1
|
Wu L, Chen Q, Dong B, Geng H, Wang Y, Han D, Zhu X, Liu H, Zhang Z, Yang Y, Xie S, Jin J. Resveratrol alleviates lipopolysaccharide-induced liver injury by inducing SIRT1/P62-mediated mitophagy in gibel carp ( Carassius gibelio). Front Immunol 2023; 14:1177140. [PMID: 37168854 PMCID: PMC10164966 DOI: 10.3389/fimmu.2023.1177140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Resveratrol (RES) is a polyphenol organic compound with antioxidant and anti-inflammatory properties. This study aimed to determine whether and how RES can alleviate liver injury in lipopolysaccharide (LPS)-induced gibel carp. Methods Gibel carp were fed a diet with or without RES and were cultured for 8 weeks, followed by LPS injection. Results and discussion The results suggested that RES attenuated the resulting oxidative stress and inflammation by activating the Nrf2/Keap1 pathway and inhibiting the NF-κB pathway, as confirmed by changes in oxidative stress, inflammation-related gene expression, and antioxidant enzyme activity. Furthermore, RES cleared damaged mitochondria and enhanced mitochondrial biogenesis to mitigate reactive oxygen species (ROS) accumulation by upregulating the SIRT1/PGC-1α and PINK1/Parkin pathways and reducing p62 expression. Overall, RES alleviated LPS-induced oxidative stress and inflammation in gibel carp through mitochondria-related mechanisms.
Collapse
Affiliation(s)
- Liyun Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiaozhen Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Dong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hancheng Geng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Junyan Jin,
| |
Collapse
|
2
|
Roh H, Park J, Park J, Kim BS, Park CI, Kim DH. Identification and characterization of warm temperature acclimation proteins (Wap65s) in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104475. [PMID: 35732223 DOI: 10.1016/j.dci.2022.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/05/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Hemopexin is a vital glycoprotein for processing excessive iron in blood and functions as an iron scavenger in mammals. Teleosts however, unlike mammals, have two known hemopexin paralogs called warm temperature acclimation-related 65 kDa protein (Wap65-1 and Wap65-2, collectively termed Wap65s). Although Wap65s in rainbow trout have been considered notable biomarkers with significantly higher and/or lower expression under conditions of stress or disease, the individual roles, similarities and differences between the two paralogs are not well known. The aim of this study was to gain an understanding of the characteristics and functions of trout Wap65s from the perspective of iron-metabolism, physiological roles, and relevant immunological responses. The expression of Wap65-1 and -2 in this study was determined in the face of challenges by Aeromonas salmonicida, infectious hematopoietic necrosis virus (IHNV), and iron-dextran. Immuno-histochemistry (IHC) was employed to localize the major cell types for Wap65-2 expression, and trout leukocytes were isolated and incubated with LPS and OxLDL for comprehending the immunological characteristics of Wap65-2. We demonstrate that Wap65-1 is expressed only in the liver but Wap65-2 is systemically expressed in most organs and tissues. Interestingly, Wap65-1 expression was not significantly changed under A. salmonicida and iron-dextran administration, but was significantly decreased under IHNV. In contrast, Wap65-2 was up-regulated in all challenged groups, however with different expression patterns in the blood and liver. These results suggested that the two paralogs may participate in different biological roles. IHC showed that Wap65-2 antibody had high affinity for leukocyte-like cells, and macrophages but not lymphocytes significantly increased expression under LPS and OxLDL stimulation. These results support the conclusion that trout Wap65-2, not Wap65-1 may have conventional hemopexin functions such as reported in mammals including effects on iron metabolism, inflammation, and acute-phase protein.
Collapse
Affiliation(s)
- HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, Republic of Korea
| | - Junewoo Park
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, Republic of Korea
| | - Jiyeon Park
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, Republic of Korea
| | - Bo-Seong Kim
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehak-ro, Gunsan, 54150, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, Republic of Korea.
