1
|
dos Santos MR, Durval IJB, de Medeiros ADM, da Silva Júnior CJG, Converti A, Costa AFDS, Sarubbo LA. Biotechnology in Food Packaging Using Bacterial Cellulose. Foods 2024; 13:3327. [PMID: 39456389 PMCID: PMC11507476 DOI: 10.3390/foods13203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Food packaging, which is typically made of paper/cardboard, glass, metal, and plastic, is essential for protecting and preserving food. However, the impact of conventional food packaging and especially the predominant use of plastics, due to their versatility and low cost, bring serious environmental and health problems such as pollution by micro and nanoplastics. In response to these challenges, biotechnology emerges as a new way for improving packaging by providing biopolymers as sustainable alternatives. In this context, bacterial cellulose (BC), a biodegradable and biocompatible material produced by bacteria, stands out for its mechanical resistance, food preservation capacity, and rapid degradation and is a promising solution for replacing plastics. However, despite its advantages, large-scale application still encounters technical and economic challenges. These include high costs compared to when conventional materials are used, difficulties in standardizing membrane production through microbial methods, and challenges in optimizing cultivation and production processes, so further studies are necessary to ensure food safety and industrial viability. Thus, this review provides an overview of the impacts of conventional packaging. It discusses the development of biodegradable packaging, highlighting BC as a promising biopolymer. Additionally, it explores biotechnological techniques for the development of innovative packaging through structural modifications of BC, as well as ways to optimize its production process. The study also emphasizes the importance of these solutions in promoting a circular economy within the food industry and reducing its environmental impact.
Collapse
Affiliation(s)
- Maryana Rogéria dos Santos
- Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural Pernambuco (UFRPE), Rua Dom Manuel de Medeiros, s/n-Dois Irmãos, Recife 52171-900, Brazil;
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Italo José Batista Durval
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Alexandre D’Lamare Maia de Medeiros
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Cláudio José Galdino da Silva Júnior
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
| | - Attilio Converti
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa (UNIGE), Via Opera Pia, 15, 16145 Genoa, Italy
| | - Andréa Fernanda de Santana Costa
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Centro de Comunicação e Desing, Centro Acadêmico da Região Agreste, Universidade Federal de Pernambuco (UFPE), BR 104, Km 59, s/n—Nova Caruaru, Caruaru 50670-900, Brazil
| | - Leonie Asfora Sarubbo
- Instituto Avançado de Tecnologia e Inovação (IATI), Rua Potyra, n. 31, Prado, Recife 50751-310, Brazil; (I.J.B.D.); (A.D.M.d.M.); (C.J.G.d.S.J.); (A.C.); (A.F.d.S.C.)
- Escola de Tecnologia e Comunicação, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, Brazil
| |
Collapse
|
2
|
Boccia AC, Pulvirenti A, Cerruti P, Silvetti T, Brasca M. Antimicrobial starch-based cryogels and hydrogels for dual-active food packaging applications. Carbohydr Polym 2024; 342:122340. [PMID: 39048188 DOI: 10.1016/j.carbpol.2024.122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
The present study reports on the valorisation of starch waste biomass to produce dual-active cryogels and hydrogels able to adsorb water and deliver antimicrobial substances for fresh food packaging applications. Starch hydrogels were prepared by oxidation with sodium metaperiodate in water and mild conditions, while cryogels were obtained by freeze-drying process. To explore the role of starch composition on the final properties of materials, two starches differing in amylose/amylopectin ratio, were evaluated. The prepared materials were microstructurally and morphologically characterized by FTIR and NMR spectroscopy (1D, 2D, and DOSY experiments), and SEM microscopy. To provide the materials with active properties, they were loaded with antimicrobial molecules by absorption, or by crosslinking via Schiff-base reaction. All materials demonstrated high water absorption capacity and ability to deliver volatile molecules, including diacetyl and complex mixtures like mint essential oil. The release profiles of the adsorbed molecules were determined through quantitative NMR spectroscopy over time. The antibacterial activity was successfully demonstrated against Gram-positive bacterial strains for unloaded cryogels and hydrogels, and after loading with diacetyl and essential oil. The developed materials can be regarded as part of active pads for food packaging applications capable to control moisture inside the package and inhibit microbial contamination.
Collapse
Affiliation(s)
- Antonella Caterina Boccia
- Institute of Chemical Sciences and Technologies (SCITEC), National Research Council (CNR), Via A. Corti, 12, 20133 Milano, Italy.
| | - Alfio Pulvirenti
- Institute of Chemical Sciences and Technologies (SCITEC), National Research Council (CNR), Via A. Corti, 12, 20133 Milano, Italy
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Celoria 2, 20133 Milano, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
3
|
Heo W, Lim S. A Review on Gas Indicators and Sensors for Smart Food Packaging. Foods 2024; 13:3047. [PMID: 39410082 PMCID: PMC11475838 DOI: 10.3390/foods13193047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Real-time monitoring of changes in packaged food is crucial to ensure safety and alleviate environmental issues. Accordingly, the development of indicators and sensors for smart packaging has long been anticipated, especially for gases related to food deterioration and microbial growth. However, the characteristics of indicators and sensors used in food packaging cannot be adjusted according to the specific food type, making it essential to select and apply suitable indicators and sensors for each type of food. In this review, the principles and characteristics of gas indicators and sensors for oxygen, carbon dioxide, and ammonia that are commercialized or in the development phase were summarized, and their application status and prospects were assessed. Indicators and sensors for smart packaging are applied in forms such as films, labels, sachets, and devices. Their detection methods include redox reactions, analyte binding, enzyme reactions, pH changes, electron transfer, conformational changes, and electrode reactions. In this work, 9 types of indicators and sensors for oxygen, carbon dioxide, and ammonia were evaluated based on their detection and indication methods, materials, sensitivity, detection range, limit of detection, and advantages and disadvantages in food applications. We anticipate our review will propose criteria for selecting the optimal indicators and sensors for specific foods. Furthermore, this review examines the current application status and future prospects of these indicators and sensors.
Collapse
Affiliation(s)
| | - Seokwon Lim
- Department of Food Science & Biotechnology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
4
|
Uhlig E, Bucher M, Strenger M, Kloß S, Schmid M. Towards Reducing Food Wastage: Analysis of Degradation Products Formed during Meat Spoilage under Different Conditions. Foods 2024; 13:2751. [PMID: 39272516 PMCID: PMC11394942 DOI: 10.3390/foods13172751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Foodstuffs, particularly perishable ones such as meat, are frequently discarded once the best-before date has been reached, despite the possibility of their continued suitability for human consumption. The implementation of intelligent packaging has the potential to contribute to a reduction in food wastage by enabling the monitoring of meat freshness during storage time independently of the best-before date. The process of meat spoilage is associated with the formation of specific degradation products, some of which can be potentially utilized as spoilage indicators in intelligent packaging. The aim of the review is to identify degradation products whose concentration correlates with meat shelf life and to evaluate their potential use as spoilage indicators in intelligent packaging. To this end, a comprehensive literature research was conducted to identify the factors influencing meat spoilage and the eight key degradation products (carboxylic acids, biogenic amines, total volatile basic nitrogen, aldehydes, alcohols, ketones, sulfur compounds, and esters) associated with this process. These degradation products were analyzed for their correlation with meat shelf life at different temperatures, atmospheres, and meat types and for their applicability in intelligent packaging. The review provides an overview of these degradation products, comparing their potential to indicate spoilage across different meat types and storage conditions. The findings suggest that while no single degradation product universally indicates spoilage across all meat types and conditions, compounds like carboxylic acids, biogenic amines, and volatile basic nitrogen warrant further investigation. The review elucidates the intricacies inherent in identifying a singular spoilage indicator but underscores the potential of combining specific degradation products to expand the scope of applications in intelligent packaging. Further research (e.g., storage tests in which the concentrations of these substances are specifically examined or research on which indicator substance responds to these degradation products) is recommended to explore these combinations with a view to broadening their applicability.
