1
|
Zhang L, Yan C, Wen C. Vertical distribution characteristics and transport paths of antibiotic resistance genes in constructed wetland system. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133555. [PMID: 38262322 DOI: 10.1016/j.jhazmat.2024.133555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Although the migration and diffusion of antibiotic resistance genes (ARGs) in soil-plant systems have attracted much attention, the migration and diffusion characteristics between constructed wetlands and soil-plant systems differ greatly. Therefore, it is necessary to conduct research on vertical transmission and diffusion of ARGs in constructed wetlands. The vertical distribution and transmission of ARGs in constructed wetlands were explored via metagenomic analysis. The results showed that the proportion of multidrug ARGs was the largest, ranging from 24.2% to 47.5%. The shared characteristics of ARGs were similar to those of bacteria, and there were fewer unique ARGs and microbial species in mesophyll tissue. Sourcetracker analysis revealed that ARGs transfer between plants and atmosphere was bidirectional, but the diffusion of ARGs to atmosphere through plants was relatively weak. ARGs were mainly transmitted to atmosphere/surrounding environment through substrate and influent, and the contributions of substrate to ARGs in atmosphere/surrounding environment were 59.2% and 78.6%, respectively. ARGs involved in foliar attachment mainly originated from peripheral inputs. ARGs showed nonspecific selection for the host at phylum, class and order levels. These findings suggest that more attention should be given to the potential risks of ARGs in constructed wetlands, to formulate effective control and management strategies.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Materials Sciences and Engineering, Xinxiang Engineering Research Center for Wastewater Treatment Energy Saving and Emission Reduction, Henan Institute of Technology, Xinxiang 453003, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Ce Wen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Sun R, Liu Y, Li T, Qian ZJ, Zhou C, Hong P, Sun S, Li C. Plastic wastes and surface antibiotic resistance genes pollution in mangrove environments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:634. [PMID: 37133617 DOI: 10.1007/s10661-023-11312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023]
Abstract
Mangroves are located at the intersection of land and sea and are also heavily affected by plastic wastes. Biofilms of plastic wastes in mangroves are reservoirs for antibiotic resistance genes (ARGs). In this study, plastic wastes and ARG pollution were investigated from three typical mangrove areas in Zhanjiang, South China. Transparent was the dominant colors of plastic wastes in three mangroves. Fragment and film shape accounted for 57.73-88.23% of plastic waste samples in mangroves. In addition, 39.50% of plastic wastes in protected area mangroves are PS. The metagenomic results shows that the 175 ARGs were found on plastic wastes of the three mangroves, the abundance accounting for 91.11% of the total ARGs. The abundance of Vibrio accounted for 2.31% of the total bacteria genera in aquaculture pond area mangrove. Correlation analysis shows that a microbe can carry multiple ARGs that may improve resistance to antibiotics. Microbes are the potential hosts of most ARGs, suggesting that ARGs can be transmitted by microbes. Because the mangroves are closely related to human activities and the high abundance of ARGs on plastic increases the ecological risks, people should improve plastic waste management and prevent the spread of ARGs by reducing plastic pollution.
Collapse
Affiliation(s)
- Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu Liu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ting Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhong-Ji Qian
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
| | - Chunxia Zhou
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Pengzhi Hong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518114, Guangdong, China.
| |
Collapse
|
3
|
Yadav JP, Kaur S, Dhaka P, Vijay D, Bedi JS. Prevalence, molecular characterization, and antimicrobial resistance profile of Clostridium perfringens from India: A scoping review. Anaerobe 2022; 77:102639. [PMID: 36108893 DOI: 10.1016/j.anaerobe.2022.102639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/27/2022] [Accepted: 09/07/2022] [Indexed: 11/01/2022]
Abstract
Clostridium perfringens is one of the most important foodborne pathogens that causes histotoxic diseases and intestinal infections in both humans and animals. The present scoping review has been designed to analyze the literature published during 2000-2021 from India on the prevalence, molecular characterization, and antimicrobial resistance profile of C. perfringens isolates recovered from humans, animals, animal-based foods, and associated environmental samples. The peer-reviewed articles retrieved from four electronic databases (Google Scholar, PubMed, Science Direct, and Web of Science) were assessed using PRISMA-ScR guidelines. A total of 32 studies from India were selected on the basis of their relevance and inclusion criteria. The overall prevalence of C. perfringens among domestic animals having history of clinical symptoms and among healthy animals was found to be 65.8% (508/772) and 42.8% (493/1152), respectively. The pathogen was also detected in clinically affected wild animals (75%), healthy wild animals (35.4%), and captive birds (24.5%). The detection of C. perfringens among poultry having necrotic enteritis and among healthy birds was found to be 66.8% (321/480) and 25.6% (80/312), respectively. The detection of pathogen among animal-based foods (i.e., meat, milk, and fish and their products) and environmental samples depicted a prevalence of 20.8% (325/1562) and 30.2% (23/76), respectively. However, the prevalence of C. perfringens among humans having history of diarrhea and among healthy humans was found to be 25% (70/280) and 23.2% (36/155), respectively. The genotyping of C. perfringens isolates revealed that toxin type A was found to be the most prevalent genotype. Along with the alpha toxin gene (cpa), beta (cpb), epsilon (etx), iota (itx), enterotoxin (cpe), beta-2 toxin (cpb2), and NetB (netB) toxins were also detected in different combinations. Antimicrobial resistance profile of C. perfringens isolates recovered from different sources demonstrated that the highest resistance was detected against sulphonamides (76.8%) and tetracycline (41.3%) by phenotypic and genotypic detection methods, respectively. Comprehensive scientific studies covering different geographical areas at the human-animal-environment interface are crucial to generalize the real magnitude of C. perfringens-associated problem in India and for establishing a reliable database.
Collapse
Affiliation(s)
- Jay Prakash Yadav
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Rampura Phul, Bathinda, 151103, India.
