1
|
Mendonça C, Marques D, Silveira J, Marques J, de Souza RF, Mata A. Effects of Probiotic Therapy on Periodontal and Peri-implant Treatments: An Umbrella Review. JDR Clin Trans Res 2024:23800844241240474. [PMID: 39508204 DOI: 10.1177/23800844241240474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION The effectiveness of nonsurgical periodontal treatment is related to patient- and tooth-related factors. To overcome the limitations of the conventional approach, probiotics are one of the adjunct therapies that have been studied. OBJECTIVES This umbrella review answered the focused question: in adult patients with periodontal diseases or peri-implant diseases, does the use of probiotic therapy as an adjuvant to nonsurgical periodontal treatment when compared with nonsurgical periodontal treatment alone affect treatment effectiveness and clinical disease parameters? METHODS A systematic electronic search to identify systematic reviews according to PICOS criteria, defined a priori, was used, and 5 electronic databases were searched (Medline, LILACS, Cochrane Central Registry of Controlled Trials, Google Scholar, and DANS EASY). Included systematic reviews were rated using quality assessment tools by 2 independent reviewers. RESULTS Thirty systematic reviews were identified evaluating the effectiveness of probiotics in periodontal and peri-implant disease treatment. A quantitative analysis of the results was not possible due to the high heterogeneity of clinical data. Seventeen of 31 reviews reported clinically relevant benefits of probiotic therapy as an adjuvant to scaling and root planning. Twenty-two reviews had a low risk of bias, 7 had a moderate risk, and 2 had a high risk. CONCLUSION The evidence from the available studies is conflicting, which means that no definitive conclusions can be made about the effectiveness of probiotic therapy as an adjuvant to nonsurgical periodontal treatment. High-quality primary research studies are needed that control for known confounding variables. KNOWLEDGE TRANSFER STATEMENT This umbrella review provides some evidence regarding the efficacy of probiotics as an adjunct to nonsurgical periodontal therapy, despite some equivocal findings. However, short-term probiotic use alongside therapy appears to be advantageous; there is currently no evidence supporting their long-term benefits. We have also identified that probiotic research is primarily constrained by its origins in gastrointestinal applications, resulting in a lack of approved probiotics for dental use. This review highlights the need for extensive clinical research to ascertain their effectiveness in the oral environment. Nevertheless, the utilization of probiotics alongside periodontal treatment seems safe, with no reported adverse effects in patients. Thus, further clinical validations in oral health care settings are crucial.
Collapse
Affiliation(s)
- C Mendonça
- Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Biology and Oral Biochemistry Group, LIBPhys-FCT UIDB/04559/2020, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Hugo Madeira Clinic-Advanced Aesthetics and Implantology, Lisbon, Portugal
| | - D Marques
- Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Biology and Oral Biochemistry Group, LIBPhys-FCT UIDB/04559/2020, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Institute of Implantology, Lisbon, Portugal
| | - J Silveira
- Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Biology and Oral Biochemistry Group, LIBPhys-FCT UIDB/04559/2020, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
| | - J Marques
- Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Biology and Oral Biochemistry Group, LIBPhys-FCT UIDB/04559/2020, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
| | - R F de Souza
- Faculty of Dental Medicine and Oral Health Sciences, Montreal, QC, Canada
| | - A Mata
- Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Biology and Oral Biochemistry Group, LIBPhys-FCT UIDB/04559/2020, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Center for Evidence-Based Dental Medicine, Faculty of Dental Medicine, University of Lisbon, Lisbon, Portugal
- Hugo Madeira Clinic-Advanced Aesthetics and Implantology, Lisbon, Portugal
| |
Collapse
|
2
|
Petrova P, Arsov A, Tsvetanova F, Parvanova-Mancheva T, Vasileva E, Tsigoriyna L, Petrov K. The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022; 14:2038. [PMID: 35631179 PMCID: PMC9147554 DOI: 10.3390/nu14102038] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Toxic ingredients in food can lead to serious food-related diseases. Such compounds are bacterial toxins (Shiga-toxin, listeriolysin, Botulinum toxin), mycotoxins (aflatoxin, ochratoxin, zearalenone, fumonisin), pesticides of different classes (organochlorine, organophosphate, synthetic pyrethroids), heavy metals, and natural antinutrients such as phytates, oxalates, and cyanide-generating glycosides. The generally regarded safe (GRAS) status and long history of lactic acid bacteria (LAB) as essential ingredients of fermented foods and probiotics make them a major biological tool against a great variety of food-related toxins. This state-of-the-art review aims to summarize and discuss the data revealing the involvement of LAB in the detoxification of foods from hazardous agents of microbial and chemical nature. It is focused on the specific properties that allow LAB to counteract toxins and destroy them, as well as on the mechanisms of microbial antagonism toward toxigenic producers. Toxins of microbial origin are either adsorbed or degraded, toxic chemicals are hydrolyzed and then used as a carbon source, while heavy metals are bound and accumulated. Based on these comprehensive data, the prospects for developing new combinations of probiotic starters for food detoxification are considered.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.P.); (A.A.)