Collapse
Affiliation(s)
- Elisa Uhlig
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Matthias Bucher
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Mara Strenger
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Svenja Kloß
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Guenther-Straße 51, 72488 Sigmaringen, Germany
| |
Collapse
|
5
|
Yang Z, Chen Q, Wei L. Active and smart biomass film with curcumin Pickering emulsion stabilized by chitosan-adsorbed laurate esterified starch for meat freshness monitoring. Int J Biol Macromol 2024; 275:133331. [PMID: 38945706 DOI: 10.1016/j.ijbiomac.2024.133331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
The multifunctional active smart biomass film was prepared by incorporating chitosan-adsorbed laurate esterified starch curcumin Pickering emulsion into the starch film matrix, with nano-cellulose serving as reinforcing agents. The mechanical and functional properties of the film were studied, and the film was used to monitor the freshness of pork. The results demonstrated a relatively uniform distribution of curcumin and Pickering emulsion droplets within the film matrix. Furthermore, the thermal stability was minimally impacted by the introduction of curcumin Pickering emulsion, while the tensile strength and tensile strain of the film were increased, and both its hydrophobicity and antioxidant properties were improved. The free radical scavenging rate reached 56.01 %, with sustained high antioxidant capacity even after 8 days. Additionally, the presence of curcumin provided the film with pH indicating ability and delayed pork spoilage. Therefore, this work provides an attractive strategy for constructing green, active, and smart biomass packaging films for meat packaging applications.
Collapse
Affiliation(s)
- Zhen Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qifeng Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Shenzhen Xinyichang Technology Co., Ltd, Shenzhen 518000, China.
| | - Liting Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Lee GY, Lim KJ, Lee YH, Shin HS. Development of a Freshness Indicator for Assessing the Quality of Packaged Pork Products during Refrigerated Storage. Foods 2024; 13:2097. [PMID: 38998604 PMCID: PMC11241483 DOI: 10.3390/foods13132097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
A pH-sensitive dye-based freshness indicator has been developed to monitor the quality status of pork neck through distinct color transitions, addressing a crucial need for improved food safety and real-time monitoring within the food industry. This system aims to boost consumer confidence and improve shelf-life estimates by offering transparent and immediate quality indicators. Aerobically packaged pork neck samples underwent accelerated testing at 25 °C for 36 h, followed by refrigeration experiments at typical distribution temperatures of 4 and 8 °C over 10 days. Measured pork neck quality parameters included total bacterial count (TBC), total volatile basic nitrogen (TVB-N), and pH levels. Visual observation and colorimetric analysis were used to assess the chromatic variations of the freshness indicator, which showed a significant shift from orange to green in response to the presence of TVB-N in the headspace of the pork packaging. The chromatic parameters of the freshness indicator exhibited a significant correlation with the pork quality values throughout the storage periods. The results highlight the ability of the freshness indicator to effectively convey quality information about pork through noticeable colorimetric changes.
Collapse
Affiliation(s)
- Ga-Young Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Kyung-Jik Lim
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Yoon-Hee Lee
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32, Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
7
|
Witek-Krowiak A, Szopa D, Anwajler B. Advanced Packaging Techniques-A Mini-Review of 3D Printing Potential. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2997. [PMID: 38930366 PMCID: PMC11205735 DOI: 10.3390/ma17122997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Packaging and packaging technology constitute a pivotal industry deeply intertwined with our daily lives and prevalent in various settings, including grocery stores, supermarkets, restaurants, and pharmacies. The industry is constantly evolving thanks to technological advances. This article delves into the dynamic landscape of 3D printing in packaging, exploring its profound implications and potential. While this article highlights the advantages of traditional packaging approaches, it also highlights the many benefits of 3D printing technology. It describes how 3D printing enables personalization, rapid prototyping, and low-cost production, streamlining packaging design and manufacturing processes. Offering innovative solutions in design, functionality, and accessibility, the potential of 3D printing in packaging is promising.
Collapse
Affiliation(s)
- Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland;
| | - Daniel Szopa
- Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland;
| | - Beata Anwajler
- Department of Energy Conversion Engineering, Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370 Wroclaw, Poland;
| |
Collapse
|
8
|
Hu Y, Li T. Smart food packaging: Recent advancement and trends. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:1-33. [PMID: 39103211 DOI: 10.1016/bs.afnr.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Food packaging plays an important role in protecting the safety and quality of food products and enables communication with consumers. With the improved consumers' awareness of safety and quality of food products, the changes in consumers' lifestyle, and the growing demand for transparency of food products along the supply chain, food packaging technologies have evolved from only providing the four fundamental functions (i.e., protection and preservation, containment, communication and marketing, and convenience) to possessing additional functions including active modification of the inside microenvironment (i.e., active packaging) and monitoring the safety and quality of products in real-time (i.e., intelligent packaging). A variety of active and intelligent packaging systems have been developed to better protect and monitor the quality and safety of food products during the past several decades. Recently, advanced versions of smart packaging technologies, such as smart active packaging and smart intelligent packaging technologies have also been developed to enhance the effectiveness of conventional smart packaging systems. Additionally, smart packaging systems that harvest the advantages of both active packaging and intelligent packaging have also been developed. In this chapter, a brief overview of smart packaging technologies was provided. Specific technologies being covered include conventional smart packaging technologies and advanced smart packaging technologies, such as smart active packaging, smart intelligent packaging and dual-function smart packaging.
Collapse
Affiliation(s)
- Yaxi Hu
- Food Science Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada.
| | - Tianqi Li
- Food Science Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
9
|
Mulloni V, Marchi G, Gaiardo A, Valt M, Donelli M, Lorenzelli L. Applications of Chipless RFID Humidity Sensors to Smart Packaging Solutions. SENSORS (BASEL, SWITZERLAND) 2024; 24:2879. [PMID: 38732985 PMCID: PMC11086060 DOI: 10.3390/s24092879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Packaging solutions have recently evolved to become smart and intelligent thanks to technologies such as RFID tracking and communication systems, but the integration of sensing functionality in these systems is still under active development. In this paper, chipless RFID humidity sensors suitable for smart packaging are proposed together with a novel strategy to tune their performances and their operating range. The sensors are flexible, fast, low-cost and easy to fabricate and can be read wirelessly. The sensitivity and the humidity range where they can be used are adjustable by changing one of the sensor's structural parameters. Moreover, these sensors are proposed as double parameter sensors, using both the frequency shift and the intensity variation of the resonance peak for the measure of the relative humidity. The results show that the sensitivity can vary remarkably among the sensors proposed, together with the operative range. The sensor suitability in two specific smart packaging applications is discussed. In the first case, a threshold sensor in the low-humidity range for package integrity verification is analyzed, and in the second case, a more complex measurement of humidity in non-hermetic packages is investigated. The discussion shows that the sensor configuration can easily be adapted to the different application needs.
Collapse
Affiliation(s)
- Viviana Mulloni
- Center for Sensors and Devices, Fondazione Bruno Kessler, 38123 Trento, Italy
| | - Giada Marchi
- Center for Sensors and Devices, Fondazione Bruno Kessler, 38123 Trento, Italy
| | - Andrea Gaiardo
- Center for Sensors and Devices, Fondazione Bruno Kessler, 38123 Trento, Italy
| | - Matteo Valt
- Center for Sensors and Devices, Fondazione Bruno Kessler, 38123 Trento, Italy
| | - Massimo Donelli
- Department of Civil Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy
| | - Leandro Lorenzelli
- Center for Sensors and Devices, Fondazione Bruno Kessler, 38123 Trento, Italy
| |
Collapse
|
10
|
Rashed NM, Memon SA, Turki SMA, Shalaby TA, El-Mogy MM. An analysis of conventional and modern packaging approaches for cut flowers: a review article. FRONTIERS IN PLANT SCIENCE 2024; 15:1371100. [PMID: 38601313 PMCID: PMC11004386 DOI: 10.3389/fpls.2024.1371100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
Fresh-cut flowers are considered to be one of the most delicate and challenging commercial crops. It is important to take into consideration how to minimize loss during storage and transportation when preserving cut flowers. Many impinging (bad effect) forces can interact to shorten the flowers' vase life. In the flower industry, effective methods need to be developed to extend freshly cut flowers' life. Fresh-cut flowers' vase life can be shortened by a variety of interlocking causes. The flower industry must develop new techniques to extend the flowers' vase lifespan. This review provides comprehensive, up-to-date information on classical, modified atmosphere packaging (MAP), and controlled atmosphere packaging (CAP) displays. According to this review, a promising packaging technique for fresh flowers can be achieved through smart packaging. A smart package is one that incorporates new technology to increase its functionality. This combines active packaging, nanotechnology, and intelligence. This technology makes it easier to keep an eye on the environmental variables that exist around the packaged flowers to enhance their quality. This article offers a comprehensive overview of creative flower-saving packaging ideas that reduce flower losses and assist growers in handling more effectively their flower inventory. To guarantee the quality of flowers throughout the marketing chain, innovative packaging techniques and advanced packaging technologies should be adopted to understand various package performances. This will provide the consumer with cut flowers of standard quality. Furthermore, sustainable packaging is achieved with circular packaging. We can significantly reduce packaging waste's environmental impact by designing reused or recyclable packaging.
