1
|
Shen S, Wang D, Liu H, He X, Cao Y, Chen J, Li S, Cheng X, Xu HE, Duan J. Structural basis for hormone recognition and distinctive Gq protein coupling by the kisspeptin receptor. Cell Rep 2024; 43:114389. [PMID: 38935498 DOI: 10.1016/j.celrep.2024.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Kisspeptin signaling through its G protein-coupled receptor, KISS1R, plays an indispensable role in regulating reproduction via the hypothalamic-pituitary-gonadal axis. Dysregulation of this pathway underlies severe disorders like infertility and precocious puberty. Here, we present cryo-EM structures of KISS1R bound to the endogenous agonist kisspeptin-10 and a synthetic analog TAK-448. These structures reveal pivotal interactions between peptide ligands and KISS1R extracellular loops for receptor activation. Both peptides exhibit a conserved binding mode, unveiling their common activation mechanism. Intriguingly, KISS1R displays a distinct 40° angular deviation in its intracellular TM6 region compared to other Gq-coupled receptors, enabling distinct interactions with Gq. This study reveals the molecular intricacies governing ligand binding and activation of KISS1R, while highlighting its exceptional ability to couple with Gq. Our findings pave the way for structure-guided design of therapeutics targeting this physiologically indispensable receptor.
Collapse
Affiliation(s)
- Shiyi Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxue Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Heng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglong Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Juanhua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shujie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Torres E, Pellegrino G, Granados-Rodríguez M, Fuentes-Fayos AC, Velasco I, Coutteau-Robles A, Legrand A, Shanabrough M, Perdices-Lopez C, Leon S, Yeo SH, Manchishi SM, Sánchez-Tapia MJ, Navarro VM, Pineda R, Roa J, Naftolin F, Argente J, Luque RM, Chowen JA, Horvath TL, Prevot V, Sharif A, Colledge WH, Tena-Sempere M, Romero-Ruiz A. Kisspeptin signaling in astrocytes modulates the reproductive axis. J Clin Invest 2024; 134:e172908. [PMID: 38861336 PMCID: PMC11291270 DOI: 10.1172/jci172908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
Reproduction is safeguarded by multiple, often cooperative, regulatory networks. Kisspeptin signaling, via KISS1R, plays a fundamental role in reproductive control, primarily by regulation of hypothalamic GnRH neurons. We disclose herein a pathway for direct kisspeptin actions in astrocytes that contributes to central reproductive modulation. Protein-protein interaction and ontology analyses of hypothalamic proteomic profiles after kisspeptin stimulation revealed that glial/astrocyte markers are regulated by kisspeptin in mice. This glial-kisspeptin pathway was validated by the demonstrated expression of Kiss1r in mouse astrocytes in vivo and astrocyte cultures from humans, rats, and mice, where kisspeptin activated canonical intracellular signaling-pathways. Cellular coexpression of Kiss1r with the astrocyte markers GFAP and S100-β occurred in different brain regions, with higher percentage in Kiss1- and GnRH-enriched areas. Conditional ablation of Kiss1r in GFAP-positive cells in the G-KiR-KO mouse altered gene expression of key factors in PGE2 synthesis in astrocytes and perturbed astrocyte-GnRH neuronal appositions, as well as LH responses to kisspeptin and LH pulsatility, as surrogate marker of GnRH secretion. G-KiR-KO mice also displayed changes in reproductive responses to metabolic stress induced by high-fat diet, affecting female pubertal onset, estrous cyclicity, and LH-secretory profiles. Our data unveil a nonneuronal pathway for kisspeptin actions in astrocytes, which cooperates in fine-tuning the reproductive axis and its responses to metabolic stress.
Collapse
Affiliation(s)
- Encarnacion Torres
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Giuliana Pellegrino
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neurosciences & Cognition, UMR-S1172, Lille, France
| | - Melissa Granados-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Antonio C. Fuentes-Fayos
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Adrian Coutteau-Robles
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neurosciences & Cognition, UMR-S1172, Lille, France
| | - Amandine Legrand
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neurosciences & Cognition, UMR-S1172, Lille, France
| | - Marya Shanabrough
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Cecilia Perdices-Lopez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Silvia Leon
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Shel H. Yeo
- Reproductive Physiology Group, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Stephen M. Manchishi
- Reproductive Physiology Group, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maria J. Sánchez-Tapia
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Victor M. Navarro
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston,Massachusetts, USA
| | - Rafael Pineda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Jesús Argente
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, and IMDEA-Food Institute, CEI-UAM+CSIC, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raúl M. Luque
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A. Chowen
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, and IMDEA-Food Institute, CEI-UAM+CSIC, Madrid, Spain
| | - Tamas L. Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neurosciences & Cognition, UMR-S1172, Lille, France
| | - Ariane Sharif
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neurosciences & Cognition, UMR-S1172, Lille, France
| | - William H. Colledge
- Reproductive Physiology Group, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Romero-Ruiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| |
Collapse
|
3
|
Męczekalski B, Niwczyk O, Battipaglia C, Troia L, Kostrzak A, Bala G, Maciejewska-Jeske M, Genazzani AD, Luisi S. Neuroendocrine disturbances in women with functional hypothalamic amenorrhea: an update and future directions. Endocrine 2024; 84:769-785. [PMID: 38062345 PMCID: PMC11208264 DOI: 10.1007/s12020-023-03619-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of both primary and secondary amenorrhea in women of reproductive age. It is characterized by chronic anovulation and the absence of menses that appear as a result of stressors such as eating disorders, excessive exercise, or psychological distress. FHA is presumed to be a functional disruption in the pulsatile secretion of hypothalamic gonadotropin-releasing hormone, which in turn impairs the release of gonadotropin. Hypoestrogenism is observed due to the absence of ovarian follicle recruitment. Numerous neurotransmitters have been identified which play an important role in the regulation of the hypothalamic-pituitary-ovarian axis and of which the impairment would contribute to developing FHA. In this review we summarize the most recent advances in the identification of contributing neuroendocrine disturbances and relevant contributors to the development of FHA.
Collapse
Affiliation(s)
- Błażej Męczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Libera Troia
- Department of Gynecology and Obstetrics, Maggiore della Carità Hospital, University of Eastern Piedmont, Novara, Italy
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Gregory Bala
- UCD School of Medicine University College Dublin, D04 V1W8, Dublin, Ireland
| | | | - Alessandro D Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Luisi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Jiang C, Dong W, Gao G, Sun W, Wang Y, Zhan B, Sun Y, Yu J. Maternal oral exposure to low-dose BPA accelerates the onset of puberty by promoting prepubertal Kiss1 expression in the AVPV nucleus of female offspring. Reprod Toxicol 2024; 124:108543. [PMID: 38232916 DOI: 10.1016/j.reprotox.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
As the incidence of precocious puberty has risen in recent years and the age at puberty onset is younger, children may be at increased risk for health consequences associated with the early onset of puberty. Bisphenol A (BPA) is recognized as an endocrine disruptor chemical that is reported to induce precocious puberty. The effect of BPA exposure modes, times, and doses (especially low dose) were controversial. In the present study, we evaluated the potential effects of maternal exposure to low-dose BPA on the hypothalamus, particularly on the arcuate (ARC) nucleus and anteroventral periventricular (AVPV) nucleus during peri-puberty in offspring of BPA-treated rats. Pregnant rats were exposed to corn oil vehicle, 0.05 mg·kg-1·day-1 BPA, or 5 mg·kg-1·day-1 from gestation day 1 (GD1) to postnatal day 21 (PND21) by daily gavage. Body weight (BW), vaginal opening (VO), ovarian follicular luteinization, and relevant hormone concentrations were measured; hypothalamic Kiss1 and GnRH1 levels by western immunoblot analysis were also assessed as indices of puberty onset. During or after exposure, low-dose BPA restricted BW after birth (at PND1 and PND5), and subsequently accelerated puberty onset by promoting the expression of prepubertal Kiss1 and GnRH1 in the AVPV nucleus on PND30, leading to advanced VO, an elevation in LH and FSH concentrations (on PND30). We also noted increased BW on PND30 and PND35. Maternal oral exposure to low-dose BPA altered the BW curve during the neonatal and peripubertal periods, and subsequently accelerated puberty onset by promoting prepubertal Kiss1 expression in the AVPV nucleus.
Collapse
Affiliation(s)
- Chenyan Jiang
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wenke Dong
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Guanglin Gao
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wen Sun
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yonghong Wang
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Bowen Zhan
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Yanyan Sun
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China.
| | - Jian Yu
- Department of Integrative Medicine, National Children's Medical Center, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Kunimura Y, Iwata K, Ishii H, Ozawa H. Chronic estradiol exposure suppresses luteinizing hormone surge without affecting kisspeptin neurons and estrogen receptor alpha in anteroventral periventricular nucleus†. Biol Reprod 2024; 110:90-101. [PMID: 37774351 DOI: 10.1093/biolre/ioad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Mammalian ovulation is induced by a luteinizing hormone surge, which is triggered by elevated plasma estrogen levels; however, chronic exposure to high levels of estradiol is known to inhibit luteinizing hormone secretion. In the present study, we hypothesized that the inhibition of the luteinizing hormone surge by chronic estradiol exposure is due to the downregulation of the estrogen receptor alpha in kisspeptin neurons at hypothalamic anteroventral periventricular nucleus, which is known as the gonadotropin-releasing hormone/luteinizing hormone surge generator. Animals exposed to estradiol for 2 days showed an luteinizing hormone surge, whereas those exposed for 14 days showed a significant suppression of luteinizing hormone. Chronic estradiol exposure did not affect the number of kisspeptin neurons and the percentage of kisspeptin neurons with estrogen receptor alpha or c-Fos in anteroventral periventricular nucleus, but it did affect the number of kisspeptin neurons in arcuate nucleus. Furthermore, chronic estradiol exposure did not affect gonadotropin-releasing hormone neurons. In the pituitary, 14-day estradiol exposure significantly reduced the expression of Lhb mRNA and LHβ-immunoreactive areas. Gonadotropin-releasing hormone-induced luteinizing hormone release was also reduced significantly by 14-day estradiol exposure. We revealed that the suppression of an luteinizing hormone surge by chronic estradiol exposure was induced in association with the significant reduction in kisspeptin neurons in arcuate nucleus, luteinizing hormone expression in the pituitary, and pituitary responsiveness to gonadotropin-releasing hormone, and this was not caused by changes in the estrogen receptor alpha-expressing kisspeptin neurons in anteroventral periventricular nucleus and gonadotropin-releasing hormone neurons, which are responsible for estradiol positive feedback.
Collapse
Affiliation(s)
- Yuyu Kunimura
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kinuyo Iwata
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Physical Therapy, Faculty of Health Science, Bukkyo University, Kyoto, Japan
| |
Collapse
|
6
|
Li Y, Zhang H, Li Q, Huang X, Kong X. Association of the KISS1, LIN28B, VDR and ERα gene polymorphisms with early and fast puberty in Chinese girls. Gynecol Endocrinol 2023; 39:2181653. [PMID: 36828304 DOI: 10.1080/09513590.2023.2181653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
OBJECTIVES To explore the association of KISS1, LIN28B, vitamin D receptor (VDR), and estrogen receptor α (ERα) gene polymorphisms and the risk of early with fast puberty (EFP) risk, and with hormone levels in EFP cases, in Chinese girls. METHODS The analysis was based on the data of 141 girls with EFP and 152 girls without EFP. Clinical features were documented, and all SNP genotyping was conducted using SNaPshot method. Statistical analysis was performed to assess the association of the SNPs with EFP risk, and with hormone levels in EFP cases. RESULTS There was a significant association between rs7759938-C polymorphism in the LIN28B gene and the risk for EFP in the recessive (TT + CT vs. CC) model (p = 0.040). Remarkably, rs5780218-delA polymorphism in the KISS1 gene and rs2234693-C polymorphism in the ERα gene were significantly associated with peak LH (luteinizing hormone) levels (p = 0.008, 0.045) and peak LH/FSH (follicle-stimulating hormone) ratio (p = 0.007, 0.006). Additionally, on 7 of the 8 variant loci the alleles associated with increased levels of both peak LH levels and peak LH/FSH ratio in EFP cases were also associated with increased CPP risk. CONCLUSIONS Our findings indicate that rs7759938-C polymorphism in the LIN28B gene might have a protective effect on EFP susceptibility. The most striking findings of this study is that, rs5780218-delA polymorphism in the KISS1 gene and rs2234693-C polymorphism in the ERα gene influenced levels of GnRH-stimulated peak LH and LH/FSH ratio, and in general CPP risk genes might also contributes to the abnormality of hormonal levels in EFP.