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.P.); (A.A.)
| | - Flora Tsvetanova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Tsvetomila Parvanova-Mancheva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Evgenia Vasileva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| |
Collapse
|
3
|
Zhang Y, Ding Y, Guo Q. Probiotic Species in the Management of Periodontal Diseases: An Overview. Front Cell Infect Microbiol 2022; 12:806463. [PMID: 35402306 PMCID: PMC8990095 DOI: 10.3389/fcimb.2022.806463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Periodontal diseases are one of the most common chronic inflammatory diseases of the oral cavity, which are initiated and sustained by pathogenic plaque biofilms. Central to modern periodontology is the idea that dysbiosis of periodontal microecology and disorder of host inflammatory response gives rise to degradation of periodontal tissues together, which eventually leads to tooth loss, seriously affecting the life quality of patients. Probiotics were originally used to treat intestinal diseases, while in recent years, extensive studies have been exploring the utilization of probiotics in oral disease treatment and oral healthcare. Probiotic bacteria derived from the genera Lactobacillus, Bifidobacterium, Streptococcus, and Weissella are found to play an effective role in the prevention and treatment of periodontal diseases via regulating periodontal microbiota or host immune responses. Here, we review the research status of periodontal health-promoting probiotic species and their regulatory effects. The current issues on the effectiveness and safety of probiotics in the management of periodontal diseases are also discussed at last. Taken together, the use of probiotics is a promising approach to prevent and treat periodontal diseases. Nevertheless, their practical use for periodontal health needs further research and exploration.
Collapse
Affiliation(s)
- Yuwei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Ding
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Qiang Guo,
| |
Collapse
|
4
|
Antilisterial Potential of Lactic Acid Bacteria in Eliminating Listeria monocytogenes in Host and Ready-to-Eat Food Application. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12010017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Listeriosis is a severe food borne disease with a mortality rate of up to 30% caused by pathogenic Listeria monocytogenes via the production of several virulence factors including listeriolysin O (LLO), transcriptional activator (PrfA), actin (Act), internalin (Int), etc. It is a foodborne disease predominantly causing infections through consumption of contaminated food and is often associated with ready-to-eat food (RTE) and dairy products. Common medication for listeriosis such as antibiotics might cause an eagle effect and antibiotic resistance if it is overused. Therefore, exploration of the use of lactic acid bacteria (LAB) with probiotic characteristics and multiple antimicrobial properties is increasingly getting attention for their capability to treat listeriosis, vaccine development, and hurdle technologies. The antilisterial gene, a gene coding to produce antimicrobial peptide (AMP), one of the inhibitory substances found in LAB, is one of the potential key factors in listeriosis treatment, coupled with the vast array of functions and strategies; this review summarizes the various strategies by LAB against L. monocytogenes and the prospect in development of a ‘generally regarded as safe’ LAB for treatment of listeriosis.
Collapse
|
5
|
Kleinstein S, Nelson K, Freire M. Inflammatory Networks Linking Oral Microbiome with Systemic Health and Disease. J Dent Res 2020; 99:1131-1139. [PMID: 32459164 PMCID: PMC7443998 DOI: 10.1177/0022034520926126] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The dance between microbes and the immune system takes place in all biological systems, including the human body, but this interaction is especially complex in the primary gateway to the body: the oral cavity. Recent advances in technology have enabled deep sequencing and analysis of members and signals of these communities. In a healthy state, the oral microbiome is composed of commensals, and their genes and phenotypes may be selected by the immune system to survive in symbiosis. These highly regulated signals are modulated by a network of microbial and host metabolites. However, in a diseased state, host-microbial networks lead to dysbiosis and considerable burden to the host prior to systemic impact that extends beyond the oral compartment. Interestingly, we presented data demonstrating similarities between human and mice immune dysbiosis and discussed how this affects the host response to similar pathobionts. The host and microbial signatures of a number of disease states are currently being examined to identify potential correlations. How the oral microbiome interacts with inflammation and the immune system to cause disease remains an area of active research. In this review, we summarize recent advancements in understanding the role of oral microbiota in mediating inflammation and altering systemic health and disease. In line with these findings, it is possible that existing conditions may be resolved by targeting specific immune-microbial markers in a positive way.
