1
|
Beltrán-Martínez ME, Tapia-Rodríguez MR, Ayala-Zavala JF, Gómez-Álvarez A, Robles-Zepeda RE, Torres-Moreno H, de Rodríguez DJ, López-Romero JC. Antimicrobial and Antibiofilm Potential of Flourensia retinophylla against Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1671. [PMID: 38931103 PMCID: PMC11207523 DOI: 10.3390/plants13121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Staphylococcus aureus is a Gram-positive bacteria with the greatest impact in the clinical area, due to the high rate of infections and deaths reaching every year. A previous scenario is associated with the bacteria's ability to develop resistance against conventional antibiotic therapies as well as biofilm formation. The above situation exhibits the necessity to reach new effective strategies against this pathogen. Flourensia retinophylla is a medicinal plant commonly used for bacterial infections treatments and has demonstrated antimicrobial effect, although its effect against S. aureus and bacterial biofilms has not been investigated. The purpose of this work was to analyze the antimicrobial and antibiofilm potential of F. retinophylla against S. aureus. The antimicrobial effect was determined using an ethanolic extract of F. retinophylla. The surface charge of the bacterial membrane, the K+ leakage and the effect on motility were determined. The ability to prevent and remove bacterial biofilms was analyzed in terms of bacterial biomass, metabolic activity and viability. The results showed that F. retinophylla presents inhibitory (MIC: 250 µg/mL) and bactericidal (MBC: 500 µg/mL) activity against S. aureus. The MIC extract increased the bacterial surface charge by 1.4 times and the K+ concentration in the extracellular medium by 60%. The MIC extract inhibited the motility process by 100%, 61% and 40% after 24, 48 and 72 h, respectively. The MIC extract prevented the formation of biofilms by more than 80% in terms of biomass production and metabolic activity. An extract at 10 × MIC reduced the metabolic activity by 82% and the viability by ≈50% in preformed biofilms. The results suggest that F. retinophylla affects S. areus membrane and the process of biofilm formation and removal. This effect could set a precedent to use this plant as alternative for antimicrobial and disinfectant therapies to control infections caused by this pathogen. In addition, this shrub could be considered for carrying out a purification process in order to identify the compounds responsible for the antimicrobial and antibiofilm effect.
Collapse
Affiliation(s)
- Minerva Edith Beltrán-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Mexico; (M.E.B.-M.); (J.F.A.-Z.)
| | - Melvin Roberto Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Mexico; (M.E.B.-M.); (J.F.A.-Z.)
| | - Agustín Gómez-Álvarez
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | | | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| | | | - Julio César López-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| |
Collapse
|
2
|
Korani S, Khalesi N, Korani M, Jamialahmadi T, Sahebkar A. Applications of honeybee-derived products in bone tissue engineering. Bone Rep 2024; 20:101740. [PMID: 38304620 PMCID: PMC10831168 DOI: 10.1016/j.bonr.2024.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Nowadays, there is an increasing prevalence of bone diseases and defects caused by trauma, cancers, infections, and degenerative and inflammatory conditions. The restoration of bone tissue lost due to trauma, fractures, or surgical removal resulting from locally invasive pathologies requires bone regeneration. As an alternative to conventional treatments, sustainable materials based on natural products, such as honeybee-derived products (honey, propolis, royal jelly, bee pollen, beeswax, and bee venom), could be considered. Honeybee-derived products, particularly honey, have long been recognized for their healing properties. There are a mixture of phytochemicals that offer bone protection through their antimicrobial, antioxidant, and anti-inflammatory properties. This review aims to summarize the current evidence regarding the effects of honeybee-derived products on bone regeneration. In conclusion, honey, propolis, royal jelly, beeswax, and bee venom can potentially serve as natural products for promoting bone health.
Collapse
Affiliation(s)
- Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naeemeh Khalesi
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mitra Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Acar T, Arayici PP, Ucar B, Coksu I, Tasdurmazli S, Ozbek T, Acar S. Host-Guest Interactions of Caffeic Acid Phenethyl Ester with β-Cyclodextrins: Preparation, Characterization, and In Vitro Antioxidant and Antibacterial Activity. ACS OMEGA 2024; 9:3625-3634. [PMID: 38284065 PMCID: PMC10809231 DOI: 10.1021/acsomega.3c07643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
The aim of this study is to improve the solubility, chemical stability, and in vitro biological activity of caffeic acid phenethyl ester (CAPE) by forming inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (Hβ-CD) using the solvent evaporation method. The CAPE contents of the produced complexes were determined, and the complexes with the highest CAPE contents were selected for further characterization. Detailed characterization of inclusion complexes was performed by using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrospray ionization-mass spectrometry (ESI-MS). pH and thermal stability studies showed that both selected inclusion complexes exhibited better stability compared to free CAPE. Moreover, their antimicrobial activities were evaluated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for the first time. According to the broth dilution assay, complexes with the highest CAPE content (10C/β-CD and 10C/Hβ-CD) exhibited considerable growth inhibition effects against both bacteria, 31.25 μg/mL and 62.5 μg/mL, respectively; contrarily, this value for free CAPE was 500 μg/mL. Furthermore, it was determined that the in vitro antioxidant activity of the complexes increased by about two times compared to free CAPE.
Collapse
Affiliation(s)
- Tayfun Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Pelin Pelit Arayici
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Burcu Ucar
- Department
of Biomedical Engineering, Faculty of Engineering and Architecture, Istanbul Arel University, Istanbul 34537, Turkey
| | - Irem Coksu
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| | - Semra Tasdurmazli
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Tulin Ozbek
- Molecular
Biology and Genetics Department, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul 34220, Turkey
| | - Serap Acar
- Bioengineering
Department, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34210, Turkey
| |
Collapse
|
4
|
Abdel-Gawad DRI, Ibrahim MA, Moawad UK, Kamel S, El-Banna HA, El-Banna AH, Hassan WH, El-Ela FIA. Effectiveness of natural biomaterials in the protection and healing of experimentally induced gastric mucosa Ulcer in rats. Mol Biol Rep 2023; 50:9085-9098. [PMID: 37741810 PMCID: PMC10635934 DOI: 10.1007/s11033-023-08776-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND A gastric ulcer is a painful lesion of the gastric mucosa that can be debilitating or even fatal. The effectiveness of several plant extracts in the therapy of this illness has been demonstrated in traditional pharmacopoeias. AIM this study was aimed to see if propolis, ginseng in normal or nano form, and amygdalin might help in preventing the ulcerative effects of absolute ethanol. METHODS Gastroprotective properties of pretreatments before ethanol gavage in rats were compared to omeprazole. The ulcer and stomach parameters (ulcerated regions) were measured (mm2), ulcer inhibition percentage, the stomachs were assessed macroscopically with gastric biopsy histological examinations. RESULTS Amygdalin, normal and nano ginseng, nano propolis followed by propolis all showed great efficacy in protecting the cyto-architecture and function of the gastric mucosa. The number of ulcerated sites was greatly reduced, and the percentage of stomach protection was increased. Histopathological examination had confirmed great protective effects of the nanoformulations followed by amygdalin. The protection and healing rate was completed to about 100% in all tested materials while ulcer areas were still partially unhealed in normal propolis and omeprazole. Quantitative assay of the m-RNA levels Enothelin 1(ET-1), leukotriene4 (LT-4), and caspase 3(Cas-3) genes and Histamine were done and revealed significant up-regulations in ethanol group and the maximum protective effect was reported with ginseng nano, moreover the histamine content was significantly decreased with nano- formulated extracts. CONCLUSION Amygdalin and the nanoformulated ginseng and propolis had exhibited a marked protective effect against the ulcerative toxic effects of ethanol.
Collapse
Affiliation(s)
- Doaa R I Abdel-Gawad
- Lecturer of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Usama K Moawad
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | | | - Ahmed H El-Banna
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Walid Hamdy Hassan
- Mycology and Immunology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, 62511, Beni-Suef, Egypt
| |
Collapse
|
5
|
Mandil O, Sabri H, Manouchehri N, Mostafa D, Wang H. Root coverage with apical tunnel approach using propolis as a root conditioning agent: A case report with 2-year follow-up and review of the literature. Clin Exp Dent Res 2023; 9:568-573. [PMID: 37338508 PMCID: PMC10441594 DOI: 10.1002/cre2.751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVES One of the main challenges in performing root coverage is patient discomfort and donor site morbidity. This case report presents a minimally invasive apical tunnel surgical technique, with propolis for root conditioning, to correct gingival recession defects without harvesting donor grafts, flap elevation, or sutures. Propolis is a natural anti-infective, anti-inflammatory, and antioxidant agent. MATERIAL AND METHODS A 58-year-old woman with no significant medical history was presented for root coverage of her upper left canine and first premolar with recession type (RT)1A (+). Propolis was used as a root conditioning agent to promote soft tissue coverage via an apical tunnel approach. During the apical tunnel approach, a small apical hole was made 6 mm below the mucogingival junction, and the mucosa and associated attached gingiva was away from the tooth so the flap could be repositioned coronally. Collagen matrix was used as a soft tissue graft material. RESULTS At the 2-month, 6-month, 8-month, and 2-year follow-up, complete root coverage was achieved for both teeth. No bleeding on probing was noticed nor recurrent GRs at the treated sites. CONCLUSION Without incisions, donor site reflection, or flaps, the apical tunnel approach can be successfully used to cover the exposed roots. Additionally, propolis is a potential root conditioning agent during soft tissue graft procedure due to its anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Obada Mandil
- Department of Periodontics and Oral Medicine, School of DentistryUniversity of MichiganAnn ArborMichiganUSA
| | - Hamoun Sabri
- Department of Periodontics and Oral Medicine, School of DentistryUniversity of MichiganAnn ArborMichiganUSA
- Center for Clinical Research and Evidence Synthesis In Oral Tissue Regeneration (CRITERION)Ann ArborMichiganUSA
| | - Neshatafarin Manouchehri
- Department of Periodontics and Oral Medicine, School of DentistryUniversity of MichiganAnn ArborMichiganUSA
| | - Diana Mostafa
- Department of Periodontics and Oral Medicine, School of DentistryAlexandria UniversityAlexandriaEgypt
| | - Hom‐Lay Wang
- Department of Periodontics and Oral Medicine, School of DentistryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
6
|
Balderas-Cordero D, Canales-Alvarez O, Sánchez-Sánchez R, Cabrera-Wrooman A, Canales-Martinez MM, Rodriguez-Monroy MA. Anti-Inflammatory and Histological Analysis of Skin Wound Healing through Topical Application of Mexican Propolis. Int J Mol Sci 2023; 24:11831. [PMID: 37511590 PMCID: PMC10380968 DOI: 10.3390/ijms241411831] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Skin wound healing is a complex biochemical process of tissue repair and remodeling in response to injury. Currently, the drugs used to improve the healing process are inaccessible to the population, are costly, and have side effects, making the search for new treatment alternatives necessary. Propolis is a natural product produced by bees that is widely recognized and used in folk medicine for its multiple biomedical activities. However, therapeutic information regarding Mexican propolis is limited. This study aimed to evaluate the wound-healing effect of the Chihuahua ethanolic extract of propolis (ChEEP). Macroscopic and histological analyses were performed using a mouse wound-healing model. The topic acute toxicity assay showed that propolis at 10% w/v had no toxic effects. ChEEP has antibacterial activity against the Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Moreover, it exhibited good anti-inflammatory activity evaluated through mouse ear edema induced by 12-O-tetradeca-noylphorbol-13-acetate (TPA). A full-thickness incision lesion was created in mice and treated topically with 10% ChEEP. At Day 14 post-treatment, it was observed that propolis increased wound contraction and reduced healing time and wound length; furthermore, propolis increased the tensile strength of the wound, as determined with the tensiometric method, and promoted the formation of type I collagen at the site of injury, as evaluated with Herovici stain. These findings suggest that the topical administration of ChEEP can improve skin wound healing, probably due to the synergistic effect of its components, mainly polyphenols, in different steps of the wound-healing process. It should be noted this is the first time that the wound-healing activity of a Mexican propolis has been evaluated.