Collapse
Affiliation(s)
- Yunwei Li
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming City, Yunnan Province, China
- Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, China
- Department of Pharmacy, Kunming Children's Hospital, Kunming City, Yunnan Province, China
| | - Huifeng Zhang
- Department of Clinical Pharmacy, The First People's Hospital of Yunnan Province/the Affiliated Hospital of Kunming University of Science and Technology, Kunming City, Yunnan Province, China
| | - Qiang Li
- Department of Pharmacy, Kunming Children's Hospital, Kunming City, Yunnan Province, China
| | - Xinwei Huang
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiangyang Kong
- Medical School, Kunming University of Science and Technology, Kunming City, Yunnan Province, China
| |
Collapse
|
7
|
Velasco I, Franssen D, Daza-Dueñas S, Skrapits K, Takács S, Torres E, Rodríguez-Vazquez E, Ruiz-Cruz M, León S, Kukoricza K, Zhang FP, Ruohonen S, Luque-Cordoba D, Priego-Capote F, Gaytan F, Ruiz-Pino F, Hrabovszky E, Poutanen M, Vázquez MJ, Tena-Sempere M. Dissecting the KNDy hypothesis: KNDy neuron-derived kisspeptins are dispensable for puberty but essential for preserved female fertility and gonadotropin pulsatility. Metabolism 2023; 144:155556. [PMID: 37121307 DOI: 10.1016/j.metabol.2023.155556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Kiss1 neurons in the hypothalamic arcuate-nucleus (ARC) play key roles in the control of GnRH pulsatility and fertility. A fraction of ARC Kiss1 neurons, termed KNDy, co-express neurokinin B (NKB; encoded by Tac2). Yet, NKB- and Kiss1-only neurons are also found in the ARC, while a second major Kiss1-neuronal population is present in the rostral hypothalamus. The specific contribution of different Kiss1 neuron sub-sets and kisspeptins originating from them to the control of reproduction and eventually other bodily functions remains to be fully determined. METHODS To tease apart the physiological roles of KNDy-born kisspeptins, conditional ablation of Kiss1 in Tac2-expressing cells was implemented in vivo. To this end, mice with Tac2 cell-specific Kiss1 KO (TaKKO) were generated and subjected to extensive reproductive and metabolic characterization. RESULTS TaKKO mice displayed reduced ARC kisspeptin content and Kiss1 expression, with greater suppression in females, which was detectable at infantile-pubertal age. In contrast, Tac2/NKB levels were fully preserved. Despite the drop of ARC Kiss1/kisspeptin, pubertal timing was normal in TaKKO mice of both sexes. However, young-adult TaKKO females displayed disturbed LH pulsatility and sex steroid levels, with suppressed basal LH and pre-ovulatory LH surges, early-onset subfertility and premature ovarian insufficiency. Conversely, testicular histology and fertility were grossly conserved in TaKKO males. Ablation of Kiss1 in Tac2-cells led also to sex-dependent alterations in body composition, glucose homeostasis, especially in males, and locomotor activity, specifically in females. CONCLUSIONS Our data document that KNDy-born kisspeptins are dispensable/compensable for puberty in both sexes, but required for maintenance of female gonadotropin pulsatility and fertility, as well as for adult metabolic homeostasis. SIGNIFICANCE STATEMENT Neurons in the hypothalamic arcuate nucleus (ARC) co-expressing kisspeptins and NKB, named KNDy, have been recently suggested to play a key role in pulsatile secretion of gonadotropins, and hence reproduction. However, the relative contribution of this Kiss1 neuronal-subset, vs. ARC Kiss1-only and NKB-only neurons, as well as other Kiss1 neuronal populations, has not been assessed in physiological settings. We report here findings in a novel mouse-model with elimination of KNDy-born kisspeptins, without altering other kisspeptin compartments. Our data highlights the heterogeneity of ARC Kiss1 populations and document that, while dispensable/compensable for puberty, KNDy-born kisspeptins are required for proper gonadotropin pulsatility and fertility, specifically in females, and adult metabolic homeostasis. Characterization of this functional diversity is especially relevant, considering the potential of kisspeptin-based therapies for management of human reproductive disorders.
Collapse
Affiliation(s)
- Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; GIGA-Neurosciences Unit, University of Liège, Liège, Belgium
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Encarnación Torres
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Elvira Rodríguez-Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Silvia León
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Krisztina Kukoricza
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Fu-Ping Zhang
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Suvi Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Diego Luque-Cordoba
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Analytical Chemistry, University of Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Spain
| | - Feliciano Priego-Capote
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Analytical Chemistry, University of Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Spain
| | - Francisco Gaytan
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - María J Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| |
Collapse
|
8
|
Estrogen as a key regulator of energy homeostasis and metabolic health. Biomed Pharmacother 2022; 156:113808. [DOI: 10.1016/j.biopha.2022.113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
|
9
|
Roa J, Ruiz-Cruz M, Ruiz-Pino F, Onieva R, Vazquez MJ, Sanchez-Tapia MJ, Ruiz-Rodriguez JM, Sobrino V, Barroso A, Heras V, Velasco I, Perdices-Lopez C, Ohlsson C, Avendaño MS, Prevot V, Poutanen M, Pinilla L, Gaytan F, Tena-Sempere M. Dicer ablation in Kiss1 neurons impairs puberty and fertility preferentially in female mice. Nat Commun 2022; 13:4663. [PMID: 35945211 PMCID: PMC9363423 DOI: 10.1038/s41467-022-32347-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Kiss1 neurons, producing kisspeptins, are essential for puberty and fertility, but their molecular regulatory mechanisms remain unfolded. Here, we report that congenital ablation of the microRNA-synthesizing enzyme, Dicer, in Kiss1 cells, causes late-onset hypogonadotropic hypogonadism in both sexes, but is compatible with pubertal initiation and preserved Kiss1 neuronal populations at the infantile/juvenile period. Yet, failure to complete puberty and attain fertility is observed only in females. Kiss1-specific ablation of Dicer evokes disparate changes of Kiss1-cell numbers and Kiss1/kisspeptin expression between hypothalamic subpopulations during the pubertal-transition, with a predominant decline in arcuate-nucleus Kiss1 levels, linked to enhanced expression of its repressors, Mkrn3, Cbx7 and Eap1. Our data unveil that miRNA-biosynthesis in Kiss1 neurons is essential for pubertal completion and fertility, especially in females, but dispensable for initial reproductive maturation and neuronal survival in both sexes. Our results disclose a predominant miRNA-mediated inhibitory program of repressive signals that is key for precise regulation of Kiss1 expression and, thereby, reproductive function.
Collapse
Affiliation(s)
- Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain. .,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain.
| | - Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Rocio Onieva
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Maria J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Maria J Sanchez-Tapia
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Jose M Ruiz-Rodriguez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Veronica Sobrino
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Violeta Heras
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Cecilia Perdices-Lopez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Maria Soledad Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, 59000, Lille, France
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, 20520, Turku, Finland
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Francisco Gaytan
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain. .,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain. .,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, 20520, Turku, Finland.
| |
Collapse
|
10
|
Hu KL, Chen Z, Li X, Cai E, Yang H, Chen Y, Wang C, Ju L, Deng W, Mu L. Advances in clinical applications of kisspeptin-GnRH pathway in female reproduction. Reprod Biol Endocrinol 2022; 20:81. [PMID: 35606759 PMCID: PMC9125910 DOI: 10.1186/s12958-022-00953-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/30/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Kisspeptin is the leading upstream regulator of pulsatile and surge Gonadotrophin-Releasing Hormone secretion (GnRH) in the hypothalamus, which acts as the key governor of the hypothalamic-pituitary-ovary axis. MAIN TEXT Exogenous kisspeptin or its receptor agonist can stimulate GnRH release and subsequent physiological gonadotropin secretion in humans. Based on the role of kisspeptin in the hypothalamus, a broad application of kisspeptin and its receptor agonist has been recently uncovered in humans, including central control of ovulation, oocyte maturation (particularly in women at a high risk of ovarian hyperstimulation syndrome), test for GnRH neuronal function, and gatekeepers of puberty onset. In addition, the kisspeptin analogs, such as TAK-448, showed promising agonistic activity in healthy women as well as in women with hypothalamic amenorrhoea or polycystic ovary syndrome. CONCLUSION More clinical trials should focus on the therapeutic effect of kisspeptin, its receptor agonist and antagonist in women with reproductive disorders, such as hypothalamic amenorrhoea, polycystic ovary syndrome, and endometriosis.
Collapse
Affiliation(s)
- Kai-Lun Hu
- Center for Reproductive Medicine, Peking University Third Hospital, No.49 Huayuan North Road, Haidian District, Beijing, People's Republic of China, 100191
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200
| | - Zimiao Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Xiaoxue Li
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200
| | - Enci Cai
- Department of Nutrition and Food Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, USA
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Yi Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Congying Wang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China, 325000
| | - Liping Ju
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China, 325006.
| | - Liangshan Mu
- Zhejiang MedicalTech Therapeutics Company, No.665 Yumeng Road, Wenzhou, People's Republic of China, 325200.
| |
Collapse
|
11
|
Sheep as a model for neuroendocrinology research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 189:1-34. [PMID: 35595346 DOI: 10.1016/bs.pmbts.2022.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Animal models remain essential to understand the fundamental mechanisms of physiology and pathology. Particularly, the complex and dynamic nature of neuroendocrine cells of the hypothalamus make them difficult to study. The neuroendocrine systems of the hypothalamus are critical for survival and reproduction, and are highly conserved throughout vertebrate evolution. Their roles in controlling body metabolism, growth and body composition, stress, electrolyte balance, and reproduction, have been intensively studied, and have yielded groundbreaking discoveries. Many of these discoveries would not have been feasible without the use of the domestic sheep (Ovis aries). The sheep has been used for decades to study the neuroendocrine systems of the hypothalamus and has become a model for human neuroendocrinology. The aim of this chapter is to review some of the profound biomedical discoveries made possible by the use of sheep. The advantages and limitations of sheep as a neuroendocrine model will be discussed. While no animal model can perfectly recapitulate a human disease or condition, sheep are invaluable for enabling manipulations not possible in human subjects and isolating physiologic variables to garner insight into neuroendocrinology and associated pathologies.
Collapse
|
12
|
Dong W, He J, Wang J, Sun W, Sun Y, Yu J. Bisphenol A exposure advances puberty onset by changing Kiss1 expression firstly in arcuate nucleus at juvenile period in female rats. Reprod Toxicol 2022; 110:141-149. [DOI: 10.1016/j.reprotox.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
13
|
Sobrino V, Avendaño MS, Perdices-López C, Jimenez-Puyer M, Tena-Sempere M. Kisspeptins and the neuroendocrine control of reproduction: Recent progress and new frontiers in kisspeptin research. Front Neuroendocrinol 2022; 65:100977. [PMID: 34999056 DOI: 10.1016/j.yfrne.2021.100977] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022]
Abstract
In late 2003, a major breakthrough in our understanding of the mechanisms that govern reproduction occurred with the identification of the reproductive roles of kisspeptins, encoded by the Kiss1 gene, and their receptor, Gpr54 (aka, Kiss1R). The discovery of this unsuspected reproductive facet attracted an extraordinary interest and boosted an intense research activity, in human and model species, that, in a relatively short period, established a series of basic concepts on the physiological roles of kisspeptins. Such fundamental knowledge, gathered in these early years of kisspeptin research, set the scene for the more recent in-depth dissection of the intimacies of the neuronal networks involving Kiss1 neurons, their precise mechanisms of regulation and the molecular underpinnings of the function of kisspeptins as pivotal regulators of all key aspects of reproductive function, from puberty onset to pulsatile gonadotropin secretion and the metabolic control of fertility. While no clear temporal boundaries between these two periods can be defined, in this review we will summarize the most prominent advances in kisspeptin research occurred in the last ten years, as a means to provide an up-dated view of the state of the art and potential paths of future progress in this dynamic, and ever growing domain of Neuroendocrinology.
