1
|
Cheng Y, Li J, Chen Y, Zheng S, McDonald A, Sedat J, Agard D. Deconvolution to restore cryo-EM maps with anisotropic resolution. RESEARCH SQUARE 2025:rs.3.rs-5976242. [PMID: 40092446 PMCID: PMC11908346 DOI: 10.21203/rs.3.rs-5976242/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
With technological advancements in recent years, single particle cryogenic electron microscopy (cryo-EM) has become a major methodology for structural biology. Structure determination by single particle cryo-EM is premised on randomly orientated particles embedded in thin layer of vitreous ice to resolve high-resolution structural information in all directions. Otherwise, preferentially distributed particle orientations will lead to anisotropic resolution of the structure. Here we established a deconvolution approach, named AR-Decon, to computationally improve the quality of three-dimensional maps with anisotropic resolutions reconstructed from datasets with preferred orientations. We have tested and validated the procedure with both synthetic and experimental datasets and compared its performance with alternative machine-learning based methods.
Collapse
Affiliation(s)
| | | | | | | | - Angus McDonald
- Micron School of Material Science and Engineering, Boise State University
| | | | | |
Collapse
|
2
|
Li J, Chen Y, Zheng S, McDonald A, Sedat JW, Agard DA, Cheng Y. Deconvolution to restore cryo-EM maps with anisotropic resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639707. [PMID: 40060637 PMCID: PMC11888254 DOI: 10.1101/2025.02.23.639707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
With technological advancements in recent years, single particle cryogenic electron microscopy (cryo-EM) has become a major methodology for structural biology. Structure determination by single particle cryo-EM is premised on randomly orientated particles embedded in thin layer of vitreous ice to resolve high-resolution structural information in all directions. Otherwise, preferentially distributed particle orientations will lead to anisotropic resolution of the structure. Here we established a deconvolution approach, named AR-Decon, to computationally improve the quality of three-dimensional maps with anisotropic resolutions reconstructed from datasets with preferred orientations. We have tested and validated the procedure with both synthetic and experimental datasets and compared its performance with alternative machine-learning based methods.
Collapse
Affiliation(s)
- Junrui Li
- Howard Hughes Medical Institute, University of California San Francisco
| | - Yifei Chen
- Howard Hughes Medical Institute, University of California San Francisco
| | - Shawn Zheng
- Chan Zuckerberg Imaging Institute, Redwood City
| | - Angus McDonald
- Micron School of Material Science and Engineering, Boise State University
| | - John W Sedat
- Department of Biochemistry and Biophysics, University of California San Francisco
| | - David A Agard
- Chan Zuckerberg Imaging Institute, Redwood City
- Department of Biochemistry and Biophysics, University of California San Francisco
| | - Yifan Cheng
- Howard Hughes Medical Institute, University of California San Francisco
- Department of Biochemistry and Biophysics, University of California San Francisco
| |
Collapse
|
3
|
Vilela F, Sauvanet C, Bezault A, Volkmann N, Hanein D. Optimizing Transmembrane Protein Assemblies in Nanodiscs for Structural Studies: A Comprehensive Manual. Bio Protoc 2024; 14:e5099. [PMID: 39525973 PMCID: PMC11543783 DOI: 10.21769/bioprotoc.5099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/01/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
Membrane protein structures offer a more accurate basis for understanding their functional correlates when derived from full-length proteins in their native lipid environment. Producing such samples has been a primary challenge in the field. Here, we present robust, step-by-step biochemical and biophysical protocols for generating monodisperse assemblies of full-length transmembrane proteins within lipidic environments. These protocols are particularly tailored for cases where the size and molecular weight of the proteins align closely with those of the lipid islands (nanodiscs). While designed for single-span bitopic membrane proteins, these protocols can be easily extended to proteins with multiple transmembrane domains. The insights presented have broad implications across diverse fields, including biophysics, structural biology, and cryogenic electron microscopy (cryo-EM) studies. Key features • Overview of the sample preparation steps from protein expression and purification and reconstitution of membrane proteins in nanodiscs, as well as biobeads and lipids preparation. • Focus on single-span bitopic transmembrane proteins. • Includes protocols for validation procedures via characterization using biochemical, biophysical, and computational techniques. • Guide for cryogenic electron microscopy data acquisition from vitrification to image processing.
Collapse
Affiliation(s)
- Fernando Vilela
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Cécile Sauvanet
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Armel Bezault
- Structural Studies of Macromolecular Machines in Cellulo Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Niels Volkmann
- Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
- Department of Biological Engineering; Department of Electrical and Computer Engineering University of California, Santa Barbara, CA, USA
| | - Dorit Hanein
- Department of Chemistry and Biochemistry, Department of Biological Engineering, University of California, Santa Barbara, CA, USA
| |
Collapse
|
4
|
Nottelet P, Van Blerkom P, Xu XP, Hanein D, Volkmann N. CryoEM Workflow Acceleration with Feret Signatures. Int J Mol Sci 2024; 25:7593. [PMID: 39062836 PMCID: PMC11277255 DOI: 10.3390/ijms25147593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Common challenges in cryogenic electron microscopy, such as orientation bias, conformational diversity, and 3D misclassification, complicate single particle analysis and lead to significant resource expenditure. We previously introduced an in silico method using the maximum Feret diameter distribution, the Feret signature, to characterize sample heterogeneity of disc-shaped samples. Here, we expanded the Feret signature methodology to identify preferred orientations of samples containing arbitrary shapes with only about 1000 particles required. This method enables real-time adjustments of data acquisition parameters for optimizing data collection strategies or aiding in decisions to discontinue ineffective imaging sessions. Beyond detecting preferred orientations, the Feret signature approach can serve as an early-warning system for inconsistencies in classification during initial image processing steps, a capability that allows for strategic adjustments in data processing. These features establish the Feret signature as a valuable auxiliary tool in the context of single particle analysis, significantly accelerating the structure determination process.
Collapse
Affiliation(s)
- Pierre Nottelet
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Peter Van Blerkom
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Xiao-Ping Xu
- The Scintillon Institute, La Jolla, San Diego, CA 92121, USA
| | - Dorit Hanein
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Biological Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Niels Volkmann
- Department of Biological Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
5
|
Liu M, Liu Y, Song T, Yang L, Qi L, Zhang YZ, Wang Y, Shen QT. Three-dimensional architecture of ESCRT-III flat spirals on the membrane. Proc Natl Acad Sci U S A 2024; 121:e2319115121. [PMID: 38709931 PMCID: PMC11098116 DOI: 10.1073/pnas.2319115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) are responsible for membrane remodeling in many cellular processes, such as multivesicular body biogenesis, viral budding, and cytokinetic abscission. ESCRT-III, the most abundant ESCRT subunit, assembles into flat spirals as the primed state, essential to initiate membrane invagination. However, the three-dimensional architecture of ESCRT-III flat spirals remained vague for decades due to highly curved filaments with a small diameter and a single preferred orientation on the membrane. Here, we unveiled that yeast Snf7, a component of ESCRT-III, forms flat spirals on the lipid monolayers using cryogenic electron microscopy. We developed a geometry-constrained Euler angle-assigned reconstruction strategy and obtained moderate-resolution structures of Snf7 flat spirals with varying curvatures. Our analyses showed that Snf7 subunits recline on the membrane with N-terminal motifs α0 as anchors, adopt an open state with fused α2/3 helices, and bend α2/3 gradually from the outer to inner parts of flat spirals. In all, we provide the orientation and conformations of ESCRT-III flat spirals on the membrane and unveil the underlying assembly mechanism, which will serve as the initial step in understanding how ESCRTs drive membrane abscission.