| |
Collapse
|
3
|
Lages MA, Lemos ML, Balado M. The Temperature-Dependent Expression of the High-Pathogenicity Island Encoding Piscibactin in Vibrionaceae Results From the Combined Effect of the AraC-Like Transcriptional Activator PbtA and Regulatory Factors From the Recipient Genome. Front Microbiol 2021; 12:748147. [PMID: 34867865 PMCID: PMC8639528 DOI: 10.3389/fmicb.2021.748147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
The high-pathogenicity island irp-HPI is widespread among Vibrionaceae encoding the piscibactin siderophore system. The expression of piscibactin genes in the fish pathogen Vibrio anguillarum is favored by low temperatures. However, information about the regulatory mechanism behind irp-HPI gene expression is scarce. In this work, in-frame deletion mutants of V. anguillarum defective in the putative regulators AraC1 and AraC2, encoded by irp-HPI, and in the global regulators H-NS and ToxRS, were constructed and their effect on irp-HPI gene expression was analyzed at 15 and 25°C. The results proved that only AraC1 (renamed as PbtA) is required for the expression of piscibactin biosynthesis and transport genes. PbtA inactivation led to an inability to grow under iron restriction, a loss of the outer membrane piscibactin transporter FrpA, and a significant decrease in virulence for fish. Inactivation of the global repressor H-NS, which is involved in silencing of horizontally acquired genes, also resulted in a lower transcriptional activity of the frpA promoter. Deletion of toxR-S, however, did not have a relevant effect on the expression of the irp-HPI genes. Therefore, while irp-HPI would not be part of the ToxR regulon, H-NS must exert an indirect effect on piscibactin gene expression. Thus, the temperature-dependent expression of the piscibactin-encoding pathogenicity island described in V. anguillarum is the result of the combined effect of the AraC-like transcriptional activator PbtA, harbored in the island, and other not yet defined regulator(s) encoded by the genome. Furthermore, different expression patterns were detected within different irp-HPI evolutionary lineages, which supports a long-term evolution of the irp-HPI genomic island within Vibrionaceae. The mechanism that modulates piscibactin gene expression could also be involved in global regulation of virulence factors in response to temperature changes.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Li H, Chen X, Zhu Y, Liu R, Zheng L, Shan S, Zhang F, An L, Yang G. Molecular characterization and immune functional analysis of IRF2 in common carp (Cyprinus carpio L.): different regulatory role in the IFN and NF-κB signalling pathway. BMC Vet Res 2021; 17:303. [PMID: 34503504 PMCID: PMC8428054 DOI: 10.1186/s12917-021-03012-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Interferon regulatory factor 2 (IRF2) is an important transcription factor, which can regulate the IFN response and plays a role in antiviral innate immunity in teleost. RESULTS In the present study, the full-length cDNA sequence of IRF2 (CcIRF2) was characterized in common carp (Cyprinus carpio L.), which encoded a protein containing a conserved DNA-binding domain (DBD) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF2 was most closely related with IRF2 of Ctenopharyngodon idella. CcIRF2 transcripts were detectable in all examined tissues, with higher expression in the gills, spleen and brain. CcIRF2 expression was upregulated in immune-related tissues of common carp upon polyinosinic:polycytidylic acid (poly (I:C)) and Aeromonas hydrophila stimulation and induced by poly (I:C), lipopolysaccharide (LPS), peptidoglycan (PGN) and flagellin in the peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs). In addition, overexpression of CcIRF2 decreased the expression of IFN and IFN-stimulated genes (ISGs), and a dual-luciferase reporter assay revealed that CcIRF2 could increase the activation of NF-κB. CONCLUSIONS These results indicate that CcIRF2 participates in antiviral and antibacterial immune response and negatively regulates the IFN response, which provide a new insight into the regulation of IFN system in common carp, and are helpful for the prevention and control of infectious diseases in carp farming.