Collapse
Affiliation(s)
- Nahed M. Rashed
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Horticulture Department, Faculty of Agriculture. Damietta University, Damietta, Egypt
| | - Saba Ambreen Memon
- Horticulture Department, Faculty of Crop Production, Sindh Agriculture University, Tandojam, Pakistan
| | - Saleh M. Al Turki
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Tarek A. Shalaby
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohamed M. El-Mogy
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Vegetable Crops Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Jafarzadeh S, Yildiz Z, Yildiz P, Strachowski P, Forough M, Esmaeili Y, Naebe M, Abdollahi M. Advanced technologies in biodegradable packaging using intelligent sensing to fight food waste. Int J Biol Macromol 2024; 261:129647. [PMID: 38281527 DOI: 10.1016/j.ijbiomac.2024.129647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The limitation of conventional packaging in demonstrating accurate and real-time food expiration dates leads to food waste and foodborne diseases. Real-time food quality monitoring via intelligent packaging could be an effective solution to reduce food waste and foodborne illnesses. This review focuses on recent technological advances incorporated into food packaging for monitoring food spoilage, with a major focus on paper-based sensors and their combination with smartphone. This review paper offers a comprehensive exploration of advanced macromolecular technologies in biodegradable packaging, a general overview of paper-based probes and their incorporation into food packaging coupled with intelligent sensing mechanisms for monitoring food freshness. Given the escalating global concerns surrounding food waste, our manuscript serves as a pivotal resource, consolidating current research findings and highlighting the transformative potential of these innovative packaging solutions. We also highlight the current intelligent paper-based food freshness sensors and their various advantages and limitations. Examples of implementation of paper-based sensors/probes for food storage and their accuracy are presented. Finally, we examined how intelligent packaging can be an alternative to reduce food waste. Several technologies discussed here have good potential to be used in food packaging for real-time food monitoring, especially when combined with smartphone diagnosis.
Collapse
Affiliation(s)
- Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3217, Australia.
| | - Zeynep Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Przemyslaw Strachowski
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800 Çankaya, Ankara, Turkey
| | - Yasaman Esmaeili
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Minoo Naebe
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia.
| | - Mehdi Abdollahi
- Department of Biology and Biological Engineering-Food and Nutrition Science, Chalmers University of Technology, SE 412 96 Gothenburg, Sweden.
| |
Collapse
|
12
|
Ke F, Liu D, Qin J, Yang M. Functional pH-Sensitive Film Containing Purple Sweet Potato Anthocyanins for Pork Freshness Monitoring and Cherry Preservation. Foods 2024; 13:736. [PMID: 38472849 DOI: 10.3390/foods13050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
An antioxidative and pH-sensitive multifunctional film, incorporating anthocyanin-rich purple sweet potato extract (PPE) was fabricated from polyvinyl alcohol (PVA) and sodium alginate (SA)/sodium carboxymethyl cellulose (CMC-Na). The film was composed of 6:4 PVA:SA/CMC-Na (mass ratio, SA:CMC-Na at 1:1) with added PPE, and changed color with changes in pH, and also had useful UV-blocking, antioxidant, mechanical, and water vapor barrier properties, which enable its use as a food coating film. In addition, the incorporation of 300 mg PPE increased the biodegradability of the film in soil from 52.47 ± 1.12% to 64.29 ± 1.75% at 17 days. The pH sensitivity of the film enabled its successful use for the evaluation of pork freshness. Cherries coated with the film had an extended shelf life from 3-4 to 7-9 days, during storage at 25 °C. Consequently, the multifunctional film can be applied to packaging for real-time pH/freshness monitoring and for effectively preserving the freshness of meat and fruit.
Collapse
Affiliation(s)
- Fahui Ke
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Duanwu Liu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Juanjuan Qin
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Min Yang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
13
|
Raghuvanshi S, Khan H, Saroha V, Sharma H, Gupta HS, Kadam A, Dutt D. Recent advances in biomacromolecule-based nanocomposite films for intelligent food packaging- A review. Int J Biol Macromol 2023; 253:127420. [PMID: 37852398 DOI: 10.1016/j.ijbiomac.2023.127420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
In food packaging, biopolymer films are biodegradable films made from biomacromolecule-based natural materials, while biocomposite films are hybrids of two or more materials, with at least one being biodegradable. Bionanocomposites are different than the earlier ones, as they consist of various nanofillers (both natural and inorganic) in combination with biomacromolecule-based biodegradable materials to make good compostable bionanocomposites. In this regard, a new type of material known as bionanocomposite has been recently introduced to improve the properties and performance of biocomposite films. Bionanocomposites are primarily developed for active packaging, but their use in intelligent packaging is also noteworthy. For example, bionanocomposites developed using a hybrid of anthocyanin and carbon dots as intelligent materials have shown their high pH-sensing properties. The natural nanofillers (like nanocellulose, nanochitosan, nanoliposome, cellulose nanocrystals, cellulose nanofibers, etc.) are being employed to promote the sustainability, degradability and safety of bionanocomposites. Overall, this article comprehensively reviews the latest innovations in bionanocomposite films for intelligent food packaging over the past five years. In addition to packaging aspects, the role of nanofillers, the importance of life cycle assessment (LCA) and risk assessment, associated challenges, and future perspectives of bionanocomposite intelligent films are also discussed.
Collapse
Affiliation(s)
- Sharad Raghuvanshi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| | - Hina Khan
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Vaishali Saroha
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Harish Sharma
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Hariome Sharan Gupta
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Ashish Kadam
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Dharm Dutt
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
14
|
Ali A, Bairagi S, Ganie SA, Ahmed S. Polysaccharides and proteins based bionanocomposites as smart packaging materials: From fabrication to food packaging applications a review. Int J Biol Macromol 2023; 252:126534. [PMID: 37640181 DOI: 10.1016/j.ijbiomac.2023.126534] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Food industry is the biggest and rapidly growing industries all over the world. This sector consumes around 40 % of the total plastic produced worldwide as packaging material. The conventional packaging material is mainly petrochemical based. However, these petrochemical based materials impose serious concerns towards environment after its disposal as they are nondegradable. Thus, in search of an appropriate replacement for conventional plastics, biopolymers such as polysaccharides (starch, cellulose, chitosan, natural gums, etc.), proteins (gelatin, collagen, soy protein, etc.), and fatty acids find as an option but again limited by its inherent properties. Attention on the initiatives towards the development of more sustainable, useful, and biodegradable packaging materials, leading the way towards a new and revolutionary green era in the food sector. Eco-friendly packaging materials are now growing dramatically, at a pace of about 10-20 % annually. The recombination of biopolymers and nanomaterials through intercalation composite technology at the nanoscale demonstrated some mesmerizing characteristics pertaining to both biopolymer and nanomaterials such as rigidity, thermal stability, sensing and bioactive property inherent to nanomaterials as well as biopolymers properties such as flexibility, processability and biodegradability. The dramatic increase of scientific research in the last one decade in the area of bionanocomposites in food packaging had reflected its potential as a much-required and important alternative to conventional petroleum-based material. This review presents a comprehensive overview on the importance and recent advances in the field of bionanocomposite and its application in food packaging. Different methods for the fabrication of bionanocomposite are also discussed briefly. Finally, a clear perspective and future prospects of bionanocomposites in food packaging were presented.