| | - Simranpreet Kaur
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Pankaj Dhaka
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Deepthi Vijay
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, 680651, India
| | - Jasbir Singh Bedi
- Centre for One Health, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| |
Collapse
|
4
|
Biofilm formation, antimicrobial assay, and toxin-genotypes of Clostridium perfringens type C isolates cultured from a neonatal Yangtze finless porpoise. Arch Microbiol 2022; 204:361. [DOI: 10.1007/s00203-022-02990-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/23/2022] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
|
5
|
Bendary MM, Abd El-Hamid MI, El-Tarabili RM, Hefny AA, Algendy RM, Elzohairy NA, Ghoneim MM, Al-Sanea MM, Nahari MH, Moustafa WH. Clostridium perfringens Associated with Foodborne Infections of Animal Origins: Insights into Prevalence, Antimicrobial Resistance, Toxin Genes Profiles, and Toxinotypes. BIOLOGY 2022; 11:551. [PMID: 35453750 PMCID: PMC9028928 DOI: 10.3390/biology11040551] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022]
Abstract
Several food-poisoning outbreaks have been attributed to Clostridium perfringens (C. perfringens) worldwide. Despite that, this crisis was discussed in a few studies, and additional studies are urgently needed in this field. Therefore, we sought to highlight the prevalence, antimicrobial resistance, toxin profiles, and toxinotypes of C. perfringens isolates. In this study, 50 C. perfringens isolates obtained from 450 different animal origin samples (beef, chicken meat, and raw milk) were identified by phenotypic and genotypic methods. The antimicrobial susceptibility results were surprising, as most of the isolates (74%) showed multidrug-resistant (MDR) patterns. The phenotypic resistance to tetracycline, lincomycin, enrofloxacin, cefoxitin/ampicillin, and erythromycin was confirmed by the PCR detections of tet, lnu, qnr, bla, and erm(B) genes, respectively. In contrast to the toxinotypes C and E, toxinotype A prevailed (54%) among our isolates. Additionally, we found that the genes for C. perfringens enterotoxin (cpe) and C. perfringens beta2 toxin (cpb2) were distributed among the tested isolates with high prevalence rates (70 and 64%, respectively). Our findings confirmed that the C. perfringens foodborne crisis has been worsened by the evolution of MDR strains, which became the prominent phenotypes. Furthermore, we were not able to obtain a fixed association between the toxinotypes and antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Mahmoud M. Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt; or
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; or
| | - Reham M. El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt; or
| | - Ahmed A. Hefny
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Reem M. Algendy
- Milk Hygiene Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | | | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Mohammad M. Al-Sanea
- Pharmaceutical Chemistry Department, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Mohammed H. Nahari
- Department of Clinical Laboratory Sciences, Najran University, Najran 66216, Saudi Arabia;
| | - Walaa H. Moustafa
- Microbiology and Immunology Department, Faculty of Pharmacy, Helwan University, Cairo 19448, Egypt;
| |
Collapse
|
6
|
González-Gaya B, García-Bueno N, Buelow E, Marin A, Rico A. Effects of aquaculture waste feeds and antibiotics on marine benthic ecosystems in the Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151190. [PMID: 34710419 DOI: 10.1016/j.scitotenv.2021.151190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Intensive aquaculture is an important source of organic waste and antibiotics into the marine environment. Yet, their impacts on benthic marine ecosystems are poorly understood. Here, we investigated the ecological impacts of fish feed waste alone and in combination with three different antibiotics (i.e., oxytetracycline, florfenicol and flumequine) in benthic ecosystems of the Mediterranean Sea by performing a field experiment. We assessed the fate of the antibiotics in the sediment and their accumulation in wild fauna after two weeks of exposure. Moreover, we investigated the impact of the feed waste alone and in combination with the antibiotics on sediment physico-chemical properties, on benthic invertebrates, as well as on the microbiota and resistome of the sampled sediments. One week after the last antibiotic application, average oxytetracycline and flumequine concentrations in the sediment were <1% and 15% of the applied dose, respectively, while florfenicol was not detected. Flumequine concentrations in wild invertebrates reached 3 μg g-1, while concentrations of oxytetracycline were about an order of magnitude lower, and florfenicol was not detected. Feed waste, with and without antibiotics, increased the concentration of fine particulate matter, affected the pH and redox conditions, and significantly reduced the biodiversity and abundance of benthic invertebrates. Feed waste also had a significant influence on the structure of sediment microbial communities, while specific effects related to the different antibiotics ranged from insignificant to mild. The presence of antibiotics significantly influenced the normalized abundance of the measured antibiotic resistance genes. Florfenicol and oxytetracycline contributed to an increase of genes conferring resistance to macrolides, tetracyclines, aminoglycosides and chloramphenicol, while flumequine had a less clear impact on the sediment resistome. This study demonstrates that feed waste from aquaculture farms can rapidly alter the habitat and biodiversity of Mediterranean benthic ecosystems, while antibiotic residual concentrations can contribute to the enrichment of bacterial genes resistant to antibiotic classes that are of high relevance for human medicine.
Collapse
Affiliation(s)
- Belén González-Gaya
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Research Centre for Experimental Marine Biology and Biotechnology, University of the Basque Country (PiE-UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain; Department of Analytical Chemistry, Science and Technology Faculty, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940 Leioa, Basque Country, Spain
| | - Nuria García-Bueno
- Murcia University, Ecology and Hydrology department, Biology Faculty, University campus of Espinardo, 30100 Murcia, Spain
| | - Elena Buelow
- University Limoges, INSERM, CHU Limoges, RESINFIT, U1092, F-87000 Limoges, France; University Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, Institut Jean Roget, Domaine de la Merci, BP170, 38042 Grenoble Cedex 9, Grenoble, France
| | - Arnaldo Marin
- Murcia University, Ecology and Hydrology department, Biology Faculty, University campus of Espinardo, 30100 Murcia, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/ Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
7
|
Nguyen AQ, Vu HP, Nguyen LN, Wang Q, Djordjevic SP, Donner E, Yin H, Nghiem LD. Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146964. [PMID: 33866168 DOI: 10.1016/j.scitotenv.2021.146964] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 05/29/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to human and animal health. Progress in molecular biology has revealed new and significant challenges for AMR mitigation given the immense diversity of antibiotic resistance genes (ARGs), the complexity of ARG transfer, and the broad range of omnipresent factors contributing to AMR. Municipal, hospital and abattoir wastewater are collected and treated in wastewater treatment plants (WWTPs), where the presence of diverse selection pressures together with a highly concentrated consortium of pathogenic/commensal microbes create favourable conditions for the transfer of ARGs and proliferation of antibiotic resistant bacteria (ARB). The rapid emergence of antibiotic resistant pathogens of clinical and veterinary significance over the past 80 years has re-defined the role of WWTPs as a focal point in the fight against AMR. By reviewing the occurrence of ARGs in wastewater and sludge and the current technologies used to quantify ARGs and identify ARB, this paper provides a research roadmap to address existing challenges in AMR control via wastewater treatment. Wastewater treatment is a double-edged sword that can act as either a pathway for AMR spread or as a barrier to reduce the environmental release of anthropogenic AMR. State of the art ARB identification technologies, such as metagenomic sequencing and fluorescence-activated cell sorting, have enriched ARG/ARB databases, unveiled keystone species in AMR networks, and improved the resolution of AMR dissemination models. Data and information provided in this review highlight significant knowledge gaps. These include inconsistencies in ARG reporting units, lack of ARG/ARB monitoring surrogates, lack of a standardised protocol for determining ARG removal via wastewater treatments, and the inability to support appropriate risk assessment. This is due to a lack of standard monitoring targets and agreed threshold values, and paucity of information on the ARG-pathogen host relationship and risk management. These research gaps need to be addressed and research findings need to be transformed into practical guidance for WWTP operators to enable effective progress towards mitigating the evolution and spread of AMR.