Collapse
Affiliation(s)
- Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico
| | - Octavio Canales-Alvarez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico
- Laboratorio de Génetica Toxicológica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Ciudad de México 07738, Mexico
| | - Roberto Sánchez-Sánchez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México 14389, Mexico
| | - Alejandro Cabrera-Wrooman
- Laboratorio de Tejido Conjuntivo, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Ciudad de México 14389, Mexico
| | - Maria Margarita Canales-Martinez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Tlalnepantla 54090, Estado de México, Mexico
| | - Marco Aurelio Rodriguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Tlalnepantla 54090, Estado de México, Mexico
| |
Collapse
|
7
|
Mendez-Encinas MA, Valencia D, Ortega-García J, Carvajal-Millan E, Díaz-Ríos JC, Mendez-Pfeiffer P, Soto-Bracamontes CM, Garibay-Escobar A, Alday E, Velazquez C. Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents. Molecules 2023; 28:molecules28114496. [PMID: 37298970 DOI: 10.3390/molecules28114496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Biological properties of Sonoran propolis (SP) are influenced by harvest time. Caborca propolis showed cellular protective capacity against reactive oxygen species, which might be implicated in anti-inflammatory effects. However, the anti-inflammatory activity of SP has not been investigated so far. This study investigated the anti-inflammatory activity of previously characterized seasonal SP extracts (SPE) and some of their main constituents (SPC). The anti-inflammatory activity of SPE and SPC was evaluated by measuring nitric oxide (NO) production, protein denaturation inhibition, heat-induced hemolysis inhibition, and hypotonicity-induced hemolysis inhibition. SPE from spring, autumn, and winter showed a higher cytotoxic effect on RAW 264.7 cells (IC50: 26.6 to 30.2 µg/mL) compared with summer extract (IC50: 49.4 µg/mL). SPE from spring reduced the NO secretion to basal levels at the lowest concentration tested (5 µg/mL). SPE inhibited the protein denaturation by 79% to 100%, and autumn showed the highest inhibitory activity. SPE stabilized erythrocyte membrane against heat-induced and hypotonicity-induced hemolysis in a concentration-dependent manner. Results indicate that the flavonoids chrysin, galangin, and pinocembrin could contribute to the anti-inflammatory activity of SPE and that the harvest time influences such a property. This study presents evidence of SPE pharmacological potential and some of their constituents.
Collapse
Affiliation(s)
- Mayra A Mendez-Encinas
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Dora Valencia
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Jesús Ortega-García
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Elizabeth Carvajal-Millan
- Research Center for Food and Development, CIAD, A.C. Carretera Gustavo Enrique Astiazaran Rosas No. 46, Hermosillo 83304, Mexico
| | - José C Díaz-Ríos
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Pablo Mendez-Pfeiffer
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Cinthia M Soto-Bracamontes
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, Caborca 83621, Mexico
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales S/N, Hermosillo 83000, Mexico
| |
Collapse
|
8
|
López-Romero JC, Torres-Moreno H, Vidal-Gutiérrez M, Cabrera-Cabrera GG, Robles-Zepeda RE, Rodríguez-Martínez KL, Ortega-García J, Villegas-Ochoa MA, Salazar-López NJ, Domínguez-Avila JA, González-Aguilar GA. Caesalpinia palmeri: First Report on the Phenolic Compounds Profile, Antioxidant and Cytotoxicity Effect. Chem Biodivers 2023; 20:e202200631. [PMID: 36423339 DOI: 10.1002/cbdv.202200631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
This study aimed to determine the phenolic compounds profile, antioxidant potential and cytotoxicity of extracts and fractions of Caesalpinia palmeri. Methanolic extracts were generated from C. palmeri berries, stems and flowers. The latter was subjected to liquid-liquid partition, obtaining hexane, ethyl acetate and residues fractions. Results showed that the flower extract and ethyl acetate fraction had a larger concentration of phenolic compounds (148.9 and 307.9 mg GAE/g, respectively), being ellagic acid (6233.57 and 19550.08 μg/g, respectively), quercetin-3-β-glycoside (3023.85 and 8952.55 μg/g, respectively) and gallic acid (2212.98 and 8422.34 μg/g, respectively) the most abundant compounds. Flower extract and ethyl acetate fraction also presented the highest antioxidant capacity on all tested methods (DPPH, ABTS, ORAC and FRAP) and low cytotoxicity against ARPE-19 cells (IC50 >170 μg/mL). C. palmeri possessed high antioxidant potential, associated with the presence of phenolic compounds and low cytotoxicity, suggesting that they could represent an option to counter oxidative stress.
Collapse
Affiliation(s)
- J C López-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Ave. Universidad e Irigoyen, H. Caborca, 83600, Sonora, México
| | - H Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Ave. Universidad e Irigoyen, H. Caborca, 83600, Sonora, México
| | - M Vidal-Gutiérrez
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Sur, Lazaro Cardenas de Rio No. 100 Col. Francisco Villa, Navojoa, Sonora, México
| | - G G Cabrera-Cabrera
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Ave. Universidad e Irigoyen, H. Caborca, 83600, Sonora, México
| | - R E Robles-Zepeda
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Blvd. Luis Encinas y Rosales, 83000, Hermosillo, Sonora, México
| | - K L Rodríguez-Martínez
- Licenciatura en Nutrición Humana, Universidad Estatal de Sonora, Unidad Académica Hermosillo, 83100, Hermosillo, Sonora, México
| | - J Ortega-García
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Unidad Regional Norte, Ave. Universidad e Irigoyen, H. Caborca, 83600, Sonora, México
| | - M A Villegas-Ochoa
- Coordinación de Tecnología de Alimentos de Origen Vegetal. Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Aztiazarán Rosas No. 42, 83304, Hermosillo, Sonora, México
| | - Norma J Salazar-López
- Universidad Autónoma de Baja California, Facultad de Medicina de Mexicali, Lic. en Nutrición, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali, Baja California, 21000, México
| | - J Abraham Domínguez-Avila
- Conacyt-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo, 83304, Mexico
| | - G A González-Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal. Centro de Investigación en Alimentación y Desarrollo, A. C. Carretera Gustavo Enrique Aztiazarán Rosas No. 42, 83304, Hermosillo, Sonora, México
| |
Collapse
|
9
|
Jaldin-Crespo L, Silva N, Martínez J. Nanomaterials Based on Honey and Propolis for Wound Healing-A Mini-Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4409. [PMID: 36558262 PMCID: PMC9785851 DOI: 10.3390/nano12244409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Wound healing is a public health concern worldwide, particularly in chronic wounds due to delayed healing and susceptibility to bacterial infection. Nanomaterials are widely used in wound healing treatments due to their unique properties associated with their size and very large surface-area-to-volume ratio compared to the same material in bulk. The properties of nanomaterials can be expanded and improved upon with the addition of honey and propolis, due to the presence of bioactive molecules such as polyphenols, flavonoids, peptides, and enzymes. These bionanomaterials can act at different stages of wound healing and through different mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulation, cell proliferation, and angiogenic effects. Biomaterials, at the nanoscale, show new alternatives for wound therapy, allowing for targeted and continuous delivery of beekeeping products at the injection site, thus avoiding possible systemic adverse effects. Here, we summarize the most recent therapies for wound healing based on bionanomaterials assisted by honey and propolis, with a focus on in vitro and in vivo studies. We highlight the type, composition (honey, propolis, and polymeric scaffolds), biological, physicochemical/mechanical properties, potential applications and patents related of the last eight years. Furthermore, we discuss the challenges, advantages, disadvantages and stability of different bionanomaterials related to their clinical translation and insight into the investigation and development of new treatments for wound healing.
Collapse
Affiliation(s)
- Limberg Jaldin-Crespo
- Regenerative Medicine Center, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Nataly Silva
- Faculty of Design, Universidad del Desarrollo, Santiago 7610658, Chile
| | - Jessica Martínez
- Regenerative Medicine Center, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| |
Collapse
|
10
|
Jasso de Rodríguez D, Torres-Moreno H, López-Romero JC, Vidal-Gutiérrez M, Villarreal-Quintanilla JÁ, Carrillo-Lomelí DA, Robles-Zepeda RE, Vilegas W. Antioxidant, anti-inflammatory, and antiproliferative activities of Flourensia spp. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Mendez-Pfeiffer P, Ballesteros-Monrreal MG, Gaona-Ochoa J, Juarez J, Gastelum-Cabrera M, Montaño-Leyva B, Arenas-Hernández M, Caporal-Hernandez L, Ortega-García J, Barrios-Villa E, Velazquez C, Valencia D. Biosynthesis of Silver Nanoparticles Using Seasonal Samples of Sonoran Desert Propolis: Evaluation of Its Antibacterial Activity against Clinical Isolates of Multi-Drug Resistant Bacteria. Pharmaceutics 2022; 14:pharmaceutics14091853. [PMID: 36145600 PMCID: PMC9503092 DOI: 10.3390/pharmaceutics14091853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Multi-drug resistant (MDR) bacteria have gained importance as a health problem worldwide, and novel antibacterial agents are needed to combat them. Silver nanoparticles (AgNPs) have been studied as a potent antimicrobial agent, capable of countering MDR bacteria; nevertheless, their conventional synthesis methods can produce cytotoxicity and environmental hazards. Biosynthesis of silver nanoparticles has emerged as an alternative to reduce the cytotoxic and environmental problems derived from their chemical synthesis, using natural products as a reducing and stabilizing agent. Sonoran Desert propolis (SP) is a poplar-type propolis rich in polyphenolic compounds with remarkable biological activities, such as being antioxidant, antiproliferative, and antimicrobial, and is a suitable candidate for synthesis of AgNPs. In this study, we synthesized AgNPs using SP methanolic extract (SP-AgNPs) and evaluated the reduction capacity of their seasonal samples and main chemical constituents. Their cytotoxicity against mammalian cell lines and antibacterial activity against multi-drug resistant bacteria were assessed. Quercetin and galangin showed the best-reduction capacity for synthesizing AgNPs, as well as the seasonal sample from winter (SPw-AgNPs). The SPw-AgNPs had a mean size of around 16.5 ± 5.3 nm, were stable in different culture media, and the presence of propolis constituents was confirmed by FT-IR and HPLC assays. The SPw-AgNPs were non-cytotoxic to ARPE-19 and HeLa cell lines and presented remarkable antibacterial and antibiofilm activity against multi-drug resistant clinical isolates, with E. coli 34 and ATCC 25922 being the most susceptible (MBC = 25 μg/mL), followed by E. coli 2, 29, 37 and PNG (MBC = 50 μg/mL), and finally E. coli 37 and S. aureus ATCC 25923 (MBC = 100 μg/mL). These results demonstrated the efficacy of SP as a reducing and stabilizing agent for synthesis of AgNPs and their capacity as an antibacterial agent.