Collapse
Affiliation(s)
- Mingdong Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yunhui Liu
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining314400, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao266237, China
| | - Lei Qi
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan250012, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao266237, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining314400, China
| | - Qing-Tao Shen
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
6
|
Nonappa. Seeing the Supracolloidal Assemblies in 3D: Unraveling High-Resolution Structures Using Electron Tomography. ACS MATERIALS AU 2024; 4:238-257. [PMID: 38737122 PMCID: PMC11083119 DOI: 10.1021/acsmaterialsau.3c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 05/14/2024]
Abstract
Transmission electron microscopy (TEM) imaging has revolutionized modern materials science, nanotechnology, and structural biology. Its ability to provide information about materials' structure, composition, and properties at atomic-level resolution has enabled groundbreaking discoveries and the development of innovative materials with precision and accuracy. Electron tomography, single particle reconstruction, and microcrystal electron diffraction techniques have paved the way for the three-dimensional (3D) reconstruction of biological samples, synthetic materials, and hybrid nanostructures at near atomic-level resolution. TEM tomography using a series of two-dimensional (2D) projections has been used extensively in biological science, but in recent years it has become an important method in synthetic nanomaterials and soft matter research. TEM tomography offers unprecedented morphological details of 3D objects, internal structures, packing patterns, growth mechanisms, and self-assembly pathways of self-assembled colloidal systems. It complements other analytical tools, including small-angle X-ray scattering, and provides valuable data for computational simulations for predictive design and reverse engineering of nanomaterials with the desired structure and properties. In this perspective, I will discuss the importance of TEM tomography in the structural understanding and engineering of self-assembled nanostructures with specific emphasis on colloidal capsids, composite cages, biohybrid superlattices with complex geometries, polymer assemblies, and self-assembled protein-based superstructures.
Collapse
Affiliation(s)
- Nonappa
- Faculty of Engineering and Natural
Sciences, Tampere University, FI-33720 Tampere, Finland
| |
Collapse
|
7
|
Zhao J, Yu X, Shentu X, Li D. The application and development of electron microscopy for three-dimensional reconstruction in life science: a review. Cell Tissue Res 2024; 396:1-18. [PMID: 38416172 DOI: 10.1007/s00441-024-03878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
Imaging technologies have played a pivotal role in advancing biological research by enabling visualization of biological structures and processes. While traditional electron microscopy (EM) produces two-dimensional images, emerging techniques now allow high-resolution three-dimensional (3D) characterization of specimens in situ, meeting growing needs in molecular and cellular biology. Combining transmission electron microscopy (TEM) with serial sectioning inaugurated 3D imaging, attracting biologists seeking to explore cell ultrastructure and driving advancement of 3D EM reconstruction. By comprehensively and precisely rendering internal structure and distribution, 3D TEM reconstruction provides unparalleled ultrastructural insights into cells and molecules, holding tremendous value for elucidating structure-function relationships and broadly propelling structural biology. Here, we first introduce the principle of 3D reconstruction of cells and tissues by classical approaches in TEM and then discuss modern technologies utilizing TEM and on new SEM-based as well as cryo-electron microscope (cryo-EM) techniques. 3D reconstruction techniques from serial sections, electron tomography (ET), and the recent single-particle analysis (SPA) are examined; the focused ion beam scanning electron microscopy (FIB-SEM), the serial block-face scanning electron microscopy (SBF-SEM), and automatic tape-collecting lathe ultramicrotome (ATUM-SEM) for 3D reconstruction of large volumes are discussed. Finally, we review the challenges and development prospects of these technologies in life science. It aims to provide an informative reference for biological researchers.
Collapse
Affiliation(s)
- Jingjing Zhao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China
| | - Danting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China , Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
8
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
9
|
DiIorio MC, Kulczyk AW. Novel Artificial Intelligence-Based Approaches for Ab Initio Structure Determination and Atomic Model Building for Cryo-Electron Microscopy. MICROMACHINES 2023; 14:1674. [PMID: 37763837 PMCID: PMC10534518 DOI: 10.3390/mi14091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Single particle cryo-electron microscopy (cryo-EM) has emerged as the prevailing method for near-atomic structure determination, shedding light on the important molecular mechanisms of biological macromolecules. However, the inherent dynamics and structural variability of biological complexes coupled with the large number of experimental images generated by a cryo-EM experiment make data processing nontrivial. In particular, ab initio reconstruction and atomic model building remain major bottlenecks that demand substantial computational resources and manual intervention. Approaches utilizing recent innovations in artificial intelligence (AI) technology, particularly deep learning, have the potential to overcome the limitations that cannot be adequately addressed by traditional image processing approaches. Here, we review newly proposed AI-based methods for ab initio volume generation, heterogeneous 3D reconstruction, and atomic model building. We highlight the advancements made by the implementation of AI methods, as well as discuss remaining limitations and areas for future development.
Collapse
Affiliation(s)
- Megan C. DiIorio
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Arkadiusz W. Kulczyk
- Institute for Quantitative Biomedicine, Rutgers University, 174 Frelinghuysen Road, Piscataway, NJ 08854, USA
- Department of Biochemistry & Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, USA
| |
Collapse
|
10
|
Abstract
Cryo-electron microscopy (cryo-EM) has become the mainstream technique for studying macromolecular structures. Determining the structures of protein complexes is more accessible to structural biologists than ever before. Nevertheless, obtaining high-resolution structures of molecular motors like dynein is still an extremely challenging goal due to their troublesome behaviors in ice, their exceedingly flexible conformations, and their intricate architectures. Dynein is a large molecular machine that drives the movement of many essential cellular cargos and is also the key force generator that powers ciliary motility. High-resolution structural information of dyneins in different states is critical for the in-depth mechanistic understanding of their roles in cells. Here, we summarize the cryo-EM approaches that we have used to study the structures of outer-arm dynein arrays bound to microtubule doublets. Our approaches can be applied to other similar structures and further optimized to deal with even more complicated targets.
Collapse
|
11
|
The role of filamentation in activation and DNA sequence specificity of the sequence-specific endonuclease SgrAI. Biochem Soc Trans 2022; 50:1703-1714. [PMID: 36398769 PMCID: PMC9788392 DOI: 10.1042/bst20220547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Filament formation by metabolic, biosynthetic, and other enzymes has recently come into focus as a mechanism to fine-tune enzyme activity in the cell. Filamentation is key to the function of SgrAI, a sequence-specific DNA endonuclease that has served as a model system to provide some of the deepest insights into the biophysical characteristics of filamentation and its functional consequences. Structure-function analyses reveal that, in the filamentous state, SgrAI stabilizes an activated enzyme conformation that leads to accelerated DNA cleavage activity and expanded DNA sequence specificity. The latter is thought to be mediated by sequence-specific DNA structure, protein-DNA interactions, and a disorder-to-order transition in the protein, which collectively affect the relative stabilities of the inactive, non-filamentous conformation and the active, filamentous conformation of SgrAI bound to DNA. Full global kinetic modeling of the DNA cleavage pathway reveals a slow, rate-limiting, second-order association rate constant for filament assembly, and simulations of in vivo activity predict that filamentation is superior to non-filamenting mechanisms in ensuring rapid activation and sequestration of SgrAI's DNA cleavage activity on phage DNA and away from the host chromosome. In vivo studies demonstrate the critical requirement for accelerated DNA cleavage by SgrAI in its biological role to safeguard the bacterial host. Collectively, these data have advanced our understanding of how filamentation can regulate enzyme structure and function, while the experimental strategies used for SgrAI can be applied to other enzymatic systems to identify novel functional roles for filamentation.