Collapse
Affiliation(s)
- Akbar Ali
- Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Satyaranjan Bairagi
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G128QQ, UK
| | - Showkat Ali Ganie
- State Key Laboratory of Silkworm Genome Biology, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile of Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Jammu & Kashmir 185211, India; Higher Education Department, Government of Jammu & Kashmir, Jammu 180001, India; University Centre of Research & Development (UCRD), Chandigarh University, Mohali, Punjab 140413, India.
| |
Collapse
|
15
|
Chen X, He Z, Huang X, Sun Z, Cao H, Wu L, Zhang S, Hammock BD, Liu X. Illuminating the path: aggregation-induced emission for food contaminants detection. Crit Rev Food Sci Nutr 2023:1-28. [PMID: 37983139 DOI: 10.1080/10408398.2023.2282677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Food safety is a global concern that deeply affects human health. To ensure the profitability of the food industry and consumer safety, there is an urgent need to develop rapid, sensitive, accurate, and cost-effective detection methods for food contaminants. Recently, the Aggregation-Induced Emission (AIE) has been successfully used to detect food contaminants. AIEgens, fluorescent dyes that cause AIE, have several valuable properties including high quantum yields, photostability, and large Stokes shifts. This review provides a detailed introduction to the principles and advantages of AIE-triggered detection, followed by a focus on the past five years' applications of AIE in detecting various food contaminants including pesticides, veterinary drugs, mycotoxins, food additives, ions, pathogens, and biogenic amines. Each detection principle and component is comprehensively covered and explained. Moreover, the similarities and differences among different types of food contaminants are summarized, aiming to inspire future researchers. Finally, this review concludes with a discussion of the prospects for incorporating AIEgens more effectively into the detection of food contaminants.
Collapse
Affiliation(s)
- Xincheng Chen
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Zhenyun He
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhichang Sun
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Hongmei Cao
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Long Wu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Sihang Zhang
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California, USA
| | - Xing Liu
- School of Food Science and Engineering, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou, China
| |
Collapse
|
16
|
Li C, Liu J, Li W, Liu Z, Yang X, Liang B, Huang Z, Qiu X, Li X, Huang K, Zhang X. Biobased Intelligent Food-Packaging Materials with Sustained-Release Antibacterial and Real-Time Monitoring Ability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37966-37975. [PMID: 37503816 DOI: 10.1021/acsami.3c09709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
It has been widely accepted that sustainable polymers derived from renewable resources are able to replace the short-turnover petroleum-based materials and reduce environmental impact in the future. However, their hydrophilic chemical structures rich with oxygen groups could lead to easy growth of bacteria, which greatly limit their applications in packaging materials. Here, we present an intelligent food-packaging material with sustained-release antibacterial and real-time monitoring ability based on totally biobased contents. In detail, sodium alginate with Artemisia argyi emission oil (encapsulated in gelatin-Arabic gum microcapsules) and citric acid-sourced pH-responsive carbon quantum dots (CQDs) are coated on bamboo cellulose papers. The obtained biobased composite material (almost 100% biocarbon content) with antibacterial ability is able to extend the shelf life of fresh shrimps and can be biodegraded. Moreover, owing to the introduction of CQDs, the composite can rapidly (within 1 s) detect slight pH variations (response pH ∼5, 10-9 mol/L of OH-) through an obvious color change (hue value from 305 to 355°). The developed strategy may open up new opportunities in the design of multifunctional biobased composites for intelligent applications.
Collapse
Affiliation(s)
- Changchun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jize Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Wanhe Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhenghong Liu
- Guangxi Xinggui Paper Co., Ltd., Laibin 546128, China
| | - Xin Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Bin Liang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Zhuo Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xinkai Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Kai Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Institute of Eco-Enviromental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Li X, Liu D, Pu Y, Zhong Y. Recent Advance of Intelligent Packaging Aided by Artificial Intelligence for Monitoring Food Freshness. Foods 2023; 12:2976. [PMID: 37569245 PMCID: PMC10418964 DOI: 10.3390/foods12152976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Food safety is a pressing concern for human society, as it directly impacts people's lives, while food freshness serves as one of the most crucial indicators in ensuring food safety. There exist diverse techniques for monitoring food freshness, among which intelligent packaging based on artificial intelligence technology boasts the advantages of low cost, high efficiency, fast speed and wide applicability; however, it is currently underutilized. By analyzing the current research status of intelligent packaging both domestically and internationally, this paper provides a clear classification of intelligent packaging technology. Additionally, it outlines the advantages and disadvantages of using intelligent packaging technology for food freshness detection methods, while summarizing the latest research progress in applying artificial intelligence-based technologies to food freshness detection through intelligent packaging. Finally, the author points out the limitations of the current research, and anticipates future developments in artificial intelligence technology for assisting freshness detection in intelligent packaging. This will provide valuable insights for the future development of intelligent packaging in the field of food freshness detection.
Collapse
Affiliation(s)
| | | | | | - Yunfei Zhong
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; (X.L.); (D.L.); (Y.P.)
| |
Collapse
|
18
|
Dirpan A, Yolanda DS, Djalal M. Is the use of biosensor in monitoring food quality experiencing an uplift trend over the last 30 years?: A bibliometric analysis. Heliyon 2023; 9:e18977. [PMID: 37636363 PMCID: PMC10447994 DOI: 10.1016/j.heliyon.2023.e18977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Recently, there has been intense competition among food industries worldwide as they strive to fulfill the ever-growing consumer expectations regarding both the quantity and quality of food. The increasing demand for high-quality food has motivated researchers and academics to constantly innovate and develop real-time and precise tools for monitoring food quality. One such tool that has emerged is biosensors, which have already been widely investigated; however, no bibliometric reviews have discussed biosensor use holistically, comprehensively, and objectively. Therefore, this review aimed to analyze the trend of biosensor publications for monitoring food quality based on the number of documents published from 1991 to 2021, analyze the contribution of various journals, institutions, and cooperation between countries, highlight the most influential authors and articles, and predict the development of this topic. The Method used in this study is bibliometric analysis which consists of four stages, namely data mining from the Scopus database which are limited to data for the last 30 years (1991-2021), refining data, data visualization and interpretation data. There are 604 articles obtained from Scopus and visualization shows that biosensor use for monitoring food quality has significantly increased in the past three decades. Biosensors and Bioelectronics is the leading journal in publishing manuscripts on the topic of biosensors. In terms of the largest contribution, China produced the highest number of publications on related topics, while the United States has the highest collaborations between countries. Moreover, Whitcombe MJ has the most influential articles, while Wang S had the largest number of outputs. The frequently used keywords are "biosensors," "food safety," and "food analysis." These results are important references to determine the state of the art and directions for further investigations.
Collapse
Affiliation(s)
- Andi Dirpan
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, Indonesia
- Center of Excellence in Science and Technology on Food Product Diversification, Makassar, 90245, Indonesia
| | - Dewi Sisilia Yolanda
- Research Group for Post-Harvest Technology and Biotechnology, Makassar, 90245, Indonesia
| | - Muspirah Djalal
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar, 90245, Indonesia
- Research Group for Post-Harvest Technology and Biotechnology, Makassar, 90245, Indonesia
| |
Collapse
|
19
|
Memon MM, Liu Q, Manthar A, Wang T, Zhang W. Surface Acoustic Wave Humidity Sensor: A Review. MICROMACHINES 2023; 14:mi14050945. [PMID: 37241569 DOI: 10.3390/mi14050945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
The Growing demands for humidity detection in commercial and industrial applications led to the rapid development of humidity sensors based on different techniques. Surface acoustic wave (SAW) technology is one of these methods that has been found to provide a powerful platform for humidity sensing owing to its intrinsic features, including small size, high sensitivity, and simple operational mechanism. Similar to other techniques, the principle of humidity sensing in SAW devices is also realized by an overlaid sensitive film, which serves as the core element whose interaction with water molecules is responsible for overall performance. Therefore, most researchers are focused on exploring different sensing materials to achieve optimum performance characteristics. This article reviews sensing materials used to develop SAW humidity sensors and their responses based on theoretical aspects and experimental outcomes. Herein the influence of overlaid sensing film on the performance parameters of the SAW device, such as quality factor, signal amplitude, insertion loss, etc., is also highlighted. Lastly, a recommendation to minimize the significant change in device characteristics is presented, which we believe will be a good step for the future development of SAW humidity sensors.