Collapse
Affiliation(s)
| | - K.E. Nelson
- J. Craig Venter Institute, La Jolla, CA, USA
| | - M. Freire
- J. Craig Venter Institute, La Jolla, CA, USA
| |
Collapse
|
6
|
Oloketuyi S, Dilkaute C, Mazzega E, Jose J, de Marco A. Purification-independent immunoreagents obtained by displaying nanobodies on bacteria surface. Appl Microbiol Biotechnol 2019; 103:4443-4453. [PMID: 30989251 DOI: 10.1007/s00253-019-09823-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
The availability of preimmune libraries of antibody fragments allows for the fast generation of binders which can be expressed in both eukaryotic and prokaryotic systems. We exploited the recombinant nature of antibody fragments to demonstrate the possibility of expressing them as functional proteins displayed on the surface of Escherichia coli and by such a way to generate living reagents ready-to-use for diagnostics. Such immunoreagents were effectively exploited without the necessity of any purification step to prepare immunocapture surfaces suitable for the diagnostic of both cancer cells and toxic microalgae. The same nanobody-displaying bacteria were also engineered to coexpress GFP in their cytoplasm. Suspensions of such living fluorescent immunoreagents effectively bound to eukaryotic cells making them visible and quantifiable by flow cytometry analysis and using 96-well plate readers. The collected data showed the suitability of such living immunoreagents for reproducible and inexpensive diagnostic applications.
Collapse
Affiliation(s)
- Sandra Oloketuyi
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Rožna Dolina, Nova Gorica, Slovenia
| | - Carina Dilkaute
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Elisa Mazzega
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Rožna Dolina, Nova Gorica, Slovenia
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Ario de Marco
- Laboratory of Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 13, SI-5000, Rožna Dolina, Nova Gorica, Slovenia.
| |
Collapse
|
7
|
Blocking HIV-1 Infection by Chromosomal Integrative Expression of Human CD4 on the Surface of Lactobacillus acidophilus ATCC 4356. J Virol 2019; 93:JVI.01830-18. [PMID: 30728264 DOI: 10.1128/jvi.01830-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus bacteria are potential delivery vehicles for biopharmaceutical molecules because they are well-recognized as safe microorganisms that naturally inhabit the human body. The goal of this study was to employ these lactobacilli to combat human immunodeficiency virus type 1 (HIV-1) infection and transmission. By using a chromosomal integration method, we engineered Lactobacillus acidophilus ATCC 4356 to display human CD4, the HIV-1 receptor, on the cell surface. Since human CD4 can bind to any infectious HIV-1 particles, the engineered lactobacilli can potentially capture HIV-1 of different subtypes and prevent infection. Our data demonstrate that the CD4-carrying bacteria are able to adsorb HIV-1 particles and reduce infection significantly in vitro and also block intrarectal HIV-1 infection in a humanized mouse model in preliminary tests in vivo Our results support the potential of this approach to decrease the efficiency of HIV-1 sexual transmission.IMPORTANCE In the absence of an effective vaccine, alternative approaches to block HIV-1 infection and transmission with commensal bacteria expressing antiviral proteins are being considered. This report provides a proof-of-concept by using Lactobacillus bacteria stably expressing the HIV-1 receptor CD4 to capture and neutralize HIV-1 in vitro and in a humanized mouse model. The stable expression of antiviral proteins, such as CD4, following genomic integration of the corresponding genes into this Lactobacillus strain may contribute to the prevention of HIV-1 sexual transmission.