Collapse
|
12
|
Chen WH, Kim J, Bu W, Board NL, Tsybovsky Y, Wang Y, Hostal A, Andrews SF, Gillespie RA, Choe M, Stephens T, Yang ES, Pegu A, Peterson CE, Fisher BE, Mascola JR, Pittaluga S, McDermott AB, Kanekiyo M, Joyce MG, Cohen JI. Epstein-Barr virus gH/gL has multiple sites of vulnerability for virus neutralization and fusion inhibition. Immunity 2022; 55:2135-2148.e6. [PMID: 36306784 PMCID: PMC9815946 DOI: 10.1016/j.immuni.2022.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 06/29/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
Abstract
Epstein-Barr virus (EBV) is nearly ubiquitous in adults. EBV causes infectious mononucleosis and is associated with B cell lymphomas, epithelial cell malignancies, and multiple sclerosis. The EBV gH/gL glycoprotein complex facilitates fusion of virus membrane with host cells and is a target of neutralizing antibodies. Here, we examined the sites of vulnerability for virus neutralization and fusion inhibition within EBV gH/gL. We developed a panel of human monoclonal antibodies (mAbs) that targeted five distinct antigenic sites on EBV gH/gL and prevented infection of epithelial and B cells. Structural analyses using X-ray crystallography and electron microscopy revealed multiple sites of vulnerability and defined the antigenic landscape of EBV gH/gL. One mAb provided near-complete protection against viremia and lymphoma in a humanized mouse EBV challenge model. Our findings provide structural and antigenic knowledge of the viral fusion machinery, yield a potential therapeutic antibody to prevent EBV disease, and emphasize gH/gL as a target for herpesvirus vaccines and therapeutics.
Collapse
Affiliation(s)
- Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - JungHyun Kim
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Bu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan L Board
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yanmei Wang
- Clinical Services Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna Hostal
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Brian E Fisher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Lan TY, Boumal N, Singer A. Random conical tilt reconstruction without particle picking in cryo-electron microscopy. Acta Crystallogr A Found Adv 2022; 78:294-301. [PMID: 35781409 DOI: 10.1107/s2053273322005071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
A method is proposed to reconstruct the 3D molecular structure from micrographs collected at just one sample tilt angle in the random conical tilt scheme in cryo-electron microscopy. The method uses autocorrelation analysis on the micrographs to estimate features of the molecule which are invariant under certain nuisance parameters such as the positions of molecular projections in the micrographs. This enables the molecular structure to be reconstructed directly from micrographs, completely circumventing the need for particle picking. Reconstructions are demonstrated with simulated data and the effect of the missing-cone region is investigated. These results show promise to reduce the size limit for single-particle reconstruction in cryo-electron microscopy.
Collapse
Affiliation(s)
- Ti Yen Lan
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| | - Nicolas Boumal
- Institute of Mathematics, EPFL, CH-1015 Lausanne, Switzerland
| | - Amit Singer
- Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
14
|
Sorzano COS, Jiménez-Moreno A, Maluenda D, Martínez M, Ramírez-Aportela E, Krieger J, Melero R, Cuervo A, Conesa J, Filipovic J, Conesa P, del Caño L, Fonseca YC, Jiménez-de la Morena J, Losana P, Sánchez-García R, Strelak D, Fernández-Giménez E, de Isidro-Gómez FP, Herreros D, Vilas JL, Marabini R, Carazo JM. On bias, variance, overfitting, gold standard and consensus in single-particle analysis by cryo-electron microscopy. Acta Crystallogr D Struct Biol 2022; 78:410-423. [PMID: 35362465 PMCID: PMC8972802 DOI: 10.1107/s2059798322001978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/18/2022] [Indexed: 12/05/2022] Open
Abstract
Cryo-electron microscopy (cryoEM) has become a well established technique to elucidate the 3D structures of biological macromolecules. Projection images from thousands of macromolecules that are assumed to be structurally identical are combined into a single 3D map representing the Coulomb potential of the macromolecule under study. This article discusses possible caveats along the image-processing path and how to avoid them to obtain a reliable 3D structure. Some of these problems are very well known in the community. These may be referred to as sample-related (such as specimen denaturation at interfaces or non-uniform projection geometry leading to underrepresented projection directions). The rest are related to the algorithms used. While some have been discussed in depth in the literature, such as the use of an incorrect initial volume, others have received much less attention. However, they are fundamental in any data-analysis approach. Chiefly among them, instabilities in estimating many of the key parameters that are required for a correct 3D reconstruction that occur all along the processing workflow are referred to, which may significantly affect the reliability of the whole process. In the field, the term overfitting has been coined to refer to some particular kinds of artifacts. It is argued that overfitting is a statistical bias in key parameter-estimation steps in the 3D reconstruction process, including intrinsic algorithmic bias. It is also shown that common tools (Fourier shell correlation) and strategies (gold standard) that are normally used to detect or prevent overfitting do not fully protect against it. Alternatively, it is proposed that detecting the bias that leads to overfitting is much easier when addressed at the level of parameter estimation, rather than detecting it once the particle images have been combined into a 3D map. Comparing the results from multiple algorithms (or at least, independent executions of the same algorithm) can detect parameter bias. These multiple executions could then be averaged to give a lower variance estimate of the underlying parameters.
Collapse
Affiliation(s)
- C. O. S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - A. Jiménez-Moreno
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - D. Maluenda
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - M. Martínez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - E. Ramírez-Aportela
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - J. Krieger
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - R. Melero
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - A. Cuervo
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - J. Conesa
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | | | - P. Conesa
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - L. del Caño
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Y. C. Fonseca
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - J. Jiménez-de la Morena
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - P. Losana
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - R. Sánchez-García
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - D. Strelak
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
- Masaryk University, Brno, Czech Republic
| | - E. Fernández-Giménez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - F. P. de Isidro-Gómez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - D. Herreros
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - J. L. Vilas
- School of Engineering and Applied Science, Yale University, New Haven, CT 06520-829, USA
| | - R. Marabini
- Escuela Politecnica Superior, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - J. M. Carazo
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
15
|
Palmer CM, Aylett CHS. Real space in cryo-EM: the future is local. Acta Crystallogr D Struct Biol 2022; 78:136-143. [PMID: 35102879 PMCID: PMC8805303 DOI: 10.1107/s2059798321012286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/19/2021] [Indexed: 11/11/2022] Open
Abstract
Cryo-EM images have extremely low signal-to-noise levels because biological macromolecules are highly radiation-sensitive, requiring low-dose imaging, and because the molecules are poor in contrast. Confident recovery of the signal requires the averaging of many images, the iterative optimization of parameters and the introduction of much prior information. Poor parameter estimates, overfitting and variations in signal strength and resolution across the resulting reconstructions remain frequent issues. Because biological samples are real-space phenomena, exhibiting local variations, real-space measures can be both more reliable and more appropriate than Fourier-space measures. Real-space measures can be calculated separately over each differing region of an image or volume. Real-space filters can be applied according to the local need. Powerful prior information, not available in Fourier space, can be introduced in real space. Priors can be applied in real space in ways that Fourier space precludes. The treatment of biological phenomena remains highly dependent on spatial frequency, however, which would normally be handled in Fourier space. We believe that measures and filters based around real-space operations on extracted frequency bands, i.e. a series of band-pass filtered real-space volumes, and over real-space densities of striding (sequentially increasing or decreasing) resolution through Fourier space are the best way to address this and will perform better than global Fourier-space-based approaches. Future developments in image processing within the field are generally expected to be based on a mixture of both rationally designed and deep-learning approaches, and to incorporate novel prior information from developments such as AlphaFold. Regardless of approach, it is clear that `locality', through real-space measures, filters and processing, will become central to image processing.