Collapse
Affiliation(s)
- Maria Muzamil Memon
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Qiong Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Ali Manthar
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Tao Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Wanli Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
20
|
Ahmad A, Qurashi A, Sheehan D. Nano packaging – Progress and future perspectives for food safety, and sustainability. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.100997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
Wang Y, Liu K, Zhang M, Xu T, Du H, Pang B, Si C. Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr Polym 2023; 313:120851. [PMID: 37182951 DOI: 10.1016/j.carbpol.2023.120851] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
|
22
|
Khan A, Ezati P, Rhim JW. Alizarin: Prospects and sustainability for food safety and quality monitoring applications. Colloids Surf B Biointerfaces 2023; 223:113169. [PMID: 36738702 DOI: 10.1016/j.colsurfb.2023.113169] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Active and intelligent food packaging has emerged to ensure food safety, quality, or spoilage monitoring and extend the shelf life of food. The development of intelligent packaging has accelerated significantly in recent years with a focus on monitoring changes in the quality of packaged products in real-time throughout the food supply chain. As one of the popular natural colorants, alizarin has attracted much consideration due to its excellent functional properties and quality to color change under varying pH. Alizarin is an efficient and cost-effective biomaterial with numerous biological features such as antioxidant, antibacterial, non-cytotoxic, and antitumor. This review focuses on an in-depth summary and prospects for alizarin as a natural and safe colorant that has the potential to be incorporated into intelligent packaging to track the freshness of packaged foodstuffs. The use of alizarin as an intelligent packaging agent shows huge potential for the application of food packaging and brings it one step closer to real-time monitoring of food quality throughout the supply chain. Finally, various limitations and future requirements are discussed to underscore the importance of developing alizarin-based intelligent functional food packaging systems.
Collapse
Affiliation(s)
- Ajahar Khan
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Parya Ezati
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
23
|
Abedi-Firoozjah R, Salim SA, Hasanvand S, Assadpour E, Azizi-Lalabadi M, Prieto MA, Jafari SM. Application of smart packaging for seafood: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:1438-1461. [PMID: 36717376 DOI: 10.1111/1541-4337.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Nowadays, due to the changes in lifestyle and great interest of consumers in a healthy life, people have started increasing their seafood consumption. But due to their short shelf life, experts are looking for a new packaging called smart packaging (SMP) for seafood. There are different indicators/sensors in SMP; one of the effective indices is time-temperature, which can show consumers the best time of using seafood based on their shelf life and experienced temperature. Another one is radio-frequency identification (RFID) that is a transmission device that represents a separate form of the electronic information-based SMP systems. RFID does not belong to any of the categories of markers or sensors; it is an auto recognition system that applies cordless sensors to indicate segments and collect real-time information without manual interposition. This review covers the use of SMP in all marine foods, including fish, due to its high consumption and high content of polyunsaturated fatty acids, eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3), which are the considerable factors of n-3 polyunsaturated fatty acids for human.
Collapse
Affiliation(s)
- Reza Abedi-Firoozjah
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shamimeh Azimi Salim
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Hasanvand
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Maryam Azizi-Lalabadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
24
|
Kusuma HS, Yugiani P, Himana AI, Aziz A, Putra DAW. Reflections on food security and smart packaging. Polym Bull (Berl) 2023; 81:1-47. [PMID: 36852383 PMCID: PMC9947446 DOI: 10.1007/s00289-023-04734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
Estimating the number of COVID-19 cases in 2020 exacerbated the food contamination and food supply issues. These problems make consumers more concerned about food and the need to access accurate information on food quality. One of the main methods for preserving the quality of food commodities for export, storage, and finished products is food packaging itself. In the food industry, food packaging has a significant role in the food supply which acts as a barrier against unwanted substances and preserves the quality of the food. Meanwhile, packaging waste can also harm the environment; namely, it can become waste in waterways or become garbage that accumulates because it is nonrenewable and nonbiodegradable. The problem of contaminated food caused by product packaging is also severe. Therefore, to overcome these challenges of safety, environmental impact, and sustainability, the role of food packaging becomes very important and urgent. In this review, the authors will discuss in more detail about new technologies applied in the food industry related to packaging issues to advance the utilization of Smart Packaging and Active Packaging.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Puput Yugiani
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Ayu Iftah Himana
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Amri Aziz
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| | - Deva Afriga Wardana Putra
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Sleman, Indonesia
| |
Collapse
|
25
|
Kabadurmus O, Kayikci Y, Demir S, Koc B. A data-driven decision support system with smart packaging in grocery store supply chains during outbreaks. SOCIO-ECONOMIC PLANNING SCIENCES 2023; 85:101417. [PMID: 35999842 PMCID: PMC9388292 DOI: 10.1016/j.seps.2022.101417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 05/17/2023]
Abstract
The unexpected emergence of the COVID-19 pandemic has changed how grocery shopping is done. The grocery retail stores need to ensure hygiene, quality, and safety concerns in-store shopping by providing "no-touch" smart packaging solutions for agri-food products. The benefit of smart packaging is to inform consumers about the freshness level of a packaged product without having direct contact. This paper proposes a data-driven decision support system that uses smart packaging as a smart product-service system to manage the sustainable grocery store supply chain during outbreaks to prevent food waste. The proposed model dynamically updates the price of a packaged perishable product depending on freshness level while reducing food waste and the number of rejected customers and maximising profit by increasing the inventory turnover rate of grocery stores. The model was tested on a hypothetical but realistic case study of a single product. The results of this study showed that stock capacities, freshness discount rate, freshness period, and quantity discounts significantly affect the performance of a grocery store supply chain during outbreaks.
Collapse
Affiliation(s)
- Ozgur Kabadurmus
- Department of Industrial Engineering, Clemson University, Clemson, United States
| | - Yaşanur Kayikci
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield, UK
- Science Policy Research Unit, University of Sussex Business School, Brighton, UK
| | - Sercan Demir
- Department of Industrial Engineering, Harran University, Sanliurfa, Turkey
| | - Basar Koc
- Department of Computer Science, Stetson University, DeLand, FL, USA
| |
Collapse
|
26
|
pH-dependent color response of cellulose-based time-temperature indicators impregnated with red cabbage extract. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AbstractColor-based time-temperature indicators (TTIs) can show the time and temperature changes of an environment with a visually recognizable color change. Made from natural dyes, these TTIs are simple, inexpensive and sustainable. In this study, cellulose-based TTI labels were prepared with red cabbage extract of pH2, pH7 and pH9 to determine how pH alter the response of the labels to time and temperature changes. This study also aimed to determine the relationship between color change and time at different temperatures. The color responses of the labels were followed spectrophotometrically by measuring the CIE Lab color coordinates and by giving the total color difference at 4 °C, 23 °C, 40 °C, 80 and 100 °C after increments of time. The best fitting linear or nonlinear regression models of the CIE Lab coordinates, total color difference and time data as a function of temperature were also determined. The labels prepared with red cabbage extract at different pH behaved differently. Opposite to expectations, the acidic, pink colored labels did not have the highest color stability. Our finding was, that the label prepared with the acidic red cabbage extract is the most suitable as time-temperature label for indicating long-term temperature storage and the label prepared with the neutral red cabbage extract is the most suitable as time-temperature label for indicating short-term storage by color change. According to the results the color changes of the labels are predictable with the fitted models with a correlation coefficient between 0.96 and 1.
Collapse
|
27
|
Gelatin-based smart film incorporated with nano cerium oxide for rapid detection of shrimp freshness. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Khodaei SM, Gholami‐Ahangaran M, Karimi Sani I, Esfandiari Z, Eghbaljoo H. Application of intelligent packaging for meat products: A systematic review. Vet Med Sci 2022; 9:481-493. [PMID: 36571810 PMCID: PMC9857129 DOI: 10.1002/vms3.1017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Today, in response to consumer demand and market trends, the development of new packaging with better performance such as intelligent packaging has become more important. This packaging system is able to perform intelligent functions to increase shelf life, increase safety and improve product quality. OBJECTIVES Recently, various types of packaging systems are available for meat products, especially cooked, fresh and processed meats. But because meat products are very perishable, monitoring their quality and safety in the supply chain is very important. This systematic article briefly reviews some of the recent data about the application of intelligent packaging in meat products. METHODS The search was conducted in Google Scholar, Science Direct, Elsevier, Springer, Scopus, and PubMed, from April 1996 to April 2021 using a different combination of the following keyword: intelligent packaging, and meat. RESULTS The results showed that the intelligent packaging presents several benefits compared to traditional packaging (e.g., antimicrobial, antioxidant, and shelf life extension) at the industrial processing level. Thus, these systems have been applied to improve the shelf life and textural properties of meat and meat products. CONCLUSIONS It is necessary to control the number of intelligent compounds that are included in the packaging as they clearly influence the quality and nutritional properties as well as the final cost of the food products.