Collapse
Affiliation(s)
- Veronica Sobrino
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Maria Soledad Avendaño
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Cecilia Perdices-López
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain
| | - Manuel Jimenez-Puyer
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland.
| |
Collapse
|
14
|
Aberrant Notch Signaling Pathway as a Potential Mechanism of Central Precocious Puberty. Int J Mol Sci 2022; 23:ijms23063332. [PMID: 35328752 PMCID: PMC8950842 DOI: 10.3390/ijms23063332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
The Notch signaling pathway is highly conserved during evolution. It has been well documented that Notch signaling regulates cell proliferation, migration, and death in the nervous, cardiac, and endocrine systems. The Notch pathway is relatively simple, but its activity is regulated by numerous complex mechanisms. Ligands bind to Notch receptors, inducing their activation and cleavage. Various post-translational processes regulate Notch signaling by affecting the synthesis, secretion, activation, and degradation of Notch pathway-related proteins. Through such post-translational regulatory processes, Notch signaling has versatile effects in many tissues, including the hypothalamus. Recently, several studies have reported that mutations in genes related to the Notch signaling pathway were found in patients with central precocious puberty (CPP). CPP is characterized by the early activation of the hypothalamus–pituitary–gonadal (HPG) axis. Although genetic factors play an important role in CPP development, few associated genetic variants have been identified. Aberrant Notch signaling may be associated with abnormal pubertal development. In this review, we discuss the current knowledge about the role of the Notch signaling pathway in puberty and consider the potential mechanisms underlying CPP.
Collapse
|
15
|
Ruohonen ST, Gaytan F, Usseglio Gaudi A, Velasco I, Kukoricza K, Perdices-Lopez C, Franssen D, Guler I, Mehmood A, Elo LL, Ohlsson C, Poutanen M, Tena-Sempere M. Selective loss of kisspeptin signaling in oocytes causes progressive premature ovulatory failure. Hum Reprod 2022; 37:806-821. [PMID: 35037941 PMCID: PMC8971646 DOI: 10.1093/humrep/deab287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Does direct kisspeptin signaling in the oocyte have a role in the control of follicular dynamics and ovulation? SUMMARY ANSWER Kisspeptin signaling in the oocyte plays a relevant physiological role in the direct control of ovulation; oocyte-specific ablation of kisspeptin receptor, Gpr54, induces a state of premature ovulatory failure in mice that recapitulates some features of premature ovarian insufficiency (POI). WHAT IS KNOWN ALREADY Kisspeptins, encoded by the Kiss1 gene, are essential for the control of ovulation and fertility, acting primarily on hypothalamic GnRH neurons to stimulate gonadotropin secretion. However, kisspeptins and their receptor, Gpr54, are also expressed in the ovary of different mammalian species, including humans, where their physiological roles remain contentious and poorly characterized. STUDY DESIGN, SIZE, DURATION A novel mouse line with conditional ablation of Gpr54 in oocytes, named OoGpr54−/−, was generated and studied in terms of follicular and ovulatory dynamics at different age-points of postnatal maturation. A total of 59 OoGpr54−/− mice and 47 corresponding controls were analyzed. In addition, direct RNA sequencing was applied to ovarian samples from 8 OoGpr54−/− and 7 control mice at 6 months of age, and gonadotropin priming for ovulatory induction was conducted in mice (N = 7) from both genotypes. PARTICIPANTS/MATERIALS, SETTING, METHODS Oocyte-selective ablation of Gpr54 in the oocyte was achieved in vivo by crossing a Gdf9-driven Cre-expressing transgenic mouse line with a Gpr54 LoxP mouse line. The resulting OoGpr54−/− mouse line was subjected to phenotypic, histological, hormonal and molecular analyses at different age-points of postnatal maturation (Day 45, and 2, 4, 6 and 10–11 months of age), in order to characterize the timing of puberty, ovarian follicular dynamics and ovulation, with particular attention to identification of features reminiscent of POI. The molecular signature of ovaries from OoGpr54−/− mice was defined by direct RNA sequencing. Ovulatory responses to gonadotropin priming were also assessed in OoGpr54−/− mice. MAIN RESULTS AND THE ROLE OF CHANCE Oocyte-specific ablation of Gpr54 caused premature ovulatory failure, with some POI-like features. OoGpr54−/− mice had preserved puberty onset, without signs of hypogonadism. However, already at 2 months of age, 40% of OoGpr54−/− females showed histological features reminiscent of ovarian failure and anovulation. Penetrance of the phenotype progressed with age, with >80% and 100% of OoGpr54−/− females displaying complete ovulatory failure by 6- and 10 months, respectively. This occurred despite unaltered hypothalamic Gpr54 expression and gonadotropin levels. Yet, OoGpr54−/− mice had decreased sex steroid levels. While the RNA signature of OoGpr54−/− ovaries was dominated by the anovulatory state, oocyte-specific ablation of Gpr54 significantly up- or downregulated of a set of 21 genes, including those encoding pituitary adenylate cyclase-activating polypeptide, Wnt-10B, matrix-metalloprotease-12, vitamin A-related factors and calcium-activated chloride channel-2, which might contribute to the POI-like state. Notably, the anovulatory state of young OoGpr54−/− mice could be rescued by gonadotropin priming. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Conditional ablation of Gpr54 in oocytes unambiguously caused premature ovulatory failure in mice; yet, the ultimate molecular mechanisms for such state of POI can be only inferred on the basis of RNAseq data and need further elucidation, since some of the molecular changes observed in OoGpr54−/− ovaries were secondary to the anovulatory state. Direct translation of mouse findings to human disease should be made with caution since, despite the conserved expression of Kiss1/kisspeptin and Gpr54 in rodents and humans, our mouse model does not recapitulate all features of common forms of POI. WIDER IMPLICATIONS OF THE FINDINGS Deregulation of kisspeptin signaling in the oocyte might be an underlying, and previously unnoticed, cause for some forms of POI in women. STUDY FUNDING/COMPETING INTEREST(S) This work was primarily supported by a grant to M.P. and M.T.-S. from the FiDiPro (Finnish Distinguished Professor) Program of the Academy of Finland. Additional financial support came from grant BFU2017-83934-P (M.T.-S.; Ministerio de Economía y Competitividad, Spain; co-funded with EU funds/FEDER Program), research funds from the IVIRMA International Award in Reproductive Medicine (M.T.-S.), and EFSD Albert Renold Fellowship Programme (S.T.R.). The authors have no conflicts of interest to declare in relation to the contents of this work. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Suvi T Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland
| | - Francisco Gaytan
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Andrea Usseglio Gaudi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Inmaculada Velasco
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Krisztina Kukoricza
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Cecilia Perdices-Lopez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Delphine Franssen
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Ipek Guler
- Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain
| | - Arfa Mehmood
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Manuel Tena-Sempere
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Turku Center for Disease Modeling, Turku, Finland.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain
| |
Collapse
|
16
|
Franssen D, Svingen T, Lopez Rodriguez D, Van Duursen M, Boberg J, Parent AS. A Putative Adverse Outcome Pathway Network for Disrupted Female Pubertal Onset to Improve Testing and Regulation of Endocrine Disrupting Chemicals. Neuroendocrinology 2022; 112:101-114. [PMID: 33640887 DOI: 10.1159/000515478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
The average age for pubertal onset in girls has declined over recent decades. Epidemiological studies in humans and experimental studies in animals suggest a causal role for endocrine disrupting chemicals (EDCs) that are present in our environment. Of concern, current testing and screening regimens are inadequate in identifying EDCs that may affect pubertal maturation, not least because they do not consider early-life exposure. Also, the causal relationship between EDC exposure and pubertal timing is still a matter of debate. To address this issue, we have used current knowledge to elaborate a network of putative adverse outcome pathways (pAOPs) to identify how chemicals can affect pubertal onset. By using the AOP framework, we highlight current gaps in mechanistic understanding that need to be addressed and simultaneously point towards events causative of pubertal disturbance that could be exploited for alternative test methods. We propose 6 pAOPs that could explain the disruption of pubertal timing by interfering with the central hypothalamic trigger of puberty, GnRH neurons, and by so doing highlight specific modes of action that could be targeted for alternative test method development.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Majorie Van Duursen
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, CHU de Liège, Liège, Belgium
| |
Collapse
|
17
|
Göcz B, Takács S, Skrapits K, Rumpler É, Solymosi N, Póliska S, Colledge WH, Hrabovszky E, Sárvári M. Estrogen differentially regulates transcriptional landscapes of preoptic and arcuate kisspeptin neuron populations. Front Endocrinol (Lausanne) 2022; 13:960769. [PMID: 36093104 PMCID: PMC9454256 DOI: 10.3389/fendo.2022.960769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Kisspeptin neurons residing in the rostral periventricular area of the third ventricle (KPRP3V) and the arcuate nucleus (KPARC) mediate positive and negative estrogen feedback, respectively. Here, we aim to compare transcriptional responses of KPRP3V and KPARC neurons to estrogen. Transgenic mice were ovariectomized and supplemented with either 17β-estradiol (E2) or vehicle. Fluorescently tagged KPRP3V neurons collected by laser-capture microdissection were subjected to RNA-seq. Bioinformatics identified 222 E2-dependent genes. Four genes encoding neuropeptide precursors (Nmb, Kiss1, Nts, Penk) were robustly, and Cartpt was subsignificantly upregulated, suggesting putative contribution of multiple neuropeptides to estrogen feedback mechanisms. Using overrepresentation analysis, the most affected KEGG pathways were neuroactive ligand-receptor interaction and dopaminergic synapse. Next, we re-analyzed our previously obtained KPARC neuron RNA-seq data from the same animals using identical bioinformatic criteria. The identified 1583 E2-induced changes included suppression of many neuropeptide precursors, granins, protein processing enzymes, and other genes related to the secretory pathway. In addition to distinct regulatory responses, KPRP3V and KPARC neurons exhibited sixty-two common changes in genes encoding three hormone receptors (Ghsr, Pgr, Npr2), GAD-65 (Gad2), calmodulin and its regulator (Calm1, Pcp4), among others. Thirty-four oppositely regulated genes (Kiss1, Vgf, Chrna7, Tmem35a) were also identified. The strikingly different transcriptional responses in the two neuron populations prompted us to explore the transcriptional mechanism further. We identified ten E2-dependent transcription factors in KPRP3V and seventy in KPARC neurons. While none of the ten transcription factors interacted with estrogen receptor-α, eight of the seventy did. We propose that an intricate, multi-layered transcriptional mechanism exists in KPARC neurons and a less complex one in KPRP3V neurons. These results shed new light on the complexity of estrogen-dependent regulatory mechanisms acting in the two functionally distinct kisspeptin neuron populations and implicate additional neuropeptides and mechanisms in estrogen feedback.
Collapse
Affiliation(s)
- Balázs Göcz
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, ; Miklós Sárvári, ; Balázs Göcz,
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - William H. Colledge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, ; Miklós Sárvári, ; Balázs Göcz,
| | - Miklós Sárvári
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- *Correspondence: Erik Hrabovszky, ; Miklós Sárvári, ; Balázs Göcz,
| |
Collapse
|
18
|
Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala. Metabolites 2021; 11:metabo11120837. [PMID: 34940594 PMCID: PMC8708157 DOI: 10.3390/metabo11120837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022] Open
Abstract
Body energy and metabolic homeostasis are exquisitely controlled by multiple, often overlapping regulatory mechanisms, which permit the tight adjustment between fuel reserves, internal needs, and environmental (e.g., nutritional) conditions. As such, this function is sensitive to and closely connected with other relevant bodily systems, including reproduction and gonadal function. The aim of this mini-review article is to summarize the most salient experimental data supporting a role of the amygdala as a key brain region for emotional learning and behavior, including reward processing, in the physiological control of feeding and energy balance. In particular, a major focus will be placed on the putative interplay between reproductive signals and amygdala pathways, as it pertains to the control of metabolism, as complementary, extrahypothalamic circuit for the integral control of energy balance and gonadal function.