Collapse
Affiliation(s)
- Colin M. Palmer
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Christopher H. S. Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, Imperial College Road, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Wang Z, Zhang Q, Mim C. Coming of Age: Cryo-Electron Tomography as a Versatile Tool to Generate High-Resolution Structures at Cellular/Biological Interfaces. Int J Mol Sci 2021; 22:6177. [PMID: 34201105 PMCID: PMC8228724 DOI: 10.3390/ijms22126177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Over the last few years, cryo electron microscopy has become the most important method in structural biology. While 80% of deposited maps are from single particle analysis, electron tomography has grown to become the second most important method. In particular sub-tomogram averaging has matured as a method, delivering structures between 2 and 5 Å from complexes in cells as well as in vitro complexes. While this resolution range is not standard, novel developments point toward a promising future. Here, we provide a guide for the workflow from sample to structure to gain insight into this emerging field.
Collapse
Affiliation(s)
| | | | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Technical Institute (KTH), Hälsovägen 11C, 141 27 Huddinge, Sweden; (Z.W.); (Q.Z.)
| |
Collapse
|
17
|
Januliene D, Moeller A. Cryo-EM of ABC transporters: an ice-cold solution to everything? FEBS Lett 2021; 594:3776-3789. [PMID: 33156959 DOI: 10.1002/1873-3468.13989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023]
Abstract
High-resolution cryo-EM has revolutionized how we look at ABC transporters and membrane proteins in general. An ever-increasing number of software tools and faster processing now allow dissecting the molecular details of nanomachines at atomic precision. Considering the further benefits of significantly reduced sample demands and increased speed, cryo-EM will dominate the structure determination of membrane proteins in the near future without compromising on data quality or detail. Moreover, improved and new algorithms make it now possible to resolve the conformational spectrum of macromolecular machines under turnover conditions and to analyze heterogeneous samples at high resolution. The future of cryo-EM is, therefore, bright, and the growing number of imaging facilities and groups active in this field will amplify this trend even further. Nevertheless, expectations have to be managed, as cryo-EM alone cannot provide an ultimate answer to all scientific questions. In this review, we discuss the capabilities and limitations of cryo-EM together with possible solutions for studies of ABC transporters.
Collapse
Affiliation(s)
- Dovile Januliene
- University of Osnabrück, Germany.,Max-Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Arne Moeller
- University of Osnabrück, Germany.,Max-Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
18
|
Kojima R, Yoshidome T. A measure for the identification of preferred particle orientations in cryo-electron microscopy data: A simulation study. Biophys Physicobiol 2021; 18:96-107. [PMID: 34026399 PMCID: PMC8116199 DOI: 10.2142/biophysico.bppb-v18.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/12/2021] [Indexed: 12/01/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) is an important experimental technique for the structural analysis of biomolecules that are difficult or impossible to crystallize. The three-dimensional structure of a biomolecule can be reconstructed using two-dimensional electron-density maps, which are experimentally sampled via the electron beam irradiation of vitreous ice in which the target biomolecules are embedded. One assumption required for this reconstruction is that the orientation of the biomolecules in the vitreous ice is isotropic. However, this is not always the case and two-dimensional electron-density maps are often sampled using preferred biomolecular orientations, which can make reconstruction difficult or impossible. Compensation for under-represented views is computationally feasible for the reconstruction of three-dimensional electron density maps, but one must know whether or not there is any missing information in the sampled two-dimensional electron density maps. Thus, a measure to identify whether a cryo-EM data is obtained from the biomolecules adopting preferred orientations is required. In the present study, we propose a measure for which the geometry of manifold projected onto a low-dimensional space is used. To show the usefulness of the measure, we perform simulations for cryo-EM experiment of a protein. It is found that the geometry of manifold projected onto a two-dimensional space for a protein adopting a preferred biomolecular orientation is significantly different from that for a protein adopting a uniform orientation. This result suggests that the geometry of manifold projected onto a low-dimensional space can be used for the measure for the identification that the biomolecules adopt preferred orientations.
Collapse
Affiliation(s)
- Ryota Kojima
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Takashi Yoshidome
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
19
|
Cohen SE, Brignole EJ, Wittenborn EC, Can M, Thompson S, Ragsdale SW, Drennan CL. Negative-Stain Electron Microscopy Reveals Dramatic Structural Rearrangements in Ni-Fe-S-Dependent Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase. Structure 2021; 29:43-49.e3. [PMID: 32937101 PMCID: PMC7796957 DOI: 10.1016/j.str.2020.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/13/2020] [Accepted: 08/25/2020] [Indexed: 10/23/2022]
Abstract
The Ni-Fe-S-containing A-cluster of acetyl-coenzyme A (CoA) synthase (ACS) assembles acetyl-CoA from carbon monoxide (CO), a methyl group (CH3+), and CoA. To accomplish this feat, ACS must bind CoA and interact with two other proteins that contribute the CO and CH3+, respectively: CO dehydrogenase (CODH) and corrinoid Fe-S protein (CFeSP). Previous structural data show that, in the model acetogen Moorella thermoacetica, domain 1 of ACS binds to CODH such that a 70-Å-long internal channel is created that allows CO to travel from CODH to the A-cluster. The A-cluster is largely buried and is inaccessible to CFeSP for methylation. Here we use electron microscopy to capture multiple snapshots of ACS that reveal previously uncharacterized domain motion, forming extended and hyperextended structural states. In these structural states, the A-cluster is accessible for methylation by CFeSP.
Collapse
Affiliation(s)
- Steven E Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Edward J Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth C Wittenborn
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehmet Can
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Samuel Thompson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Fellow, Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1.
| |
Collapse
|
20
|
Ahmed I, Akram Z, Sahar MSU, Iqbal HMN, Landsberg MJ, Munn AL. WITHDRAWN: Structural studies of vitrified biological proteins and macromolecules - A review on the microimaging aspects of cryo-electron microscopy. Int J Biol Macromol 2020:S0141-8130(20)33915-5. [PMID: 32710963 DOI: 10.1016/j.ijbiomac.2020.07.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ishtiaq Ahmed
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia.
| | - Zain Akram
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - M Sana Ullah Sahar
- School of Engineering, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico.
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alan L Munn
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast campus, Parklands Drive, Southport, QLD 4222, Australia
| |
Collapse
|
21
|
Three-dimensional reconstruction from dark-field electron micrographs of macromolecules at random unknown angles. ACTA ACUST UNITED AC 2020. [DOI: 10.1017/s0424820100129929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electron microscopy produces 2D images of 3D objects with resolutions generally from about 2-5 nm for stained or shadowed specimens, to as good as 0.3-0.5 nm for unstained specimens using bright field or dark field techniques. Many groups have worked on methods that attempt to recover the 3D information that is lost in the 2D representation. We have built on and extended previous techniques, and report here the development and application of a robust, unbiased quaternion-based alignment procedure to facilitate 3D reconstruction of molecules imaged at random unknown orientations. The approach is demonstrated using dark field electron micrographs of the Klenow fragment of DNA polymerase.Many procedures for 3D structure determination using electron microscopy have been reported. For fairly simple, small proteins it has been possible to derive a correct high resolution 3D structure by folding the known amino acid chain using dark field electron micrographs as geometric constraintse.g.. However, in general the reconstruction of a 3D density distribution requires knowledge of the relative orientation of different projection images of the object. To determine such orientations a variety of techniques have been employed, frequently adapted to the specimen of interest.