Collapse
Affiliation(s)
- Anh Q Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Hang P Vu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Steven P Djordjevic
- Institute of Infection, Immunity and Innovation, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8LT, UK
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
8
|
Abd El-Tawab AA, El-Hofy FI, Abdelmonem MA, Youssef HS. Molecular characterization of netB and tpeL virulence factors and antimicrobial resistance genes of Clostridium perfringens isolated from herbs and spices. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present study aimed to determine some virulence-associated genes and antimicrobial multidrug resistance of Clostridium perfringens recovered from herbs and spices widely distributed in the Egyptian market. C. perfringens virulence and resistance factors were determined using PCR targeting the netB, tpeL, ermB, bla and tetK genes. Thirty three out of 392 samples (8.42%) from herbs and spices submitted to our laboratory for bacteriological screening were positive for presence C. perfringens. PCR results for the tpeL gene in isolated C. perfringens revealed 9 out of 33 (27.3 %) of isolates, while netB was not detected. The isolates were resistant to Clindamycin, Vancomycin, tetracycline, and erythromycin with inhibition zones of 6.28 ± 0.63, 8.78 ± 0.41, 9.63 ± 0.63, and 9.84 ± 0.66 mm, respectively. The genes mentioned above were selected to correspond to the ineffective antimicrobials; ermB for erythromycin, tetK for tetracycline, and bla for the remainder. PCR results for antibacterial resistant genes in isolated C. perfringens revealed their presence. From 33 isolates, bla gene was detected in 21 (63.4 %), tetK in 13 (39.4 %) and ermB in only one isolate (3.03 %). Sequencing analysis was done for the bla gene as an example for the detected genes as detected at the highest incidence (63.4%). No cross-relationship was detected upon comparing incidence data of both studied virulence genes and those of antimicrobial resistance. The present findings may explain the resistance of C. perfringens to the examined antibacterials and recommend avoiding the application of them to control the microbe. In addition, the authors recommend following strict hygienic procedures during the industry of herbs and spices to ensure their clearance from Clostridium perfringens before distributing the products as food additives into the markets.
Collapse
Affiliation(s)
- Ashraf A. Abd El-Tawab
- Department of Microbiology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, EGYPT
| | - Fatma I. El-Hofy
- Department of Microbiology, Faculty of Veterinary Medicine, Benha University, 13736 Moshtohor, EGYPT
| | - Mohamed A. Abdelmonem
- Department of Microbiology, Central Lab of Residue Analysis of Pesticides & Heavy Metals in Food, Agricultural Research Center, Ministry of Agriculture, 12311 Giza, Egypt
| | - Hend S. Youssef
- Department of Microbiology, Central Lab of Residue Analysis of Pesticides & Heavy Metals in Food, Agricultural Research Center, Ministry of Agriculture, 12311 Giza, Egypt
| |
Collapse
|
9
|
Hooban B, Fitzhenry K, Cahill N, Joyce A, O' Connor L, Bray JE, Brisse S, Passet V, Abbas Syed R, Cormican M, Morris D. A Point Prevalence Survey of Antibiotic Resistance in the Irish Environment, 2018-2019. ENVIRONMENT INTERNATIONAL 2021; 152:106466. [PMID: 33706038 DOI: 10.1016/j.envint.2021.106466] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
Water bodies worldwide have proven to be vast reservoirs of clinically significant antibiotic resistant organisms. Contamination of waters by anthropogenic discharges is a significant contributor to the widespread dissemination of antibiotic resistance. The aim of this research was to investigate multiple different anthropogenic sources on a national scale for the role they play in the environmental propagation of antibiotic resistance. A total of 39 water and 25 sewage samples were collected across four local authority areas in the West, East and South of Ireland. In total, 211 Enterobacterales were isolated (139 water, 72 sewage) and characterised. A subset of isolates (n=60) were chosen for whole genome sequencing. Direct comparisons of the water versus sewage isolate collections revealed a higher percentage of sewage isolates displayed resistance to cefoxitin (46%) and ertapenem (32%), while a higher percentage of water isolates displayed resistance to tetracycline (55%) and ciprofloxacin (71%). Half of all isolates displayed extended spectrum beta-lactamase (ESBL) production phenotypically (n = 105/211; 50%), with blaCTX-M detected in 99/105 isolates by PCR. Carbapenemase genes were identified in 11 isolates (6 sewage, 5 water). The most common variant was blaOXA-48 (n=6), followed by blaNDM-5 (n=2) and blaKPC-2 (n=2). Whole genome sequencing analysis revealed numerous different sequence types in circulation in both waters and sewage including E. coli ST131 (n=15), ST38 (n=8), ST10 (n=4) along with Klebsiella ST405 (n=3) and ST11 (n=2). Core genome MLST (cgMLST) comparisons uncovered three highly similar Klebsiella isolates originating from hospital sewage and two nearby waters. The Klebsiella isolates from an estuary and seawater displayed 99.1% and 98.8% cgMLST identity to the hospital sewage isolate respectively. In addition, three pairs of E. coli isolates from different waters also revealed cgMLST similarities, indicating widespread dissemination and persistence of certain strains in the aquatic environment. These findings highlight the need for routine monitoring of water bodies used for recreational and drinking purposes for the presence of multi-drug resistant organisms.
Collapse
Affiliation(s)
- Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway.
| | - Kelly Fitzhenry
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - Aoife Joyce
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - Louise O' Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Virginie Passet
- Biodiversity and Epidemiology of Bacterial Pathogens, Institut Pasteur, Paris, France
| | - Raza Abbas Syed
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway
| | - Martin Cormican
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway; Health Service Executive, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway; Centre for One Health, Ryan Institute, National University of Ireland, Galway
| |
Collapse
|
10
|
Yun H, Liang B, Ding Y, Li S, Wang Z, Khan A, Zhang P, Zhang P, Zhou A, Wang A, Li X. Fate of antibiotic resistance genes during temperature-changed psychrophilic anaerobic digestion of municipal sludge. WATER RESEARCH 2021; 194:116926. [PMID: 33618108 DOI: 10.1016/j.watres.2021.116926] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/27/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The effects of anaerobic digestion (AD) on the abundance of antibiotic resistance genes (ARGs) are highly related to operational temperature. However, the removal performance of ARGs in psychrophilic AD and changed temperatures simulating variable seasonal temperatures is poorly understood. Herein, we investigated the fate of ARGs, correlated bacterial communities and physicochemical properties of AD operation at psychrophilic (15 ℃), mesophilic (35 ℃), and temperature changed conditions (15 to 35 ℃ and 35 to 15 ℃). The results indicated that ammonia release was positively correlated with temperature. The mesophilic AD facilitated phosphorous intake and ARGs proliferation and selection with oxytetracycline (OTC), while psychrophilic AD was conducive to the removal and control of ARGs if no OTC existed. The diversity and composition of AD bacterial communities were influenced more by temperature than OTC. The dominant genera like Candidatus_Microthrix and Acinetobacter had dramatical abundance discrepancies at different temperatures and were obviously positively correlated with ARGs (tet39, tetC and mexD), mobile genetic elements (MGEs) intI, insert sequences (IS) and plasmid. The physicochemical properties of AD influenced the bacterial richness, which in turn significantly correlated with the ARGs abundances. Therefore, ARGs removal could be potentially optimized by eliminating bacterial hosts with deteriorated living conditions and decreased nutrients. This study clarified the response of antibiotic resistome to different temperature variation and highlighted the potential strategies for improved ARGs removal in AD.
