, Baal N, Schuler G, Konrad L, Rafiq A, O'Hara L, Smith LB, Meinhardt A. Influence of Testosterone on Inflammatory Response in Testicular Cells and Expression of Transcription Factor Foxp3 in T Cells. Am J Reprod Immunol 2015; 74:12-25. [DOI: 10.1111/aji.12363] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/02/2015] [Indexed: 01/31/2023] Open
Affiliation(s)
- Monika Fijak
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Lara-Jil Damm
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Jan-Per Wenzel
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Ferial Aslani
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Magdalena Walecki
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Eva Wahle
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Florian Eisel
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Sudhanshu Bhushan
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine; Justus-Liebig-University; Giessen Germany
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine; Justus-Liebig-University; Giessen Germany
| | - Gerhard Schuler
- Clinic for Obstetrics; Gynecology and Andrology of Large and Small Animals; Faculty of Veterinary Medicine; Justus-Liebig-University; Giessen Germany
| | - Lutz Konrad
- Department of Obstetrics and Gynaecology; Faculty of Medicine; Justus-Liebig-University; Giessen Germany
| | - Amir Rafiq
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| | - Laura O'Hara
- MRC Centre for Reproductive Health; University of Edinburgh; Edinburgh UK
| | - Lee B. Smith
- MRC Centre for Reproductive Health; University of Edinburgh; Edinburgh UK
| | - Andreas Meinhardt
- Department of Anatomy and Cell Biology; Justus-Liebig-University; Giessen Germany
| |
Collapse
|
43
|
|
44
|
Pérez CV, Theas MS, Jacobo PV, Jarazo-Dietrich S, Guazzone VA, Lustig L. Dual role of immune cells in the testis: Protective or pathogenic for germ cells? SPERMATOGENESIS 2014; 3:e23870. [PMID: 23687616 PMCID: PMC3644047 DOI: 10.4161/spmg.23870] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The purpose of this review is to describe how the immune cells present in the testis interact with the germinal epithelium contributing to survival or apoptosis of germ cells (GCs). Physiologically, the immunosuppressor testicular microenvironment protects GCs from immune attack, whereas in inflammatory conditions, tolerance is disrupted and immune cells and their mediators respond to GC self antigens, inducing damage of the germinal epithelium. Considering that experimental models of autoimmune orchitis have clarified the local immune mechanisms by which protection of the testis is compromised, we described the following topics in the testis of normal and orchitic rats: (1) cell adhesion molecule expression of seminiferous tubule specialized junctions and modulation of blood-testis barrier permeability by cytokines (2) phenotypic and functional characteristics of testicular dendritic cells, macrophages, effector and regulatory T cells and mast cells and (3) effects of pro-inflammatory cytokines (TNF-α, IL-6 and FasL) and the nitric oxide-nitric oxide synthase system on GC apoptosis.
Collapse
Affiliation(s)
- Cecilia V Pérez
- Instituto de Investigaciones Biomédicas; UBA/CONICET; Facultad de Medicina; Universidad de Buenos Aires; Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
45
|
Pérez CV, Pellizzari EH, Cigorraga SB, Galardo MN, Naito M, Lustig L, Jacobo PV. IL17A impairs blood-testis barrier integrity and induces testicular inflammation. Cell Tissue Res 2014; 358:885-98. [PMID: 25231257 DOI: 10.1007/s00441-014-1995-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
Experimental autoimmune orchitis is a useful model for studying testicular inflammation and germ/immune cell interactions. Th17 cells and their hallmark cytokine IL17A were reported to be involved in the development of autoimmune orchitis. The aim of the present work is to investigate the pathogenic role of IL17A in rat testis. In vitro experiments were performed in order to analyze effects of IL17A on Sertoli cell tight junctions. The addition of IL17A to normal rat Sertoli cell cultures induced a significant decline in transepithelial electrical resistance and a reduction of occludin expression and redistribution of occludin and claudin 11, altering the Sertoli cell tight junction barrier. Intratesticular injection of 1 μg of recombinant rat IL17A to Sprague-Dawley rats induced increased blood-testis barrier permeability, as shown by the presence of biotin tracer in the seminiferous tubule adluminal compartment, and delocalization of occludin and claudin 11. Results showed that IL17A induced focal inflammatory cell infiltration in the interstitium and germ cell sloughing in adjacent seminiferous tubules. Moreover, an increase in TUNEL+ apoptotic germ cells was also observed. Inflammatory ED1+ macrophages were the main population infiltrating the interstitium following IL17A injection. This correlated with an increase in mRNA expression of the monocyte chemoattractant protein Ccl2, its receptor Ccr2 and the vascular cell adhesion molecule Vcam1. Overall results suggest a relevant role of IL17A in the development of testicular inflammation, facilitating the recruitment of immune cells to the testicular interstitium and inducing impairment of blood-testis barrier function.