Collapse
|
22
|
Chakraborty S, Jasnin M, Baumeister W. Three-dimensional organization of the cytoskeleton: A cryo-electron tomography perspective. Protein Sci 2020; 29:1302-1320. [PMID: 32216120 PMCID: PMC7255506 DOI: 10.1002/pro.3858] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/01/2023]
Abstract
Traditionally, structures of cytoskeletal components have been studied ex situ, that is, with biochemically purified materials. There are compelling reasons to develop approaches to study them in situ in their native functional context. In recent years, cryo-electron tomography emerged as a powerful method for visualizing the molecular organization of unperturbed cellular landscapes with the potential to attain near-atomic resolution. Here, we review recent works on the cytoskeleton using cryo-electron tomography, demonstrating the power of in situ studies. We also highlight the potential of this method in addressing important questions pertinent to the field of cytoskeletal biomechanics.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Marion Jasnin
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Wolfgang Baumeister
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
23
|
Cryo-Electron microscopy for the study of self-assembled poly(ionic liquid) nanoparticles and protein supramolecular structures. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04657-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractCryo-electron microscopy (cryo-EM) is a powerful structure determination technique that is well-suited to the study of protein and polymer self-assembly in solution. In contrast to conventional transmission electron microscopy (TEM) sample preparation, which often times involves drying and staining, the frozen-hydrated sample preparation allows the specimens to be kept and imaged in a state closest to their native one. Here, we give a short overview of the basic principles of Cryo-EM and review our results on applying it to the study of different protein and polymer self-assembled nanostructures. More specifically, we show how we have applied cryo-electron tomography (cryo-ET) to visualize the internal morphology of self-assembled poly(ionic liquid) nanoparticles and cryo-EM single particle analysis (SPA) to determine the three-dimensional (3D) structures of artificial protein microtubules.
Collapse
|
24
|
Wu M, Gu J, Zong S, Guo R, Liu T, Yang M. Research journey of respirasome. Protein Cell 2020; 11:318-338. [PMID: 31919741 PMCID: PMC7196574 DOI: 10.1007/s13238-019-00681-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022] Open
Abstract
Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex I1III2IV1, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex I2III2IV2, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists 'see' the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.
Collapse
Affiliation(s)
- Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinke Gu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shuai Zong
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Runyu Guo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
25
|
Xie R, Chen YX, Cai JM, Yang Y, Shen HB. SPREAD: A Fully Automated Toolkit for Single-Particle Cryogenic Electron Microscopy Data 3D Reconstruction with Image-Network-Aided Orientation Assignment. J Chem Inf Model 2020; 60:2614-2625. [DOI: 10.1021/acs.jcim.9b01099] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rui Xie
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Xuan Chen
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia-Ming Cai
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Yang
- Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Kalienkova V, Alvadia C, Clerico Mosina V, Paulino C. Single-Particle Cryo-EM of Membrane Proteins in Lipid Nanodiscs. Methods Mol Biol 2020; 2127:245-273. [PMID: 32112327 DOI: 10.1007/978-1-0716-0373-4_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-particle cryo-electron microscopy has become an indispensable technique in structural biology. In particular when studying membrane proteins, it allows the use of membrane-mimicking tools, which can be crucial for a comprehensive understanding of the structure-function relationship of the protein in its native environment. In this chapter we focus on the application of nanodiscs and use our recent studies on the TMEM16 family as an example.
Collapse
Affiliation(s)
- Valeria Kalienkova
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Carolina Alvadia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Vanessa Clerico Mosina
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Cristina Paulino
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
27
|
Gomez-Blanco J, Kaur S, Ortega J, Vargas J. A robust approach to ab initio cryo-electron microscopy initial volume determination. J Struct Biol 2019; 208:107397. [PMID: 31568828 DOI: 10.1016/j.jsb.2019.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
Abstract
Structural information from macromolecules provides key insights into the way complexes perform their biological functions. The reconstruction process leading to the final three-dimensional (3D) map is iterative and requires an initial volume to prime the refinement procedure. Particle images are aligned to this first reference and subsequently a new map is calculated from these particles. The accurate determination of an ab initio initial volume is still a challenging and open problem in cryo-electron microscopy (cryo-EM). Different algorithms are available to estimate an initial volume from the dataset. Some of these methods provide multiple candidate initial maps and users looking for robustness typically run different approaches. In this case, users arbitrarily evaluate the different obtained candidate maps, as we lack robust methods to objectively assess the accuracy of initial references. This workflow is subjective and error-prone preventing implementation of high-throughput data processing procedures. In this work, we present a robust method to determine the best initial map or maps from a set of ab initio initial volumes obtained from one or multiple different approaches. The method is based on evaluating multiple small subsets of candidate initial volumes and particle images through reference-based 3D classifications. Obtained 3D classes of accurate initial maps will result majoritarian and the respective attracted particles will be aligned with high angular accuracies. We have tested the proposed approach with structurally homogeneous and heterogeneous datasets providing satisfactory results with both type of data.
Collapse
Affiliation(s)
- J Gomez-Blanco
- Departament of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montréal, QC H3A 0C7, Canada
| | - S Kaur
- Departament of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montréal, QC H3A 0C7, Canada
| | - J Ortega
- Departament of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montréal, QC H3A 0C7, Canada
| | - J Vargas
- Departament of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montréal, QC H3A 0C7, Canada.
| |
Collapse
|
28
|
Kujawski M, Li L, Bhattacharya S, Wong P, Lee WH, Williams L, Li H, Chea J, Poku K, Bowles N, Vaidehi N, Yazaki P, Shively JE. Generation of dual specific bivalent BiTEs (dbBIspecific T-cell engaging antibodies) for cellular immunotherapy. BMC Cancer 2019; 19:882. [PMID: 31488104 PMCID: PMC6727398 DOI: 10.1186/s12885-019-6056-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 01/12/2023] Open
Abstract
Background Bispecific T-cell engaging antibodies (BiTES), comprising dual anti-CD3 and anti-tumor antigen scFv fragments, are important therapeutic agents for the treatment of cancer. The dual scFv construct for BiTES requires proper protein folding while their small molecular size leads to rapid kidney clearance. Methods An intact (150 kDa) anti-tumor antigen antibody to CEA was joined in high yield (ca. 30%) to intact (150 kDa) anti-murine and anti-human CD3 antibodies using hinge region specific Click chemistry to form dual-specific, bivalent BiTES (dbBiTES, 300 kDa). dbBiTEs were tested in vitro by EM, flow cytometry and cell cytoxicity and in vivo by PET tumor imaging and redirected T-cell therapy. Results The interlocked hinge regions are compatible with a structural model that fits the electron micrographs of 300 kDa particles. Compared to intact anti-CEA antibody, dbBiTES exhibit high in vitro cytotoxicity, high in vivo tumor targeting as demonstrated by PET imaging, and redirected dbBiTE coated T-cells (1 microgram/10 million cells) that kill CEA+ target cells in vivo in CEA transgenic mice. Conclusion dbBiTE redirected T-cell therapy is a promising, efficient approach for targeting and killing cancer cells. Electronic supplementary material The online version of this article (10.1186/s12885-019-6056-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maciej Kujawski
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Lin Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Patty Wong
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Wen-Hui Lee
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Lindsay Williams
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Harry Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Junie Chea
- Radiopharmacy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Kofi Poku
- Radiopharmacy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Nicole Bowles
- Radiopharmacy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Paul Yazaki
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
29
|
Yang S, Lee KH, Woodhead JL, Sato O, Ikebe M, Craig R. The central role of the tail in switching off 10S myosin II activity. J Gen Physiol 2019; 151:1081-1093. [PMID: 31387899 PMCID: PMC6719407 DOI: 10.1085/jgp.201912431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Myosin II is a motor protein with two heads and an extended tail that plays an essential role in cell motility. Its active form is a polymer (myosin filament) that pulls on actin to generate motion. Its inactive form is a monomer with a compact structure (10S sedimentation coefficient), in which the tail is folded and the two heads interact with each other, inhibiting activity. This conformation is thought to function in cells as an energy-conserving form of the molecule suitable for storage as well as transport to sites of filament assembly. The mechanism of inhibition of the compact molecule is not fully understood. We have performed a 3-D reconstruction of negatively stained 10S myosin from smooth muscle in the inhibited state using single-particle analysis. The reconstruction reveals multiple interactions between the tail and the two heads that appear to trap ATP hydrolysis products, block actin binding, hinder head phosphorylation, and prevent filament formation. Blocking these essential features of myosin function could explain the high degree of inhibition of the folded form of myosin thought to underlie its energy-conserving function in cells. The reconstruction also suggests a mechanism for unfolding when myosin is activated by phosphorylation.