Collapse
Affiliation(s)
- Hui Yun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Bin Liang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Yangcheng Ding
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Si Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Zhenfei Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China
| | - Pengyun Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Aijie Wang
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.
| |
Collapse
|
11
|
Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. Anaerobe 2020; 67:102298. [PMID: 33220406 DOI: 10.1016/j.anaerobe.2020.102298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
The present study was designed to understand the presence of antimicrobial resistance among the prevalent toxinotypes of Clostridium perfringens recovered from different animals of Tamil Nadu, India. A total of 75 (10.76%) C. perfringens were isolated from 697 multi-species fecal and intestinal content samples. C. perfringens type A (90.67%), type C (2.67%), type D (4%) and type F (2.67%) were recovered. Maximum number of isolates were recovered from dog (n = 20, 24.10%) followed by chicken (n = 19, 5.88%). Recovered isolates were resistant to gentamicin (44.00%), erythromycin (40.00%), bacitracin (40.00%), and tetracycline (26.67%), phenotypically and most of the isolates were found to be resistant to multiple antimicrobials. Genotypic characterization revealed that tetracycline (41.33%), erythromycin (34.66%) and bacitracin (17.33%) resistant genes were present individually or in combination among the isolates. Combined results of phenotypic and genotypic characterization showed the highest percentage of erythromycin resistance (26.66%) among the isolates. None of the isolates showed amplification for lincomycin resistance genes. The correlation matrix analysis of genotypic resistance showed a weak positive relationship between the tetracycline and bacitracin resistance while a weak negative relationship between the tetracycline and erythromycin resistance. The present study thus reports the presence of multiple-resistance genes among C. perfringens isolates that may be involved in the dissemination of resistance to other bacteria present across species. Further insights into the genome can help to understand the mechanism involved in gene transfer so that measures can be taken to prevent the AMR spread.
Collapse
|
12
|
Wei B, Cha SY, Zhang JF, Shang K, Park HC, Kang J, Lee KJ, Kang M, Jang HK. Antimicrobial Susceptibility and Association with Toxin Determinants in Clostridium perfringens Isolates from Chickens. Microorganisms 2020; 8:microorganisms8111825. [PMID: 33228100 PMCID: PMC7699427 DOI: 10.3390/microorganisms8111825] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
The aim of the present study was to investigate variation in antimicrobial resistance in Clostridium perfringens (C. perfringens) isolated from chickens after withdrawal of antimicrobial growth promoters (AGPs); and to investigate the correlation between the presence of toxin genes (cpb2, netB, and tpeL) and antimicrobial resistance. Altogether, 162 isolates of C. perfringens were obtained from chickens displaying clinical signs of necrotic enteritis (n = 65) and from healthy chickens (n = 97) in Korea during 2010–2016. Compared to before AGP withdrawal, increased antimicrobial resistance or MIC50/MIC90 value was observed for nine antimicrobials including penicillin, tetracycline, tylosin, erythromycin, florfenicol, enrofloxacin, monensin, salinomycin, and maduramycin. Significantly (p < 0.05) higher resistance to gentamicin, clindamycin, and virginiamycin was found in isolates from chickens with necrotic enteritis compared to those from healthy chickens. tpeL gene was not detected in C. perfringens isolates from healthy chickens. A correlation between toxin gene prevalence and antibiotic resistance was found in the C. perfringens isolates. Because the usage of antimicrobials may contribute to the selection of both resistance and toxin genes, these can potentially make it challenging to control antimicrobial resistance in pathogenic colonies. Therefore, a more complete understanding of the interplay between resistance and virulence genes is required.
Collapse
Affiliation(s)
- Bai Wei
- Center for Poultry Diseases Control, Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Jeonbuk National University, Iksan 54596, Korea; (B.W.); (S.-Y.C.); (J.-F.Z.) (K.S.)
| | - Se-Yeoun Cha
- Center for Poultry Diseases Control, Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Jeonbuk National University, Iksan 54596, Korea; (B.W.); (S.-Y.C.); (J.-F.Z.) (K.S.)
| | - Jun-Feng Zhang
- Center for Poultry Diseases Control, Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Jeonbuk National University, Iksan 54596, Korea; (B.W.); (S.-Y.C.); (J.-F.Z.) (K.S.)
| | - Ke Shang
- Center for Poultry Diseases Control, Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Jeonbuk National University, Iksan 54596, Korea; (B.W.); (S.-Y.C.); (J.-F.Z.) (K.S.)
| | - Hae-Chul Park
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), Gimcheon 39660, Korea; (H.-C.P.); (J.K.); (K.-J.L.)
| | - JeongWoo Kang
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), Gimcheon 39660, Korea; (H.-C.P.); (J.K.); (K.-J.L.)
| | - Kwang-Jick Lee
- Veterinary Drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), Gimcheon 39660, Korea; (H.-C.P.); (J.K.); (K.-J.L.)
| | - Min Kang
- Center for Poultry Diseases Control, Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Jeonbuk National University, Iksan 54596, Korea; (B.W.); (S.-Y.C.); (J.-F.Z.) (K.S.)
- Correspondence: (M.K.); (H.-K.J.); Tel.: +82-63-850-0690 (M.K.); +82-63-850-0945 (H.-K.J.); Fax: +82-858-0686 (M.K.); +82-858-9155 (H.-K.J.)
| | - Hyung-Kwan Jang
- Center for Poultry Diseases Control, Department of Veterinary Infectious Diseases and Avian Diseases, College of Veterinary Medicine and Jeonbuk National University, Iksan 54596, Korea; (B.W.); (S.-Y.C.); (J.-F.Z.) (K.S.)
- Correspondence: (M.K.); (H.-K.J.); Tel.: +82-63-850-0690 (M.K.); +82-63-850-0945 (H.-K.J.); Fax: +82-858-0686 (M.K.); +82-858-9155 (H.-K.J.)
| |
Collapse
|
13
|
Characterization of Clostridium Perfringens Isolates Collected from Three Agricultural Biogas Plants over a One-Year Period. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155450. [PMID: 32751104 PMCID: PMC7432756 DOI: 10.3390/ijerph17155450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/03/2023]
Abstract
Digestate produced by agricultural biogas plants (BGPs) may contain pathogenic bacteria. Among them, Clostridium perfringens deserves particular attention due to its ability to grow under anaerobic conditions and persist in amended soil. The aim of this study was to examine the potential pathogenicity and the antimicrobial resistance of C. perfringens in manure and digestate collected from three agricultural biogas plants (BGPs). A total of 157 isolates (92 from manure, 65 from digestate) were screened for genes encoding seven toxins (cpa, cpb, etx, iapcpe, netB, and cpb2). The 138 cpa positive isolates were then screened for tetA(P), tetB(P), tet(M), and erm(Q) genes and tested for antimicrobial susceptibility. The toxinotypes identified in both manure and digestate were type A (78.3% of the isolates), type G (16.7%), type C (3.6%), and type D (1.4%), whereas none of the isolates were type F. Moreover, half of the isolates carried the cpb2 gene. The overall prevalence of tetA(P) gene alone, tetA(P)-tetB(P) genes, and erm(Q) gene was 31.9, 34.8, and 6.5%, respectively. None of the isolates harbored the tet(M) gene. Multiple antimicrobial resistant isolates were found in samples that were collected from all the manure and digestates. Among them, 12.3% were highly resistant to some of the antibiotics tested, especially to clindamycin (MIC ≥ 16 µg/mL) and tilmicosin (MIC > 64 µg/mL). Some isolates were highly resistant to antibiotics used in human medicine, including vancomycin (MIC > 8 µg/mL) and imipenem (MIC > 64 µg/mL). These results suggest that digestate may be a carrier of the virulent and multidrug resistant C. perfringens.