Collapse
Affiliation(s)
- Pablo Mendez-Pfeiffer
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Manuel G. Ballesteros-Monrreal
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Jesus Gaona-Ochoa
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Josue Juarez
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | | | - Beatriz Montaño-Leyva
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Margarita Arenas-Hernández
- Posgrado en Microbiología, Centro de Investigación en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Pue, Mexico
| | - Liliana Caporal-Hernandez
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Jesús Ortega-García
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Edwin Barrios-Villa
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
| | - Carlos Velazquez
- Department of Chemistry-Biology, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Dora Valencia
- Department of Chemistry-Biology and Agropecuary Sciences, Universidad de Sonora, H. Caborca, Hermosillo 83600, Sonora, Mexico
- Correspondence:
| |
Collapse
|
12
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Alday E, Valencia D, Velazquez C. Polymeric nanoparticles for the delivery of Sonoran desert propolis: Synthesis, characterization and antiproliferative activity on cancer cells. Colloids Surf B Biointerfaces 2022; 215:112475. [PMID: 35390598 DOI: 10.1016/j.colsurfb.2022.112475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/18/2022]
Abstract
Sonoran propolis (SP) exerts remarkable biological activities attributed to its polyphenolic composition, mostly described as poplar-type flavonoids. It is known that polyphenols present low bioavailability derived of their molecular weight, glycosylation level, metabolic conversion, as well as interaction with the intestinal microbiota, affording limitations for possible in vivo applications. The aim of this work was to synthesize Poly-(lactide-co-glycolide) acid (PLGA) nanoparticles for encapsulation of SP, as a matrix to increase solubility of their polyphenolic compounds and improve delivery, for the evaluation of its antiproliferative activity on cancer cells. The Sonoran propolis-loaded PLGA nanoparticles (SP-PLGA NPs) were synthesized (by nanoprecipitation), and their physicochemical parameters were determined (size, morphology, zeta potential, stability, and drug release). Additionally, the antiproliferative activity of SP-PLGA nanoparticles was evaluated in vitro against murine (M12.C3.F6) and human (HeLa) cancer cell lines, including a non-cancer human cell line (ARPE-19) as control. SP-PLGA NPs presented a mean size of 152.6 ± 7.1 nm with an average negative charge of - 21.2 ± 0.7 mV. The encapsulation yield of SP into PLGA system was approximately 68.2 ± 6.0% with an in vitro release of 45% of propolis content at 48 h. SP-PLGA NPs presented antiproliferative activity against both cancer cell lines tested, with lower IC50 values in M12.C3.F6 and HeLa cell lines (7.8 ± 0.4 and 3.8 ± 0.4 μg/mL, respectively) compared to SP (24.0 ± 4.3 and 7.4 ± 0.4 μg/mL, respectively). In contrast, the IC50 of SP-PLGA NPs and SP against ARPE-19 was higher than 50 µg/mL. Cancer cells treated with SP and SP-PLGA NPs presented morphological features characteristic of apoptosis (cellular shrinkage and membrane blebs), as well as elongated cells, effect previously reported for SP, meanwhile, no morphological changes were observed with ARPE-19 cells. The obtained delivery system demonstrates appropriate encapsulation characteristics and antiproliferative activity to be used in the field of nanomedicine, therefore SP could be potentially used in antitumoral in vivo assays upon its encapsulation into PLGA nanoparticles.
Collapse
Affiliation(s)
- Pablo Mendez-Pfeiffer
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico
| | - Josue Juarez
- Departament of Physics, University of Sonora, Hermosillo, Sonora CP. 83000, Mexico
| | - Javier Hernandez
- Instituto de Química Aplicada (IQA), Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa, 91190 Veracruz, Mexico
| | - Pablo Taboada
- Departamento de Física de la Materia Condensada, Facultad de Física, Universidad de Santiago de Compostela, Santiago de Compostela CP. 15782, Spain
| | - Claudia Virués
- Instituto de Química Aplicada (IQA), Luis Castelazo Ayala s/n, Col. Industrial Animas, Xalapa, 91190 Veracruz, Mexico
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico
| | - Dora Valencia
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico.
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico.
| |
Collapse
|
13
|
Ng MY, Lin T, Chao SC, Chu PM, Yu CC. Potential Therapeutic Applications of Natural Compounds in Diabetes-Associated Periodontitis. J Clin Med 2022; 11:jcm11133614. [PMID: 35806899 PMCID: PMC9267692 DOI: 10.3390/jcm11133614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a major worldwide health burden. DM is a metabolic disease characterized by chronic hyperglycemia, and if left untreated, can lead to various complications. Individuals with uncontrolled DM are more susceptible to periodontitis due to both a hyper-inflammatory host response and an impaired immune response. Periodontitis, on the other hand, may exacerbate DM by increasing both local and systemic inflammatory components of DM-related complications. The current standard for periodontal treatment in diabetes-associated periodontitis (DP) focuses mostly on reducing bacterial load and less on controlling the excessive host response, and hence, may not be able to resolve DP completely. Over the past decade, natural compounds have emerged as an adjunct approach for modulating the host immune response with the hope of curing DP. The anti-oxidant, anti-inflammatory, and anti-diabetic characteristics of natural substances are well-known, and they can be found in regularly consumed foods and drinks, as well as plants. The pathophysiology of DP and the treatment benefits of various bioactive extracts for DP will be covered in this review.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shih-Chi Chao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research and Education, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yi-lan, Luodong 265501, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan; (M.Y.N.); (T.L.)
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan;
- Correspondence: ; Tel.: +886-4-2471-8668
| |
Collapse
|
14
|
Portuguese Propolis Antitumoral Activity in Melanoma Involves ROS Production and Induction of Apoptosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113533. [PMID: 35684471 PMCID: PMC9182411 DOI: 10.3390/molecules27113533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/15/2022]
Abstract
Melanoma is the most aggressive and life-threatening skin cancer type. The melanoma genome is the most frequently mutated, with the BRAF mutation present in 40–60% of melanoma cases. BRAF-mutated melanomas are characterized by a higher aggressiveness and progression. Adjuvant targeted treatments, such as BRAF and MEK inhibitors, are added to surgical excision in BRAF-mutated metastatic melanomas to maximize treatment effectiveness. However, resistance remains the major therapeutic problem. Interest in natural products, like propolis, for therapeutic applications, has increased in the last years. Propolis healing proprieties offer great potential for the development of novel cancer drugs. As the activity of Portuguese propolis has never been studied in melanoma, we evaluated the antitumoral activity of propolis from Gerês (G18.EE) and its fractions (n-hexane, ethyl acetate (EtOAc), and n-butanol) in A375 and WM9 melanoma cell lines. Results from DPPH•/ABTS• radical scavenging assays indicated that the samples had relevant antioxidant activity, however, this was not confirmed in the cell models. G18.EE and its fractions decreased cell viability (SRB assay) and promoted ROS production (DHE/Mitotracker probes by flow cytometry), leading to activation of apoptotic signaling (expression of apoptosis markers). Our results suggest that the n-BuOH fraction has the potential to be explored in the pharmacological therapy of melanoma.
Collapse
|
15
|
Bello-Martínez G, García-Ramírez G, Olea-Flores M, Navarro-Tito N, Hernández-Moreno A, Avila-Caballero LP, Torres-Moreno H, Bello-Martínez J. Biological activity of Haematoxylum brasiletto in MCF7 and MDA-MB-231 breast cancer cell lines. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 146:528-537. [DOI: 10.1016/j.sajb.2021.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Yang S, Lyu X, Zhang J, Shui Y, Yang R, Xu X. The Application of Small Molecules to the Control of Typical Species Associated With Oral Infectious Diseases. Front Cell Infect Microbiol 2022; 12:816386. [PMID: 35265531 PMCID: PMC8899129 DOI: 10.3389/fcimb.2022.816386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oral microbial dysbiosis is the major causative factor for common oral infectious diseases including dental caries and periodontal diseases. Interventions that can lessen the microbial virulence and reconstitute microbial ecology have drawn increasing attention in the development of novel therapeutics for oral diseases. Antimicrobial small molecules are a series of natural or synthetic bioactive compounds that have shown inhibitory effect on oral microbiota associated with oral infectious diseases. Novel small molecules, which can either selectively inhibit keystone microbes that drive dysbiosis of oral microbiota or inhibit the key virulence of the microbial community without necessarily killing the microbes, are promising for the ecological management of oral diseases. Here we discussed the research progress in the development of antimicrobial small molecules and delivery systems, with a particular focus on their antimicrobial activity against typical species associated with oral infectious diseases and the underlying mechanisms.
Collapse
Affiliation(s)
- Sirui Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Soares VEM, do Carmo TIT, Dos Anjos F, Wruck J, de Oliveira Maciel SFV, Bagatini MD, de Resende E Silva DT. Role of inflammation and oxidative stress in tissue damage associated with cystic fibrosis: CAPE as a future therapeutic strategy. Mol Cell Biochem 2022; 477:39-51. [PMID: 34529223 DOI: 10.1007/s11010-021-04263-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, responsible for the synthesis of the CFTR protein, a chloride channel. The gene has approximately 2000 known mutations and all of them affect in some degree the protein function, which makes the pathophysiological manifestations to be multisystemic, mainly affecting the respiratory, gastrointestinal, endocrine, and reproductive tracts. Currently, the treatment of the disease is restricted to controlling symptoms and, more recently, a group of drugs that act directly on the defective protein, known as CFTR modulators, was developed. However, their high cost and difficult access mean that their use is still very restricted. It is important to search for safe and low-cost alternative therapies for CF and, in this context, natural compounds and, mainly, caffeic acid phenethyl ester (CAPE) appear as promising strategies to assist in the treatment of the disease. CAPE is a compound derived from propolis extracts that has antioxidant and anti-inflammatory activities, covering important aspects of the pathophysiology of CF, which points to the possible benefit of its use in the disease treatment. To date, no studies have effectively tested CAPE for CF and, therefore, we intend with this review to elucidate the role of inflammation and oxidative stress for tissue damage seen in CF, associating them with CAPE actions and its pharmacologically active derivatives. In this way, we offer a theoretical basis for conducting preclinical and clinical studies relating the use of this molecule to CF.