Collapse
Affiliation(s)
- Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Yaoyao Zhu
- College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Linlin Zheng
- Jinan Eco-environmental Monitoring Center of Shandong Province, No. 17199 Lvyou Road, Jinan, 250101, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Fumiao Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Liguo An
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
5
|
Zhu Y, Shan S, Zhao H, Liu R, Wang H, Chen X, Yang G, Li H. Identification of an IRF10 gene in common carp (Cyprinus carpio L.) and analysis of its function in the antiviral and antibacterial immune response. BMC Vet Res 2020; 16:450. [PMID: 33213475 PMCID: PMC7678311 DOI: 10.1186/s12917-020-02674-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Interferon (IFN) regulatory factors (IRFs), as transcriptional regulatory factors, play important roles in regulating the expression of type I IFN and IFN- stimulated genes (ISGs) in innate immune responses. In addition, they participate in cell growth and development and regulate oncogenesis. Results In the present study, the cDNA sequence of IRF10 in common carp (Cyprinus carpio L.) was characterized (abbreviation, CcIRF10). The predicted protein sequence of CcIRF10 shared 52.7–89.2% identity with other teleost IRF10s and contained a DNA-binding domain (DBD), a nuclear localization signal (NLS) and an IRF-associated domain (IAD). Phylogenetic analysis showed that CcIRF10 had the closest relationship with IRF10 of Ctenopharyngodon idella. CcIRF10 transcripts were detectable in all examined tissues, with the highest expression in the gonad and the lowest expression in the head kidney. CcIRF10 expression was upregulated in the spleen, head kidney, foregut and hindgut upon polyinosinic:polycytidylic acid (poly I:C) and Aeromonas hydrophila stimulation and induced by poly I:C, lipopolysaccharide (LPS) and peptidoglycan (PGN) in peripheral blood leucocytes (PBLs) and head kidney leukocytes (HKLs) of C. carpio. In addition, overexpression of CcIRF10 was able to decrease the expression of the IFN and IFN-stimulated genes PKR and ISG15. Conclusions These results indicate that CcIRF10 participates in antiviral and antibacterial immunity and negatively regulates the IFN response, which provides new insights into the IFN system of C. carpio. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-020-02674-z.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.,College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China
| | - Shijuan Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Huaping Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
6
|
Tan D, Hansen MF, de Carvalho LN, Røder HL, Burmølle M, Middelboe M, Svenningsen SL. High cell densities favor lysogeny: induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum. THE ISME JOURNAL 2020; 14:1731-1742. [PMID: 32269377 PMCID: PMC7305317 DOI: 10.1038/s41396-020-0641-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/09/2022]
Abstract
Temperate ϕH20-like phages are repeatedly identified at geographically distinct areas as free phage particles or as prophages of the fish pathogen Vibrio anguillarum. We studied mutants of a lysogenic isolate of V. anguillarum locked in the quorum-sensing regulatory modes of low (ΔvanT) and high (ΔvanO) cell densities by in-frame deletion of key regulators of the quorum-sensing pathway. Remarkably, we find that induction of the H20-like prophage is controlled by the quorum-sensing state of the host, with an eightfold increase in phage particles per cell in high-cell-density cultures of the quorum-sensing-deficient ΔvanT mutant. Comparative studies with prophage-free strains show that biofilm formation is promoted at low cell density and that the H20-like prophage stimulates this behavior. In contrast, the high-cell-density state is associated with reduced prophage induction, increased proteolytic activity, and repression of biofilm. The proteolytic activity may dually function to disperse the biofilm and as a quorum-sensing-mediated antiphage strategy. We demonstrate an intertwined regulation of phage-host interactions and biofilm formation, which is orchestrated by host quorum-sensing signaling, suggesting that increased lysogeny at high cell density is not solely a strategy for phages to piggy-back the successful bacterial hosts but is also a host strategy evolved to take control of the lysis-lysogeny switch to promote host fitness.
Collapse
Affiliation(s)
- Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Dalian SEM Bio-Engineering Technology Co. Ltd, Dalian, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Frederik Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | - Mette Burmølle
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Middelboe
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
7
|
Lages MA, Balado M, Lemos ML. The Expression of Virulence Factors in Vibrio anguillarum Is Dually Regulated by Iron Levels and Temperature. Front Microbiol 2019; 10:2335. [PMID: 31681201 PMCID: PMC6803810 DOI: 10.3389/fmicb.2019.02335] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 01/24/2023] Open
Abstract
Vibrio anguillarum causes a hemorrhagic septicemia that affects cold- and warm-water adapted fish species. The main goal of this work was to determine the temperature-dependent changes in the virulence factors that could explain the virulence properties of V. anguillarum for fish cultivated at different temperatures. We have found that although the optimal growth temperature is around 25°C, the degree of virulence of V. anguillarum RV22 is higher at 15°C. To explain this result, an RNA-Seq analysis was performed to compare the whole transcriptome profile of V. anguillarum RV22 cultured under low-iron availability at either 25 or 15°C, which would mimic the conditions that V. anguillarum finds during colonization of fish cultivated at warm- or cold-water temperatures. The comparative analysis of transcriptomes at high- and low-iron conditions showed profound metabolic adaptations to grow under low iron. These changes were characterized by a down-regulation of the energetic metabolism and the induction of virulence-related factors like biosynthesis of LPS, production of hemolysins and