Collapse
Affiliation(s)
- Seyedeh Mahsa Khodaei
- Department of Food Science and TechnologyNutrition and Food Security Research CenterSchool of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Majid Gholami‐Ahangaran
- Department of Poultry DiseasesFaculty of Veterinary MedicineShahrekord Branch, Islamic Azad UniversityShahrekordIran
| | - Iraj Karimi Sani
- Department of Food Science and TechnologyFaculty of AgricultureUrmia UniversityUrmiaIran
| | - Zahra Esfandiari
- Department of Food Science and TechnologyNutrition and Food Security Research CenterSchool of Nutrition and Food ScienceIsfahan University of Medical SciencesIsfahanIran
| | - Hadi Eghbaljoo
- Division of Food Safety and HygieneDepartment of Environmental Health EngineeringSchool of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
29
|
Osmólska E, Stoma M, Starek-Wójcicka A. Application of Biosensors, Sensors, and Tags in Intelligent Packaging Used for Food Products-A Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249956. [PMID: 36560325 PMCID: PMC9783027 DOI: 10.3390/s22249956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/12/2023]
Abstract
The current development of science and the contemporary market, combined with high demands from consumers, force manufacturers and scientists to implement new solutions in various industries, including the packaging industry. The emergence of new solutions in the field of intelligent packaging has provided an opportunity to extend the quality of food products and ensures that food will not cause any harm to the consumer's health. Due to physical, chemical, or biological factors, the state of food may be subject to degradation. The degradation may occur because the packaging, i.e., the protective element of food products, may be damaged during storage, transport, or other logistic and sales activities. This is especially important since most food products are highly perishable, and the maintenance of the quality of a food product is the most critical issue in the entire supply chain. Given the importance of the topic, the main purpose of this article was to provide a general overview of the application of biosensors, sensors, and tags in intelligent packaging used for food products. A short history and the genesis of intelligent packaging are presented, and the individual possibilities of application of sensors, biosensors, gas sensors, and RFID tags, as well as nanotechnology, in the area of the packaging of food products are characterized.
Collapse
Affiliation(s)
- Emilia Osmólska
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Monika Stoma
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Agnieszka Starek-Wójcicka
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
30
|
RFID-based sensing in smart packaging for food applications: A review. FUTURE FOODS 2022; 6:100198. [PMID: 36276606 PMCID: PMC9576266 DOI: 10.1016/j.fufo.2022.100198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The global pandemic COVID-19 has led to an increase in the number of people purchasing food online, which has brought to a higher demand on the food supply chain. Such as the need to collect more information related to food safety and quality in real-time. Strengthening management of food logistics information flow can reduce food loss and waste and bring better quality and safety of food to consumers. In this review, the importance and applicability of RFID (Radio Frequency Identification) technology to smart food packaging are described. This study emphasizes the recent advancement of the RFID tags in humidity, temperature, gas, pH, integrity, and traceability sensor applications in connection with food packaging. RFID sensors are more suitable for smart packaging both in terms of sensing ability and data transmission. A simpler, low-cost, more robust and less power-demanding sensors network is the development direction of smart packaging in the future. Chipless RFID sensors have the potential to achieve these functions. But it still faces many challenges to be overcome. For example, biocompatible, cost, reading range, multi-tag collision, multi-parameter sensors, recycling issues, security and privacy of RFID system should be solved.
Collapse
|
31
|
Development of a Portable Near-Infrared Spectroscopy Tool for Detecting Freshness of Commercial Packaged Pork. Foods 2022; 11:foods11233808. [PMID: 36496616 PMCID: PMC9739416 DOI: 10.3390/foods11233808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Real-time monitoring of meat quality requires fast, accurate, low-cost, and non-destructive analytical methods that can be used throughout the entire production chain, including the packaged product. The aim of this work was to evaluate the potential of a portable near-infrared (NIR) spectroscopy tool for the on-site detection of freshness of pork loin fillets in modified atmosphere packaging (MAP) stored on display counters. Pork loin slices were sealed in MAP trays under two proportions of O2/CO2/N2: High-Ox-MAP (30/40/30) and Low-Ox-MAP (5/20/75). Changes in pH, color, thiobarbituric acid reactive substances (TBARS), Warner−Bratzler shear force (WBSF), and microbiology (total viable counts, Enteriobacteriaceae, and lactic acid bacteria) were monitored over 15 days post-mortem at 4 °C. VIS-NIR spectra were collected from pork fillets before (through the film cover) and after opening the trays (directly on the meat surface) with a portable LABSPEC 5000 NIR system in diffuse reflectance mode (350−2500 nm). Quantitative NIR models by partial least squares regression (PLSR) showed a promising prediction ability for meat color (L*, a*, C*, and h*) and microbiological variables (R2VAL > 0.72 and RPDVAL > 2). In addition, qualitative models using PLS discriminant analysis obtained good accuracy (over 90%) for classifying pork samples as fresh (acceptable for consumption) or spoiled (not acceptable) based on their microbiological counts. VIS-NIR spectroscopy allows rapid evaluation of product quality and shelf life and could be used for on-site control of pork quality.
Collapse
|
32
|
Jayarathna S, Andersson M, Andersson R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers (Basel) 2022; 14:4557. [PMID: 36365555 PMCID: PMC9657003 DOI: 10.3390/polym14214557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 09/10/2023] Open
Abstract
Environmental pollution by synthetic polymers is a global problem and investigating substitutes for synthetic polymers is a major research area. Starch can be used in formulating bioplastic materials, mainly as blends or composites with other polymers. The major drawbacks of using starch in such applications are water sensitivity and poor mechanical properties. Attempts have been made to improve the mechanical properties of starch-based blends and composites, by e.g., starch modification or plasticization, matrix reinforcement, and polymer blending. Polymer blending can bring synergetic benefits to blends and composites, but necessary precautions must be taken to ensure the compatibility of hydrophobic polymers and hydrophilic starch. Genetic engineering offers new possibilities to modify starch inplanta in a manner favorable for bioplastics applications, while the incorporation of antibacterial and/or antioxidant agents into starch-based food packaging materials brings additional advantages. In conclusion, starch is a promising material for bioplastic production, with great potential for further improvements. This review summarizes the recent advances in starch-based blends and composites and highlights the potential strategies for overcoming the major drawbacks of using starch in bioplastics applications.
Collapse
Affiliation(s)
- Shishanthi Jayarathna
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, SE-234 22 Lomma, Sweden
| | - Roger Andersson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| |
Collapse
|
33
|
Cichero MC, dos Santos da Silvia A, dos Santos JHZ. Hybrid solid sensitive arrays/polypropylene composites: A study on sensing alkaline vapors. J Appl Polym Sci 2022. [DOI: 10.1002/app.53158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Advances and Challenges in Biopolymer-Based Films. Polymers (Basel) 2022; 14:polym14183920. [PMID: 36146065 PMCID: PMC9500674 DOI: 10.3390/polym14183920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
|
35
|
Colorimetric Freshness Indicator Based on Cellulose Nanocrystal-Silver Nanoparticle Composite for Intelligent Food Packaging. Polymers (Basel) 2022; 14:polym14173695. [PMID: 36080770 PMCID: PMC9460483 DOI: 10.3390/polym14173695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, a colorimetric freshness indicator based on cellulose nanocrystal-silver nanoparticles (CNC-AgNPs) was successfully fabricated to offer a convenient approach for monitoring the quality of packaged food. AgNPs were directly synthesized and embedded in CNC via a one-pot hydrothermal green synthesis, and CNC-AgNP composited indicator films were prepared using a simple casting method. The AgNPs obtained were confirmed by UV-Vis diffuse reflectance spectroscopy and X-ray diffraction. The ability of the as-prepared CNC-AgNP film to indicate food quality was assessed in terms of the intensity of its color change when in contact with spoilage gases from chicken breast. The CNC-AgNP films initially exhibited a yellowish to dark wine-red color depending on the amount of AgNPs involved. They gradually turned colorless and subsequently to metallic grey. This transition is attributed to the reaction of AgNPs and hydrogen sulfide (H2S), which alters the surface plasmon resonance of AgNPs. Consequently, the color change was suitably discernible to the human eye, implying that the CNC-AgNP composite is a highly effective colorimetric freshness indicator. It can potentially serve as an accurate and irreversible food quality indicator in intelligent packaging during distribution or storage of products that emit hydrogen sulfide when deteriorating, such as poultry products or broccoli.