Collapse
Affiliation(s)
- Victor Emanuel Miranda Soares
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Fernanda Dos Anjos
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Jonatha Wruck
- Medical School, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | | | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil
| | - Débora Tavares de Resende E Silva
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Rodovia SC 484 - Km 02, Fronteira Sul, Chapecó, SC, 89815-899, Brazil.
| |
Collapse
|
18
|
Fouquieria splendens: A source of phenolic compounds with antioxidant and antiproliferative potential. Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2021.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Comparison of the Biological Potential and Chemical Composition of Brazilian and Mexican Propolis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Propolis is a resinous substance collected by bees from plants and its natural product is available as a safe therapeutic option easily administered orally and readily available as a natural supplement and functional food. In this work, we review the most recent scientific evidence involving propolis from two countries (Brazil and Mexico) located in different hemispheres and with varied biomes. Brazil has a scientifically well documented classification of different types of propolis. Although propolis from Brazil and Mexico present varied compositions, they share compounds with recognized biological activities in different extraction processes. Gram-negative bacteria growth is inhibited with lower concentrations of different types of propolis extracts, regardless of origin. Prominent biological activities against cancer cells and fungi were verified in the different types of extracts evaluated. Antiprotozoal activity needs to be further evaluated for propolis of both origins. Regarding the contamination of propolis (e.g., pesticides, toxic metals), few studies have been carried out. However, there is evidence of chemical contamination in propolis by anthropological action. Studies demonstrate the versatility of using propolis in its different forms (extracts, products, etc.), but several potential applications that might improve the value of Brazilian and Mexican propolis should still be investigated.
Collapse
|
20
|
Yang S, Zhang J, Yang R, Xu X. Small Molecule Compounds, A Novel Strategy against Streptococcus mutans. Pathogens 2021; 10:pathogens10121540. [PMID: 34959495 PMCID: PMC8708136 DOI: 10.3390/pathogens10121540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Dental caries, as a common oral infectious disease, is a worldwide public health issue. Oral biofilms are the main cause of dental caries. Streptococcus mutans (S. mutans) is well recognized as the major causative factor of dental caries within oral biofilms. In addition to mechanical removal such as tooth brushing and flossing, the topical application of antimicrobial agents is necessarily adjuvant to the control of caries particularly for high-risk populations. The mainstay antimicrobial agents for caries such as chlorhexidine have limitations including taste confusions, mucosal soreness, tooth discoloration, and disruption of an oral microbial equilibrium. Antimicrobial small molecules are promising in the control of S. mutans due to good antimicrobial activity, good selectivity, and low toxicity. In this paper, we discussed the application of antimicrobial small molecules to the control of S. mutans, with a particular focus on the identification and development of active compounds and their modes of action against the growth and virulence of S. mutans.
Collapse
Affiliation(s)
- Sirui Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (R.Y.); (X.X.)
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu 610041, China; (S.Y.); (J.Z.)
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (R.Y.); (X.X.)
| |
Collapse
|
21
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Valencia D, Velazquez C. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Ruiz-Hurtado PA, Garduño-Siciliano L, Domínguez-Verano P, Balderas-Cordero D, Gorgua-Jiménez G, Canales-Álvarez O, Canales-Martínez MM, Rodríguez-Monroy MA. Propolis and Its Gastroprotective Effects on NSAID-Induced Gastric Ulcer Disease: A Systematic Review. Nutrients 2021; 13:nu13093169. [PMID: 34579045 PMCID: PMC8466107 DOI: 10.3390/nu13093169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer disease induced by the consumption of NSAIDs is a major public health problem. The therapy used for its treatment causes adverse effects in the patient. Propolis is a natural product that has been used for the treatments of different diseases around the world. Nevertheless, there is little information about the activity of propolis in gastric ulcers caused by treatment with NSAIDs. Therefore, this review evaluates and compares the gastroprotective potential of propolis and its function against NSAID-induced gastric ulcers, for which a systematic search was carried out in the PubMed and ScienceDirect databases. The main criteria were articles that report the gastroprotective activity of propolis against the damage produced by NSAIDs in the gastric mucosa. Gastroprotection was related to the antioxidant, antisecretory, and cytoprotective effects, as well as the phenolic compounds present in the chemical composition of propolis. However, most of the studies used different doses of NSAIDs and propolis and evaluated different parameters. Propolis has proven to be a good alternative for the treatment of gastric ulcer disease. However, future studies should be carried out to identify the compounds responsible for these effects and to determine their potential use in people.
Collapse
Affiliation(s)
- Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
| | - Pilar Domínguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Gustavo Gorgua-Jiménez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Octavio Canales-Álvarez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - María Margarita Canales-Martínez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico;
| | - Marco Aurelio Rodríguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Correspondence: ; Tel.: +52-5545-205-185
| |
Collapse
|
23
|
Lv L, Cui H, Ma Z, Liu X, Yang L. Recent progresses in the pharmacological activities of caffeic acid phenethyl ester. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1327-1339. [PMID: 33492405 DOI: 10.1007/s00210-021-02054-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The past decades have seen a growing interest in natural products. Caffeic acid phenethyl ester (CAPE), a flavonoid isolated from honeybee propolis, has shown multiple pharmacological potentials, including anti-cancer, anti-inflammatory, antioxidant, antibacterial, antifungal, and protective effects on nervous systems and multiple organs, since it was found as a potent nuclear factor κB (NF-κB) inhibitor. This review summarizes the advances in these beneficial effects of CAPE, as well as the underlying mechanisms, and proposes that CAPE offers an opportunity for developing therapeutics in multiple diseases. However, clinical trials on CAPE are necessary and encouraged to obtain certain clinically relevant conclusions.
Collapse
Affiliation(s)
- Lili Lv
- Jilin University, Changchun, 130021, China
| | | | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
24
|
Mostafa D, Mandil OA. Treatment of gingival recession defects using non-invasive pinhole technique with propolis application, a case report. Int J Surg Case Rep 2021; 83:106042. [PMID: 34090198 PMCID: PMC8188386 DOI: 10.1016/j.ijscr.2021.106042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/18/2021] [Accepted: 05/21/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction and importance Despite the considerable surgical techniques that have been done for the root coverage, surgical difficulties, time, and patients' discomfort are still the main obstacles. However, the morbidity associated with the secondary graft sites has generated interest in new modalities to achieve the esthetic and functional requirements without complications, to reach patient comfort and satisfaction. In our study, we used a recent novel surgical technique which is called the pinhole surgical technique as it is a minimally invasive treatment that reverses gingival recession without using donor graft, flap elevation, or sutures. In this study, we also used propolis for root conditioning as it is a natural anti-infective, anti-inflammatory, and anti-oxidant agent. Presentation of the case A 58-year-old systemically healthy female patient was referred to our periodontal clinics for the root coverage of the upper left canine and the first premolar which were diagnosed as Class II and Class I Miller's classification respectively. A pinhole surgical technique was done using propolis for root conditioning. A pinhole was created and the gingiva was pushed downwards until reaching the desired position coronally with the aid of collagen strips. Then, propolis was applied again postoperatively to enhance healing. Clinical discussion Pinhole surgical technique can immediately cover exposed roots without incisions, donor site or flap reflection. In addition, the use of propolis in root conditioning showed positive results. This is due to its antioxidant and anti-inflammatory effects. Conclusion Pinhole surgical technique using propolis is a promising modality that reaches the periodontist ambition for gingival recession defects. Pinhole surgical technique is considered as an effective alternative treatment for root coverage without the need for incisions, scalpel and donor site. In our case report, propolis was used as a natural antioxidant and antibacterial material in a novel protocol for root conditioning during root coverage procedure resulting postive outcomes. Topical application of propolis can be added to any oral surgical protocol to enhance healing capacity and minimize postoperative complications.
Collapse
Affiliation(s)
- Diana Mostafa
- Periodontology and Oral Medicine Department. Alexandria University, Faculty of Dentistry, Egypt; Preventive Dental Sciences, Vision Colleges, Riyadh, Saudi Arabia.
| | | |
Collapse
|
25
|
Šuran J, Cepanec I, Mašek T, Radić B, Radić S, Tlak Gajger I, Vlainić J. Propolis Extract and Its Bioactive Compounds-From Traditional to Modern Extraction Technologies. Molecules 2021; 26:molecules26102930. [PMID: 34069165 PMCID: PMC8156449 DOI: 10.3390/molecules26102930] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Propolis is a honeybee product known for its antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. It is rich in bioactive molecules whose content varies depending on the botanical and geographical origin of propolis. These bioactive molecules have been studied individually and as a part of propolis extracts, as they can be used as representative markers for propolis standardization. Here, we compare the pharmacological effects of representative polyphenols and whole propolis extracts. Based on the literature data, polyphenols and extracts act by suppressing similar targets, from pro-inflammatory TNF/NF-κB to the pro-proliferative MAPK/ERK pathway. In addition, they activate similar antioxidant mechanisms of action, like Nrf2-ARE intracellular antioxidant pathway, and they all have antimicrobial activity. These similarities do not imply that we should attribute the action of propolis solely to the most representative compounds. Moreover, its pharmacological effects will depend on the efficacy of these compounds’ extraction. Thus, we also give an overview of different propolis extraction technologies, from traditional to modern ones, which are environmentally friendlier. These technologies belong to an open research area that needs further effective solutions in terms of well-standardized liquid and solid extracts, which would be reliable in their pharmacological effects, environmentally friendly, and sustainable for production.
Collapse
Affiliation(s)
- Jelena Šuran
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Ivica Cepanec
- Director of Research & Development and CTO, Amelia Ltd., Zagorska 28, Bunjani, 10314 Kriz, Croatia;
| | - Tomislav Mašek
- Department of Animal Nutrition and Dietetics, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Božo Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Saša Radić
- Hedera Ltd., 4. Gardijske Brigade 35, 21311 Split, Croatia; (B.R.); (S.R.)