Collapse
|
8
|
del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human Gastrointestinal Tract. Front Microbiol 2019. [PMCID: PMC6346216 DOI: 10.3389/fmicb.2018.03179] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Lin Y, Krogh-Andersen K, Hammarström L, Marcotte H. Lactobacillus delivery of bioactive interleukin-22. Microb Cell Fact 2017; 16:148. [PMID: 28830549 PMCID: PMC5567760 DOI: 10.1186/s12934-017-0762-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Interleukin-22 (IL-22) plays a prominent role in epithelial regeneration and dampening of chronic inflammatory responses by protecting intestinal stem cells from immune-mediated tissue damage. IL-22 has a considerable therapeutic potential in graft-versus-host disease (GVHD), which is a frequent and challenging complication following allogeneic stem cell transplantation. The aim of our study was to engineer Lactobacillus for delivery of IL-22 directly to the intestinal mucosa as a new therapeutic strategy for GVHD. RESULTS The secretion and surface anchoring of mouse IL-22 by Lactobacillus paracasei BL23 was demonstrated by Western blot and flow cytometry. Both secreted and anchored mouse IL-22 produced by Lactobacillus was biologically active, as determined by its ability to induce IL-10 secretion in the Colo 205 human colon cancer cell line. CONCLUSIONS We have demonstrated the secretion and surface anchoring of bioactive IL-22 by Lactobacillus. Our results suggest that IL-22 expressing lactobacilli may potentially be a useful mucosal therapeutic agent for the treatment of GVHD, provided that chromosomal integration of the IL-22 expression cassettes can be achieved.
Collapse
Affiliation(s)
- Yin Lin
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Kasper Krogh-Andersen
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Harold Marcotte
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| |
Collapse
|
10
|
Lin Y, Krogh-Andersen K, Pelletier J, Marcotte H, Östenson CG, Hammarström L. Oral Delivery of Pentameric Glucagon-Like Peptide-1 by Recombinant Lactobacillus in Diabetic Rats. PLoS One 2016; 11:e0162733. [PMID: 27610615 PMCID: PMC5017604 DOI: 10.1371/journal.pone.0162733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/26/2016] [Indexed: 12/21/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone produced by intestinal cells and stimulates insulin secretion from the pancreas in a glucose-dependent manner. Exogenously supplied GLP-1 analogues are used in the treatment of type 2 diabetes. An anti-diabetic effect of Lactobacillus in lowering plasma glucose levels and its use as a vehicle for delivery of protein and antibody fragments has been shown previously. The aim of this study was to employ lactobacilli as a vehicle for in situ production and delivery of GLP-1 analogue to normalize blood glucose level in diabetic GK (Goto-Kakizaki) rats. In this study, we designed pentameric GLP-1 (5×GLP-1) analogues which were both expressed in a secreted form and anchored to the surface of lactobacilli. Intestinal trypsin sites were introduced within 5×GLP-1, leading to digestion of the pentamer into an active monomeric form. The E. coli-produced 5×GLP-1 peptides delivered by intestinal intubation to GK rats resulted in a significant improvement of glycemic control demonstrated by an intraperitoneal glucose tolerance test. Meanwhile, the purified 5×GLP-1 (trypsin-digested) from the Lactobacillus cultures stimulated insulin secretion from HIT-T15 cells, similar to the E. coli-produced 5×GLP-1 peptides. When delivered by gavage to GK rats, non-expressor L. paracasei significantly lowered the blood glucose level but 5×GLP-1 expression did not provide an additional anti-diabetic effect, possibly due to the low levels produced. Our results indicate that lactobacilli themselves might be used as an alternative treatment method for type 2 diabetes, but further work is needed to increase the expression level of GLP-1 by lactobacilli in order to obtain a significant insulinotropic effect in vivo.
Collapse
Affiliation(s)
- Yin Lin
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Kasper Krogh-Andersen
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Julien Pelletier
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, M1:03 Karolinska University Hospital, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Harold Marcotte
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Rolf Luft Research Center for Diabetes and Endocrinology, M1:03 Karolinska University Hospital, Karolinska Institutet, Stockholm SE-17176, Sweden
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
- * E-mail:
| |
Collapse
|
11
|
Lactic acid bacteria as mucosal delivery vehicles: a realistic therapeutic option. Appl Microbiol Biotechnol 2016; 100:5691-701. [DOI: 10.1007/s00253-016-7557-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
|
12
|
Michon C, Langella P, Eijsink VGH, Mathiesen G, Chatel JM. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Fact 2016; 15:70. [PMID: 27142045 PMCID: PMC4855500 DOI: 10.1186/s12934-016-0468-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/21/2016] [Indexed: 01/07/2023] Open
Abstract
Lactic acid bacteria (LAB) are promising vectors of choice to deliver active molecules to mucosal tissues. They are recognized as safe by the World Health Organization and some strains have probiotic properties. The wide range of potential applications of LAB-driven mucosal delivery includes control of inflammatory bowel disease, vaccine delivery, and management of auto-immune diseases. Because of this potential, strategies for the display of proteins at the surface of LAB are gaining interest. To display a protein at the surface of LAB, a signal peptide and an anchor domain are necessary. The recombinant protein can be attached to the membrane layer, using a transmembrane anchor or a lipoprotein-anchor, or to the cell wall, by a covalent link using sortase mediated anchoring via the LPXTG motif, or by non-covalent liaisons employing binding domains such as LysM or WxL. Both the stability and functionality of the displayed proteins will be affected by the kind of anchor used. The most commonly surfaced exposed recombinant proteins produced in LAB are antigens and antibodies and the most commonly used LAB are lactococci and lactobacilli. Although it is not necessarily so that surface-display is the preferred localization in all cases, it has been shown that for certain applications, such as delivery of the human papillomavirus E7 antigen, surface-display elicits better biological responses, compared to cytosolic expression or secretion. Recent developments include the display of peptides and proteins targeting host cell receptors, for the purpose of enhancing the interactions between LAB and host. Surface-display technologies have other potential applications, such as degradation of biomass, which is of importance for some potential industrial applications of LAB.