lysozyme, membrane transport, heme uptake, or production of siderophores. However, the expression pattern of virulence factors under iron limitation showed interesting differences at warm and cold temperatures. Chemotaxis, motility, as well as the T6SS1 genes are expressed at higher levels at 25°C than at 15°C. By contrast, hemolysin RTX pore-forming toxin, T6SS2, and the genes associated with exopolysaccharides synthesis were preferentially expressed at 15°C. Notably, at this temperature, the siderophore piscibactin system was strongly up-regulated. In contrast, at 25°C, piscibactin genes were down-regulated and the vanchrobactin siderophore system seems to supply all the necessary iron to the cell. The results showed that V. anguillarum adjusts the expression of virulence factors responding to two environmental signals, iron levels and temperature. Thus, the relative relevance of each virulence factor for each fish species could vary depending on the water temperature. The results give clues about the physiological adaptations that allow V. anguillarum to cause infections in different fishes and could be relevant for vaccine development against fish vibriosis.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
8
|
Batallones V, Fernandez J, Farthing B, Shoemaker J, Qian KL, Phan K, Fung E, Rivera A, Van K, de la Cruz F, Ferreri AJ, Burinski K, Zhang J, Lizarraga V, Doan K, Rocha K, Traglia G, Ramirez MS, Tolmasky ME. Disruption of hmgA by DNA Duplication is Responsible for Hyperpigmentation in a Vibrio anguillarum Strain. Sci Rep 2019; 9:14589. [PMID: 31601906 PMCID: PMC6787238 DOI: 10.1038/s41598-019-51126-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/10/2019] [Indexed: 11/24/2022] Open
Abstract
Vibrio anguillarum 531A, isolated from a diseased fish in the Atlantic Ocean, is a mixture composed of about 95 and 5% of highly pigmented cells (strain 531Ad) and cells with normal levels of pigmentation (strain 531Ac), respectively. Analysis of the V. anguillarum 531Ad DNA region encompassing genes involved in the tyrosine metabolism showed a 410-bp duplication within the hmgA gene that results in a frameshift and early termination of translation of the homogentisate 1,2-dioxygenase. We hypothesized that this mutation results in accumulation of homogentisate that is oxidized and polymerized to produce pyomelanin. Introduction in E. coli of recombinant clones carrying the V. anguillarum hppD (4-hydroxyphenylpyruvate-dioxygenase), and a mutated hmgA produced brown colored colonies. Complementation with a recombinant clone harboring hmgA restored the original color to the colonies confirming that in the absence of homogentisate 1,2-dioxygenase the intermediary in tyrosine catabolism homogentisate accumulates and undergoes nonenzymatic oxidation and polymerization resulting in high amounts of the brown pigment. Whole-genome sequence analysis showed that V. anguillarum 531 Ac and 531Ad differ in the hmgA gene mutation and 23 mutations, most of which locate to intergenic regions and insertion sequences.
Collapse
Affiliation(s)
- Veronica Batallones
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Jennifer Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Brett Farthing
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Jordan Shoemaker
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Keizen Li Qian
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Kimberly Phan
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Eric Fung
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Ashley Rivera
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Kevin Van
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Francesca de la Cruz
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Alexandra J Ferreri
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Krystle Burinski
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Jackie Zhang
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Vicente Lizarraga
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Kevin Doan
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Kenneth Rocha
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - German Traglia
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Maria S Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, CA, USA.
| |
Collapse
|
9
|
Kalatzis PG, Rørbo NI, Castillo D, Mauritzen JJ, Jørgensen J, Kokkari C, Zhang F, Katharios P, Middelboe M. Stumbling across the Same Phage: Comparative Genomics of Widespread Temperate Phages Infecting the Fish Pathogen Vibrio anguillarum. Viruses 2017; 9:E122. [PMID: 28531104 PMCID: PMC5454434 DOI: 10.3390/v9050122] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 01/03/2023] Open
Abstract
Nineteen Vibrio anguillarum-specific temperate bacteriophages isolated across Europe and Chile from aquaculture and environmental sites were genome sequenced and analyzed for host range, morphology and life cycle characteristics. The phages were classified as Siphoviridae with genome sizes between 46,006 and 54,201 bp. All 19 phages showed high genetic similarity, and 13 phages were genetically identical. Apart from sporadically distributed single nucleotide polymorphisms (SNPs), genetic diversifications were located in three variable regions (VR1, VR2 and VR3) in six of the phage genomes. Identification of specific genes, such as N6-adenine methyltransferase and lambda like repressor, as well as the presence of a tRNAArg, suggested a both mutualistic and parasitic interaction between phages and hosts. During short term phage exposure experiments, 28% of a V. anguillarum host population was lysogenized by the temperate phages and a genomic analysis of a collection of 31 virulent V. anguillarum showed that the isolated phages were present as prophages in >50% of the strains covering large geographical distances. Further, phage sequences were widely distributed among CRISPR-Cas arrays of publicly available sequenced Vibrios. The observed distribution of these specific temperate Vibriophages across large geographical scales may be explained by efficient dispersal of phages and bacteria in the marine environment combined with a mutualistic interaction between temperate phages and their hosts which selects for co-existence rather than arms race dynamics.