Collapse
|
19
|
Vazquez MJ, Daza-Dueñas S, Tena-Sempere M. Emerging Roles of Epigenetics in the Control of Reproductive Function: Focus on Central Neuroendocrine Mechanisms. J Endocr Soc 2021; 5:bvab152. [PMID: 34703958 PMCID: PMC8533971 DOI: 10.1210/jendso/bvab152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Reproduction is an essential function for perpetuation of the species. As such, it is controlled by sophisticated regulatory mechanisms that allow a perfect match between environmental conditions and internal cues to ensure adequate pubertal maturation and achievement of reproductive capacity. Besides classical genetic regulatory events, mounting evidence has documented that different epigenetic mechanisms operate at different levels of the reproductive axis to finely tune the development and function of this complex neuroendocrine system along the lifespan. In this mini-review, we summarize recent evidence on the role of epigenetics in the control of reproduction, with special focus on the modulation of the central components of this axis. Particular attention will be paid to the epigenetic control of puberty and Kiss1 neurons because major developments have taken place in this domain recently. In addition, the putative role of central epigenetic mechanisms in mediating the influence of nutritional and environmental cues on reproductive function will be discussed.
Collapse
Affiliation(s)
- Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain.,Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| |
Collapse
|
20
|
Lopez-Rodriguez D, Franssen D, Heger S, Parent AS. Endocrine-disrupting chemicals and their effects on puberty. Best Pract Res Clin Endocrinol Metab 2021; 35:101579. [PMID: 34563408 DOI: 10.1016/j.beem.2021.101579] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual maturation in humans is characterized by a unique individual variability. Pubertal onset is a highly heritable polygenic trait but it is also affected by environmental factors such as obesity or endocrine disrupting chemicals. The last 30 years have been marked by a constant secular trend toward earlier age at onset of puberty in girls and boys around the world. More recent data, although more disputed, suggest an increased incidence in idiopathic central precocious puberty. Such trends point to a role for environmental factors in pubertal changes. Animal data suggest that the GnRH-neuronal network is highly sensitive to endocrine disruption during development. This review focuses on the most recent data regarding secular trend in pubertal timing as well as potential new epigenetic mechanisms explaining the developmental and transgenerational effects of endocrine disrupting chemicals on pubertal timing.
Collapse
Affiliation(s)
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium
| | - Sabine Heger
- Children's Hospital Bult, Janusz-Korczak-Allee 12, 30173, Hannover, Germany
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium; Department of Pediatrics, University Hospital Liège, Belgium.
| |
Collapse
|
21
|
Currin L, Baldassarre H, Bordignon V. In Vitro Production of Embryos from Prepubertal Holstein Cattle and Mediterranean Water Buffalo: Problems, Progress and Potential. Animals (Basel) 2021; 11:2275. [PMID: 34438733 PMCID: PMC8388507 DOI: 10.3390/ani11082275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Abstract
Laparoscopic ovum pick-up (LOPU) coupled with in vitro embryo production (IVEP) in prepubertal cattle and buffalo accelerates genetic gain. This article reviews LOPU-IVEP technology in prepubertal Holstein Cattle and Mediterranean Water Buffalo. The recent expansion of genomic-assisted selection has renewed interest and demand for prepubertal LOPU-IVEP schemes; however, low blastocyst development rates has constrained its widespread implementation. Here, we present an overview of the current state of the technology, limitations that persist and suggest possible solutions to improve its efficiency, with a focus on gonadotropin stimulations strategies to prime oocytes prior to follicular aspiration, and IVEP procedures promoting growth factor metabolism and limiting oxidative and endoplasmic reticulum stress.
Collapse
Affiliation(s)
| | | | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.C.); (H.B.)
| |
Collapse
|
22
|
Liu J, Qu T, Li Z, Yu L, Zhang S, Yuan D, Wu H. Serum kisspeptin levels in polycystic ovary syndrome: A meta-analysis. J Obstet Gynaecol Res 2021; 47:2157-2165. [PMID: 33765692 DOI: 10.1111/jog.14767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/21/2021] [Accepted: 03/10/2021] [Indexed: 11/28/2022]
Abstract
AIM To clarify the association of serum kisspeptin levels in women with polycystic ovary syndrome (PCOS) by meta-analysis. METHODS Two English databases and two Chinese databases were searched for the relationship between kisspeptin and PCOS published from 2009. After the studies screening according to specific principles, we used STATA 12.0 for meta-analysis. Standardized mean difference (SMD) and its 95% confidence intervals (95% CIs) were used as the effect size and STATA 12.0 software was performed by this meta-analysis. RESULTS Nine articles were included in the end, with a total of 1282 participants (699 patients and 583 controls). Heterogeneity between studies was statistically significant. Therefore, the random effects model was used to combine the effects. Meta-analysis showed statistically significant differences in serum kisspeptin levels between the PCOS patients and controls (SMD = 0.57, 95% CI [0.32, 0.82]), which indicated that there is a strong association between serum kisspeptin levels and PCOS. The source of high heterogeneity between the inclusion studies (I2 = 73.2%) might be due to the small sample size. The larger variation of kisspeptin concentration might be caused by different diagnosis criteria of PCOS and short half-time period of kisspeptin combined with nonstandard testing process. CONCLUSION Serum kisspeptin levels in PCOS patients were higher than non-PCOS patients. It is a hint to indicate us that kisspeptin might be an independent biomarker of PCOS patients.
Collapse
Affiliation(s)
- Jing Liu
- Department of Reproductive Medicine, Xi'nan Gynecological Hospital, Chengdu, China
| | - Ting Qu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu, China
| | - Zhiyi Li
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Linlin Yu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Sujuan Zhang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, Chengdu, China
| | - Dongzhi Yuan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Haiyan Wu
- Department of Pharmacology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Korf HW, Møller M. Arcuate nucleus, median eminence, and hypophysial pars tuberalis. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:227-251. [PMID: 34225932 DOI: 10.1016/b978-0-12-820107-7.00015-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The arcuate nucleus (ARC) is located in the mediobasal hypothalamus and forms a morphological and functional entity with the median eminence (ME), the ARC-ME. The ARC comprises several distinct types of neurons controlling prolactin release, food intake, and metabolism as well as reproduction and onset of puberty. The ME lacks a blood-brain barrier and provides an entry for peripheral signals (nutrients, leptin, ghrelin). ARC neurons are adjacent to the wall of the third ventricle. This facilitates the exchange of signals from and to the cerebrospinal fluid. The ventricular wall is composed of tanycytes that serve different functions. Axons of ARC neurons contribute to the tuberoinfundibular tract terminating in the ME on the hypophysial portal vessels (HPV) and establish one of the neurohumoral links between the hypothalamus and the pituitary. ARC neurons are reciprocally connected with several other hypothalamic nuclei, the brainstem, and reward pathways. The hypophysial pars tuberalis (PT) is attached to the ME and the HPV. The PT, an important interface of the neuroendocrine system, is mandatory for the control of seasonal functions. This contribution provides an update of our knowledge about the ARC-ME complex and the PT which, inter alia, is needed to understand the pathophysiology of metabolic diseases and reproduction.
Collapse
Affiliation(s)
- Horst-Werner Korf
- Center for Anatomy and Brain Research, Institute for Anatomy, Düsseldorf, Germany.
| | - Morten Møller
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Garcia-Galiano D, Cara AL, Tata Z, Allen SJ, Myers MG, Schipani E, Elias CF. ERα Signaling in GHRH/Kiss1 Dual-Phenotype Neurons Plays Sex-Specific Roles in Growth and Puberty. J Neurosci 2020; 40:9455-9466. [PMID: 33158965 PMCID: PMC7724138 DOI: 10.1523/jneurosci.2069-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Gonadal steroids modulate growth hormone (GH) secretion and the pubertal growth spurt via undefined central pathways. GH-releasing hormone (GHRH) neurons express estrogen receptor α (ERα) and androgen receptor (AR), suggesting changing levels of gonadal steroids during puberty directly modulate the somatotropic axis. We generated mice with deletion of ERα in GHRH cells (GHRHΔERα), which displayed reduced body length in both sexes. Timing of puberty onset was similar in both groups, but puberty completion was delayed in GHRHΔERα females. Lack of AR in GHRH cells (GHRHΔAR mice) induced no changes in body length, but puberty completion was also delayed in females. Using a mouse model with two reporter genes, we observed that, while GHRHtdTom neurons minimally colocalize with Kiss1hrGFP in prepubertal mice, ∼30% of GHRH neurons coexpressed both reporter genes in adult females, but not in males. Developmental analysis of Ghrh and Kiss1 expression suggested that a subpopulation of ERα neurons in the arcuate nucleus of female mice undergoes a shift in phenotype, from GHRH to Kiss1, during pubertal transition. Our findings demonstrate that direct actions of gonadal steroids in GHRH neurons modulate growth and puberty and indicate that GHRH/Kiss1 dual-phenotype neurons play a sex-specific role in the crosstalk between the somatotropic and gonadotropic axes during pubertal transition.SIGNIFICANCE STATEMENT Late maturing adolescents usually show delayed growth and bone age. At puberty, gonadal steroids have stimulatory effects on the activation of growth and reproductive axes, but the existence of gonadal steroid-sensitive neuronal crosstalk remains undefined. Moreover, the neural basis for the sex differences observed in the clinical arena is unknown. Lack of ERα in GHRH neurons disrupts growth in both sexes and causes pubertal delay in females. Deletion of androgen receptor in GHRH neurons only delayed female puberty. In adult females, not males, a subset of GHRH neurons shift phenotype to start producing Kiss1. Thus, direct estrogen action in GHRH/Kiss1 dual-phenotype neurons modulates growth and puberty and may orchestrate the sex differences in endocrine function observed during pubertal transition.
Collapse
Affiliation(s)
| | | | - Zachary Tata
- Department of Orthopedic Surgery, Medicine, and Cell and Developmental Biology
| | | | - Martin G Myers
- Department of Molecular and Integrative Physiology
- Department of Internal Medicine Division of Metabolism, Endocrinology and Diabetes
| | - Ernestina Schipani
- Department of Orthopedic Surgery, Medicine, and Cell and Developmental Biology
| | - Carol F Elias
- Department of Molecular and Integrative Physiology
- Department of Gynecology and Obstetrics, University of Michigan, Ann Arbor, Michigan 48109-5622
| |
Collapse
|
25
|
Central Ceramide Signaling Mediates Obesity-Induced Precocious Puberty. Cell Metab 2020; 32:951-966.e8. [PMID: 33080217 DOI: 10.1016/j.cmet.2020.10.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 07/30/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022]
Abstract
Childhood obesity, especially in girls, is frequently bound to earlier puberty, which is linked to higher disease burden later in life. The mechanisms underlying this association remain elusive. Here we show that brain ceramides participate in the control of female puberty and contribute to its alteration in early-onset obesity in rats. Postnatal overweight caused earlier puberty and increased hypothalamic ceramide content, while pharmacological activation of ceramide synthesis mimicked the pubertal advancement caused by obesity, specifically in females. Conversely, central blockade of de novo ceramide synthesis delayed puberty and prevented the effects of the puberty-activating signal, kisspeptin. This phenomenon seemingly involves a circuit encompassing the paraventricular nucleus (PVN) and ovarian sympathetic innervation. Early-onset obesity enhanced PVN expression of SPTLC1, a key enzyme for ceramide synthesis, and advanced the maturation of the ovarian noradrenergic system. In turn, obesity-induced pubertal precocity was reversed by virogenetic suppression of SPTLC1 in the PVN. Our data unveil a pathway, linking kisspeptin, PVN ceramides, and sympathetic ovarian innervation, as key for obesity-induced pubertal precocity.