Collapse
Affiliation(s)
- Shixin Yang
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - John L Woodhead
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Osamu Sato
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
30
|
Li W, Agrawal RK. Joachim Frank's Binding with the Ribosome. Structure 2019; 27:411-419. [PMID: 30595455 PMCID: PMC11062599 DOI: 10.1016/j.str.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 01/03/2023]
Abstract
With recent technological advancements, single-particle cryogenic electron microscopy (cryo-EM) is now the technique of choice to study structure and function of biological macromolecules at near-atomic resolution. Many single-particle EM reconstruction methods necessary for these advances were pioneered by Joachim Frank, and were optimized using the ribosome as a benchmark specimen. In doing so, he made several landmark contributions to the understanding of the structure and function of ribosomes. These include the first 3D visualization of ribosome-bound transfer RNAs, the first experimentally derived structures of the primary complexes formed during the bacterial translation elongation cycle, and the critical ribosomal conformational transitions required for translation. Over the years, his laboratory studied many important functional complexes of the ribosome from both eubacterial and eukaryotic systems, including ribosomes from pathogenic organisms. This article presents a brief account of the contributions made by Joachim Frank to the ribosome field.
Collapse
Affiliation(s)
- Wen Li
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA; Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA.
| |
Collapse
|
31
|
An HIV-1 Broadly Neutralizing Antibody from a Clade C-Infected Pediatric Elite Neutralizer Potently Neutralizes the Contemporaneous and Autologous Evolving Viruses. J Virol 2019; 93:JVI.01495-18. [PMID: 30429339 DOI: 10.1128/jvi.01495-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) have demonstrated protective effects against HIV-1 in primate studies and recent human clinical trials. Elite neutralizers are potential candidates for isolation of HIV-1 bNAbs. The coexistence of bNAbs such as BG18 with neutralization-susceptible autologous viruses in an HIV-1-infected adult elite controller has been suggested to control viremia. Disease progression is faster in HIV-1-infected children than in adults. Plasma bNAbs with multiple epitope specificities are developed in HIV-1 chronically infected children with more potency and breadth than in adults. Therefore, we evaluated the specificity of plasma neutralizing antibodies of an antiretroviral-naive HIV-1 clade C chronically infected pediatric elite neutralizer, AIIMS_330. The plasma antibodies showed broad and potent HIV-1 neutralizing activity with >87% (29/33) breadth, a median inhibitory dilution (ID50) value of 1,246, and presence of N160 and N332 supersite-dependent HIV-1 bNAbs. The sorting of BG505.SOSIP.664.C2 T332N gp140 HIV-1 antigen-specific single B cells of AIIMS_330 resulted in the isolation of an HIV-1 N332 supersite-dependent bNAb, AIIMS-P01. The AIIMS-P01 neutralized 67% of HIV-1 cross-clade viruses, exhibited substantial indels despite limited somatic hypermutations, interacted with native-like HIV-1 trimer as observed in negative stain electron microscopy, and demonstrated high binding affinity. In addition, AIIMS-P01 neutralized the coexisting and evolving autologous viruses, suggesting the coexistence of vulnerable autologous viruses and HIV-1 bNAbs in the AIIMS_330 pediatric elite neutralizer. Such pediatric elite neutralizers can serve as potential candidates for isolation of novel HIV-1 pediatric bNAbs and for understanding the coevolution of virus and host immune response.IMPORTANCE More than 50% of the HIV-1 infections globally are caused by clade C viruses. To date, there is no effective vaccine to prevent HIV-1 infection. Based on the structural information of the currently available HIV-1 bNAbs, attempts are under way to design immunogens that can elicit correlates of protection upon vaccination. Here, we report the isolation and characterization of an HIV-1 N332 supersite-dependent bNAb, AIIMS-P01, from a clade C chronically infected pediatric elite neutralizer. The N332 supersite is an important epitope and is one of the current HIV-1 vaccine targets. AIIMS-P01 potently neutralized the contemporaneous and autologous evolving viruses and exhibited substantial indels despite low somatic hypermutations. Taken together with the information on infant bNAbs, further isolation and characterization of bNAbs contributing to the plasma breadth in HIV-1 chronically infected children may help provide a better understanding of their role in controlling HIV-1 infection.
Collapse
|
32
|
Radermacher M, Ruiz T. On cross-correlations, averages and noise in electron microscopy. Acta Crystallogr F Struct Biol Commun 2019; 75:12-18. [PMID: 30605121 PMCID: PMC6317458 DOI: 10.1107/s2053230x18014036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/03/2018] [Indexed: 11/16/2022] Open
Abstract
The influence of noise on cross-correlations is revisited. Equations are provided describing the influence of noise on the cross-correlations between single images and averaged images and on those between averaged images. Biological samples are radiation-sensitive and require imaging under low-dose conditions to minimize damage. As a result, images contain a high level of noise and exhibit signal-to-noise ratios that are typically significantly smaller than 1. Averaging techniques, either implicit or explicit, are used to overcome the limitations imposed by the high level of noise. Averaging of 2D images showing the same molecule in the same orientation results in highly significant projections. A high-resolution structure can be obtained by combining the information from many single-particle images to determine a 3D structure. Similarly, averaging of multiple copies of macromolecular assembly subvolumes extracted from tomographic reconstructions can lead to a virtually noise-free high-resolution structure. Cross-correlation methods are often used in the alignment and classification steps of averaging processes for both 2D images and 3D volumes. However, the high noise level can bias alignment and certain classification results. While other approaches may be implicitly affected, sensitivity to noise is most apparent in multireference alignments, 3D reference-based projection alignments and projection-based volume alignments. Here, the influence of the image signal-to-noise ratio on the value of the cross-correlation coefficient is analyzed and a method for compensating for this effect is provided.
Collapse
Affiliation(s)
- Michael Radermacher
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
33
|
Mitra AK. Visualization of biological macromolecules at near-atomic resolution: cryo-electron microscopy comes of age. Acta Crystallogr F Struct Biol Commun 2019; 75:3-11. [PMID: 30605120 PMCID: PMC6317457 DOI: 10.1107/s2053230x18015133] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/26/2018] [Indexed: 11/11/2022] Open
Abstract
Structural biology is going through a revolution as a result of transformational advances in the field of cryo-electron microscopy (cryo-EM) driven by the development of direct electron detectors and ultrastable electron microscopes. High-resolution cryo-EM images of isolated biomolecules (single particles) suspended in a thin layer of vitrified buffer are subjected to powerful image-processing algorithms, enabling near-atomic resolution structures to be determined in unprecedented numbers. Prior to these advances, electron crystallography of two-dimensional crystals and helical assemblies of proteins had established the feasibility of atomic resolution structure determination using cryo-EM. Atomic resolution single-particle analysis, without the need for crystals, now promises to resolve problems in structural biology that were intractable just a few years ago.