Collapse
|
36
|
Preparation of Methylcellulose Film-Based CO2 Indicator for Monitoring the Ripeness Quality of Mango Fruit cv. Nam Dok Mai Si Thong. Polymers (Basel) 2022; 14:polym14173616. [PMID: 36080690 PMCID: PMC9460386 DOI: 10.3390/polym14173616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Day-to-day advancements in food science and technology have increased. Indicators, especially biopolymer-incorporated organic dye indicators, are useful for monitoring the ripeness quality of agricultural fruit products. In this investigation, methylcellulose films—containing pH dye-based indicators that change color depending on the carbon dioxide (CO2) levels—were prepared. The level of CO2 on the inside of the packaging container indicated the ripeness of the fruit. Changes in the CO2 level, caused by the ripeness metabolite during storage, altered the pH. The methylcellulose-based film contained pH-sensitive dyes (bromothymol blue and methyl red), which responded (through visible color change) to CO2 levels produced by ripeness metabolites formed during respiration. The indicator solution and indicator label were monitored for their response to CO2. In addition, a kinetic approach was used to correlate the response of the indicator label to the changes in mango ripeness. Color changes (the total color difference of a mixed pH dye-based indicator), correlated well with the CO2 levels in mango fruit. In the ‘Nam Dok Mai Si Thong’ mango fruit model, the indicator response correlated with respiration patterns in real-time monitoring of ripeness at various constant temperatures. Based on the storage test, the indicator labels exhibited color changes from blue, through light bright green, to yellow, when exposed to CO2 during storage time, confirming the minimal, half-ripe, and fully-ripe levels of mango fruit, respectively. The firmness and titratable acidity (TA) of the fruit decreased from 44.54 to 2.01 N, and 2.84 to 0.21%, respectively, whereas the soluble solid contents (SSC) increased from 10.70 to 18.26% when the fruit ripened. Overall, we believe that the application of prepared methylcellulose-based CO2 indicator film can be helpful in monitoring the ripeness stage, or quality of, mango and other fruits, with the naked eye, in the food packaging system.
Collapse
|
37
|
Iversen LJL, Rovina K, Vonnie JM, Matanjun P, Erna KH, ‘Aqilah NMN, Felicia WXL, Funk AA. The Emergence of Edible and Food-Application Coatings for Food Packaging: A Review. Molecules 2022; 27:5604. [PMID: 36080371 PMCID: PMC9457879 DOI: 10.3390/molecules27175604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging was not as important in the past as it is now, because the world has more people but fewer food resources. Food packaging will become more prevalent and go from being a nice-to-have to an essential feature of modern life. Food packaging has grown to be an important industry sector in today's world of more people and more food. Food packaging innovation faces significant challenges in extending perishable food products' shelf life and contributing to meeting daily nutrient requirements as people nowadays are searching for foods that offer additional health advantages. Modern food preservation techniques have two objectives: process viability and safe, environmentally friendly end products. Long-term storage techniques can include the use of edible coatings and films. This article gives a succinct overview of the supplies and procedures used to coat food products with conventional packaging films and coatings. The key findings summarizing the biodegradable packaging materials are emphasized for their ability to prolong the freshness and flavor of a wide range of food items; films and edible coatings are highlighted as viable alternatives to traditional packaging methods. We discuss the safety concerns and opportunities presented by applying edible films and coatings, allowing it to be used as quality indicators for time-sensitive foods.
Collapse
Affiliation(s)
- Luk Jun Lam Iversen
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Patricia Matanjun
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kana Husna Erna
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Andree Alexander Funk
- Rural Development Corporation, Level 2, Wisma Pertanian, Locked Bag 86, Kota Kinabalu 88998, Sabah, Malaysia
| |
Collapse
|
38
|
Rai P, Mehrotra S, Sharma SK. Challenges in assessing the quality of fruit juices: Intervening role of biosensors. Food Chem 2022; 386:132825. [PMID: 35367795 DOI: 10.1016/j.foodchem.2022.132825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
The quality of packaged fruit juices is affected during their processing, packaging and storage that might cause deteriorative biological, chemical and physical alterations. Consumption of spoiled juices, either from biological or non-biological sources can pose a potential health hazard for the consumers. Sensitive and reliable methods are required to ensure the quality of fruit juices. Standard analytical methods such as chromatography, spectrophotometry, electrophoresis and titration, that require sophisticated equipment and expertise, are traditionally used to assess the quality of fruit juices. Using biosensors, that are simple, portable and rapid presents a promising alternative to the tedious analytical methods for the detection of various degradation and spoilage indicators formed in the packaged fruit juices. Here, we review the challenges in maintaining the quality of fruit juices and the recent developments in techniques and biosensors for quick analysis of fruit juice components.
Collapse
Affiliation(s)
- Pawankumar Rai
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Srishti Mehrotra
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep K Sharma
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
39
|
Liu B, Yang H, Zhu C, Xiao J, Cao H, Simal-Gandara J, Li Y, Fan D, Deng J. A comprehensive review of food gels: formation mechanisms, functions, applications, and challenges. Crit Rev Food Sci Nutr 2022; 64:760-782. [PMID: 35959724 DOI: 10.1080/10408398.2022.2108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gels refer to the soft and flexible macromolecular polymeric materials retaining a large amount of water or biofluids in their three-dimensional network structure. Gels have attracted increasing interest in the food discipline, especially proteins and polysaccharides, due to their good biocompatibility, biodegradability, nutritional properties, and edibility. With the advancement of living standards, people's demand for nutritious, safe, reliable, and functionally diverse food and even personalized food has increased. As a result, gels exhibiting unique advantages in food application will be of great significance. However, a comprehensive review of functional hydrogels as food gels is still lacking. Here, we comprehensively review the gel-forming mechanisms of food gels and systematically classify them. Moreover, the potential of hydrogels as functional foods in different types of food areas is summarized, with a special focus on their applications in food packaging, satiating gels, nutrient delivery systems, food coloring adsorption, and food safety monitoring. Additionally, the key scientific issues for future food gel research, with specific reference to future novel food designs, mechanisms between food components and matrices, food gel-human interactions, and food gel safety, are discussed. Finally, the future directions of hydrogels for food science and technology are summarized.
Collapse
Affiliation(s)
- Bin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Yujin Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| |
Collapse
|
40
|
Marquez R, Zwilling J, Zambrano F, Tolosa L, Marquez ME, Venditti R, Jameel H, Gonzalez R. Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An overview of their selection and application. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Marquez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Jacob Zwilling
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Franklin Zambrano
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Laura Tolosa
- School of Chemical Engineering Universidad de Los Andes Mérida Venezuela
| | - Maria E. Marquez
- Laboratory of Parasite Enzymology, Department of Biology Universidad de Los Andes Mérida Venezuela
| | - Richard Venditti
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Hasan Jameel
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Ronalds Gonzalez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
41
|
Zhai X, Sun Y, Cen S, Wang X, Zhang J, Yang Z, Li Y, Wang X, Zhou C, Arslan M, Li Z, Shi J, Huang X, Zou X, Gong Y, Holmes M, Povey M. Anthocyanins-encapsulated 3D-printable bigels: A colorimetric and leaching-resistant volatile amines sensor for intelligent food packaging. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Alp-Erbay E. Nanomaterials Utilized in Food Packaging: State-of-the-Art. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Fuertes-Perez S, Abele M, Ludwig C, Vogel RF, Hilgarth M. Impact of Modified Atmospheres on Growth and Metabolism of Meat-Spoilage Relevant Photobacterium spp. as Predicted by Comparative Proteomics. Front Microbiol 2022; 13:866629. [PMID: 35722325 PMCID: PMC9201721 DOI: 10.3389/fmicb.2022.866629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/12/2022] [Indexed: 11/25/2022] Open
Abstract
Modified atmosphere packaging (MAP) is a common strategy to selectively prevent the growth of certain species of meat spoiling bacteria. This study aimed to determine the impact of high oxygen MAP (70% O2, 30% CO2, red and white meats) and oxygen-free MAP (70% N2, 30% CO2, also white meat and seafood) on preventing the growth of spoiling photobacteria on meat. Growth of Photobacterium carnosum and P. phosphoreum was monitored in a meat simulation media under different gas mixtures of nitrogen, oxygen, and carbon dioxide, and samples were taken during exponential growth for a comparative proteomic analysis. Growth under air atmosphere appears optimal, particularly for P. carnosum. Enhanced protein accumulation affected energy metabolism, respiration, oxygen consuming reactions, and lipid usage. However, all the other atmospheres show some degree of growth reduction. An increase in oxygen concentration leads to an increase in enzymes counteracting oxidative stress for both species and enhancement of heme utilization and iron-sulfur cluster assembly proteins for P. phosphoreum. Absence of oxygen appears to switch the metabolism toward fermentative pathways where either ribose (P. phosphoreum) or glycogen (P. carnosum) appear to be the preferred substrates. Additionally, it promotes the use of alternative electron donors/acceptors, mainly formate and nitrate/nitrite. Stress response is manifested as an enhanced accumulation of enzymes that is able to produce ammonia (e.g., carbonic anhydrase, hydroxylamine reductase) and regulate osmotic stress. Our results suggest that photobacteria do not sense the environmental levels of carbon dioxide, but rather adapt to their own anaerobic metabolism. The regulation in presence of carbon dioxide is limited and strain-specific under anaerobic conditions. However, when oxygen at air-like concentration (21%) is present together with carbon dioxide (30%), the oxidative stress appears enhanced compared to air conditions (very low carbon dioxide), as explained if both gases have a synergistic effect. This is further supported by the increase in oxygen concentration in the presence of carbon dioxide. The atmosphere is able to fully inhibit P. carnosum, heavily reduce P. phosphoreum growth in vitro, and trigger diversification of energy production with higher energetic cost, highlighting the importance of concomitant bacteria for their growth on raw meat under said atmosphere.