Collapse
|
14
|
Fouz N, Pangesti KNA, Yasir M, Al-Malki AL, Azhar EI, Hill-Cawthorne GA, Abd El Ghany M. The Contribution of Wastewater to the Transmission of Antimicrobial Resistance in the Environment: Implications of Mass Gathering Settings. Trop Med Infect Dis 2020; 5:tropicalmed5010033. [PMID: 32106595 PMCID: PMC7157536 DOI: 10.3390/tropicalmed5010033] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/30/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial resistance (AMR) is the major issue posing a serious global health threat. Low- and middle-income countries are likely to be the most affected, both in terms of impact on public health and economic burden. Recent studies highlighted the role of resistance networks on the transmission of AMR organisms, with this network being driven by complex interactions between clinical (e.g., human health, animal husbandry and veterinary medicine) and other components, including environmental factors (e.g., persistence of AMR in wastewater). Many studies have highlighted the role of wastewater as a significant environmental reservoir of AMR as it represents an ideal environment for AMR bacteria (ARB) and antimicrobial resistant genes (ARGs) to persist. Although the treatment process can help in removing or reducing the ARB load, it has limited impact on ARGs. ARGs are not degradable; therefore, they can be spread among microbial communities in the environment through horizontal gene transfer, which is the main resistance mechanism in most Gram-negative bacteria. Here we analysed the recent literature to highlight the contribution of wastewater to the emergence, persistence and transmission of AMR under different settings, particularly those associated with mass gathering events (e.g., Hajj and Kumbh Mela).
Collapse
Affiliation(s)
- Nour Fouz
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia;
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Krisna N. A. Pangesti
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Y.); (E.I.A.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman L. Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.Y.); (E.I.A.)
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Grant A. Hill-Cawthorne
- School of Public Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (K.N.A.P.); (G.A.H.-C.)
| | - Moataz Abd El Ghany
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia;
- The Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW 2145, Australia
- The Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Correspondence: or
| |
Collapse
|
15
|
Archambault M, Rubin JE. Antimicrobial Resistance in Clostridium and Brachyspira spp. and Other Anaerobes. Microbiol Spectr 2020; 8:10.1128/microbiolspec.arba-0020-2017. [PMID: 31971162 PMCID: PMC10773235 DOI: 10.1128/microbiolspec.arba-0020-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 01/26/2023] Open
Abstract
This article describes the antimicrobial resistance to date of the most frequently encountered anaerobic bacterial pathogens of animals. The different sections show that antimicrobial resistance can vary depending on the antimicrobial, the anaerobe, and the resistance mechanism. The variability in antimicrobial resistance patterns is also associated with other factors such as geographic region and local antimicrobial usage. On occasion, the same resistance gene was observed in many anaerobes, whereas some were limited to certain anaerobes. This article focuses on antimicrobial resistance data of veterinary origin.
Collapse
Affiliation(s)
- Marie Archambault
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Joseph E Rubin
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatchewan S7N 5B4, Canada
| |
Collapse
|
16
|
Zhou X, Qiao M, Su JQ, Wang Y, Cao ZH, Cheng WD, Zhu YG. Turning pig manure into biochar can effectively mitigate antibiotic resistance genes as organic fertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:902-908. [PMID: 30179818 DOI: 10.1016/j.scitotenv.2018.08.368] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 05/20/2023]
Abstract
The composting of fresh manure is an effective way to inactivate pathogens and reduce the levels of antibiotics and some antibiotic resistance genes (ARGs) prior to its application on agricultural land as organic fertilizer. However, some ARGs could still exist and even be enriched after composting. This study investigated whether converting composted pig manure into biochar could reduce the dissemination of ARGs into the soil in comparison with a compost amendment. We performed a pot experiment using pakchoi (Brassica chinensis), with two pig manure-based composts and the biochar derived from composted pig manure, as organic fertilizers. The distributions of the antibiotic resistome, mobile genetic elements (MGEs) and bacterial community composition in soils during cultivation were evaluated by high-throughput qPCR and Illumina sequencing. The total ARGs and MGEs abundance in the biochar-treated soils were significantly lower than those in the compost-amended soils during cultivation. The total ARGs abundance in the biochar-amended soils was similar to that in the control soils during cultivation. Thus, the dissemination of ARGs from animal waste to the environment can be effectively mitigated by converting manure into biochar.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yin Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhi-Hong Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wang-Da Cheng
- Jiaxing Academy of Agricultural Sciences, Jiaxing 314016, China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
17
|
Dose-dependent impact of oxytetracycline on the veal calf microbiome and resistome. BMC Genomics 2019; 20:65. [PMID: 30660184 PMCID: PMC6339435 DOI: 10.1186/s12864-018-5419-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antibiotic therapy is commonly used in animal agriculture. Antibiotics excreted by the animals can contaminate farming environments, resulting in long term exposure of animals to sub-inhibitory levels of antibiotics. Little is known on the effect of this exposure on antibiotic resistance. In this study, we aimed to investigate the long term effects of sub-inhibitory levels of antibiotics on the gut microbiota composition and resistome of veal calves in vivo. Forty-two veal calves were randomly assigned to three groups. The first group (OTC-high) received therapeutic oral dosages of 1 g oxytetracycline (OTC), twice per day, during 5 days. The second group (OTC-low) received an oral dose of OTC of 100-200 μg per day during 7 weeks, mimicking animal exposure to environmental contamination. The third group (CTR) did not receive OTC, serving as unexposed control. Antibiotic residue levels were determined over time. The temporal effects on the gut microbiota and antibiotic resistance gene abundance was analysed by metagenomic sequencing. RESULTS In the therapeutic group, OTC levels exceeded MIC values. The low group remained at sub-inhibitory levels. The control group did not reach any significant OTC levels. 16S rRNA gene-based analysis revealed significant changes in the calf gut microbiota. Time-related changes accounted for most of the variation in the sequence data. Therapeutic application of OTC had transient effect, significantly impacting gut microbiota composition between day 0 and day 2. By metagenomic sequence analysis we identified six antibiotic resistance genes representing three gene classes (tetM, floR and mel) that differed in relative abundance between any of the intervention groups and the control. qPCR was used to validate observations made by metagenomic sequencing, revealing a peak of tetM abundance at day 28-35 in the OTC-high group. No increase in resistance genes abundance was seen in the OTC-low group. CONCLUSIONS Under the conditions tested, sub-therapeutic administration of OTC did not result in increased tetM resistance levels as observed in the therapeutic group.