Collapse
Affiliation(s)
- Panos G Kalatzis
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, 71500, Greece.
| | - Nanna Iben Rørbo
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| | - Daniel Castillo
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| | | | - Jóhanna Jørgensen
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| | - Constantina Kokkari
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, 71500, Greece.
| | - Faxing Zhang
- Beijing Genomics Institute (BGI) Park, No.21 Hongan 3rd Street, Building NO. 7, Yantian District, Shenzhen 518083, China.
| | - Pantelis Katharios
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, 71500, Greece.
| | - Mathias Middelboe
- Marine Biological Section, University of Copenhagen, DK-3000 Helsingør, Denmark.
| |
Collapse
|
10
|
Comparative Genome Analyses of Vibrio anguillarum Strains Reveal a Link with Pathogenicity Traits. mSystems 2017; 2:mSystems00001-17. [PMID: 28293680 PMCID: PMC5347184 DOI: 10.1128/msystems.00001-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/30/2017] [Indexed: 01/30/2023] Open
Abstract
Comparative genome analysis of strains of a pathogenic bacterial species can be a powerful tool to discover acquisition of mobile genetic elements related to virulence. Here, we compared 28 V. anguillarum strains that differed in virulence in fish larval models. By pan-genome analyses, we found that six of nine highly virulent strains had a unique core and accessory genome. In contrast, V. anguillarum strains that were medium to nonvirulent had low genomic diversity. Integration of genomic and phenotypic features provides insights into the evolution of V. anguillarum and can also be important for survey and diagnostic purposes. Vibrio anguillarum is a marine bacterium that can cause vibriosis in many fish and shellfish species, leading to high mortalities and economic losses in aquaculture. Although putative virulence factors have been identified, the mechanism of pathogenesis of V. anguillarum is not fully understood. Here, we analyzed whole-genome sequences of a collection of V. anguillarum strains and compared them to virulence of the strains as determined in larval challenge assays. Previously identified virulence factors were globally distributed among the strains, with some genetic diversity. However, the pan-genome revealed that six out of nine high-virulence strains possessed a unique accessory genome that was attributed to pathogenic genomic islands, prophage-like elements, virulence factors, and a new set of gene clusters involved in biosynthesis, modification, and transport of polysaccharides. In contrast, V. anguillarum strains that were medium to nonvirulent had a high degree of genomic homogeneity. Finally, we found that a phylogeny based on the core genomes clustered the strains with moderate to no virulence, while six out of nine high-virulence strains represented phylogenetically separate clusters. Hence, we suggest a link between genotype and virulence characteristics of Vibrio anguillarum, which can be used to unravel the molecular evolution of V. anguillarum and can also be important from survey and diagnostic perspectives. IMPORTANCE Comparative genome analysis of strains of a pathogenic bacterial species can be a powerful tool to discover acquisition of mobile genetic elements related to virulence. Here, we compared 28 V. anguillarum strains that differed in virulence in fish larval models. By pan-genome analyses, we found that six of nine highly virulent strains had a unique core and accessory genome. In contrast, V. anguillarum strains that were medium to nonvirulent had low genomic diversity. Integration of genomic and phenotypic features provides insights into the evolution of V. anguillarum and can also be important for survey and diagnostic purposes.
Collapse
|
11
|
Lux TM, Lee R, Love J. Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii. Front Microbiol 2014; 5:435. [PMID: 25191313 PMCID: PMC4139957 DOI: 10.3389/fmicb.2014.00435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/31/2014] [Indexed: 11/15/2022] Open
Abstract
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change.