Collapse
Affiliation(s)
- C. Michon
- />Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - P. Langella
- />Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - V. G. H. Eijsink
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - G. Mathiesen
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - J. M. Chatel
- />Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
13
|
Marcobal A, Liu X, Zhang W, Dimitrov AS, Jia L, Lee PP, Fouts TR, Parks TP, Lagenaur LA. Expression of Human Immunodeficiency Virus Type 1 Neutralizing Antibody Fragments Using Human Vaginal Lactobacillus. AIDS Res Hum Retroviruses 2016; 32:964-971. [PMID: 26950606 PMCID: PMC5067876 DOI: 10.1089/aid.2015.0378] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eradication of human immunodeficiency virus type 1 (HIV-1) by vaccination with epitopes that produce broadly neutralizing antibodies is the ultimate goal for HIV prevention. However, generating appropriate immune responses has proven difficult. Expression of broadly neutralizing antibodies by vaginal colonizing lactobacilli provides an approach to passively target these antibodies to the mucosa. We tested the feasibility of expressing single-chain and single-domain antibodies (dAbs) in Lactobacillus to be used as a topical microbicide/live biotherapeutic. Lactobacilli provide an excellent platform to express anti-HIV proteins. Broadly neutralizing antibodies have been identified against epitopes on the HIV-1 envelope and have been made into active antibody fragments. We tested single-chain variable fragment m9 and dAb-m36 and its derivative m36.4 as prototype antibodies. We cloned and expressed the antibody fragments m9, m36, and m36.4 in Lactobacillus jensenii-1153 and tested the expression levels and functionality. We made a recombinant L. jensenii 1153-1128 that expresses dAb-m36.4. All antibody fragments m9, m36, and m36.4 were expressed by lactobacilli. However, we noted the smaller m36/m36.4 were expressed to higher levels, ≥3 μg/ml. All L. jensenii-expressed antibody fragments bound to gp120/CD4 complex; Lactobacillus-produced m36.4 inhibited HIV-1BaL in a neutralization assay. Using a TZM-bl assay, we characterized the breadth of neutralization of the m36.4. Delivery of dAbs by Lactobacillus could provide passive transfer of these antibodies to the mucosa and longevity at the site of HIV-1 transmission.
Collapse
Affiliation(s)
| | | | - Wenlei Zhang
- Profectus Biosciences, Inc., Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
14
|
Neutralization of Clostridium difficile Toxin B Mediated by Engineered Lactobacilli That Produce Single-Domain Antibodies. Infect Immun 2015; 84:395-406. [PMID: 26573738 DOI: 10.1128/iai.00870-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 11/08/2015] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is the primary cause of nosocomial antibiotic-associated diarrhea in the Western world. The major virulence factors of C. difficile are two exotoxins, toxin A (TcdA) and toxin B (TcdB), which cause extensive colonic inflammation and epithelial damage manifested by episodes of diarrhea. In this study, we explored the basis for an oral antitoxin strategy based on engineered Lactobacillus strains expressing TcdB-neutralizing antibody fragments in the gastrointestinal tract. Variable domain of heavy chain-only (VHH) antibodies were raised in llamas by immunization with the complete TcdB toxin. Four unique VHH fragments neutralizing TcdB in vitro were isolated. When these VHH fragments were expressed in either secreted or cell wall-anchored form in Lactobacillus paracasei BL23, they were able to neutralize the cytotoxic effect of the toxin in an in vitro cell-based assay. Prophylactic treatment with a combination of two strains of engineered L. paracasei BL23 expressing two neutralizing anti-TcdB VHH fragments (VHH-B2 and VHH-G3) delayed killing in a hamster protection model where the animals were challenged with spores of a TcdA(-) TcdB(+) strain of C. difficile (P < 0.05). Half of the hamsters in the treated group survived until the termination of the experiment at day 5 and showed either no damage or limited inflammation of the colonic mucosa despite having been colonized with C. difficile for up to 4 days. The protective effect in the hamster model suggests that the strategy could be explored as a supplement to existing therapies for patients.