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Josipa Vlainić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
26
|
Wang Z, Ren P, Wu Y, He Q. Recent advances in analytical techniques for the detection of adulteration and authenticity of bee products - A review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:533-549. [PMID: 33705260 DOI: 10.1080/19440049.2020.1871081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bee products have been considered as functional foods for a long time in China because of their wide range of biological activity. China has the largest number of bee colonies and the highest production of bee products in the world. Major bee products include honey, royal jelly, propolis and bee pollen. In recent years, consumption of bee products in China has been increasing due to an increased public awareness of their nutritional and health benefits. With the development of the Chinese economy and the improvement of people's living standards, high-end and gift-oriented products have become more popular and bee products are one of the options. However, the production of bee products cannot increase rapidly in short term and this is a driver for substantial economic-motivated adulteration. This is compounded by globalisation of supply chains which has also resulted in a rise in bee products fraud. These illicit products are eroding market prices and consumer trust, causing significant damage to the beekeeping industry. In order to provide information or solutions for regulators and consumers, in this article, we review he characteristics of bee products in China and the current situation regarding adulteration and authenticity of bee products. Moreover, advances in analytical techniques for detection of adulteration and authenticity of bee products including sensory techniques, DNA methods, isotope ratio mass spectrometry, spectroscopic techniques and mass spectrometry are reviewed. Finally, the applications and limitations of analytical methods in authentication are critically assessed. Suggestions are also put forward for the future management of China's bee products industry.
Collapse
Affiliation(s)
- Ziying Wang
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Pingping Ren
- Applied, Industrial and Clinical Division, Bruker Biospin GmbH, Rheinstetten, Germany
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Qinghua He
- Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
27
|
Mendez-Pfeiffer P, Alday E, Carreño AL, Hernández-Tánori J, Montaño-Leyva B, Ortega-García J, Valdez J, Garibay-Escobar A, Hernandez J, Valencia D, Velazquez C. Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis. Antioxidants (Basel) 2020; 9:antiox9121294. [PMID: 33348680 PMCID: PMC7765891 DOI: 10.3390/antiox9121294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
The main chemical composition and pharmacological potential of propolis from arid and semi-arid regions of the Sonoran Desert have been previously reported. Caborca propolis (CP), from an arid zone of the Sonoran Desert, has shown a polyphenolic profile that suggests a mixed plant origin, presenting poplar-type markers, as well as a 6-methoxylated flavonoid, xanthomicrol, characteristic of Asteraceae plants. In addition, CP has shown significant antioxidant properties and antiproliferative activity on cancer cells. In this study, we analyzed the influence of collection time on the chemical constitution, antiproliferative activity and protective capacity of CP against reactive oxygen species (ROS), by using HPLC–UV–diode array detection (DAD) analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-Dimethyltetrazoliumbromide (MTT) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays, as well as cellular antioxidant activity (CAA) assay on murine B-cell lymphoma M12.C3.F6 cells. HPLC–UV–DAD analyses of seasonally collected CP (one-year period) revealed quantitative differences among the most abundant CP constituents: pinocembrin, galangin, chrysin and pinobanksin-3-O-acetate. Though all seasonal samples of CP induced an antiproliferative effect in M12.C3.F6 cells, CP from autumn showed the highest inhibitory activity (IC50: 5.9 ± 0.6 µg/mL). The DPPH assay pointed out that CP collected in autumn presented the highest antioxidant potential (IC50: 58.8 ± 6.7 µg/mL), followed by winter (65.7 ± 12.2 µg/mL) and spring (67.0 ± 7.5 µg/mL); meanwhile, the summer sample showed a lesser antioxidant capacity (IC50: 98.7 ± 2.5 µg/mL). The CAA assay demonstrated that CP induced a significant protective effect against ROS production elicited by H2O2 in M12.C3.F6 cells. Pretreatment of M12.C3.F6 cells with CP from spring and autumn (25 and 50 µg/mL for 1 h) showed the highest reduction in intracellular ROS induced by H2O2 (1 and 5 mM). These results indicate that the antiproliferative effect and cellular antioxidant activity of CP are modulated by quantitative fluctuations in its polyphenolic profile due to its collection time.
Collapse
Affiliation(s)
- Pablo Mendez-Pfeiffer
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Ana Laura Carreño
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Jorge Hernández-Tánori
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico; (J.H.-T.); (J.O.-G.)
| | - Beatriz Montaño-Leyva
- Departamento de Investigacion y Posgrado en Alimentos, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Jesús Ortega-García
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico; (J.H.-T.); (J.O.-G.)
| | - Judith Valdez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Javier Hernandez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Veracruz C.P. 91190, Mexico;
| | - Dora Valencia
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico; (J.H.-T.); (J.O.-G.)
- Correspondence: (D.V.); (C.V.); Tel.: +52-(637)-372-65-40 (D.V.); +52-(662)-259-21-63 (C.V.); Fax: +52-(662)-259-21-63 (C.V.)
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
- Correspondence: (D.V.); (C.V.); Tel.: +52-(637)-372-65-40 (D.V.); +52-(662)-259-21-63 (C.V.); Fax: +52-(662)-259-21-63 (C.V.)
| |
Collapse
|
28
|
Yadav N, Monisha M, Niranjan R, Dubey A, Patil S, Priyadarshini R, Lochab B. Antibacterial performance of fully biobased chitosan-grafted-polybenzoxazine films: Elaboration and properties of released material. Carbohydr Polym 2020; 254:117296. [PMID: 33357864 DOI: 10.1016/j.carbpol.2020.117296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 01/06/2023]
Abstract
A fully biobased benzoxazine monomer, V-fa (using vanillin and furfurylamine) was grafted onto chitosan (CS) at different weight ratios (CXVY) using "grafting to" benign Schiff base chemistry. Incorporation of V-fa onto CS increased the tensile strength and improved chemical resistance of the CS-graft-V-fa films. Reversible labile linkages, expansion of CS galleries and leaching out of phenolic species from biobased polymer films led to an improved antibacterial activity against Staphylococcus aureus, which is ∼125 times higher than the bare CS film, V-fa and oligomeric V-fa. The leached out species from films were analyzed extensively by NMR, FTIR, GPC, ABTS and HRMS analysis. Oxidative-stress seems to be responsible for antibacterial activity. Current work illustrates an attractive synthetic approach and the improved antibacterial performance of biobased CS-graft-poly(V-fa) films which may hold as a potential alternative for wound-healing and implant applications in future.
Collapse
Affiliation(s)
- Nisha Yadav
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 58, 100 44 Stockholm, Sweden.
| | - Monisha Monisha
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Rashmi Niranjan
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Amrita Dubey
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Sachin Patil
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Richa Priyadarshini
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
29
|
Antibacterial Effect of Caffeic Acid Phenethyl Ester on Cariogenic Bacteria and Streptococcus mutans Biofilms. Antimicrob Agents Chemother 2020; 64:AAC.00251-20. [PMID: 32540977 DOI: 10.1128/aac.00251-20] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/31/2020] [Indexed: 02/05/2023] Open
Abstract
Dental caries is the most common disease in the human mouth. Streptococcus mutans is the primary cariogenic bacterium. Propolis is a nontoxic natural product with a strong inhibitory effect on oral cariogenic bacteria. The polyphenol-rich extract from propolis inhibits S. mutans growth and biofilm formation, as well as the genes involved in virulence and adherence, through the inhibition of glucosyltransferases (GTF). However, because the chemical composition of propolis is highly variable and complex, the mechanism of its antimicrobial action and the active compound are controversial and not completely understood. Caffeic acid phenethyl ester (CAPE) is abundant in the polyphenolic compounds from propolis, and it has many pharmacological effects. In this study, we investigated the antibacterial effects of CAPE on common oral cariogenic bacteria (Streptococcus mutans, Streptococcus sobrinus, Actinomyces viscosus, and Lactobacillus acidophilus) and its effects on the biofilm-forming and cariogenic abilities of S. mutans CAPE shows remarkable antimicrobial activity against cariogenic bacteria. Moreover, CAPE also inhibits the formation of S. mutans biofilms and their metabolic activity in mature biofilms. Furthermore, CAPE can inhibit the key virulence factors of S. mutans associated with cariogenicity, including acid production, acid tolerance, and the bacterium's ability to produce extracellular polysaccharides (EPS), without affecting bacterial viability at subinhibitory levels. In conclusion, CAPE appears to be a new agent with anticariogenic potential, not only via inhibition of the growth of cariogenic bacteria.
Collapse
|
30
|
Mahmoodzadeh Hosseini H, Hamzeh Pour S, Amani J, Jabbarzadeh S, Hosseinabadi M, Mirhosseini SA. The effect of Propolis on inhibition of Aspergillus parasiticus growth, aflatoxin production and expression of aflatoxin biosynthesis pathway genes. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:297-302. [PMID: 32399241 PMCID: PMC7203247 DOI: 10.1007/s40201-020-00467-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND PURPOSE Aflatoxins are one of the most important mycotoxins, which have been classified as Group I carcinogenic compounds by the International Agency for Research on Cancer. This investigation aimed to examine the effect of Propolis on inhibition of the Aspergillus parasiticus growth, aflatoxin production and expression of aflatoxin biosynthesis pathway genes. MATERIALS AND METHODS A standard strain of Aspergillus parasiticus (ATCC 15517) was used to perform antifungal susceptibility test, using a microdilution method in accordance with the CLSI M38-A2 guidelines. The aflatoxin concentrations in the control and treated media were determined by HPLC. Also, the quantitative changes in the level of nor-1, ver-1 and omtA genes expression in aflatoxin biosynthetic pathway were analyzed using Real-Time PCR method. RESULTS The results showed that the minimum inhibitory concentrations (MIC) of propolis was 100 µg/ml. The results showed that total levels of aflatoxin decreased from 386.1 ppm to 3.01 ppm at 50 µg/ml of propolis. In addition, quantitative real-time PCR analysis showed that the level of nor-1, ver-1 and omtA genes expression was significantly decreased after treatment with propolis extract. CONCLUSIONS The findings reveal that propolis extract, have a significant inhibitory effect on important genes for aflatoxin biosynthesis pathway in aflatoxin production.