Collapse
Affiliation(s)
- Thomas M Lux
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - Rob Lee
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| | - John Love
- Biosciences, College of Life and Environmental Sciences, The University of Exeter Exeter, UK
| |
Collapse
|
12
|
Frans I, Dierckens K, Crauwels S, Van Assche A, Leisner J, Larsen MH, Michiels CW, Willems KA, Lievens B, Bossier P, Rediers H. Does virulence assessment of Vibrio anguillarum using sea bass (Dicentrarchus labrax) larvae correspond with genotypic and phenotypic characterization? PLoS One 2013; 8:e70477. [PMID: 23936439 PMCID: PMC3735585 DOI: 10.1371/journal.pone.0070477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 06/10/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Vibriosis is one of the most ubiquitous fish diseases caused by bacteria belonging to the genus Vibrio such as Vibrio (Listonella) anguillarum. Despite a lot of research efforts, the virulence factors and mechanism of V. anguillarum are still insufficiently known, in part because of the lack of standardized virulence assays. METHODOLOGY/PRINCIPAL FINDINGS We investigated and compared the virulence of 15 V. anguillarum strains obtained from different hosts or non-host niches using a standardized gnotobiotic bioassay with European sea bass (Dicentrarchus labrax L.) larvae as model hosts. In addition, to assess potential relationships between virulence and genotypic and phenotypic characteristics, the strains were characterized by random amplified polymorphic DNA (RAPD) and repetitive extragenic palindromic PCR (rep-PCR) analyses, as well as by phenotypic analyses using Biolog's Phenotype MicroArray™ technology and some virulence factor assays. CONCLUSIONS/SIGNIFICANCE Virulence testing revealed ten virulent and five avirulent strains. While some relation could be established between serotype, genotype and phenotype, no relation was found between virulence and genotypic or phenotypic characteristics, illustrating the complexity of V. anguillarum virulence. Moreover, the standardized gnotobiotic system used in this study has proven its strength as a model to assess and compare the virulence of different V. anguillarum strains in vivo. In this way, the bioassay contributes to the study of mechanisms underlying virulence in V. anguillarum.
Collapse
Affiliation(s)
- Ingeborg Frans
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- Centre for Food and Microbial Technology, M2S, KU Leuven, Heverlee, Belgium
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Kristof Dierckens
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Sam Crauwels
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Ado Van Assche
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Jørgen Leisner
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Marianne H. Larsen
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Chris W. Michiels
- Centre for Food and Microbial Technology, M2S, KU Leuven, Heverlee, Belgium
| | - Kris A. Willems
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Department of Animal Production, Ghent University, Gent, Belgium
| | - Hans Rediers
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Thomas More Mechelen, Campus De Nayer, Department of Microbial and Molecular Systems (M2S), KU Leuven Association, Sint-Katelijne-Waver, Belgium
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
- * E-mail:
| |
Collapse
|
13
|
Frans I, Busschaert P, Dierckens K, Michiels CW, Willems KA, Lievens B, Bossier P, Rediers H. Are type IV pili involved in <i>Vibrio anguillarum</i> virulence towards sea bass (<i>Dicentrarchus labrax</i> L.) larvae? ACTA ACUST UNITED AC 2013. [DOI: 10.4236/as.2013.46a005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Bathige SDNK, Whang I, Umasuthan N, Lim BS, Park MA, Kim E, Park HC, Lee J. Interferon regulatory factors 4 and 8 in rock bream, Oplegnathus fasciatus: structural and expressional evidence for their antimicrobial role in teleosts. FISH & SHELLFISH IMMUNOLOGY 2012; 33:857-871. [PMID: 22885028 DOI: 10.1016/j.fsi.2012.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/09/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
The interferon regulatory factor (IRF) members IRF4 and IRF8 contribute to B-lymphocyte development and can act as regulators of immunoglobulin (Ig) light chain gene transcription. These two IRFs are closely interrelated and are expressed at high levels in the lymphoid and myeloid cells of the immune system. In this study, the complete cDNA and genomic sequences of rock bream IRF4 (RbIRF4) and IRF8 (RbIRF8) were identified by homology screening of a multi-tissue normalized cDNA library and a BAC library, respectively, which had been established using Roche 454 GS-FLX™ technology. The full-length RbIRF4 cDNA is composed of 3442 bp and encodes a polypeptide of 462 amino acids; the genomic DNA is 9262 bp in length, consisting of eight exons and seven introns. The full-length RbIRF8 cDNA is composed of 2186 bp and encodes a 422 amino acid polypeptide; the genomic DNA is 4120 bp in length, consisting of nine exons and eight introns. The deduced amino acid sequences of RbIRF4 and RbIRF8 include a conserved DNA-binding domain (DBD) encompassing a tryptophan pentad-repeat and an IRF-association domain (IAD). Several putative transcription factor binding sites were also identified in 5' flanking region of both RbIRF4 and RbIRF8, and include those of immune-related factors. Quantitative real time PCR analysis of healthy rock bream detected the highest expression levels of RbIRF4 and RbIRF8 in lymphomyeloid-rich tissues. In addition, viral (rock bream iridovirus) and bacterial (Edwardsiella tarda and Streptococcus iniae) infection stimulated RbIRF4 and RbIRF8 expressions in head kidney and spleen. These results suggest not only that RbIRF4 and RbIRF8 may have a protective function against virus and bacteria pathogen invasion in rock bream, but also that IRFs may be immunomodulatory factors of teleost fish.