Collapse
|
15
|
An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface. Appl Environ Microbiol 2015; 81:5784-93. [PMID: 26092449 DOI: 10.1128/aem.00945-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/10/2015] [Indexed: 11/20/2022] Open
Abstract
Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23.
Collapse
|
16
|
Abstract
Whereas active immunity refers to the process of exposing the individual to an antigen to generate an adaptive immune response, passive immunity refers to the transfer of antibodies from one individual to another. Passive immunity provides immediate but short-lived protection, lasting several weeks up to 3 or 4 months. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta or from breast milk to the gut of the infant. It can also be produced artificially, when antibody preparations derived from sera or secretions of immunized donors or, more recently, different antibody producing platforms are transferred via systemic or mucosal route to nonimmune individuals. Passive immunization has recently become an attractive approach because of the emergence of new and drug-resistant microorganisms, diseases that are unresponsive to drug therapy and individuals with an impaired immune system who are unable to respond to conventional vaccines. This chapter addresses the contributions of natural and artificial acquired passive immunity in understanding the concept of passive immunization. We will mainly focus on administration of antibodies for protection against various infectious agents entering through mucosal surfaces.
Collapse
|
17
|
Günaydın G, Álvarez B, Lin Y, Hammarström L, Marcotte H. Co-expression of anti-rotavirus proteins (llama VHH antibody fragments) in Lactobacillus: development and functionality of vectors containing two expression cassettes in tandem. PLoS One 2014; 9:e96409. [PMID: 24781086 PMCID: PMC4004553 DOI: 10.1371/journal.pone.0096409] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/07/2014] [Indexed: 12/15/2022] Open
Abstract
Rotavirus is an important pediatric pathogen, causing severe diarrhea and being associated with a high mortality rate causing approximately 500 000 deaths annually worldwide. Even though some vaccines are currently available, their efficacy is lower in the developing world, as compared to developed countries. Therefore, alternative or complementary treatment options are needed in the developing countries where the disease burden is the largest. The effect of Lactobacillus in promoting health and its use as a vehicle for delivery of protein and antibody fragments was previously shown. In this study, we have developed co-expression vectors enabling Lactobacillus paracasei BL23 to produce two VHH fragments against rotavirus (referred to as anti-rotavirus proteins 1 and 3, ARP1 and ARP3) as secreted and/or surface displayed products. ARP1 and ARP3 fragments were successfully co-expressed as shown by Western blot and flow cytometry. In addition, engineered Lactobacillus produced VHH antibody fragments were shown to bind to a broad range of rotavirus serotypes (including the human rotavirus strains 69M, Va70, F45, DS1, Wa and ST3 and simian rotavirus strains including RRV and SA11), by flow cytometry and ELISA. Hereby, we have demonstrated for the first time that when RRV was captured by one VHH displayed on the surface of co-expressor Lactobacillus, targeting other epitope was possible with another VHH secreted from the same bacterium. Therefore, Lactobacillus producing two VHH antibody fragments may potentially serve as treatment against rotavirus with a reduced risk of development of escape mutants. This co-expression and delivery platform can also be used for delivery of VHH fragments against a variety of mucosal pathogens or production of other therapeutic molecules.