Collapse
|
18
|
Pu C, Liu L, Yao M, Liu H, Sun Y. Responses and successions of sulfonamides, tetracyclines and fluoroquinolones resistance genes and bacterial community during the short-term storage of biogas residue and organic manure under the incubator and natural conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:749-759. [PMID: 30031308 DOI: 10.1016/j.envpol.2018.07.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Biogas residue and organic manure are frequently used for crop planting. However, the evaluation of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial community before their applications to fields is still lacking. This study monitored the variations of bacteria resistant to sulfadiazine, tetracycline and norfloxacin, 57 resistance genes for sulfonamides, tetracyclines and fluoroquinolones as well as the bacterial community during the 28-day aerobic storage of biogas residue and organic manure by using viable plate counts, high-throughput qPCR and Illumina MiSeq sequencing methods. Then two storage conditions, incubator (25 °C) and natural environment, were used to assess the responses of ARB and ARGs to the environmental factors. Results showed that a total of 35 and 21 ARGs were detected in biogas residue and organic manure, respectively. ARB and ARGs were enriched up to 8.01-fold in biogas residue after the 28-day storage, but varied in a narrow range during the storage of organic manure. Compared with the incubator condition, the proliferation of ARB and ARGs in biogas residue under the natural condition was relatively inhibited by the varied and complicated environmental factors. However, we found that there was no significant difference of ARB and ARGs in organic manure between the incubator and natural conditions. Bacterial community was also shifted during the storage of biogas residue, especially Bacteroidetes_VC2.1_Bac22, Aequorivita, Luteimonas and Arenimonas. Network analysis revealed that the relationship in biogas residue was much more complicated than that in organic manure, which ultimately resulted in large successions of ARB and ARGs during the short-term storage of biogas residue. Therefore, we suggest that further measures should be taken before the application of biogas residue to fields.
Collapse
Affiliation(s)
- Chengjun Pu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Liquan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Yao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Hang Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
19
|
Adams V, Han X, Lyras D, Rood JI. Antibiotic resistance plasmids and mobile genetic elements of Clostridium perfringens. Plasmid 2018; 99:32-39. [DOI: 10.1016/j.plasmid.2018.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
|
20
|
Kiu R, Hall LJ. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg Microbes Infect 2018; 7:141. [PMID: 30082713 PMCID: PMC6079034 DOI: 10.1038/s41426-018-0144-8] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/18/2022]
Abstract
Clostridium perfringens, a rapid-growing pathogen known to secrete an arsenal of >20 virulent toxins, has been associated with intestinal diseases in both animals and humans throughout the past century. Recent advances in genomic analysis and experimental systems make it timely to re-visit this clinically and veterinary important pathogen. This Review will summarise our understanding of the genomics and virulence-linked factors, including antimicrobial potentials and secreted toxins of this gut pathogen, and then its up-to-date clinical epidemiology and biological role in the pathogenesis of several important human and animal-associated intestinal diseases, including pre-term necrotising enterocolitis. Finally, we highlight some of the important unresolved questions in relation to C. perfringens-mediated infections, and implications for future research directions.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J Hall
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| |
Collapse
|
21
|
Seyama S, Wajima T, Suzuki M, Ushio M, Fujii T, Noguchi N. Emergence and molecular characterization of Haemophilus influenzae harbouring mef(A)-authors' response. J Antimicrob Chemother 2017; 72:1846. [PMID: 28407066 DOI: 10.1093/jac/dkx114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shoji Seyama
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takeaki Wajima
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masae Suzuki
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masanobu Ushio
- Department of Pediatrics, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Takeshi Fujii
- Department of Infectious Diseases, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Norihisa Noguchi
- Department of Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
22
|
Jia S, Zhang XX, Miao Y, Zhao Y, Ye L, Li B, Zhang T. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. WATER RESEARCH 2017; 124:259-268. [PMID: 28763642 DOI: 10.1016/j.watres.2017.07.061] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/16/2017] [Accepted: 07/23/2017] [Indexed: 05/12/2023]
Abstract
Large amounts of antibiotics are currently used in livestock breeding, which is the main driving factor contributing to the occurrence, spread and proliferation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment. In this study, high-throughput sequencing based metagenomic approaches were employed to characterize the tempo-spacial changes of antibiotic resistome, bacterial community and their correlations in pig farming wastewater and its receiving river. A total of 194 ARG subtypes within 14 ARG types were detectable in all the samples, and their total relative abundance increased in the river water after receiving wastewater discharge, while decreased in the downstream river water. Network analysis showed that 25.26% ARGs within the same type or among the different types showed higher incidences of non-random co-occurrence. The wastewater discharge evidently increased bacterial diversity and induced bacterial community shift in the receiving river water. The genera of Treponema, Prevotella, Pseudomonas, Bacteroides, Oscillibacter and Acholeplasma dominated in the wastewater samples and almost disappeared in the receiving river water, but bacterial pathogens Clostridium difficile and Arcobacter butzleri still occurred in the receiving water. Correlation analysis and host analysis consistently showed that the changes in the abundances of several key genera like Prevotella and Treponema were significantly and positively correlated with the antibiotic resistome alteration. Variation partitioning analysis indicated that bacterial community played a more important role in the resistome alteration than mobile genetic elements. This study may help to understand the correlations among antibiotic resistome, microbiota and environmental conditions in the wastewater-receiving river water.
Collapse
Affiliation(s)
- Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Yu Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanting Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bing Li
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Tong Zhang
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
23
|
Mode of action of plectasin-derived peptides against gas gangrene-associated Clostridium perfringens type A. PLoS One 2017; 12:e0185215. [PMID: 28934314 PMCID: PMC5608353 DOI: 10.1371/journal.pone.0185215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 09/10/2017] [Indexed: 11/19/2022] Open
Abstract
NZ2114 and MP1102 are novel plectasin-derived peptides with potent activity against Gram-positive bacteria. The antibacterial characteristics and mechanism of NZ2114 and MP1102 against gas gangrene-associated Clostridium perfringens were studied for the first time. The minimal inhibitory concentration and minimal bactericidal concentration of NZ2114 and MP1102 against resistant C. perfringens type A strain CVCC 46 were 0.91 μM. Based on the fractional inhibitory concentration index (FICI) result, an additive or synergic effect was observed between NZ2114 (FICI = 0.5~0.75) or MP1102 (FICI = 0.375~1.0) and antibiotics. The flow cytometry, scanning and transmission electron microscopy analysis showed that both NZ2114 and MP1102 induced obviously membrane damage, such as the leakage of cellular materials, partial disappearance of the cell membrane and membrane peeling, as well as retracting cytoplasm and ghost cell. The gel retardation and circular dichroism (CD) detection showed that NZ2114 and MP1102 could bind to C. perfringens genomic DNA and change the DNA conformation. Moreover, NZ2114 also interfered with the double helix and unwind the genomic DNA. The cell cycle analysis showed that C. perfringens CVCC 46 cells exposed to NZ2114 and MP1102 were arrested at the phase I. These data indicated that both NZ2114 and MP1102 have potential as new antimicrobial agents for gas gangrene infection resulting from resistant C. perfringens.