Collapse
Affiliation(s)
- S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Frans I, Michiels CW, Bossier P, Willems KA, Lievens B, Rediers H. Vibrio anguillarum as a fish pathogen: virulence factors, diagnosis and prevention. JOURNAL OF FISH DISEASES 2011; 34:643-661. [PMID: 21838709 DOI: 10.1111/j.1365-2761.2011.01279.x] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Vibrio anguillarum, also known as Listonella anguillarum, is the causative agent of vibriosis, a deadly haemorrhagic septicaemic disease affecting various marine and fresh/brackish water fish, bivalves and crustaceans. In both aquaculture and larviculture, this disease is responsible for severe economic losses worldwide. Because of its high morbidity and mortality rates, substantial research has been carried out to elucidate the virulence mechanisms of this pathogen and to develop rapid detection techniques and effective disease-prevention strategies. This review summarizes the current state of knowledge pertaining to V. anguillarum, focusing on pathogenesis, known virulence factors, diagnosis, prevention and treatment.
Collapse
Affiliation(s)
- I Frans
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology, Department of Microbial and Molecular Systems, K.U. Leuven Association, Lessius Mechelen, Sint-Katelijne-Waver, Belgium
| | | | | | | | | | | |
Collapse
|
16
|
Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL, Crosa JH. Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun 2011; 79:2889-900. [PMID: 21576332 PMCID: PMC3191993 DOI: 10.1128/iai.05138-11] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/04/2011] [Indexed: 11/20/2022] Open
Abstract
We dissected the complete genome sequence of the O1 serotype strain Vibrio anguillarum 775(pJM1) and determined the draft genomic sequences of plasmidless strains of serotype O1 (strain 96F) and O2β (strain RV22) and V. ordalii. All strains harbor two chromosomes, but 775 also harbors the virulence plasmid pJM1, which carries the anguibactin-producing and cognate transport genes, one of the main virulence factors of V. anguillarum. Genomic analysis identified eight genomic islands in chromosome 1 of V. anguillarum 775(pJM1) and two in chromosome 2. Some of them carried potential virulence genes for the biosynthesis of O antigens, hemolysins, and exonucleases as well as others for sugar transport and metabolism. The majority of genes for essential cell functions and pathogenicity are located on chromosome 1. In contrast, chromosome 2 contains a larger fraction (59%) of hypothetical genes than does chromosome 1 (42%). Chromosome 2 also harbors a superintegron, as well as host "addiction" genes that are typically found on plasmids. Unique distinctive properties include homologues of type III secretion system genes in 96F, homologues of V. cholerae zot and ace toxin genes in RV22, and the biofilm formation syp genes in V. ordalii. Mobile genetic elements, some of them possibly originated in the pJM1 plasmid, were very abundant in 775, resulting in the silencing of specific genes, with only few insertions in the 96F and RV22 chromosomes.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| | - Graciela M. Dias
- Institute of Biology, Federal University of Rio de Janeiro, UFRJ, Brazil
| | - Cristiane C. Thompson
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Christopher Dubay
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| | | | - Jorge H. Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, Oregon 97239
| |
Collapse
|
17
|
Crisafi F, Denaro R, Genovese M, Cappello S, Mancuso M, Genovese L. Comparison of 16SrDNA and toxR genes as targets for detection of Vibrio anguillarum in Dicentrarchus labrax kidney and liver. Res Microbiol 2011; 162:223-30. [DOI: 10.1016/j.resmic.2010.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 10/12/2010] [Indexed: 11/24/2022]
|
18
|
Naka H, Crosa JH. Genetic Determinants of Virulence in the Marine Fish Pathogen Vibrio anguillarum. FISH PATHOLOGY 2011; 46:1-10. [PMID: 21625345 PMCID: PMC3103123 DOI: 10.3147/jsfp.46.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
One of the most studied fish pathogens is Vibrio anguillarum. Development of the genetics and biochemistry of the mechanisms of virulence in this fish pathogen together with clinical and ecologic studies has permitted the intensive development of microbiology in fish diseases. It is the intention of this review to compile the exhaustive knowledge accumulated on this bacterium and its interaction with the host fish by reporting a complete analysis of the V. anguillarum virulence factors and the genetics of their complexity.