Collapse
|
26
|
Romero-Ruiz A, Skorupskaite K, Gaytan F, Torres E, Perdices-Lopez C, Mannaerts BM, Qi S, Leon S, Manfredi-Lozano M, Lopez-Rodriguez C, Avendaño MS, Sanchez-Garrido MA, Vazquez MJ, Pinilla L, van Duin M, Kohout TA, Anderson RA, Tena-Sempere M. Kisspeptin treatment induces gonadotropic responses and rescues ovulation in a subset of preclinical models and women with polycystic ovary syndrome. Hum Reprod 2020; 34:2495-2512. [PMID: 31820802 PMCID: PMC6936723 DOI: 10.1093/humrep/dez205] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/25/2019] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Can kisspeptin treatment induce gonadotrophin responses and ovulation in preclinical models and anovulatory women with polycystic ovary syndrome (PCOS)? SUMMARY ANSWER Kisspeptin administration in some anovulatory preclinical models and women with PCOS can stimulate reproductive hormone secretion and ovulation, albeit with incomplete efficacy. WHAT IS KNOWN ALREADY PCOS is a prevalent, heterogeneous endocrine disorder, characterized by ovulatory dysfunction, hyperandrogenism and deregulated gonadotrophin secretion, in need of improved therapeutic options. Kisspeptins (encoded by Kiss1) are master regulators of the reproductive axis, acting mainly at GnRH neurons, with kisspeptins being an essential drive for gonadotrophin-driven ovarian follicular maturation and ovulation. Altered Kiss1 expression has been found in rodent models of PCOS, although the eventual pathophysiological role of kisspeptins in PCOS remains unknown. STUDY DESIGN, SIZE, DURATION Gonadotrophin and ovarian/ovulatory responses to kisspeptin-54 (KP-54) were evaluated in three preclinical models of PCOS, generated by androgen exposures at different developmental windows, and a pilot exploratory cohort of anovulatory women with PCOS. PARTICIPANTS/MATERIALS, SETTING, METHODS Three models of PCOS were generated by exposure of female rats to androgens at different periods of development: PNA (prenatal androgenization; N = 20), NeNA (neonatal androgenization; N = 20) and PWA (post-weaning androgenization; N = 20). At adulthood (postnatal day 100), rats were subjected to daily treatments with a bolus of KP-54 (100 μg/kg, s.c.) or vehicle for 11 days (N = 10 per model and treatment). On Days 1, 4, 7 and 11, LH and FSH responses were assessed at different time-points within 4 h after KP-54 injection, while ovarian responses, in terms of follicular maturation and ovulation, were measured at the end of the treatment. In addition, hormonal (gonadotrophin, estrogen and inhibin B) and ovulatory responses to repeated KP-54 administration, at doses of 6.4-12.8 nmol/kg, s.c. bd for 21 days, were evaluated in a pilot cohort of anovulatory women (N = 12) diagnosed with PCOS, according to the Rotterdam criteria. MAIN RESULTS AND THE ROLE OF CHANCE Deregulated reproductive indices were detected in all PCOS models: PNA, NeNA and PWA. Yet, anovulation was observed only in NeNA and PWA rats. However, while anovulatory NeNA rats displayed significant LH and FSH responses to KP-54 (P < 0.05), which rescued ovulation, PWA rats showed blunted LH secretion after repeated KP-54 injection and failed to ovulate. In women with PCOS, KP-54 resulted in a small rise in LH (P < 0.05), with an equivalent elevation in serum estradiol levels (P < 0.05). Two women showed growth of a dominant follicle with subsequent ovulation, one woman displayed follicle growth but not ovulation and desensitization was observed in another patient. No follicular response was detected in the other women. LIMITATIONS, REASONS FOR CAUTION While three different preclinical PCOS models were used in order to capture the heterogeneity of clinical presentations of the syndrome, it must be noted that rat models recapitulate many but not all the features of this condition. Additionally, our pilot study was intended as proof of principle, and the number of participants is low, but the convergent findings in preclinical and clinical studies reinforce the validity of our conclusions. WIDER IMPLICATIONS OF THE FINDINGS Our first-in-rodent and -human studies demonstrate that KP-54 administration in anovulatory preclinical models and women with PCOS can stimulate reproductive hormone secretion and ovulation, albeit with incomplete efficacy. As our rat models likely reflect the diversity of PCOS phenotypes, our results argue for the need of personalized management of anovulatory dysfunction in women with PCOS, some of whom may benefit from kisspeptin-based treatments. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by research agreements between Ferring Research Institute and the Universities of Cordoba and Edinburgh. K.S. was supported by the Wellcome Trust Scottish Translational Medicine and Therapeutics Initiative (STMTI). Some of this work was undertaken in the MRC Centre for Reproductive Health which is funded by the MRC Centre grant MR/N022556/1. M.T.-S. is a member of CIBER Fisiopatología de la Obesidad y Nutrición, which is an initiative of Instituto de Salud Carlos III. Dr Mannaerts is an employee of Ferring International PharmaScience Center (Copenhagen, Denmark), and Drs Qi, van Duin and Kohout are employees of the Ferring Research Institute (San Diego, USA). Dr Anderson and Dr Tena-Sempere were recipients of a grant support from the Ferring Research Institute, and Dr Anderson has undertaken consultancy work and received speaker fees outside this study from Merck, IBSA, Roche Diagnostics, NeRRe Therapeutics and Sojournix Inc. Dr Skorupskaite was supported by the Wellcome Trust through the Scottish Translational Medicine and Therapeutics Initiative 102419/Z/13/A. The other authors have no competing interest.
Collapse
Affiliation(s)
- A Romero-Ruiz
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - K Skorupskaite
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - F Gaytan
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - E Torres
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - C Perdices-Lopez
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - B M Mannaerts
- Ferring International PharmaScience Center, Copenhagen, Denmark
| | - S Qi
- Ferring Research Institute, San Diego, CA 92121, USA
| | - S Leon
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M Manfredi-Lozano
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - C Lopez-Rodriguez
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M S Avendaño
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M A Sanchez-Garrido
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain
| | - M J Vazquez
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - L Pinilla
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - M van Duin
- Ferring Research Institute, San Diego, CA 92121, USA
| | - T A Kohout
- Ferring Research Institute, San Diego, CA 92121, USA
| | - R A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - M Tena-Sempere
- Department of Cell Biology, Physiology & Immunology, University of Córdoba, 14004 Córdoba, Spain.,Maimónides Institute of Biomedical Research of Córdoba (IMIBIC)/Reina Sofia University Hospital, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 14004 Córdoba, Spain.,FiDiPro Program, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
27
|
Ruohonen ST, Poutanen M, Tena-Sempere M. Role of kisspeptins in the control of the hypothalamic-pituitary-ovarian axis: old dogmas and new challenges. Fertil Steril 2020; 114:465-474. [PMID: 32771258 DOI: 10.1016/j.fertnstert.2020.06.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
In humans and other mammals, a hallmark of female reproductive function is the capacity to episodically release fertilizable oocytes under the precise control of a cascade of hormonal regulators that interplay in a cyclic manner within the hypothalamic-pituitary-ovarian (HPO) axis. Although the basic elements of this neurohormonal system were disclosed several decades before, a major breakthrough in our understanding of how the HPO axis is controlled during the lifespan came in the first decade of the 21st century, when the reproductive dimension of kisspeptins was disclosed by seminal studies documenting that genetic inactivation of the kisspeptin pathway is linked to central hypogonadism and infertility. Kisspeptins are a family of peptides, encoded by the Kiss1 gene, that operate via the surface receptor, Gpr54 (also called Kiss1r), to regulate virtually all aspects of reproduction in both sexes. The primary site of action of kisspeptins is the hypothalamus, where Kiss1 neurons engage in the precise control of the pulsatile release of GnRH to modulate gonadotropin secretion and, thereby, ovarian function. Nonetheless, additional sites of action of kisspeptins within the HPO axis, including the pituitary and the ovary, have been proposed; yet, the physiologic relevance of such extrahypothalamic actions of kisspeptins is still a matter of debate. In this review, we summarize the current consensus knowledge and open questions on the sites of action, physiologic roles, and eventual therapeutic implications of kisspeptins in the control of the female reproductive axis.
Collapse
Affiliation(s)
- Suvi T Ruohonen
- Research Center for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Turku, Finland
| | - Matti Poutanen
- Research Center for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Turku, Finland
| | - Manuel Tena-Sempere
- Research Center for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland; Turku Center for Disease Modeling, Turku, Finland; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba and Hospital Universitario Reina Sofia, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain.
| |
Collapse
|
28
|
Schmidt S. Bisphenol A and Puberty Onset in Female Mice: Developmental Effects of Low-Dose Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:84001. [PMID: 32779936 PMCID: PMC7418653 DOI: 10.1289/ehp6574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
|
29
|
Wen L, Lin W, Li Q, Chen G, Wen J. Effect of Sleeve Gastrectomy on Kisspeptin Expression in the Hypothalamus of Rats with Polycystic Ovary Syndrome. Obesity (Silver Spring) 2020; 28:1117-1128. [PMID: 32347662 PMCID: PMC7317914 DOI: 10.1002/oby.22795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The purpose of this study was to determine changes in the expression levels of kisspeptin-1 (Kiss1) in the hypothalamus during the development of polycystic ovary syndrome (PCOS) and after treatment with sleeve gastrectomy (SG). METHODS This study used chronic dehydroepiandrosterone (DHEA) alone and DHEA plus a high-fat diet (HFD) to generate a PCOS rat model. Subsequently, SG was performed in the animals with PCOS and the effects on glucose tolerance, insulin sensitivity, sex hormones, estrous cyclicity, adiponectin, and Kiss1 expression in the hypothalamus were investigated. RESULTS Impaired glucose tolerance, decreased insulin sensitivity, reduced adiponectin levels, disrupted estrous cyclicity, and elevated sex hormone levels associated with PCOS models were restored to normal following SG. In addition, SG was able to restore the increase in the expression of Kiss1 mRNA and Kiss1-positive neurons in the arcuate nucleus of rats with PCOS. Interestingly, although SG did not result in a significant loss of body weight in rats administered DHEA under a chow diet, it resulted in comparable metabolic improvements and Kiss1 expression in rats that had been administered DHEA along with an HFD. CONCLUSIONS The recovery of normal levels of Kiss1 expression in the hypothalamus after SG in this study suggests that Kiss1 might play an important role in the development of PCOS and its improvement by SG.
Collapse
Affiliation(s)
- Lingying Wen
- Department of Endocrinology, Key Laboratory of EndocrinologyFujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
- Department of NeonatologyThe First Affiliated Hospital of Fujian Medical UniversityLongyanChina
| | - Wei Lin
- Department of Endocrinology, Key Laboratory of EndocrinologyFujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Qian Li
- Department of Endocrinology, Key Laboratory of EndocrinologyFujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Gang Chen
- Department of Endocrinology, Key Laboratory of EndocrinologyFujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Junping Wen
- Department of Endocrinology, Key Laboratory of EndocrinologyFujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| |
Collapse
|
30
|
Kadokawa H. Discovery of new receptors regulating luteinizing hormone and follicle-stimulating hormone secretion by bovine gonadotrophs to explore a new paradigm for mechanisms regulating reproduction. J Reprod Dev 2020; 66:291-297. [PMID: 32249236 PMCID: PMC7470908 DOI: 10.1262/jrd.2020-012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies in the 1960s and 1970s have reported that both gonadotropin-releasing hormone (GnRH) and estradiol-activated nuclear estrogen receptors regulate gonadotropin
secretion in women. However, I had previously reported that gonadotroph function is regulated by complex crosstalk between several membrane receptors. RNA-seq had previously
revealed 259 different receptor genes expressed in the anterior pituitary of heifers. However, the biological roles of most of these receptors remain unknown. I identified four new
receptors of interest: G protein-coupled receptor 30 (GPR30), anti-Mullerian hormone (AMH) receptor type 2 (AMHR2), and G protein-coupled receptors 61 and 153 (GPR61 and GPR153).
GPR30 rapidly (within a few minutes) mediates picomolar, but not nanomolar, levels of estradiol to suppress GnRH-induced luteinizing hormone (LH) secretion from bovine
gonadotrophs, without decreasing mRNA expressions of the LHα, LHβ, or follicle-stimulating hormone (FSH) β subunits. GPR30 is activated by other endogenous estrogens, estrone and
estriol. Moreover, GPR30 activation by zearalenone, a nonsteroidal mycoestrogen, suppresses LH secretion. AMHR2, activated by AMH, stimulates LH and FSH secretion, thus regulating
gonadotrophs, where other TGF-β family members, including inhibin and activin, potentially affect FSH secretion. I also show that GPR61, activated by its ligand (recently
discovered) significantly alters LH and FSH secretion. GPR61, GPR153, and AMHR2 co-localize with the GnRH receptor in unevenly dispersed areas of the bovine gonadotroph cell
surface, probably lipid rafts. The findings summarized in this review reveal a new paradigm regarding the mechanisms regulating reproduction via novel receptors expressed on bovine
gonadotrophs.