Collapse
MESH Headings
- Algorithms
- Bibliometrics
- Cryoelectron Microscopy/history
- Cryoelectron Microscopy/instrumentation
- Cryoelectron Microscopy/methods
- Crystallography, X-Ray/history
- Crystallography, X-Ray/instrumentation
- Crystallography, X-Ray/methods
- Equipment Design/history
- History, 20th Century
- History, 21st Century
- Humans
- Image Processing, Computer-Assisted/statistics & numerical data
- Imaging, Three-Dimensional/instrumentation
- Imaging, Three-Dimensional/methods
- Macromolecular Substances/chemistry
- Macromolecular Substances/ultrastructure
- Microscopy, Electron, Transmission/history
- Microscopy, Electron, Transmission/instrumentation
- Microscopy, Electron, Transmission/methods
- Specimen Handling/instrumentation
- Specimen Handling/methods
- Vitrification
Collapse
Affiliation(s)
- Alok K. Mitra
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
34
|
Natesh R. Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [PMCID: PMC7121590 DOI: 10.1007/978-3-030-05282-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image processing have gained importance in the last few years to obtain atomic structures of drug targets. Obtaining atomic-resolution 3D structure better than ~2.5 Å is a standard approach in pharma companies to design and optimize therapeutic compounds against drug targets like proteins. Protein crystallography is the main technique in solving the structures of drug targets at atomic resolution. However, this technique requires protein crystals which in turn is a major bottleneck. It was not possible to obtain the structure of proteins better than 2.5 Å resolution by any other methods apart from protein crystallography until 2015. Recent advances in single-particle cryo-EM and 3D image processing have led to a resolution revolution in the field of structural biology that has led to high-resolution protein structures, thus breaking the cryo-EM resolution barriers to facilitate drug discovery. There are 24 structures solved by single-particle cryo-EM with resolution 2.5 Å or better in the EMDataBank (EMDB) till date. Among these, five cryo-EM 3D reconstructions of proteins in the EMDB have their associated coordinates deposited in Protein Data Bank (PDB), with bound inhibitor/ ligand. Thus, for the first time, single-particle cryo-EM was included in the structure-based drug design (SBDD) pipeline for solving protein structures independently or where crystallography has failed to crystallize the protein. Further, this technique can be complementary and supplementary to protein crystallography field in solving 3D structures. Thus, single-particle cryo-EM can become a standard approach in pharmaceutical industry in the design, validation, and optimization of therapeutic compounds targeting therapeutically important protein molecules during preclinical drug discovery research. The present chapter will describe briefly the history and the principles of single-particle cryo-EM and 3D image processing to obtain atomic-resolution structure of proteins and their complex with their drug targets/ligands.
Collapse
|
35
|
Ribosomes and cryo-EM: a duet. Curr Opin Struct Biol 2018; 52:1-7. [DOI: 10.1016/j.sbi.2018.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/25/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022]
|
36
|
Frank J. Einzelpartikel-Rekonstruktion biologischer Moleküle - Geschichte in einer Probe (Nobel-Aufsatz). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics; Columbia University Medical Center; New York NY USA
- Department of Biological Sciences; Columbia University; USA
| |
Collapse
|
37
|
Henderson R. Von der Elektronenkristallographie zur Einzelpartikel-KryoEM (Nobel-Aufsatz). Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Richard Henderson
- MRC Laboratory of Molecular Biology; Francis Crick Avenue Cambridge CB2 0QH Großbritannien
| |
Collapse
|
38
|
Dutta M. Recent Advances in Single Particle Cryo-electron Microscopy and Cryo-electron Tomography to Determine the Structures of Biological Macromolecules. J Indian Inst Sci 2018. [DOI: 10.1007/s41745-018-0087-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
39
|
Henderson R. From Electron Crystallography to Single Particle CryoEM (Nobel Lecture). Angew Chem Int Ed Engl 2018; 57:10804-10825. [PMID: 29984560 DOI: 10.1002/anie.201802731] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Indexed: 01/08/2023]
Abstract
Pictures are a key to knowledge: The development of electron microscopy from its beginnings to modern single particle cryo-EM is described by R. Henderson in his Nobel lecture. Shown is the first projection structure at 7 Å resolution of the purple membrane from October 1974.
Collapse
Affiliation(s)
- Richard Henderson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
40
|
Frank J. Single-Particle Reconstruction of Biological Molecules-Story in a Sample (Nobel Lecture). Angew Chem Int Ed Engl 2018; 57:10826-10841. [PMID: 29978534 DOI: 10.1002/anie.201802770] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 12/24/2022]
Abstract
Pictures tell a thousand words: The development of single-particle cryo-electron microscopy set the stage for high-resolution structure determination of biological molecules. In his Nobel lecture, J. Frank describes the ground-breaking discoveries that have enabled the development of cryo-EM. The method has taken biochemistry into a new era.
Collapse
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, Medical Center, New York, NY, USA.,Department of Biological Sciences, Columbia University, USA
| |
Collapse
|
41
|
|
42
|
|
43
|
Nitta R, Imasaki T, Nitta E. Recent progress in structural biology: lessons from our research history. Microscopy (Oxf) 2018; 67:4996565. [PMID: 29771342 DOI: 10.1093/jmicro/dfy022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
The recent 'resolution revolution' in structural analyses of cryo-electron microscopy (cryo-EM) has drastically changed the research strategy for structural biology. In addition to X-ray crystallography and nuclear magnetic resonance spectroscopy, cryo-EM has achieved the structural analysis of biological molecules at near-atomic resolution, resulting in the Nobel Prize in Chemistry 2017. The effect of this revolution has spread within the biology and medical science fields affecting everything from basic research to pharmaceutical development by visualizing atomic structure. As we have used cryo-EM as well as X-ray crystallography since 2000 to elucidate the molecular mechanisms of the fundamental phenomena in the cell, here we review our research history and summarize our findings. In the first half of the review, we describe the structural mechanisms of microtubule-based motility of molecular motor kinesin by using a joint cryo-EM and X-ray crystallography method. In the latter half, we summarize our structural studies on transcriptional regulation by X-ray crystallography of in vitro reconstitution of a multi-protein complex.