Collapse
|
24
|
Abotsi RE, Govinden U, Moodley K, Essack S. Fluoroquinolone, Macrolide, and Ketolide Resistance inHaemophilus parainfluenzaefrom South Africa. Microb Drug Resist 2017; 23:667-673. [DOI: 10.1089/mdr.2016.0045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Regina Esinam Abotsi
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutical Microbiology, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Usha Govinden
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Sabiha Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
25
|
Lau CHF, Li B, Zhang T, Tien YC, Scott A, Murray R, Sabourin L, Lapen DR, Duenk P, Topp E. Impact of pre-application treatment on municipal sludge composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:214-222. [PMID: 28242221 DOI: 10.1016/j.scitotenv.2017.02.123] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 05/15/2023]
Abstract
In many jurisdictions sludge recovered from the sewage treatment process is a valued fertilizer for crop production. Pre-treatment of sewage sludge prior to land application offers the potential to abate enteric microorganisms that carry genes conferring resistance to antibiotics. Pre-treatment practices that accomplish this should have the desirable effect of reducing the risk of contamination of crops or adjacent water with antibiotic resistance genes carried in these materials. In the present study, we obtained municipal sludge that had been subjected to one of five treatments. There were, anaerobic-digestion or aerobic-digestion, in both instances with and without dewatering; and heat-treatment and pelletization. Each of the five types of biosolids was applied to an agricultural field at commercial rates, following which lettuce, carrots and radishes were planted. Based on qPCR, the estimated antibiotic gene loading rates were comparable with each of the five biosolids. However, the gene abundance in soil following application of the pelletized biosolids was anomalously lower than expected. Following application, the abundance of antibiotic resistance genes decreased in a generally coherent fashion, except sul1 which increased in abundance during the growing season in the soil fertilized with pelletized biosolids. Based on qPCR and high throughput sequencing evidence for transfer of antibiotic resistance genes from the biosolids to the vegetables at harvest was weak. Clostridia were more abundant in soils receiving any of the biosolids except the pelletized. Overall, the behavior of antibiotic resistance genes in soils receiving aerobically or anaerobically-digested biosolids was consistent and coherent with previous studies. However, dynamics of antibiotic resistance genes in soils receiving the heat treated pelletized biosolids were very different, and the underlying mechanisms merit investigation.
Collapse
Affiliation(s)
| | - Bing Li
- Graduate School at Shenzhen, Tsinghua University, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong
| | | | - Andrew Scott
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Roger Murray
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Lyne Sabourin
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - David R Lapen
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Peter Duenk
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
26
|
Mechanism of action of a novel recombinant peptide, MP1102, against Clostridium perfringens type C. Appl Microbiol Biotechnol 2016; 100:5045-57. [DOI: 10.1007/s00253-016-7387-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 01/25/2023]
|
27
|
Atkinson CT, Kunde DA, Tristram SG. Acquired macrolide resistance genes in Haemophilus influenzae?—authors' response. J Antimicrob Chemother 2015; 70:3409-10. [DOI: 10.1093/jac/dkv290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Charlebois A, Jacques M, Archambault M. Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials. Front Microbiol 2014; 5:183. [PMID: 24795711 PMCID: PMC4001024 DOI: 10.3389/fmicb.2014.00183] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/03/2014] [Indexed: 01/09/2023] Open
Abstract
Clostridium perfringens is an opportunistic pathogen that can cause food poisoning in humans and various enterotoxemia in animal species. Very little is known on the biofilm of C. perfringens and its exposure to subminimal inhibitory concentrations of antimicrobials. This study was undertaken to address these issues. Most of the C. perfringens human and animal isolates tested in this study were able to form biofilm (230/277). Porcine clinical isolates formed significantly more biofilm than the porcine commensal isolates. A subgroup of clinical and commensal C. perfringens isolates was randomly selected for further characterization. Biofilm was found to protect C. perfringens bacterial cells from exposure to high concentrations of tested antimicrobials. Exposure to low doses of some of these antimicrobials tended to lead to a diminution of the biofilm formed. However, a few isolates showed an increase in biofilm formation when exposed to low doses of tylosin, bacitracin, virginiamycin, and monensin. Six isolates were randomly selected for biofilm analysis using scanning laser confocal microscopy. Of those, four produced more biofilm in presence of low doses of bacitracin whereas biofilms formed without bacitracin were thinner and less elevated. An increase in the area occupied by bacteria in the biofilm following exposure to low doses of bacitracin was also observed in the majority of isolates. Morphology examination revealed flat biofilms with the exception of one isolate that demonstrated a mushroom-like biofilm. Matrix composition analysis showed the presence of proteins, beta-1,4 linked polysaccharides and extracellular DNA, but no poly-beta-1,6-N-acetyl-D-glucosamine. This study brings new information on the biofilm produced by C. perfringens and its exposure to low doses of antimicrobials.
Collapse
Affiliation(s)
- Audrey Charlebois
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Avicole, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Mario Jacques
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Avicole, Université de Montréal Saint-Hyacinthe, QC, Canada
| | - Marie Archambault
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, QC, Canada ; Centre de Recherche en Infectiologie Porcine et Avicole, Université de Montréal Saint-Hyacinthe, QC, Canada
| |
Collapse
|
29
|
Popoff MR, Bouvet P. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon 2013; 75:63-89. [DOI: 10.1016/j.toxicon.2013.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
|
30
|
Emergence of extensively drug-resistant Haemophilus parainfluenzae in Switzerland. Antimicrob Agents Chemother 2013; 57:2867-9. [PMID: 23545526 DOI: 10.1128/aac.00221-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two homosexual men were colonized in the urethra with Haemophilus parainfluenzae nonsusceptible to ampicillin (MIC, 8 μg/ml), amoxicillin-clavulanate (MIC, 4 μg/ml), cefotaxime (MIC, 1.5 μg/ml), cefepime (MIC, 3 μg/ml), meropenem (MIC, 0.5 μg/ml), cefuroxime, azithromycin, ciprofloxacin, tetracycline, and chloramphenicol (all MICs, ≥ 32 μg/ml). Repetitive extragenic palindromic PCR (rep-PCR) showed that the strains were indistinguishable. The isolates had amino acid substitutions in PBP3, L4, GyrA, and ParC and possessed Mef(A), Tet(M), and CatS resistance mechanisms. This is the first report of extensively drug-resistant (XDR) H. parainfluenzae.