Collapse
Affiliation(s)
- Sandra Fuertes-Perez
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Munich, Germany
| | - Miriam Abele
- Bayerisches Zentrum für Biomolekulare Massenspektrometrie (BayBioMS), Technische Universität München, Munich, Germany
| | - Christina Ludwig
- Bayerisches Zentrum für Biomolekulare Massenspektrometrie (BayBioMS), Technische Universität München, Munich, Germany
| | - Rudi F Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Munich, Germany
| | - Maik Hilgarth
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Munich, Germany
| |
Collapse
|
44
|
|
45
|
Application of Inkjet Printing Technology in Developing Indicators/Sensors for Intelligent Packaging Systems. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Low JT, Yusoff NISM, Othman N, Wong T, Wahit MU. Silk fibroin‐based films in food packaging applications: A review. Compr Rev Food Sci Food Saf 2022; 21:2253-2273. [DOI: 10.1111/1541-4337.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Jia Tee Low
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | | | - Norhayani Othman
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Tuck‐Whye Wong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| | - Mat Uzir Wahit
- School of Chemical and Energy Engineering, Faculty of Engineering Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia Johor Bahru Johor 81310 Malaysia
| |
Collapse
|
47
|
Wenderoth S, Eigen A, Wintzheimer S, Prieschl J, Hirsch A, Halik M, Mandel K. Supraparticles with a Mechanically Triggerable Color-Change-Effect to Equip Coatings with the Ability to Report Damage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107513. [PMID: 35253355 DOI: 10.1002/smll.202107513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Small scratches and abrasion cause damage to packaging coatings. Albeit often invisible to the human eye, such small defects in the coating may ultimately have a strong negative impact on the whole system. For instance, gases may penetrate the coating and consequently the package barrier, thus leading to the degradation of sensitive goods. Herein, the indicators of mechanical damage in the form of particles are reported, which can readily be integrated into coatings. Shear stress-induced damage is indicated by the particles via a color change. The particles are designed as core-shell supraparticles. The supraparticle core is based on rhodamine B dye-doped silica nanoparticles, whereas the shell is made of alumina nanoparticles. The alumina surface is functionalized with a monolayer of a perylene dye. The resulting core-shell supraparticle system thus contains two colors, one in the core and one in the shell part of the architecture. Mechanical damage of this structure exposes the core from the shell, resulting in a color change. With particles integrated into a coating lacquer, mechanical damage of a coating can be monitored via a color change and even be related to the degree of oxygen penetration in a damaged coating.
Collapse
Affiliation(s)
- Sarah Wenderoth
- Chair of Chemical Technology of Materials Synthesis, Julius-Maximilians-University Würzburg, Röntgenring 11, D97070, Würzburg, Germany
- Fraunhofer-Institute for Silicate Research, ISC, Neunerplatz 2, D97082, Würzburg, Germany
| | - Andreas Eigen
- Organic Materials & Devices, Department of Material Science, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 3, D91058, Erlangen, Germany
| | - Susanne Wintzheimer
- Fraunhofer-Institute for Silicate Research, ISC, Neunerplatz 2, D97082, Würzburg, Germany
- Departement of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| | - Johannes Prieschl
- Departement of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| | - Andreas Hirsch
- Institute of Organic Chemistry II, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Strasse 10, D91058, Erlangen, Germany
| | - Marcus Halik
- Organic Materials & Devices, Department of Material Science, Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Cauerstrasse 3, D91058, Erlangen, Germany
| | - Karl Mandel
- Fraunhofer-Institute for Silicate Research, ISC, Neunerplatz 2, D97082, Würzburg, Germany
- Departement of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Egerlandstrasse 1, D91058, Erlangen, Germany
| |
Collapse
|
48
|
Luo X, Zaitoon A, Lim LT. A review on colorimetric indicators for monitoring product freshness in intelligent food packaging: Indicator dyes, preparation methods, and applications. Compr Rev Food Sci Food Saf 2022; 21:2489-2519. [PMID: 35365965 DOI: 10.1111/1541-4337.12942] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Intelligent food packaging system exhibits enhanced communication function by providing dynamic product information to various stakeholders (e.g., consumers, retailers, distributors) in the supply chain. One example of intelligent packaging involves the use of colorimetric indicators, which when subjected to external stimuli (e.g., moisture, gas/vapor, electromagnetic radiation, temperature), display discernable color changes that can be correlated with real-time changes in product quality. This type of interactive packaging system allows continuous monitoring of product freshness during transportation, distribution, storage, and marketing phases. This review summarizes the colorimetric indicator technologies for intelligent packaging systems, emphasizing on the types of indicator dyes, preparation methods, applications in different food products, and future considerations. Both food and nonfood indicator materials integrated into various carriers (e.g., paper-based substrates, polymer films, electrospun fibers, and nanoparticles) with material properties optimized for specific applications are discussed, targeting perishable products, such as fresh meat and fishery products. Colorimetric indicators can supplement the traditional "Best Before" date label by providing real-time product quality information to the consumers and retailers, thereby not only ensuring product safety, but also promising in reducing food waste. Successful scale-up of these intelligent packaging technologies to the industrial level must consider issues related to regulatory approval, consumer acceptance, cost-effectiveness, and product compatibility.
Collapse
Affiliation(s)
- Xiaoyu Luo
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | - Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Canada
| |
Collapse
|
49
|
Wang Y, Zhang J, Zhang L. An active and pH-responsive film developed by sodium carboxymethyl cellulose/polyvinyl alcohol doped with rose anthocyanin extracts. Food Chem 2022; 373:131367. [PMID: 34731797 DOI: 10.1016/j.foodchem.2021.131367] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
Many anthocyanins were used in active and pH-responsive packaging. The purpose of the study was to prepare an active and pH-responsive sensitive film based on sodium carboxymethyl cellulose/polyvinyl alcohol (CPVA) by a casting process, which contained rose anthocyanin extracts (RAEs) to monitor the freshness of pork. The concentration of RAEs had an important influence on the physicochemical property of RAEs-CPVA films, especially excellent anti-oxidation and light barrier properties. Importantly, the 160-RAEs-CPVA film had a strong response to pH, showing different color at different pHs. Furthermore, when monitoring the freshness of pork stored at 25 °C, the light green color of the 160-RAEs-CPVA film indicated that the freshness of the pork was higher, while the dark green and orange appearance indicated that the pork was spoiled. Therefore, 160-RAEs-CPVA film can be used as a smart indicator for freshness monitoring of pork.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Zhang
- The Food College of Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; The Food College of Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
50
|
Flórez M, Guerra-Rodríguez E, Cazón P, Vázquez M. Chitosan for food packaging: Recent advances in active and intelligent films. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107328] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|