Collapse
Affiliation(s)
- Ryo Nitta
- Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
- RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
- RIKEN Center for Life Science Technologies, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
44
|
Image Processing and Cryo-Transmission Electron Microscopy; Example of Human Proteasome. Appl Microsc 2018. [DOI: 10.9729/am.2018.48.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Brignole EJ, Tsai KL, Chittuluru J, Li H, Aye Y, Penczek PA, Stubbe J, Drennan CL, Asturias F. 3.3-Å resolution cryo-EM structure of human ribonucleotide reductase with substrate and allosteric regulators bound. eLife 2018; 7:31502. [PMID: 29460780 PMCID: PMC5819950 DOI: 10.7554/elife.31502] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/15/2018] [Indexed: 12/31/2022] Open
Abstract
Ribonucleotide reductases (RNRs) convert ribonucleotides into deoxyribonucleotides, a reaction essential for DNA replication and repair. Human RNR requires two subunits for activity, the α subunit contains the active site, and the β subunit houses the radical cofactor. Here, we present a 3.3-Å resolution structure by cryo-electron microscopy (EM) of a dATP-inhibited state of human RNR. This structure, which was determined in the presence of substrate CDP and allosteric regulators ATP and dATP, has three α2 units arranged in an α6 ring. At near-atomic resolution, these data provide insight into the molecular basis for CDP recognition by allosteric specificity effectors dATP/ATP. Additionally, we present lower-resolution EM structures of human α6 in the presence of both the anticancer drug clofarabine triphosphate and β2. Together, these structures support a model for RNR inhibition in which β2 is excluded from binding in a radical transfer competent position when α exists as a stable hexamer. Cells often need to make more DNA, for example when they are about to divide or need to repair their genetic information. The building blocks of DNA – also called deoxyribonucleotides – are created through a series of biochemical reactions. Among the enzymes that accomplish these reactions, ribonucleotide reductases (or RNRs, for short) perform a key irreversible step. One prominent class of RNR contains two basic units, named alpha and beta. The active form of these RNRs is made up of a pair of alpha units (α2), which associates with a pair of beta units (β2) to create an α2β2 structure. α2 captures molecules called ribonucleotides and, with the help of β2, converts them to deoxyribonucleotides that after futher processing will be used to create DNA. As RNR produces deoxyribonucleotides, levels of DNA building blocks in the cell rise. To avoid overstocking the cell, RNR contains an ‘off switch’ that is triggered when levels of one of the DNA building blocks, dATP, is high enough to occupy a particular site on the alpha unit. Binding of dATP to this site results in three pairs of alpha units getting together to form a stable ring of six units (called α6). How the formation of this stable α6 ring actually turns off RNR was an open question. Here, Brignole, Tsai et al. use a microscopy method called cryo-EM to reveal the three-dimensional structure of the inactive human RNR almost down to the level of individual atoms. When the alpha pairs form an α6 ring, the hole in the center of this circle is smaller than β2, keeping β2 away from α2. This inaccessibility leads to RNR being switched off. If RNR is inactive, DNA synthesis is impaired and cells cannot divide. In turn, controlling whether or not cells proliferate is key to fighting diseases like cancer (where ‘rogue’ cells keep replicating) or bacterial infections. Certain cancer treatments already target RNR, and create the inactive α6 ring structure. In addition, in bacteria, the inactive form of RNR is different from the human one and forms an α4β4 ring,rather than an α6 ring. Understanding the structure of the human inactive RNR could help scientists to find both new anticancer and antibacterial drugs.
Collapse
Affiliation(s)
- Edward J Brignole
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Kuang-Lei Tsai
- Department of Integrative Computational and Structural Biology, The Scripps Research Institute, La Jolla, United States
| | - Johnathan Chittuluru
- Department of Integrative Computational and Structural Biology, The Scripps Research Institute, La Jolla, United States
| | - Haoran Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Yimon Aye
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, Houston, United States
| | - JoAnne Stubbe
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Catherine L Drennan
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Francisco Asturias
- Department of Integrative Computational and Structural Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
46
|
Abstract
Over the past several years, single-particle cryo-electron microscopy (cryo-EM) has emerged as a leading method for elucidating macromolecular structures at near-atomic resolution, rivaling even the established technique of X-ray crystallography. Cryo-EM is now able to probe proteins as small as hemoglobin (64 kDa) while avoiding the crystallization bottleneck entirely. The remarkable success of cryo-EM has called into question the continuing relevance of X-ray methods, particularly crystallography. To say that the future of structural biology is either cryo-EM or crystallography, however, would be misguided. Crystallography remains better suited to yield precise atomic coordinates of macromolecules under a few hundred kilodaltons in size, while the ability to probe larger, potentially more disordered assemblies is a distinct advantage of cryo-EM. Likewise, crystallography is better equipped to provide high-resolution dynamic information as a function of time, temperature, pressure, and other perturbations, whereas cryo-EM offers increasing insight into conformational and energy landscapes, particularly as algorithms to deconvolute conformational heterogeneity become more advanced. Ultimately, the future of both techniques depends on how their individual strengths are utilized to tackle questions at the frontiers of structural biology. Structure determination is just one piece of a much larger puzzle: a central challenge of modern structural biology is to relate structural information to biological function. In this perspective, we share insight from several leaders in the field and examine the unique and complementary ways in which X-ray methods and cryo-EM can shape the future of structural biology.
Collapse
Affiliation(s)
- Susannah C. Shoemaker
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| | - Nozomi Ando
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
47
|
Neumann E, Farias Estrozi L, Effantin G, Breyton C, Schoehn G. Prix Nobel de Chimie 2017 : Jacques Dubochet, Joachim Frank et Richard Henderson. Med Sci (Paris) 2017; 33:1111-1117. [DOI: 10.1051/medsci/20173212019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Profile of Joachim Frank, Richard Henderson, and Jacques Dubochet, 2017 Nobel Laureates in Chemistry. Proc Natl Acad Sci U S A 2017; 115:441-444. [PMID: 29196527 DOI: 10.1073/pnas.1718898114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Li X, Liu S, Jiang J, Zhang L, Espinosa S, Hill RC, Hansen KC, Zhou ZH, Zhao R. CryoEM structure of Saccharomyces cerevisiae U1 snRNP offers insight into alternative splicing. Nat Commun 2017; 8:1035. [PMID: 29051543 PMCID: PMC5648754 DOI: 10.1038/s41467-017-01241-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022] Open
Abstract
U1 snRNP plays a critical role in 5'-splice site recognition and is a frequent target of alternative splicing factors. These factors transiently associate with human U1 snRNP and are not amenable for structural studies, while their Saccharomyces cerevisiae (yeast) homologs are stable components of U1 snRNP. Here, we report the cryoEM structure of yeast U1 snRNP at 3.6 Å resolution with atomic models for ten core proteins, nearly all essential domains of its RNA, and five stably associated auxiliary proteins. The foot-shaped yeast U1 snRNP contains a core in the "ball-and-toes" region architecturally similar to the human U1 snRNP. All auxiliary proteins are in the "arch-and-heel" region and connected to the core through the Prp42/Prp39 paralogs. Our demonstration that homodimeric human PrpF39 directly interacts with U1C-CTD, mirroring yeast Prp42/Prp39, supports yeast U1 snRNP as a model for understanding how transiently associated auxiliary proteins recruit human U1 snRNP in alternative splicing.
Collapse
Affiliation(s)
- Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Shiheng Liu
- Electron Imaging Center for Nanomachines University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Jiansen Jiang
- Electron Imaging Center for Nanomachines University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sara Espinosa
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Z Hong Zhou
- Electron Imaging Center for Nanomachines University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
50
|
Greenberg I, Shkolnisky Y. Common lines modeling for reference free Ab-initio reconstruction in cryo-EM. J Struct Biol 2017; 200:106-117. [PMID: 28943480 DOI: 10.1016/j.jsb.2017.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/17/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
We consider the problem of estimating an unbiased and reference-free ab initio model for non-symmetric molecules from images generated by single-particle cryo-electron microscopy. The proposed algorithm finds the globally optimal assignment of orientations that simultaneously respects all common lines between all images. The contribution of each common line to the estimated orientations is weighted according to a statistical model for common lines' detection errors. The key property of the proposed algorithm is that it finds the global optimum for the orientations given the common lines. In particular, any local optima in the common lines energy landscape do not affect the proposed algorithm. As a result, it is applicable to thousands of images at once, very robust to noise, completely reference free, and not biased towards any initial model. A byproduct of the algorithm is a set of measures that allow to asses the reliability of the obtained ab initio model. We demonstrate the algorithm using class averages from two experimental data sets, resulting in ab initio models with resolutions of 20Å or better, even from class averages consisting of as few as three raw images per class.
Collapse
Affiliation(s)
- Ido Greenberg
- Department of Applied Mathematics, School of Mathematical Sciences, Tel-Aviv University, Israel.
| | - Yoel Shkolnisky
- Department of Applied Mathematics, School of Mathematical Sciences, Tel-Aviv University, Israel.
| |
Collapse
|