Collapse
Affiliation(s)
- Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Siavash Hamzeh Pour
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sima Jabbarzadeh
- Department of plant biology, Higher Education Institute of Rabe-Rashid, Tabriz, Iran
| | - Mostafa Hosseinabadi
- Department of Food Science and Technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Hamzeh Pour S, Khodavaisy S, Mahmoudi S, Vaziri S, Soltan Dallal MM, Oliya S, Getso M, Rezaie S. The effect of royal jelly and propolis alone and in combination on inhibition of
Aspergillus parasiticus
growth, aflatoxin production, and
aflR
gene expression. J Food Saf 2020. [DOI: 10.1111/jfs.12815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siavash Hamzeh Pour
- Department of Pathobiology, School of Public HealthTehran University of Medical Sciences Tehran Iran
| | - Sadegh Khodavaisy
- Zoonoses Research Center, Research Institute for Health DevelopmentKurdistan University of Medical Sciences Sanandaj Iran
- Department of Medical Parasitology and Mycology, School of Public HealthTehran University of Medical Sciences Tehran Iran
| | - Shahram Mahmoudi
- Department of Medical Parasitology and Mycology, School of MedicineIran University of Medical Sciences Tehran Iran
| | - Samira Vaziri
- Department of BiologyPayame Noor University Tehran PO Box 19395‐4697 Iran
| | | | - Soniya Oliya
- Department of Nutrition, School of Public HealthQazvin University of Medical Sciences Qazvin Iran
| | - Muhammad Getso
- Department of Medical Parasitology and Mycology, School of Public HealthTehran University of Medical Sciences Tehran Iran
- Department of Medical Microbiology and ParasitologyCollege of Health Sciences, Bayero University Kano Nigeria
| | - Sassan Rezaie
- Department of Medical Parasitology and Mycology, School of Public HealthTehran University of Medical Sciences Tehran Iran
| |
Collapse
|
32
|
Dai G, Jiang Z, Sun B, Liu C, Meng Q, Ding K, Jing W, Ju W. Caffeic Acid Phenethyl Ester Prevents Colitis-Associated Cancer by Inhibiting NLRP3 Inflammasome. Front Oncol 2020; 10:721. [PMID: 32435622 PMCID: PMC7218129 DOI: 10.3389/fonc.2020.00721] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Long-lasting inflammation in the intestinal tract renders individuals susceptible to colitis-associated cancer (CAC). The NOD-like receptor protein 3 (NLRP3) inflammasome plays a key role in the progression of inflammatory bowel disease and CAC. Therefore, identifying effective drugs that prevent CAC by targeting NLRP3 inflammasome is of great interest. Here, we aimed to evaluate the anti-inflammatory effect of caffeic acid phenethyl ester (CAPE) on bone marrow-derived macrophages (BMDMs), THP-1 cells, and azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon cancer mouse model. We also investigated the anti-tumor mechanism of CAPE. We found that CAPE decreased NLRP3 inflammasome activation in BMDMs and THP-1 cells and protected mice from colorectal cancer induced by AOM/DSS. CAPE regulated NLRP3 at the post-transcriptional level by inhibiting reactive oxygen species (ROS) production. However, CAPE did not affect NLRP3 or IL-1β transcription, but instead enhanced NLRP3 binding to ubiquitin molecules, promoting NLRP3 ubiquitination, and contributing to the anti-tumor effect in the AOM/DSS mouse model. Moreover, CAPE suppressed the interaction between NLRP3 and CSN5 but enhanced that between NLRP3 and Cullin1 both in vivo and in vitro. Altogether, our findings demonstrate that CAPE prevents CAC by post-transcriptionally inhibiting NLRP3 inflammasome. Thus, CAPE may be an effective candidate for reducing the risk of CAC in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Guoliang Dai
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhitao Jiang
- Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Bingting Sun
- Department of Pharmacy, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Liu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kang Ding
- National Center of Colorectal Surgery, Jiangsu Integrate Colorectal Oncology Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Jing
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenzheng Ju
- Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
33
|
Phytochemical Constituents, Antioxidant, Cytotoxic, and Antimicrobial Activities of the Ethanolic Extract of Mexican Brown Propolis. Antioxidants (Basel) 2020; 9:antiox9010070. [PMID: 31940981 PMCID: PMC7022611 DOI: 10.3390/antiox9010070] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/29/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022] Open
Abstract
Propolis is a complex mixture of natural sticky and resinous components produced by honeybees from living plant exudates. Globally, research has been dedicated to studying the biological properties and chemical composition of propolis from various geographical and climatic regions. However, the chemical data and biological properties of Mexican brown propolis are scant. The antioxidant activity of the ethanolic extract of propolis (EEP) sample collected in México and the isolated compounds is described. Cytotoxic activity was evaluated in a central nervous system and cervical cancer cell lines. Cytotoxicity of EEP was evaluated in a C6 cell line and cervical cancer (HeLa, SiHa, and CasKi) measured by the 3-(3,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium (MTT) assay. The antibacterial activity was tested using the minimum inhibitory concentration (MIC) assay. Twelve known compounds were isolated and identified by nuclear magnetic resonance spectroscopy (NMR). Additionally, forty volatile compounds were identified by means of headspace-solid phase microextraction with gas chromatography and mass spectrometry time of flight analysis (HS-SPME/GC-MS-TOF). The main volatile compounds detected include nonanal (18.82%), α-pinene (12.45%), neryl alcohol (10.13%), and α-pinene (8.04%). EEP showed an anti-proliferative effect on glioma cells better than temozolomide, also decreased proliferation and viability in cervical cancer cells, but its effectiveness was lower compared to cisplatin.
Collapse
|
34
|
Petreska Stanoeva J, Stefova M, Trusheva B, Popova M, Antonova D, Bankova V. Comparison between Bulgarian and Macedonian propolis: chemical composition and plant origin. MAKEDONSKO FARMACEVTSKI BILTEN 2020. [DOI: 10.33320/maced.pharm.bull.2020.66.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Propolis is used as a constituent in over-the-counter preparations, food additives, cosmetics, etc. Bulgarian and Macedonian propolis samples were analyzed by gas chromatography – mass spectrometry (GC-MS) of ethanol extracts after silylation, in order to determine the presence of bioactive substances with antimicrobial and antioxidant activity and their chemical profiles were compared. Bulgarian and Macedonian propolis demonstrate very similar chemical profiles and belong to the Poplar type propolis, which has well-characterized qualitative composition and high content of bioactive substances. These results allow the standardization of Macedonian propolis to be approached on the basis of the recommendations by the International Honey Commission for poplar propolis.
Keywords: Bulgarian propolis, Macedonian propolis, GC-MS, chemical profiling
Collapse
Affiliation(s)
- Jasmina Petreska Stanoeva
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, North Macedonia
| | - Marina Stefova
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 5, 1000 Skopje, North Macedonia
| | - Boryana Trusheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Daniela Antonova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Vassya Bankova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
35
|
Kalhapure RS, Bolla P, Dominguez DC, Dahal A, Boddu SHS, Renukuntla J. FSE-Ag complex NS: preparation and evaluation of antibacterial activity. IET Nanobiotechnol 2019; 12:836-840. [PMID: 30104459 DOI: 10.1049/iet-nbt.2017.0284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Silver (Ag) complexes of drugs and their nanosystems have great potential as antibacterials. Recently, an Ag complex of furosemide (Ag-FSE) has shown to be a promising antimicrobial. However, poor solubility of Ag-FSE could hamper its introduction into clinics. Therefore, the authors developed a nanosuspension of Ag-FSE (Ag-FSE_NS) for its solubility and antibacterial activity enhancement. The aim of this study was to introduce a novel nanoantibiotic with enhanced antibacterial efficacy. Ag-FSE_NS was prepared by precipitation-ultrasonication technique. Size, polydispersity index (PI) and zeta potential (ZP) of prepared Ag-FSE_NS were measured by dynamic light scattering, whereas surface morphology was determined using scanning electron microscopy (SEM). In vitro antibacterial activity was evaluated against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa using broth microdilution method. Size, PI and ZP of optimised Ag-FSE_NS1 were 191.2 ± 19.34 nm, 0.465 ± 0.059 and -55.7 ± 8.18 mV, respectively. SEM revealed that Ag-FSE_NS1 particles were rod or needle-like with smooth surfaces. Saturation solubility of Ag-FSE in NS increased eight-fold than pure Ag-FSE. Ag-FSE_NS1 exhibited two-fold and eight-fold enhancements in activity against E. coli and S. aureus, respectively. The results obtained showed that developed Ag-FSE_NS1 holds a promise as a topical antibacterial.
Collapse
Affiliation(s)
- Rahul S Kalhapure
- School of Pharmacy, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Pradeep Bolla
- School of Pharmacy, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Delfina C Dominguez
- College of Health Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Amit Dahal
- Department of Pharmacy Practice, The University of Toledo HSC, College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue (MS1013) Toledo, OH 43614, USA
| | - Sai H S Boddu
- Department of Pharmacy Practice, The University of Toledo HSC, College of Pharmacy and Pharmaceutical Sciences, 3000 Arlington Avenue (MS1013) Toledo, OH 43614, USA
| | - Jwala Renukuntla
- School of Pharmacy, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA.
| |
Collapse
|
36
|
Identification of Resveratrol as Bioactive Compound of Propolis from Western Romania and Characterization of Phenolic Profile and Antioxidant Activity of Ethanolic Extracts. Molecules 2019; 24:molecules24183368. [PMID: 31527469 PMCID: PMC6766919 DOI: 10.3390/molecules24183368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to assess the phenolic content of eight ethanolic propolis samples (P1–P8) harvested from different regions of Western Romania and their antioxidant activity. The mean value of total phenolic content was 214 ± 48 mg gallic acid equivalents (GAE)/g propolis. All extracts contained kaempferol (514.02 ± 114.80 μg/mL), quercetin (124.64 ± 95.86 μg/mL), rosmarinic acid (58.03 ± 20.08 μg/mL), and resveratrol (48.59 ± 59.52 μg/mL) assessed by LC-MS. The antioxidant activity was evaluated using 2 methods: (i) DPPH (2,2-diphenyl-1-picrylhydrazyl) assay using ascorbic acid as standard antioxidant and (ii) FOX (Ferrous iron xylenol orange OXidation) assay using catalase as hydrogen peroxide (H2O2) scavenger. The DPPH radical scavenging activity was determined for all samples applied in 6 concentrations (10, 5, 3, 1.5, 0.5 and 0.3 mg/mL). IC50 varied from 0.0700 to 0.9320 mg/mL (IC50 of ascorbic acid = 0.0757 mg/mL). The % of H2O2 inhibition in FOX assay was assessed for P1, P2, P3, P4 and P8 applied in 2 concentrations (5 and 0.5 mg/mL). A significant H2O2% inhibition was obtained for these samples for the lowest concentration. We firstly report the presence of resveratrol as bioactive compound in Western Romanian propolis. The principal component analysis revealed clustering of the propolis samples according to the polyphenolic profile similarity.