Collapse
Affiliation(s)
- Gökçe Günaydın
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
| | - Beatriz Álvarez
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
| | - Yin Lin
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
| | - Harold Marcotte
- Department of Laboratory Medicine, Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute at Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
18
|
Ma L, Ding Q, Feng X, Li F. The protective effect of recombinant FomA-expressing Lactobacillus acidophilus against periodontal infection. Inflammation 2014; 36:1160-70. [PMID: 23644821 PMCID: PMC3781307 DOI: 10.1007/s10753-013-9651-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A number of studies have shown that the outer membrane protein FomA found in Fusobacterium nucleatum demonstrates great potential as an immune target for combating periodontitis. Lactobacillus acidophilus is a useful antigen delivery vehicle for mucosal immunisation, and previous studies by our group have shown that L. acidophilus acts as a protective factor in periodontal health. In this study, making use of the immunogenicity of FomA and the probiotic properties of L. acidophilus, we constructed a recombinant form of L. acidophilus expressing the FomA protein and detected the FomA-specific IgG in the serum and sIgA in the saliva of mice through oral administration with the recombinant strains. When serum containing FomA-specific antibodies was incubated with the F. nucleatum in vitro, the number of Porphyromonas gingivalis cells that coaggregated with the F. nucleatum cells was significantly reduced. Furthermore, a mouse gum abscess model was successfully generated, and the range of gingival abscesses in the immune mice was relatively limited compared with the control group. The level of IL-1β in the serum and local gum tissues of the immune mice was consistently lower than in the control group. Our findings indicated that oral administration of the recombinant L. acidophilus reduced the risk of periodontal infection with P. gingivalis and F. nucleatum.
Collapse
Affiliation(s)
- Li Ma
- Department of Preventive and Pediatric Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011 China
| | - Qinfeng Ding
- Department of Preventive and Pediatric Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011 China
| | - Xiping Feng
- Department of Preventive and Pediatric Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011 China
| | - Fei Li
- Department of Preventive and Pediatric Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011 China
| |
Collapse
|
19
|
Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4:217. [PMID: 23908655 PMCID: PMC3725456 DOI: 10.3389/fimmu.2013.00217] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
20
|
Effects of probiotics in periodontal diseases: a systematic review. Clin Oral Investig 2013; 17:1627-34. [DOI: 10.1007/s00784-013-0990-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
|
21
|
In situ gastrointestinal protection against anthrax edema toxin by single-chain antibody fragment producing lactobacilli. BMC Biotechnol 2011; 11:126. [PMID: 22185669 PMCID: PMC3295704 DOI: 10.1186/1472-6750-11-126] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 12/20/2011] [Indexed: 11/10/2022] Open
|
22
|
Rahbarizadeh F, Nouri M, Ahmadvand D, Nourollahi H, Iri-Sofla FJ, Farokhimanesh S. Cell Surface Display ofSalmonellaOuter Membrane Protein A onLactobacillus salivarius: A First Step Towards Food-Grade Live Vaccine AgainstSalmonellaInfections. FOOD BIOTECHNOL 2011. [DOI: 10.1080/08905436.2011.576569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Integrative expression system for delivery of antibody fragments by lactobacilli. Appl Environ Microbiol 2011; 77:2174-9. [PMID: 21257814 DOI: 10.1128/aem.02690-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of expression cassettes which mediate secretion or surface display of antibody fragments was stably integrated in the chromosome of Lactobacillus paracasei. L. paracasei producing surface-anchored variable domain of llama heavy chain (VHH) (ARP1) directed against rotavirus showed efficient binding to rotavirus and protection in the mouse model of rotavirus infection.
Collapse
|
24
|
Kõll P, Mändar R, Smidt I, Hütt P, Truusalu K, Mikelsaar RH, Shchepetova J, Krogh-Andersen K, Marcotte H, Hammarström L, Mikelsaar M. Screening and evaluation of human intestinal lactobacilli for the development of novel gastrointestinal probiotics. Curr Microbiol 2010; 61:560-6. [PMID: 20443005 DOI: 10.1007/s00284-010-9653-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 04/17/2010] [Indexed: 02/07/2023]
Abstract
The aim of this study was to screen intestinal lactobacilli strains for their advantageous properties to select those that could be used for the development of novel gastrointestinal probiotics. Ninety-three isolates were subjected to screening procedures. Fifty-nine percent of the examined lactobacilli showed the ability to auto-aggregate, 97% tolerated a high concentration of bile (2% w/v), 50% survived for 4 h at pH 3.0, and all strains were unaffected by a high concentration of pancreatin (0.5% w/v). One Lactobacillus buchneri strain was resistant to tetracycline. None of the tested strains caused lysis of human erythrocytes. Six potential probiotic strains were selected for safety evaluation in a mouse model. Five of 6 strains caused no translocation, and were considered safe. In conclusion, several strains belonging to different species and fermentation groups were found that have properties required for a potential probiotic strain. This study was the first phase of a multi-phase study aimed to develop a novel, safe and efficient prophylactic and therapeutic treatment system against gastrointestinal infections using genetically modified probiotic lactobacilli.