Collapse
|
19
|
Wang Y, Zhang XH, Austin B. Comparative analysis of the phenotypic characteristics of high- and low-virulent strains of Edwardsiella tarda. JOURNAL OF FISH DISEASES 2010; 33:985-994. [PMID: 21091725 DOI: 10.1111/j.1365-2761.2010.01204.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Edwardsiella tarda is a causative agent of edwardsiellosis in freshwater and marine fish. Extracellular enzymic, haemolytic, hydrophobic and serum resistance activities, haemagglutination, autoagglutination and siderophores of high- and low- virulent E. tarda strains were examined. The results revealed different haemagglutination, autoagglutination, haemolytic, hydrophobic and serum resistance activities in different strains. Analysis of extracellular proteins (ECPs) and outer membrane proteins (OMPs) demonstrated several major, low molecular weight, virulent-strain-specific proteins, which could be virulence-related. Based on the database search with MALDI-TOF MS data, the closest homologies of the three protein bands Ed1, Ed2 and Ed3 were phosphotransferase enzyme family protein, nitrite reductase [NAD(P)H], large subunit and ATP-dependent Lon protease, respectively. A comparison of pathogenicity of purified lipopolysaccharide (LPS) and lipid A from virulent and avirulent strains demonstrated that LPS was one of the virulence factors of the E. tarda isolates, and lipid A was a biologically active determinant of LPS.
Collapse
Affiliation(s)
- Y Wang
- Department of Marine Biology, Ocean University of China, Qingdao, China
| | | | | |
Collapse
|
20
|
Rodkhum C, Maki T, Hirono I, Aoki T. gyrA and parC associated with quinolone resistance in Vibrio anguillarum. JOURNAL OF FISH DISEASES 2008; 31:395-399. [PMID: 18400056 DOI: 10.1111/j.1365-2761.2007.00843.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- C Rodkhum
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | | |
Collapse
|
21
|
Hong GE, Kim DG, Bae JY, Ahn SH, Bai SC, Kong IS. Species-specific PCR detection of the fish pathogen, Vibrio anguillarum, using the amiB gene, which encodes N-acetylmuramoyl-L-alanine amidase. FEMS Microbiol Lett 2007; 269:201-6. [PMID: 17326755 DOI: 10.1111/j.1574-6968.2006.00618.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Vibrio anguillarum is the causative agent of the fish disease vibriosis and is the most intensely studied species of Vibrio. In the present study, specific primers and a PCR assay were designed to detect V. anguillarum. The primers were designed to amplify a 429-bp internal region of the V. anguillarum amiB gene, which encodes the peptidoglycan hydrolase N-acetylmuramoyl-L-alanine amidase. PCR specificity was demonstrated by successful amplification of DNA from V. anguillarum and by the absence of a PCR product from 25 other Vibrio strains and various enteric bacteria. The PCR produced a 429-bp amplified fragment from as little as 1 pg of V. anguillarum DNA. The limit of detection for this PCR technique was c. 20 bacterial colonies in 25 mg of infected flounder tissue. These results suggest that this PCR system is a sensitive and species-specific detection method, and is possible to use as a diagnostic tool to detect V. anguillarum.
Collapse
Affiliation(s)
- Gyeong-Eun Hong
- Department of Biotechnology and Bioengineering, Pukyong National University, Busan, Korea
| | | | | | | | | | | |
Collapse
|