Collapse
|
37
|
Boisard S, Shahali Y, Aumond M, Derbré S, Blanchard P, Dadar M, Le Ray A, Richomme P. Anti‐AGE activity of poplar‐type propolis: mechanism of action of main phenolic compounds. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14284] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Séverine Boisard
- EA 921 SONAS/SFR 4207 QUASAV University of Angers 42 rue Georges Morel Beaucouzé 49070 France
| | - Youcef Shahali
- Razi Serum and Vaccine Research Institute Agricultural Research, Education and Extension Organization (AREEO) Karaj 31975/148 Iran
| | - Marie‐Christine Aumond
- EA 921 SONAS/SFR 4207 QUASAV University of Angers 42 rue Georges Morel Beaucouzé 49070 France
| | - Séverine Derbré
- EA 921 SONAS/SFR 4207 QUASAV University of Angers 42 rue Georges Morel Beaucouzé 49070 France
| | - Patricia Blanchard
- EA 921 SONAS/SFR 4207 QUASAV University of Angers 42 rue Georges Morel Beaucouzé 49070 France
| | - Maryam Dadar
- Razi Serum and Vaccine Research Institute Agricultural Research, Education and Extension Organization (AREEO) Karaj 31975/148 Iran
| | - Anne‐Marie Le Ray
- EA 921 SONAS/SFR 4207 QUASAV University of Angers 42 rue Georges Morel Beaucouzé 49070 France
| | - Pascal Richomme
- EA 921 SONAS/SFR 4207 QUASAV University of Angers 42 rue Georges Morel Beaucouzé 49070 France
| |
Collapse
|
38
|
Alday E, Valencia D, Garibay-Escobar A, Domínguez-Esquivel Z, Piccinelli AL, Rastrelli L, Monribot-Villanueva J, Guerrero-Analco JA, Robles-Zepeda RE, Hernandez J, Velazquez C. Plant origin authentication of Sonoran Desert propolis: an antiproliferative propolis from a semi-arid region. Naturwissenschaften 2019; 106:25. [PMID: 31069518 DOI: 10.1007/s00114-019-1620-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
The main chemical composition of Sonoran propolis (SP), as well as its antiproliferative activity on cancer cells through apoptosis induction, has been reported. The chemical constitution of SP remained qualitatively similar throughout the year, whereas the antiproliferative effect on cancer cells exhibited significant differences amongst seasonal samples. The main goal of this study was to provide phytochemical and pharmacological evidence for the botanical source of SP and its antiproliferative constituents. A chemical comparative analysis of SP and plant resins of species found in the surrounding areas of the beehives was carried out by HPLC-UV-DAD, as well as by 1H NMR experiments. The antiproliferative activity on cancerous (M12.C3.F6, HeLa, A549, PC-3) and normal cell lines (L-929; ARPE-19) was assessed through MTT assays. Here, the main polyphenolic profile of SP resulted to be qualitatively similar to Populus fremontii resins (PFR). However, the antiproliferative activity of PFR on cancer cells did not consistently match that exhibited by SP throughout the year. Additionally, SP induced morphological modifications on treated cells characterised by elongation, similar to those induced by colchicine, and different to those observed with PFR treatment. These results suggest that P. fremontii is the main botanical source of SP along the year. Nevertheless, the antiproliferative constituents of SP that induce that characteristic morphological elongation on treated cells are not obtained from PFR. Moreover, the presence of kaempferol-3-methyl-ether in SP could point Ambrosia ambrosioides as a secondary plant source. In conclusion, SP is a bioactive poplar-type propolis from semi-arid zones, in which chemical compounds derived from other semi-arid plant sources than poplar contribute to its antiproliferative activity.
Collapse
Affiliation(s)
- Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, Sonora, Mexico
| | - Dora Valencia
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad e Irigoyen, 83600, Caborca, Son., Mexico
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, Sonora, Mexico
| | - Zaira Domínguez-Esquivel
- Laboratorio de Química de productos Naturales, Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Dr. Luis Castelazo Ayala S/N, 575, 91190, Xalapa, Veracruz, Mexico
| | - Anna Lisa Piccinelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy
| | - Juan Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología (INECOL) A.C., Clúster Científico y Tecnológico Biomimic®, Carretera antigua a Coatepec 351, 91070, Xalapa, Veracruz, Mexico
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología (INECOL) A.C., Clúster Científico y Tecnológico Biomimic®, Carretera antigua a Coatepec 351, 91070, Xalapa, Veracruz, Mexico
| | - Ramón Enrique Robles-Zepeda
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, Sonora, Mexico
| | - Javier Hernandez
- Laboratorio de Química de productos Naturales, Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Dr. Luis Castelazo Ayala S/N, 575, 91190, Xalapa, Veracruz, Mexico.
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
39
|
Grecka K, Kuś PM, Okińczyc P, Worobo RW, Walkusz J, Szweda P. The Anti-Staphylococcal Potential of Ethanolic Polish Propolis Extracts. Molecules 2019; 24:molecules24091732. [PMID: 31058881 PMCID: PMC6540221 DOI: 10.3390/molecules24091732] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023] Open
Abstract
The principal objective of this study was to determine the anti-staphylococcal potential of ethanol extracts of propolis (EEPs). A total of 20 samples of propolis collected from apiaries located in different regions of Poland were used in the study. The two-fold broth microdilution method revealed some important differences in the antimicrobial activity of investigated EEPs. Up to the concentration of 4096 µg/mL no activity was observed against Gram-negative bacteria (E. coli and P. aeruginosa). Staphylococci exhibited much higher susceptibility. The highest efficiency observed for EEP12 and EEP20 (MIC values ranged between 32 and 256 µg/mL). However, the achievement of bactericidal effect usually required higher concentrations. In the case of clinical isolates of S. aureus MBC values for EEP12 and EEP20 ranged from 512 to 1024 µg/mL. The HPLC analysis revealed that these two products contained a higher concentration of flavonoids (flavonols, flavones, and flavanones) compared to other investigated EEPs. In checkerboard test, a synergistic anti-staphylococcal effect was observed for the action of EEP20 in combination with amikacin, kanamycin, gentamycin, tetracycline, and fusidic acid (all these antibiotics inhibit protein synthesis). Moreover, the investigated EEPs effectively eradicated staphylococcal biofilm. The obtained results clearly confirm the high anti-staphylococcal potential of propolis harvested in Polish apiaries.
Collapse
Affiliation(s)
- Katarzyna Grecka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Piotr M Kuś
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Justyna Walkusz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
40
|
Abbasi AJ, Mohammadi F, Bayat M, Gema SM, Ghadirian H, Seifi H, Bayat H, Bahrami N. Applications of Propolis in Dentistry: A Review. Ethiop J Health Sci 2019; 28:505-512. [PMID: 30607063 PMCID: PMC6308739 DOI: 10.4314/ejhs.v28i4.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Propolis is a resinous substance obtained from the beehives that has antioxidant, anti-bacteria, anti-virus, anti-fungal, anti-tumor and anti-inflammatory activity. The aim of this study was to review the studies about the role of propolis in improving dental and oral health. Methods This study reviewed the published articles regarding the applications of propolis in dentistry. An electronic search of the literature was carried out in Farsi electronic databases including Google, Medlib.ir, SID, Iranmedex and Magiran as well as English electronic databases such as PubMed and ISI Web of Knowledge. These databases were searched for articles published between 1997 and October 20, 2017. Non-dental books and journals were also manually searched. Results This study reviewed published articles on the efficacy of propolis for surgical wound healing, caries prevention, treatment of dentin hypersensitivity, treatment of aphthous ulcers and propolis as a storage medium for avulsed teeth, root canal irrigating solution and mouthwash. Conclusion The result of the reviewed article showed that propolis is effective an agent that is used for multiple purpose in oral health.
Collapse
Affiliation(s)
- Amir Jalal Abbasi
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran; Oral and Maxillofacial Surgery Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoush Mohammadi
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran; Oral and Maxillofacial Surgery Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Bayat
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran; Oral and Maxillofacial Surgery Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Shimelis Megersa Gema
- Department of Oral and Maxillofacial surgery, Institute of health science, Jimma University, Jimma, Ethiopia
| | - Hannaneh Ghadirian
- Dental Research Center Dentistry Research Institute, Orthodontic Department, Tehran University of Medical Sciences, Tehran, Iran
| | - Hasti Seifi
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hananeh Bayat
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Bahrami
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran; Oral and Maxillofacial Surgery Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Abstract
The present study evaluates the antibacterial effects of a set of 16 synthesized caffeic acid ester derivatives against strains of Staphylococcus aureus and Escherichia coli, as well as discusses their structure-activity relationship (SAR). The antibacterial assays were performed using microdilution techniques in 96-well microplates to determine minimal inhibitory concentration (MIC). The results revealed that five of the compounds present strong to optimum antibacterial effect. Of the sixteen ester derivatives evaluated, the products with alkyl side chains, as propyl caffeate (3), butyl caffeate (6), and pentyl caffeate (7), presented the best antibacterial activity with MIC values of around 0.20 μM against Escherichia coli and only butyl caffeate (6) showing the same MIC against Staphylococcus aureus. For products with aryl substituents, the best MIC results against the tested strain of Escherichia coli were 0.23 µM for (di-(4-chlorobenzyl)) caffeate (13) and 0.29 µM for diphenylmethyl caffeate (10) and all were less active against the Staphylococcus aureus strain. Preliminary quantitative structure-activity relationship (QSAR) analyses confirmed that certain structural characteristics, such as a median linear carbon chain and the presence of electron withdrawal substituents at the para position of the aromatic ring, help potentiate antibacterial activity.
Collapse
|
42
|
Kazemi F, Divsalar A, Saboury AA, Seyedarabi A. Propolis nanoparticles prevent structural changes in human hemoglobin during glycation and fructation. Colloids Surf B Biointerfaces 2019; 177:188-195. [PMID: 30738325 DOI: 10.1016/j.colsurfb.2019.01.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/30/2023]
Abstract
Nowadays diabetes, as a metabolic disorder, is increasing at an alarming rate. Glycation and production of advanced glycation end products (AGEs) is the most important factor involved in diabetic complications. Due to the side effects of synthetic drugs, the demand for natural anti-diabetic herbal medicines has increased. Propolis is a natural and resinous material, which iscollected by honeybees. Due to the impact of nanotechnology in medicine and the advantageous role of nanoparticles in treatment, nano-propolis particles (PNP) were prepared. The anti-glycation effect of PNP at various concentrations was investigated on human hemoglobin (Hb) glycation and fructation and compared with aspirin as a common anti-glycation agent using glycation specific AGE fluorescence, AGE-specific absorbance and circular dichroism (CD) methods. Fluorescence spectroscopy results showed that PNP inhibited the formation of AGEs in Hb glycation and fructation by glucose and fructose, respectively. CD results revealed that PNP caused an increase in Hb beta-sheet content while decreasing the alpha helical content. Additionally, the results of UV-Vis spectroscopy and fluorescence emission of heme degradation products revealed the protective effect of PNP on heme during glycation and fructation of human Hb. It is notable that the synergistic effects of combined propolis nanoparticles and aspirin is more than either of them alone. However, having said that, PNP as a natural product has a potential to be an effective drug in the treatment of diabetes.