Collapse
Affiliation(s)
- Hiroya Kadokawa
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
31
|
de Miera CS, Beymer M, Routledge K, Krol E, Hazlerigg DG, Simonneaux V. Photoperiodic regulation in a wild-derived mouse strain. J Exp Biol 2020:jeb.217687. [PMID: 34005441 DOI: 10.1242/jeb.217687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/29/2022]
Abstract
Mus musculus molossinus (MSM) is a wild-derived mouse strain which maintains the ability to synthesize melatonin in patterns reflecting the ambient photoperiod. The objective of this study was to characterize the effects of photoperiodic variation on metabolic and reproductive traits, and the related changes in pituitary-hypothalamic gene expression in MSM mice. MSM mice were kept in long (LP) or short photoperiod (SP) for 6 weeks. Our results demonstrate that MSM mice kept in LP, as compared to mice kept in SP, display higher expression of genes encoding thyrotropin (TSH) in the pars tuberalis, thyroid hormone deiodinase 2 (dio2) in the tanycytes, RFamide-related peptide (RFRP3) in the hypothalamus and lower expression of dio3 in the tanycytes, along with larger body and reproductive organ mass. Additionally, to assess the effects of the gestational photoperiodic environment on the expression of these genes, we kept MSM mice in LP or SP from gestation and studied offspring. We show that the gestational photoperiod affects the TSH/dio pathway in newborn MSM mice in a similar way to adults. This result indicates a transgenerational effect of photoperiod from the mother to the fetus in utero. Overall, these results indicate that photoperiod can influence neuroendocrine regulation in a melatonin-proficient mouse strain, in a manner similar that documented in other seasonal rodent species. MSM mice may therefore become a useful model for research into the molecular basis of photoperiodic regulation of seasonal biology.
Collapse
Affiliation(s)
- Cristina Sáenz de Miera
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, 67000, Strasbourg, France
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Matthew Beymer
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, 67000, Strasbourg, France
| | - Kevin Routledge
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Elżbieta Krol
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - David G Hazlerigg
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economy, University of Tromsø, 9037 Tromsø, Norway
| | - Valerie Simonneaux
- Institute for Cellular and Integrative Neuroscience, University of Strasbourg, 67000, Strasbourg, France
| |
Collapse
|
32
|
Li Y, Cao Y, Wang J, Fu S, Cheng J, Ma L, Zhang Q, Guo W, Kan X, Liu J. Kp-10 promotes bovine mammary epithelial cell proliferation by activating GPR54 and its downstream signaling pathways. J Cell Physiol 2019; 235:4481-4493. [PMID: 31621904 DOI: 10.1002/jcp.29325] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
It has been reported that the proliferation and apoptosis of mammary epithelial cells affect milk production. Therefore, ensuring adequate mammary epithelial cells is expected to enhance milk production. This study is devoted to studying the effects of kisspeptin-10 (Kp-10), a peptide hormone composed of 10 amino acids, on bovine mammary epithelial cell (bMEC) proliferation and exploring the underlying mechanism of its action. bMECs were treated with various concentrations of Kp-10 (1, 10, 100, and 1,000 nM), and 100 nM Kp-10 promoted the proliferation of the bMECs. Kp-10 promoted the cell cycle transition from G1 to the S and G2 phases, increased the protein levels of Cyclin D1 and Cyclin D3, and reduced the expression levels of the p21 gene. This study also showed that inhibition of G protein-coupled receptor 54 (GPR54), AKT, mTOR, and ERK1/2 reduced the proliferation of the bMECs that had been induced by Kp-10. In addition, Kp-10 decreased the complexes formed by Rb and E2F1 and increased the expression levels of the E2F1 target genes. These results indicate that Kp-10 promotes bMEC proliferation by activating GPR54 and its downstream signaling pathways.
Collapse
Affiliation(s)
- Yanwei Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jiaxin Wang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ji Cheng
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lijun Ma
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Qing Zhang
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xingchi Kan
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
33
|
Ozaki S, Higo S, Iwata K, Saeki H, Ozawa H. Region-specific changes in brain kisspeptin receptor expression during estrogen depletion and the estrous cycle. Histochem Cell Biol 2019; 152:25-34. [PMID: 30671658 DOI: 10.1007/s00418-018-01767-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2018] [Indexed: 11/28/2022]
Abstract
Kisspeptin acts as a potent neuropeptide regulator of reproduction through modulation of the hypothalamic-pituitary-gonadal axis. Previous studies revealed sex differences in brain expression patterns as well as regulation of expression by estrogen. Alternatively, sex differences and estrogen regulation of the kisspeptin receptor (encoded by Kiss1r) have not been examined at cellular resolution. In the current study, we examined whether Kiss1r mRNA expression also exhibits estrogen sensitivity and sex-dependent differences using in situ hybridization. We compared Kiss1r mRNA expression between ovariectomized (OVX) rats and estradiol (E2)-replenished OVX rats to examine estrogen sensitivity, and compared expression between gonadally intact male rats and female rats in diestrus or proestrus to examine sex differences. In OVX rats, E2 replenishment significantly reduced Kiss1r expression specifically in the hypothalamic arcuate nucleus (ARC). A difference in Kiss1r expression was also observed between diestrus and proestrus rats in the hypothalamic paraventricular nucleus (PVN), but not in the ARC. Thus, estrogen appears to have region- and context-specific effects on Kiss1r expression. However, immunostaining revealed minimal colocalization of estrogen receptor alpha (ERα) in Kiss1r-expressing neuronal populations of ARC and PVN, indicating indirect or ERα-independent regulation of Kiss1r expression. Surprisingly, unlike the kisspeptin ligand, no sexual dimorphisms were observed in either the brain distribution of Kiss1r expression or in the number of Kiss1r-expressing neurons within enriched brain nuclei. The current study reveals marked differences in regulation between kisspeptin and kisspeptin receptor, and provides an essential foundation for further study of kisspeptin signaling and function in reproduction.
Collapse
Affiliation(s)
- Saeko Ozaki
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8602, Japan.,Department of Dermatology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shimpei Higo
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Kinuyo Iwata
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Hidehisa Saeki
- Department of Dermatology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Sendagi 1-1-5, Bunkyo-ku, Tokyo, 113-8602, Japan.
| |
Collapse
|
34
|
Hill JW, Elias CF. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol Rev 2019; 98:2349-2380. [PMID: 30109817 DOI: 10.1152/physrev.00033.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minimum amount of energy is required for basic physiological processes, such as protein biosynthesis, thermoregulation, locomotion, cardiovascular function, and digestion. However, for reproductive function and survival of the species, extra energy stores are necessary. Production of sex hormones and gametes, pubertal development, pregnancy, lactation, and parental care all require energy reserves. Thus the physiological systems that control energy homeostasis and reproductive function coevolved in mammals to support both individual health and species subsistence. In this review, we aim to gather scientific knowledge produced by laboratories around the world on the role of the brain in integrating metabolism and reproduction. We describe essential neuronal networks, highlighting key nodes and potential downstream targets. Novel animal models and genetic tools have produced substantial advances, but critical gaps remain. In times of soaring worldwide obesity and metabolic dysfunction, understanding the mechanisms by which metabolic stress alters reproductive physiology has become crucial for human health.
Collapse
Affiliation(s)
- Jennifer W Hill
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| | - Carol F Elias
- Center for Diabetes and Endocrine Research, Departments of Physiology and Pharmacology and of Obstetrics and Gynecology, University of Toledo College of Medicine , Toledo, Ohio ; and Departments of Molecular and Integrative Physiology and of Obstetrics and Gynecology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
35
|
Metabolic regulation of female puberty via hypothalamic AMPK-kisspeptin signaling. Proc Natl Acad Sci U S A 2018; 115:E10758-E10767. [PMID: 30348767 DOI: 10.1073/pnas.1802053115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Conditions of metabolic distress, from malnutrition to obesity, impact, via as yet ill-defined mechanisms, the timing of puberty, whose alterations can hamper later cardiometabolic health and even life expectancy. AMP-activated protein kinase (AMPK), the master cellular energy sensor activated in conditions of energy insufficiency, has a major central role in whole-body energy homeostasis. However, whether brain AMPK metabolically modulates puberty onset remains unknown. We report here that central AMPK interplays with the puberty-activating gene, Kiss1, to control puberty onset. Pubertal subnutrition, which delayed puberty, enhanced hypothalamic pAMPK levels, while activation of brain AMPK in immature female rats substantially deferred puberty. Virogenetic overexpression of a constitutively active form of AMPK, selectively in the hypothalamic arcuate nucleus (ARC), which holds a key population of Kiss1 neurons, partially delayed puberty onset and reduced luteinizing hormone levels. ARC Kiss1 neurons were found to express pAMPK, and activation of AMPK reduced ARC Kiss1 expression. The physiological relevance of this pathway was attested by conditional ablation of the AMPKα1 subunit in Kiss1 cells, which largely prevented the delay in puberty onset caused by chronic subnutrition. Our data demonstrate that hypothalamic AMPK signaling plays a key role in the metabolic control of puberty, acting via a repressive modulation of ARC Kiss1 neurons in conditions of negative energy balance.
Collapse
|
36
|
Franssen D, Tena-Sempere M. The kisspeptin receptor: A key G-protein-coupled receptor in the control of the reproductive axis. Best Pract Res Clin Endocrinol Metab 2018; 32:107-123. [PMID: 29678280 DOI: 10.1016/j.beem.2018.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kisspeptin receptor, Kiss1R, also known as Gpr54, is a G protein-coupled receptor (GPCR), deorphanized in 2001, when it was recognized as canonical receptor for the Kiss1-derived peptides, kisspeptins. In 2003, inactivating mutations of Kiss1R gene were first associated to lack of pubertal maturation and hypogonadotropic hypogonadism in humans and rodents. These seminal findings pointed out the previously unsuspected, essential role of Kiss1R and its ligands in control of reproductive maturation and function. This contention has been fully substantiated during the last decade by a wealth of clinical and experimental data, which has documented a fundamental function of the so-called Kiss1/Kiss1R system in the regulation of puberty onset, gonadotropin secretion and ovulation, as well as the metabolic and environmental modulation of fertility. In this review, we provide a succinct summary of some of the most salient facets of Kiss1R, as essential GPCR for the proper maturation and function of the reproductive axis.
Collapse
Affiliation(s)
- Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain; Hospital Universitario Reina Sofia, 14004, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004, Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004, Cordoba, Spain; Hospital Universitario Reina Sofia, 14004, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Cordoba, Spain; FiDiPro Program, Institute of Biomedicine, University of Turku, FIN-20520, Turku, Finland.
| |
Collapse
|
37
|
Avendaño MS, Vazquez MJ, Tena-Sempere M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum Reprod Update 2018; 23:737-763. [PMID: 28961976 DOI: 10.1093/humupd/dmx025] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Puberty is a complex developmental event, controlled by sophisticated regulatory networks that integrate peripheral and internal cues and impinge at the brain centers driving the reproductive axis. The tempo of puberty is genetically determined but is also sensitive to numerous modifiers, from metabolic and sex steroid signals to environmental factors. Recent epidemiological evidence suggests that the onset of puberty is advancing in humans, through as yet unknown mechanisms. In fact, while much knowledge has been gleaned recently on the mechanisms responsible for the control of mammalian puberty, fundamental questions regarding the intimate molecular and neuroendocrine pathways responsible for the precise timing of puberty and its deviations remain unsolved. OBJECTIVE AND RATIONALE By combining data from suitable model species and humans, we aim to provide a comprehensive summary of our current understanding of the neuroendocrine mechanisms governing puberty, with particular focus on its central regulatory pathways, underlying molecular basis and mechanisms for metabolic control. SEARCH METHODS A comprehensive MEDLINE search of articles published mostly from 2003 to 2017 has been carried out. Data from cellular and animal models (including our own results) as well as clinical studies focusing on the pathophysiology of puberty in mammals were considered and cross-referenced with terms related with central neuroendocrine mechanisms, metabolic control and epigenetic/miRNA regulation. OUTCOMES Studies conducted during the last decade have revealed the essential role of novel central neuroendocrine pathways in the control of puberty, with a prominent role of kisspeptins in the precise regulation of the pubertal activation of GnRH neurosecretory activity. In addition, different transmitters, including neurokinin-B (NKB) and, possibly, melanocortins, have been shown to interplay with kisspeptins in tuning puberty onset. Alike, recent studies have documented the role of epigenetic mechanisms, involving mainly modulation of repressors that target kisspeptins and NKB pathways, as well as microRNAs and the related binding protein, Lin28B, in the central control of puberty. These novel pathways provide the molecular and neuroendocrine basis for the modulation of puberty by different endogenous and environmental cues, including nutritional and metabolic factors, such as leptin, ghrelin and insulin, which are known to play an important role in pubertal timing. WIDER IMPLICATIONS Despite recent advancements, our understanding of the basis of mammalian puberty remains incomplete. Complete elucidation of the novel neuropeptidergic and molecular mechanisms summarized in this review will not only expand our knowledge of the intimate mechanisms responsible for puberty onset in humans, but might also provide new tools and targets for better prevention and management of pubertal deviations in the clinical setting.