Collapse
|
31
|
Keen PL, Patrick DM. Tracking Change: A Look at the Ecological Footprint of Antibiotics and Antimicrobial Resistance. Antibiotics (Basel) 2013; 2:191-205. [PMID: 27029298 PMCID: PMC4790334 DOI: 10.3390/antibiotics2020191] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022] Open
Abstract
Among the class of pollutants considered as 'emerging contaminants', antibiotic compounds including drugs used in medical therapy, biocides and disinfectants merit special consideration because their bioactivity in the environment is the result of their functional design. Antibiotics can alter the structure and function of microbial communities in the receiving environment and facilitate the development and spread of resistance in critical species of bacteria including pathogens. Methanogenesis, nitrogen transformation and sulphate reduction are among the key ecosystem processes performed by bacteria in nature that can also be affected by the impacts of environmental contamination by antibiotics. Together, the effects of the development of resistance in bacteria involved in maintaining overall ecosystem health and the development of resistance in human, animal and fish pathogens, make serious contributions to the risks associated with environmental pollution by antibiotics. In this brief review, we discuss the multiple impacts on human and ecosystem health of environmental contamination by antibiotic compounds.
Collapse
Affiliation(s)
- Patricia L Keen
- Department of Civil Engineering, University of British Columbia, 2002-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| | - David M Patrick
- School of Population & Public Health, University of British Columbia, 2206 East Mall Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
32
|
Chancey ST, Zähner D, Stephens DS. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol 2013; 7:959-78. [PMID: 22913355 DOI: 10.2217/fmb.12.63] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A major contributor to the emergence of antibiotic resistance in Gram-positive bacterial pathogens is the expansion of acquired, inducible genetic elements. Although acquired, inducible antibiotic resistance is not new, the interest in its molecular basis has been accelerated by the widening distribution and often 'silent' spread of the elements responsible, the diagnostic challenges of such resistance and the mounting limitations of available agents to treat Gram-positive infections. Acquired, inducible antibiotic resistance elements belong to the accessory genome of a species and are horizontally acquired by transformation/recombination or through the transfer of mobile DNA elements. The two key, but mechanistically very different, induction mechanisms are: ribosome-sensed induction, characteristic of the macrolide-lincosamide-streptogramin B antibiotics and tetracycline resistance, leading to ribosomal modifications or efflux pump activation; and resistance by cell surface-associated sensing of β-lactams (e.g., oxacillin), glycopeptides (e.g., vancomycin) and the polypeptide bacitracin, leading to drug inactivation or resistance due to cell wall alterations.
Collapse
Affiliation(s)
- Scott T Chancey
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
33
|
Yu DJ, Lai BS, Li J, Ma YF, Yang F, Li Z, Luo XQ, Chen X, Huang YF. Cornmeal-induced resistance to ciprofloxacin and erythromycin in enterococci. CHEMOSPHERE 2012; 89:70-75. [PMID: 22633859 DOI: 10.1016/j.chemosphere.2012.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 03/29/2012] [Accepted: 04/04/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVE To establish a model ecosystem to study the impact of cornmeal on the appearance and persistence of the erythromycin (ERY)- and ciprofloxacin (CIP)-resistant phenotypes in waterborne enterococci. METHODS After the model ecosystem was established, the system was divided into six dose groups, with the addition of 8, 4, 1, 0.25, 0.05, and 0 g L(-1) sterilized cornmeal. System mud samples were collected at 0, 1, 3, 7, 14, 30, 40, 61, and 130 d, and enterococci present in the mud samples were evaluated for their sensitivities to CIP and ERY. PCR was employed to detect genes such as gyrA and ermB. The gyrA gene was sequenced, and codons 83 and 87 were analyzed for mutations. RESULTS (1) The addition of 0.05-8 g L(-1) cornmeal had an impact on CIP resistance. The higher the dose of cornmeal added, the larger the impact it generated. Furthermore, the earlier the emergence of CIP-resistant strains, the greater the incidence of drug resistance. The impact of cornmeal on resistance to ERY was less consistent, and the degree of the impact was not in proportion to the dose of cornmeal added. (2) There were no mutations at codons 83 and 87 in the gyrA genes from 102 strains isolated from the model ecosystem. The incidence of ermB-positive strains of ERY-resistant enterococci (28 strains) was 78.6%, and the incidence of ermB-positive strains of ERY-sensitive enterococci (16 strains) was 0%. CONCLUSIONS (1) Adding different doses of cornmeal can facilitate resistance to CIP and ERY in waterborne enterococci. In this study, the degree of resistance was related to the cornmeal dose. (2) In the model ecosystem, enterococcal CIP resistance was not caused by a gyrA gene mutation; however, in the vast majority of cases, resistance to ERY was related to the ermB resistance gene.
Collapse
Affiliation(s)
- Dao-Jin Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fu Zhou, Fujian Province 350002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schwaiger K, Hölzel C, Bauer J. Detection of the macrolide-efflux protein A gene mef(A) in Enterococcus faecalis. Microb Drug Resist 2011; 17:429-32. [PMID: 21563955 DOI: 10.1089/mdr.2010.0192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mef(A) gene codes for an efflux protein that conveys resistance to 14- and 15-membered macrolides. Enterococci are emerging pathogens, as well as indicator and reservoir bacteria that are known to have a strong tendency to acquire resistance genes. A total of 485 Enterococcus faecalis strains of porcine (n = 239) and human origin (n = 246) were screened for the presence of the mef(A) gene by using polymerase chain reaction. In total, 29 E. faecalis of porcine (n = 10) and human (n = 19) origin were positive for the presence of the mef(A) gene. Most of the mef(A)-containing strains were isolated from fecal samples of healthy individuals; only one strain originated from a stool sample of a diseased pig. To our knowledge, this is the first report on the occurrence of the mef(A) gene in E. faecalis apart from mating experiments. The main clinical relevance of this study is that donor E. faecalis might transfer the mef(A) gene to recipients that are usually combated with macrolides. Hence, the role of E. faecalis as a resistance reservoir with respect to limited treatment options are a cause for concern.
Collapse
Affiliation(s)
- Karin Schwaiger
- Chair of Animal Hygiene, Technische Universität München, Freising-Weihenstephan, Germany.
| | | | | |
Collapse
|
35
|
Roberts MC, Soge OO, No DB. Characterization of macrolide resistance genes in Haemophilus influenzae isolated from children with cystic fibrosis. J Antimicrob Chemother 2010; 66:100-4. [DOI: 10.1093/jac/dkq425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
36
|
Antimicrobial susceptibility and resistance determinants of Clostridium butyricum isolates from preterm infants. Int J Antimicrob Agents 2010; 36:420-3. [DOI: 10.1016/j.ijantimicag.2010.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 11/20/2022]
|
37
|
Park M, Rooney AP, Hecht DW, Li J, McClane BA, Nayak R, Paine DD, Rafii F. Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens. Arch Microbiol 2010; 192:803-10. [DOI: 10.1007/s00203-010-0605-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/02/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
|