Collapse
Affiliation(s)
- Fatemeh Kazemi
- Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Ali Akbar Saboury
- Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran.
| | - Arefeh Seyedarabi
- Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
43
|
Seasonal Effect on the Biological Activities of Litsea glaucescens Kunth Extracts. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2738489. [PMID: 29675051 PMCID: PMC5838430 DOI: 10.1155/2018/2738489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/14/2018] [Accepted: 01/22/2018] [Indexed: 02/02/2023]
Abstract
This study shows the seasonal effect on the antioxidant, antiproliferative, and antimicrobial activities of L. glaucescens Kunth (LG) leaves extracts. Their antioxidant activity was evaluated through the DPPH, FRAP, and ORAC assays. Their phenolic content (PC) was determined by means of the Folin-Ciocalteu method, and the main phenolic compounds were identified through a HPLC-DAD analysis. Antiproliferative activity was determined by MTT assay against HeLa, LS 180, M12.C3.F6, and ARPE cell lines. Antimicrobial potential was evaluated against Staphylococcus aureus and Escherichia coli using a microdilution method. All the LG extracts presented high antioxidant activity and PC, with quercitrin and epicatechin being the most abundant. Antioxidant activity and PC were affected by the season; particularly autumn (ALGE) and summer (SULGE) extracts exhibited the highest values (p < 0.05). All extracts presented moderate antiproliferative activity against the cell lines evaluated, HeLa being the most susceptible of them. However, ALGE and SULGE were the most active too. About antimicrobial activity, SULGE (MIC90 < 800 μg/mL; MIC50 < 400 μg/mL), and SLGE (MIC50 < 1000 μg/mL) showed a moderate inhibitory effect against S. aureus. These findings provide new information about the seasonal effect on the PC and biological properties of LG extracts. Clearly, antioxidant activity was the most important with respect to the other two.
Collapse
|
44
|
Chen X, Han Y, Zhang B, Liu Y, Wang S, Liao T, Deng Z, Fan Z, Zhang J, He L, Yue W, Li Y, Pei X. Caffeic acid phenethyl ester promotes haematopoietic stem/progenitor cell homing and engraftment. Stem Cell Res Ther 2017; 8:255. [PMID: 29116023 PMCID: PMC5678809 DOI: 10.1186/s13287-017-0708-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/24/2017] [Accepted: 10/23/2017] [Indexed: 11/24/2022] Open
Abstract
Background Several studies have suggested that caffeic acid phenethyl ester (CAPE) can induce the expression of hypoxia inducible factor-1α (HIF-1α) protein. We determined whether CAPE has a novel function in improving the homing and engraftment of haematopoietic stem/progenitor cells (HSPCs) by regulating HIF-1α gene expression in the bone marrow (BM) niche. Methods For survival experiments, lethally irradiated C57BL/6 mice were injected with a low number of BM mononuclear cells (MNCs) and CAPE according to the indicated schedule. Homing efficiency analysis was conducted using flow cytometry and colony-forming unit (CFU) assays. The influence of intraperitoneal injection of CAPE on short-term and long-term engraftment of HSPCs was evaluated using competitive and non-competitive mouse transplantation models. To investigate the mechanism by which CAPE enhanced HSPC homing, we performed these experiments including Q-PCR, western blot, immunohistochemistry and CFU assays after in-vivo HIF-1α activity blockade. Results CAPE injection significantly increased the survival rate of recipient mice after lethal irradiation and transplantation of a low number of BM MNCs. Using HSPC homing assays, we found that CAPE notably increased donor HSPC homing to recipient BM. The subsequent short-term and long-term engraftment of transplanted HSPCs was also improved by the optimal schedule of CAPE administration. Mechanistically, we found that CAPE upregulated the expression of HIF-1α, vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor 1α (SDF-1α). The HIF-1α inhibitor PX-478 blocked CAPE-enhanced HSPC homing, which supported the idea that HIF-1α is a key target of CAPE. Conclusions Our results showed that CAPE administration facilitated HSPC homing and engraftment, and this effect was primarily dependent on HIF-1α activation and upregulation of SDF-1α and VEGF-A expression in the BM niche. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0708-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaofang Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China.,Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Yi Han
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Bowen Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Yiming Liu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China
| | - Sihan Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Tuling Liao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Ziliang Deng
- South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China.,Guangdong Medical University, No. 1 Xincheng Road, Dongguan, 523808, China
| | - Zeng Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Jing Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Lijuan He
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China.,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China
| | - Yanhua Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China.
| | - Xuetao Pei
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China. .,Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, No. 27 Taiping Road, Haidian District, Beijing, 100850, China. .,South China Institute of Biomedicine, No. 1 Luoxuan 4th Road, Haizhu District, Guangzhou, 510005, China.
| |
Collapse
|
45
|
Al-Abd NM, Nor ZM, Junaid QO, Mansor M, Hasan MS, Kassim M. Antifilarial activity of caffeic acid phenethyl ester on Brugia pahangi in vitro and in vivo. Pathog Glob Health 2017; 111:388-394. [PMID: 29065795 DOI: 10.1080/20477724.2017.1380946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Lymphatic filariasis (LF) is a vector borne disease caused by parasitic worms such as Wuchereria bancrofti, Brugia malayi and B. timori, which are transmitted by mosquitoes. Current therapeutics to treat LF are mainly microfilarcidal, and lack activity against adult worms. This set back, poses a challenge for the control and elimination of filariasis. Thus, in this study the activities of caffeic acid phenethyl ester (CAPE) against the filarial worm B. pahangi and its bacterial endosymbiont, Wolbachia were evaluated. Different concentrations (2, 5, 10, 15, 20 μg/ml) of CAPE were used to assess its effects on motility, viability and microfilarial (mf) production of B. pahangi in vitro. Anti-Wolbachial activity of CAPE was measured in worms by quantification of Wolbachial wsp gene copy number using real-time polymerase chain reaction. Our findings show that CAPE was found to significantly reduce adult worm motility, viability, and mf release both in vitro and in vivo. 20 μg/ml of CAPE halts the release of mf in vitro by day 6 of post treatment. Also, the number of adult worms recovered in vivo were reduced significantly during and after treatment with 50 mg/kg of CAPE relative to control drugs, diethylcarbamazine and doxycycline. Real time PCR based on the Wolbachia ftsZ gene revealed a significant reduction in Wolbachia copy number upon treatment. Anti-Wolbachia and antifilarial properties of CAPE require further investigation as an alternative strategy to treat LF.
Collapse
Affiliation(s)
- Nazeh M Al-Abd
- a Faculty of Medicine, Department of Parasitology , University of Malaya , Kuala Lumpur , Malaysia.,c Faculty of Medicine and Health Science, Department of Para Clinic , University of Aden , Aden , Yemen
| | - Zurainee Mohamed Nor
- a Faculty of Medicine, Department of Parasitology , University of Malaya , Kuala Lumpur , Malaysia
| | - Quazim O Junaid
- a Faculty of Medicine, Department of Parasitology , University of Malaya , Kuala Lumpur , Malaysia
| | - Marzida Mansor
- b Faculty of Medicine, Department of Anesthesiology , University of Malaya , Kuala Lumpur , Malaysia
| | - M S Hasan
- b Faculty of Medicine, Department of Anesthesiology , University of Malaya , Kuala Lumpur , Malaysia
| | - Mustafa Kassim
- b Faculty of Medicine, Department of Anesthesiology , University of Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
46
|
Revilla I, Vivar-Quintana AM, González-Martín I, Escuredo O, Seijo C. The potential of near infrared spectroscopy for determining the phenolic, antioxidant, color and bactericide characteristics of raw propolis. Microchem J 2017. [DOI: 10.1016/j.microc.2017.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Prediction of Antimicrobial and Antioxidant Activities of Mexican Propolis by 1H-NMR Spectroscopy and Chemometrics Data Analysis. Molecules 2017. [PMCID: PMC6152011 DOI: 10.3390/molecules22071184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A feasibility study to predict antimicrobial and antioxidant activity properties of propolis extracts using 700-MHz 1H-NMR spectra and multivariate regression data analysis is presented. The study was conducted with thirty-five propolis samples to develop a rapid and reliable method for the evaluation of their quality. The extracts have been evaluated by measuring phenolic and flavonoid contents; the antioxidant activity; and the antimicrobial activity. The obtained spectral data were submitted to multivariate calibration (partial least squares (PLS) and orthogonal partial least squares (OPLS)) to correlate the relative intensity and position of NMR resonance peaks with the metabolites contents and biological activities. The developed PLS and OPLS model were successfully applied to the determination of the target properties for proof of the concept. The OPLS observed vs. predicted properties plots indicate the absence of systematic errors with determination coefficients between the ranges 0.7207 to 0.9990. Up to 86.1% of explication of variation in the spectral data and 99.9% in the measured properties were attained with 88.6% of prediction capabilities in the best case (S. mutans activity) according to the cross-validation procedure. The figures of merit of the developed PLS and OPLS methods were evaluated and compared as well.
Collapse
|
48
|
Luna-Guevara J, Ochoa-Velasco C, Hernández-Carranza P, Guerrero-Beltrán J. Microencapsulation of walnut, peanut and pecan oils by spray drying. FOOD STRUCTURE-NETHERLANDS 2017. [DOI: 10.1016/j.foostr.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Baqueiro-Peña I, Guerrero-Beltrán JÁ. Physicochemical and antioxidant characterization of Justicia spicigera. Food Chem 2017; 218:305-312. [PMID: 27719914 DOI: 10.1016/j.foodchem.2016.09.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/19/2022]
Abstract
Extracts with water:ethanol (100:0, 70:30, 50:50, 30:70, 0:100) solutions from fresh (F), just dried (JD), dried and stored for one year (DS) Justicia spicigera leaves were obtained using the stirring and ultrasound techniques. Extracts were analyzed in physicochemical and antioxidant characteristics. Identification of chemical compounds by gas chromatography-mass spectroscopy (GC-MS) was also performed. 2.14±0.91, 5.67±1.70, and 8.52±4.97g Gallic acid equivalents/100g dry weight (d.w.) of phenolic compounds were found, in average, for F, JD, and DS J. spicigera, respectively. 2.22±1.31, 2.58±2.11, and 8.48±3.78g Trolox equivalents/100g d.w. were detected with the ABTS method and 0.49±0.33, 1.23±0.87, and 0.88±0.94g with the DPPH method for F, JD and DS J. spicigera, respectively. Eucalyptol, phytol, and azulene were identified as the main compounds. J. spicigera showed colors (green-iridescent, green-yellow, or pink of different intensities) and antioxidant characteristics depending on the solvent concentration. Extracts could be used in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Itzamná Baqueiro-Peña
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico
| | - José Á Guerrero-Beltrán
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Cholula, Puebla 72810, Mexico.
| |
Collapse
|
50
|
|