Collapse
Affiliation(s)
- Piret Kõll
- Department of Microbiology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Marcotte H, Pant N, Hammarström L. Engineered lactobody-producing lactobacilli: a novel form of therapy against rotavirus infection. Future Virol 2008. [DOI: 10.2217/17460794.3.4.327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rotavirus infections remain a major cause of morbidity and mortality worldwide, accounting for an estimated 600,000 deaths each year. New vaccines have been released recently but the lag time between vaccine administration and induction of an immune response can be critical in epidemic situations. A model system has been developed in which Lactobacillus, a ‘Generally Regarded As Safe’ microorganism, can be transformed with antibody fragment-encoding vectors. This allows in situ production of functional variable domains of llama heavy chain antibodies (VHH antibody fragments) against rotavirus in the intestinal tract. The modified bacteria were shown to be protective in a mouse pup model. Our approach represents a novel system for the induction of passive immunity that can be rapidly applied to populations at risk, for example through drinking water, rehydrating solutions or as a food supplement.
Collapse
Affiliation(s)
- Harold Marcotte
- Division of Clinical Immunology, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Neha Pant
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Huddinge, SE-141 86 Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
27
|
Kõll P, Mändar R, Marcotte H, Leibur E, Mikelsaar M, Hammarström L. Characterization of oral lactobacilli as potential probiotics for oral health. ACTA ACUST UNITED AC 2008; 23:139-47. [DOI: 10.1111/j.1399-302x.2007.00402.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Hultberg A, Tremblay DM, de Haard H, Verrips T, Moineau S, Hammarström L, Marcotte H. Lactobacillli expressing llama VHH fragments neutralise Lactococcus phages. BMC Biotechnol 2007; 7:58. [PMID: 17875214 PMCID: PMC2039727 DOI: 10.1186/1472-6750-7-58] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 09/17/2007] [Indexed: 11/29/2022] Open
Abstract
Background Bacteriophages infecting lactic acid bacteria (LAB) are widely acknowledged as the main cause of milk fermentation failures. In this study, we describe the surface-expression as well as the secretion of two functional llama heavy-chain antibody fragments, one binding to the major capsid protein (MCP) and the other to the receptor-binding proteins (RBP) of the lactococcal bacteriophage p2, by lactobacilli in order to neutralise lactococcal phages. Results The antibody fragment VHH5 that is directed against the RBP, was fused to a c-myc tag and expressed in a secreted form by a Lactobacillus strain. The fragment VHH2 that is binding to the MCP, was fused to an E-tag and anchored on the surface of the lactobacilli. Surface expression of VHH2 was confirmed by flow cytometry using an anti-E-tag antibody. Efficient binding of both the VHH2 and the secreted VHH5 fragment to the phage antigens was shown in ELISA. Scanning electron microscopy showed that lactobacilli expressing VHH2 anchored at their surface were able to bind lactococcal phages. A neutralisation assay also confirmed that the secreted VHH5 and the anchored VHH2 fragments prevented the adsorption of lactococcal phages to their host cells. Conclusion Lactobacilli were able to express functional VHH fragments in both a secreted and a cell surface form and reduced phage infection of lactococcal cells. Lactobacilli expressing llama heavy-chain antibody fragments represent a novel way to limit phage infection.
Collapse
Affiliation(s)
- Anna Hultberg
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital in Huddinge, Stockholm, Sweden
- Cellular Architecture and Dynamics (CAD), Utrecht University, The Netherlands
| | - Denise M Tremblay
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, G1K 7P4, Canada
| | - Hans de Haard
- Unilever Research and Development, Vlaardingen, The Netherlands
- Ablynx, Technologiepark 4, 9052 Ghent, Belgium
| | - Theo Verrips
- Unilever Research and Development, Vlaardingen, The Netherlands
- Cellular Architecture and Dynamics (CAD), Utrecht University, Utrecht, The Netherlands
| | - Sylvain Moineau
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, G1K 7P4, Canada
- Département de biochimie et de microbiologie, Faculté des sciences et de génie, Université Laval, Québec, G1K 7P4, Canada
| | - Lennart Hammarström
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | - Harold Marcotte
- Division of Clinical Immunology at the Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital in Huddinge, Stockholm, Sweden
| |
Collapse
|