Collapse
Affiliation(s)
- Cecilia Valeria Pérez
- Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina,
| | | | | | | | | | | | | |
Collapse
|
46
|
Fijak M, Zeller T, Huys T, Klug J, Wahle E, Linder M, Haidl G, Allam JP, Pilatz A, Weidner W, Schuppe HC, Meinhardt A. Autoantibodies against protein disulfide isomerase ER-60 are a diagnostic marker for low-grade testicular inflammation. Hum Reprod 2014; 29:2382-92. [DOI: 10.1093/humrep/deu226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Hu Z, Li Z, Yu J, Tong C, Lin Y, Guo X, Lu F, Dong J, Xia Y, Wen Y, Wu H, Li H, Zhu Y, Ping P, Chen X, Dai J, Jiang Y, Pan S, Xu P, Luo K, Du Q, Yao B, Liang M, Gui Y, Weng N, Lu H, Wang Z, Zhang F, Zhu X, Yang X, Zhang Z, Zhao H, Xiong C, Ma H, Jin G, Chen F, Xu J, Wang X, Zhou Z, Chen ZJ, Liu J, Shen H, Sha J. Association analysis identifies new risk loci for non-obstructive azoospermia in Chinese men. Nat Commun 2014; 5:3857. [PMID: 24852083 DOI: 10.1038/ncomms4857] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/11/2014] [Indexed: 11/09/2022] Open
|
48
|
Contribution of IL-12/IL-35 common subunit p35 to maintaining the testicular immune privilege. PLoS One 2014; 9:e96120. [PMID: 24760014 PMCID: PMC3997559 DOI: 10.1371/journal.pone.0096120] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/03/2014] [Indexed: 12/20/2022] Open
Abstract
The testis is an organ with immune privilege. The comprehensive blood–testis barrier formed by Sertoli cells protects autoimmunogenic spermatozoa and spermatids from attack by the body’s immune system. The interleukin (IL)-6/IL-12 family cytokines IL-12 (p35/p40), IL-23 (p19/p40), IL-27 (p28/Epstein-Barr virus−induced gene 3 [EBI3]), and IL-35 (p35/EBI3) play critical roles in the regulation of various immune responses, but their roles in testicular immune privilege are not well understood. In the present study, we investigated whether these cytokines are expressed in the testes and whether they function in the testicular immune privilege by using mice deficient in their subunits. Expression of EBI3 was markedly increased at both mRNA and protein levels in the testes of 10- or 12-week-old wild-type mice as compared with levels in 2-week-old mice, whereas the mRNA expression of p40 was markedly decreased and that of p35 was conserved between these two groups. Lack of EBI3, p35, and IL-12 receptor β2 caused enhanced infiltration of lymphocytes into the testicular interstitium, with increased interferon-γ expression in the testes and autoantibody production against mainly acrosomal regions of spermatids. Spermatogenic disturbance was more frequently observed in the seminiferous tubules, especially when surrounded by infiltrating lymphocytes, of these deficient mice than in those of wild-type mice. In particular, p35-deficient mice showed the most severe spermatogenic disturbance. Immunohistochemical analyses revealed that endothelial cells and peritubular cells in the interstitium were highly positive for p35 at both ages, and CD163+ resident macrophages positive for p35 and EBI3, possibly producing IL-35, were also detected in the interstitium of 12-week-old mice but not those of 2-week-old mice. These results suggest that p35 helps in maintaining the testicular immune privilege, in part in an IL-35-dependent manner.
Collapse
|
49
|
Stereology as a valuable tool in the toolbox of testicular research. Ann Anat 2014; 196:57-66. [DOI: 10.1016/j.aanat.2012.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 11/24/2022]
|
50
|
Duan YG, Zhang Q, Liu Y, Mou L, Li G, Gui Y, Cai Z. Dendritic cells in semen of infertile men: association with sperm quality and inflammatory status of the epididymis. Fertil Steril 2014; 101:70-77.e3. [DOI: 10.1016/j.fertnstert.2013.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/18/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
|