Collapse
Affiliation(s)
- M S Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, University of Córdoba, Avda. Menéndez Pidal s/n. 14004 Córdoba, Spain.,Hospital Universitario Reina Sofia, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Avda. Menéndez Pidal, s/n, 14004 Córdoba, Spain.,FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| |
Collapse
|
38
|
Kadokawa H, Pandey K, Onalenna K, Nahar A. Reconsidering the roles of endogenous estrogens and xenoestrogens: the membrane estradiol receptor G protein-coupled receptor 30 (GPR30) mediates the effects of various estrogens. J Reprod Dev 2018. [PMID: 29515057 PMCID: PMC6021614 DOI: 10.1262/jrd.2017-153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Estrone (E1) and estriol (E3) are considered “weak” estrogens, which exert suppressive effects through estrogen receptors α and β. However, recent studies have demonstrated that E1 and E3,
as well as estradiol (E2), suppress gonadotropin-releasing hormone-induced luteinizing hormone secretion from bovine gonadotrophs via G-protein-coupled receptor 30, which is expressed in
various reproductive organs. Currently, there is a lack of fundamental knowledge regarding E1 and E3, including their blood levels. In addition, xenoestrogens may remain in the body over
long time periods because of enterohepatic circulation. Therefore, it is time to reconsider the roles of endogenous estrogens and xenoestrogens for reproduction.
Collapse
Affiliation(s)
- Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kiran Pandey
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kereilwe Onalenna
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Asrafun Nahar
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
39
|
Gorkem U, Togrul C, Arslan E, Sargin Oruc A, Buyukkayaci Duman N. Is there a role for kisspeptin in pathogenesis of polycystic ovary syndrome? Gynecol Endocrinol 2018; 34:157-160. [PMID: 28933574 DOI: 10.1080/09513590.2017.1379499] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
AIM To investigate association of kisspeptin levels in infertile women with different ovarian reserve patterns. MATERIALS AND METHODS In this prospective cross-sectional study, 157 participants were recruited. The women were divided into three groups: (i) adequate ovarian reserve (AOR) (n = 57), (ii) high ovarian reserve (PCOS) (n = 60), (iii) diminished ovarian reserve (DOR) (n = 40). Weight, height, waist circumference (WC), hip circumference (HC), body mass index (BMI), waist/hip ratio (WHR) were measured. The blood samples were analyzed for estradiol (E2), follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone (TT), 17-hydroxy progesterone (17OHP), dehydroepiandrosterone sulfate (DHEAS), antimullerian hormone (AMH), kisspeptin measurements. RESULTS FSH concentration was higher and AMH concentration was lower in DOR group (p < .001, p < .001, respectively). The mean LH, TT and DHEAS levels were higher in PCOS group (p = .001, p < .00 and p = .003, respectively). The 17OHP level did not differ among the groups (p = .15). Women with PCOS possessed the highest kisspeptin level (p = .01). The kisspeptin level was negatively correlated with FSH level (r = -0.18, p = .02) and positively correlated with TT and DHEAS levels (r = 0.17, p = .02 and r = 0.23, p = .003, respectively). CONCLUSIONS Women with PCOS had increased serum kisspeptin levels. Kisspeptin concentrations were negatively correlated with serum FSH and positively correlated with serum TT and DHEAS levels.
Collapse
Affiliation(s)
- Umit Gorkem
- a Department of Obstetrics and Gynecology , Hitit University Medical School , Corum , Turkey
| | - Cihan Togrul
- a Department of Obstetrics and Gynecology , Hitit University Medical School , Corum , Turkey
| | - Emine Arslan
- a Department of Obstetrics and Gynecology , Hitit University Medical School , Corum , Turkey
| | - Ayla Sargin Oruc
- b Department of Obstetrics and Gynecology , Ankara Guven Hospital , Ankara , Turkey
| | | |
Collapse
|
40
|
Sanchez-Garrido MA, Ruiz-Pino F, Velasco I, Barroso A, Fernandois D, Heras V, Manfredi-Lozano M, Vazquez MJ, Castellano JM, Roa J, Pinilla L, Tena-Sempere M. Intergenerational Influence of Paternal Obesity on Metabolic and Reproductive Health Parameters of the Offspring: Male-Preferential Impact and Involvement of Kiss1-Mediated Pathways. Endocrinology 2018; 159:1005-1018. [PMID: 29309558 DOI: 10.1210/en.2017-00705] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
Abstract
Obesity and its comorbidities are reaching epidemic proportions worldwide. Maternal obesity is known to predispose the offspring to metabolic disorders, independently of genetic inheritance. This intergenerational transmission has also been suggested for paternal obesity, with a potential negative impact on the metabolic and, eventually, reproductive health of the offspring, likely via epigenetic changes in spermatozoa. However, the neuroendocrine component of such phenomenon and whether paternal obesity sensitizes the offspring to the disturbances induced by high-fat diet (HFD) remain poorly defined. We report in this work the metabolic and reproductive impact of HFD in the offspring from obese fathers, with attention to potential sex differences and alterations of hypothalamic Kiss1 system. Lean and obese male rats were mated with lean virgin female rats; male and female offspring were fed HFD from weaning onward and analyzed at adulthood. The increases in body weight and leptin levels, but not glucose intolerance, induced by HFD were significantly augmented in the male, but not female, offspring from obese fathers. Paternal obesity caused a decrease in luteinizing hormone (LH) levels and exacerbated the drop in circulating testosterone and gene expression of its key biosynthetic enzymes caused by HFD in the male offspring. LH responses to central kisspeptin-10 administration were also suppressed in HFD males from obese fathers. In contrast, paternal obesity did not significantly alter gonadotropin levels in the female offspring fed HFD, although these females displayed reduced LH responses to kisspeptin-10. Our findings suggest that HFD-induced metabolic and reproductive disturbances are exacerbated by paternal obesity preferentially in males, whereas kisspeptin effects are affected in both sexes.
Collapse
Affiliation(s)
- Miguel Angel Sanchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Daniela Fernandois
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Violeta Heras
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Maria Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
| | - Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Juan Manuel Castellano
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Juan Roa
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba, University of Cordoba, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| |
Collapse
|
41
|
Manfredi-Lozano M, Roa J, Tena-Sempere M. Connecting metabolism and gonadal function: Novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol 2018; 48:37-49. [PMID: 28754629 DOI: 10.1016/j.yfrne.2017.07.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 02/08/2023]
Abstract
Albeit essential for perpetuation of species, reproduction is an energy-demanding function that can be adjusted to body metabolic status. Reproductive maturation and function can be suppressed in conditions of energy deficit, but can be altered also in situations of persistent energy excess, e.g., morbid obesity. This metabolic-reproductive integration, of considerable pathophysiological relevance to explain different forms of perturbed puberty and sub/infertility, is implemented by the concerted action of numerous central and peripheral regulators, which impinge at different levels of the hypothalamic-pituitary-gonadal (HPG) axis, permitting a tight fit between nutritional/energy status and gonadal function. We summarize here the major physiological mechanisms whereby nutritional and metabolic cues modulate the maturation and function of the HPG axis. We will focus on recent progress on the major central neuropeptide pathways, including kisspeptins, neurokinin B and the products of POMC and NPY neurons, which convey metabolic information to GnRH neurons, as major hierarchical hub of our reproductive brain.
Collapse
Affiliation(s)
- M Manfredi-Lozano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, INSERM, U1172, Lille, France
| | - J Roa
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.
| | - M Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, 14004 Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
42
|
Ciechanowska M, Łapot M, Paruszewska E, Radawiec W, Przekop F. The influence of dopaminergic system inhibition on biosynthesis of gonadotrophin-releasing hormone (GnRH) and GnRH receptor in anoestrous sheep; hierarchical role of kisspeptin and RFamide-related peptide-3 (RFRP-3). Reprod Fertil Dev 2018; 30:672-680. [DOI: 10.1071/rd16309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/14/2017] [Indexed: 11/23/2022] Open
Abstract
This study aimed to explain how prolonged inhibition of central dopaminergic activity affects the cellular processes governing gonadotrophin-releasing hormone (GnRH) and LH secretion in anoestrous sheep. For this purpose, the study included two experimental approaches: first, we investigated the effect of infusion of sulpiride, a dopaminergic D2 receptor antagonist (D2R), on GnRH and GnRH receptor (GnRHR) biosynthesis in the hypothalamus and on GnRHR in the anterior pituitary using an immunoassay. This analysis was supplemented by analysis of plasma LH levels by radioimmunoassay. Second, we used real-time polymerase chain reaction to analyse the influence of sulpiride on the levels of kisspeptin (Kiss1) mRNA in the preoptic area and ventromedial hypothalamus including arcuate nucleus (VMH/ARC), and RFamide-related peptide-3 (RFRP-3) mRNA in the paraventricular nucleus (PVN) and dorsomedial hypothalamic nucleus. Sulpiride significantly increased plasma LH concentration and the levels of GnRH and GnRHR in the hypothalamic–pituitary unit. The abolition of dopaminergic activity resulted in a significant increase in transcript level of Kiss1 in VMH/ARC and a decrease of RFRP-3 in PVN. The study demonstrates that dopaminergic neurotransmission through D2R is involved in the regulatory pathways of GnRH and GnRHR biosynthesis in the hypothalamic–pituitary unit of anoestrous sheep, conceivably via mechanisms in which Kiss1 and RFRP-3 participate.
Collapse
|
43
|
Horrell ND, Hickmott PW, Saltzman W. Neural Regulation of Paternal Behavior in Mammals: Sensory, Neuroendocrine, and Experiential Influences on the Paternal Brain. Curr Top Behav Neurosci 2018; 43:111-160. [PMID: 30206901 DOI: 10.1007/7854_2018_55] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Across the animal kingdom, parents in many species devote extraordinary effort toward caring for offspring, often risking their lives and exhausting limited resources. Understanding how the brain orchestrates parental care, biasing effort over the many competing demands, is an important topic in social neuroscience. In mammals, maternal care is necessary for offspring survival and is largely mediated by changes in hormones and neuropeptides that fluctuate massively during pregnancy, parturition, and lactation (e.g., progesterone, estradiol, oxytocin, and prolactin). In the relatively small number of mammalian species in which parental care by fathers enhances offspring survival and development, males also undergo endocrine changes concurrent with birth of their offspring, but on a smaller scale than females. Thus, fathers additionally rely on sensory signals from their mates, environment, and/or offspring to orchestrate paternal behavior. Males can engage in a variety of infant-directed behaviors that range from infanticide to avoidance to care; in many species, males can display all three behaviors in their lifetime. The neural plasticity that underlies such stark changes in behavior is not well understood. In this chapter we summarize current data on the neural circuitry that has been proposed to underlie paternal care in mammals, as well as sensory, neuroendocrine, and experiential influences on paternal behavior and on the underlying circuitry. We highlight some of the gaps in our current knowledge of this system and propose future directions that will enable the development of a more comprehensive understanding of the proximate control of parenting by fathers.
Collapse
Affiliation(s)
- Nathan D Horrell
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA
| | - Peter W Hickmott
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, USA.
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
44
|
Venancio JC, Margatho LO, Rorato R, Rosales RRC, Debarba LK, Coletti R, Antunes-Rodrigues J, Elias CF, Elias LLK. Short-Term High-Fat Diet Increases Leptin Activation of CART Neurons and Advances Puberty in Female Mice. Endocrinology 2017; 158:3929-3942. [PMID: 28938405 PMCID: PMC5695829 DOI: 10.1210/en.2017-00452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/30/2017] [Indexed: 11/19/2022]
Abstract
Leptin is a permissive factor for puberty initiation, participating as a metabolic cue in the activation of the kisspeptin (Kiss1)-gonadotropin-releasing hormone neuronal circuitry; however, it has no direct effect on Kiss1 neurons. Leptin acts on hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons, participating in the regulation of energy homeostasis. We investigated the influence of a short-term high-fat diet (HFD) on the effect of leptin on puberty timing. Kiss1-hrGFP female mice received a HFD or regular diet (RD) after weaning at postnatal day (PN)21 and were studied at PN28 and PN32. The HFD increased body weight and plasma leptin concentrations and decreased the age at vaginal opening (HFD, 32 ± 0.53 days; RD, 38 ± 0.67 days). Similar colocalization of neurokinin B and dynorphin in Kiss1-hrGFP neurons of the arcuate nucleus (ARC) was observed between the HFD and RD groups. The HFD increased CART expression in the ARC and Kiss1 messenger RNA expression in the anteroventral periventricular (AVPV)/anterior periventricular (Pe). The HFD also increased the number of ARC CART neurons expressing leptin-induced phosphorylated STAT3 (signal transducer and activator of transcription 3) at PN32. Close apposition of CART fibers to Kiss1-hrGFP neurons was observed in the ARC of both RD- and HFD-fed mice. In conclusion, these data reinforce the notion that a HFD increases kisspeptin expression in the AVPV/Pe and advances puberty initiation. Furthermore, we have demonstrated that the HFD-induced earlier puberty is associated with an increase in CART expression in the ARC. Therefore, these data indicate that CART neurons in the ARC can mediate the effect of leptin on Kiss1 neurons in early puberty induced by a HFD.
Collapse
Affiliation(s)
- Jade Cabestre Venancio
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Lisandra Oliveira Margatho
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Rodrigo Rorato
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | | | - Lucas Kniess Debarba
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Ricardo Coletti
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Lucila Leico K. Elias
- Department of Physiology, Ribeirao Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil
| |
Collapse
|
45
|
Filippou P, Homburg R. Is foetal hyperexposure to androgens a cause of PCOS? Hum Reprod Update 2017; 23:421-432. [PMID: 28531286 DOI: 10.1093/humupd/dmx013] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrinopathy affecting reproductive-aged women. The pathophysiology of this syndrome is still not completely understood but recent evidence suggests that the intra-uterine environment may be a key factor in the pathogenesis of PCOS, in particular, hyperexposure of the foetus to androgens. High concentrations of maternal serum testosterone during pregnancy have been shown to influence behaviour during childhood, the prevalence of autism disorders and anti-Mullerian hormone (AMH) concentrations in adolescence. They are also thought to re-programme the female reproductive axis to induce the features of PCOS in later life: oligo/anovulation, polycystic ovaries, hyperandrogenism and insulin resistance (IR). Support for this developmental theory for the aetiology of PCOS is gathering momentum, following results from first animal studies and now human data, which lend credence to many aspects of this hypothesis. OBJECTIVE AND RATIONALE In this review the recent available evidence is presented to support the hypothesis that hyperandrogenic changes in the intra-uterine environment could play a major part in the aetiological basis of PCOS. SEARCH METHODS An extensive PubMED and MEDline database search was conducted. Relevant studies were identified using a combination of search terms: 'polycystic ovary syndrome', 'PCOS', 'aetiology', 'anti-Mullerian hormone', 'AMH', 'pathogenesis', 'kisspeptin', 'hyperandrogenism', 'insulin resistance', 'metabolic factors', 'placenta', 'developmental hypothesis', 'genetic and epigenetic origins'. OUTCOMES A total of 82 studies were finally included in this review. There is robust evidence that a hyperandrogenic intra-uterine environment 'programmes' the genes concerned with ovarian steroidogenesis, insulin metabolism, gonadotrophin secretion and ovarian follicle development resulting in the development of PCOS in adult life. WIDER IMPLICATIONS Once the evidence supporting this hypothesis has been expanded by additional studies, the door would be open to find innovative treatments and preventative measures for this very prevalent condition. Such measures could considerably ease the human and economic burden that PCOS creates.
Collapse
Affiliation(s)
- Panagiota Filippou
- Homerton Fertility Centre, Homerton University Hospital, London E9 6SR, UK
| | | |
Collapse
|
46
|
Siel D, Loaiza A, Vidal S, Caruffo M, Paredes R, Ramirez G, Lapierre L, Briceño C, Pérez O, Sáenz L. The immune profile induced is crucial to determine the effects of immunocastration over gonadal function, fertility, and GnRH-I expression. Am J Reprod Immunol 2017; 79. [PMID: 29048721 DOI: 10.1111/aji.12772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/18/2017] [Indexed: 01/29/2023] Open
Abstract
PROBLEM Immunocastration or vaccination against the GnRH-I hormone is a promising alternative to reproductive control in different animal species. Given the low immunogenicity of this hormone, the use of adjuvants becomes necessary. METHOD OF STUDY This study evaluated the effects of three adjuvants that induce different immune response profiles over gonadal function, fertility, and expression of GnRH-I. Female mice (n = 6) were vaccinated at days 1 and 30 with a recombinant antigen for immunocastration and different adjuvants that induced preferentially Th1/Th2, Th2, and Th1 immune profiles. RESULTS Th1/Th2 response is the most efficient to block reproductive activity in vaccinated animals, reducing the number of luteal bodies and pre-ovulatory follicles. Th2 and Th1/Th2 responses induced an increase in GnRH-I at the hypothalamus. CONCLUSION The immune profile induced by different adjuvants is essential on the effects over fertility, gonadal function, and hypothalamic GnRH-I expression in immunocastrated animals.
Collapse
Affiliation(s)
- Daniela Siel
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Alexandra Loaiza
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Sonia Vidal
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Mario Caruffo
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
| | - Galia Ramirez
- Department of Preventive Medicine, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Lisette Lapierre
- Department of Preventive Medicine, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Cristóbal Briceño
- Department of Preventive Medicine, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Oliver Pérez
- Immunology Department, Instituto de Ciencias Básicas y Preclínicas "Victoria de Girón", Universidad de Ciencias Médicas de La Habana, La Habana, Cuba
| | - Leonardo Sáenz
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| |
Collapse
|
47
|
Withdrawn: Discovering Genes Essential to the Hypothalamic Regulation of Human Reproduction Using a Human Disease Model: Adjusting to Life in the "-Omics" Era. Endocr Rev 2017. [PMID: 27454361 DOI: 10.1210/er.2015-1045.2016.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neuroendocrine regulation of reproduction is an intricate process requiring the exquisite coordination of an assortment of cellular networks, all converging on the GnRH neurons. These neurons have a complex life history, migrating mainly from the olfactory placode into the hypothalamus, where GnRH is secreted and acts as the master regulator of the hypothalamic-pituitary-gonadal axis. Much of what we know about the biology of the GnRH neurons has been aided by discoveries made using the human disease model of isolated GnRH deficiency (IGD), a family of rare Mendelian disorders that share a common failure of secretion and/or action of GnRH causing hypogonadotropic hypogonadism. Over the last 30 years, research groups around the world have been investigating the genetic basis of IGD using different strategies based on complex cases that harbor structural abnormalities or single pleiotropic genes, endogamous pedigrees, candidate gene approaches as well as pathway gene analyses. Although such traditional approaches, based on well-validated tools, have been critical to establish the field, new strategies, such as next-generation sequencing, are now providing speed and robustness, but also revealing a surprising number of variants in known IGD genes in both patients and healthy controls. Thus, before the field moves forward with new genetic tools and continues discovery efforts, we must reassess what we know about IGD genetics and prepare to hold our work to a different standard. The purpose of this review is to: 1) look back at the strategies used to discover the "known" genes implicated in the rare forms of IGD; 2) examine the strengths and weaknesses of the methodologies used to validate genetic variation; 3)substantiate the role of known genes in the pathophysiology of the disease; and 4) project forward as we embark upon a widening use of these new and powerful technologies for gene discovery. (Endocrine Reviews 36: 603-621, 2015).
Collapse
|
48
|
Maternal photoperiod programs hypothalamic thyroid status via the fetal pituitary gland. Proc Natl Acad Sci U S A 2017; 114:8408-8413. [PMID: 28716942 DOI: 10.1073/pnas.1702943114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In wild mammals, offspring development must anticipate forthcoming metabolic demands and opportunities. Within species, different developmental strategies may be used, dependent on when in the year conception takes place. This phenotypic flexibility is initiated before birth and is linked to the pattern of day length (photoperiod) exposure experienced by the mother during pregnancy. This programming depends on transplacental communication via the pineal hormone melatonin. Here, we show that, in the Siberian hamster (Phodopus sungorus), the programming effect of melatonin is mediated by the pars tuberalis (PT) of the fetal pituitary gland, before the fetal circadian system and autonomous melatonin production is established. Maternal melatonin acts on the fetal PT to control expression of thyroid hormone deiodinases in ependymal cells (tanycytes) of the fetal hypothalamus, and hence neuroendocrine output. This mechanism sets the trajectory of reproductive and metabolic development in pups and has a persistent effect on their subsequent sensitivity to the photoperiod. This programming effect depends on tanycyte sensitivity to thyroid stimulating hormone (TSH), which is dramatically and persistently increased by short photoperiod exposure in utero. Our results define the role of the fetal PT in developmental programming of brain function by maternal melatonin and establish TSH signal transduction as a key substrate for the encoding of internal calendar time from birth to puberty.
Collapse
|
49
|
Chen Y, Liu L, Li Z, Wang D, Li N, Song Y, Guo C, Liu X. Molecular cloning and characterization of kiss1 in Brandt's voles ( Lasiopodomys brandtii ). Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:68-74. [DOI: 10.1016/j.cbpb.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
|
50
|
Han X, Zhou Y, Zeng Y, Sui F, Liu Y, Tan Y, Cao X, Du X, Meng F, Zeng X. Effects of active immunization against GnRH versus surgical castration on hypothalamic-pituitary function in boars. Theriogenology 2017; 97:89-97. [PMID: 28583614 DOI: 10.1016/j.theriogenology.2017.04.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/17/2022]
Abstract
The objective was to compare effects of anti-GnRH immunization (immunocastration) versus surgical castration on hypothalamic-pituitary function in boars. Thirty-six boars were randomly divided into three groups (n = 12/group): control, surgically castrated, or immunized against GnRH at 10 wk of age (boostered 8 wk later). Compared to intact boars, immunocastration reduced (P < 0.05) serum concentrations of LH, FSH, testosterone and inhibin B and caused severe testicular atrophy, whereas surgical castration increased (P < 0.05) serum concentrations of LH and FSH. Both immunocastration and surgical castration consistently reduced hypothalamic GnRH synthesis, with decreased (P < 0.05) mRNA expressions of GnRH, GnRH up-stream gatekeeper genes kiss1 and its receptor (GPR54), and androgen receptor in the hypothalamic arcuate nucleus (ARC) and anteroventral periventricular nucleus (AVPV), as well as GnRH content in the median eminence. Inconsistently, mRNA expressions of gonadotropin-inhibitory hormone (GnIH) in ARC and AVPV as well as its receptor (GPR147) in pituitary were selectively reduced (P < 0.05), but mRNA expressions of estrogen receptor alpha and aromatase (CPY17A1) in pituitary were selectively increased (P < 0.05) in surgical castrates. In response to selectively attenuated suppressive signaling from GnIH and testosterone, mRNA expressions of GnRH receptor (GnRHR), LH-β and FSH-β in pituitary were increased (P < 0.05) in surgical castrates, whereas these pituitary gene expressions were decreased (P < 0.05) in immunocastrates, due to loss of hypothalamic GnRH signaling. We concluded that immunocastration and surgical castration consistently reduced hypothalamic GnRH synthesis due to a testosterone deficiency disrupting testosterone-Kisspeptin-GPR54-GnRH signaling pathways. Furthermore, selectively attenuated GnIH and testosterone signaling in the pituitary increased gonadotropin production in surgical castrates.
Collapse
Affiliation(s)
- Xingfa Han
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yuqin Zhou
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yu Zeng
- College of Animal Science, Sichuan Agricultural University, Chengdu Campus, Chengdu, Sichuan, 611130, PR China
| | - Fenfen Sui
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yacheng Liu
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Yao Tan
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiaohan Cao
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xiaogang Du
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Fengyan Meng
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China
| | - Xianyin Zeng
- Isotope Research Lab, Biological Engineering and Application Biology Department, Sichuan Agricultural University, Ya'an, 625014, PR China.
| |
Collapse
|